WO2014167667A1 - 回転機制御装置 - Google Patents

回転機制御装置 Download PDF

Info

Publication number
WO2014167667A1
WO2014167667A1 PCT/JP2013/060809 JP2013060809W WO2014167667A1 WO 2014167667 A1 WO2014167667 A1 WO 2014167667A1 JP 2013060809 W JP2013060809 W JP 2013060809W WO 2014167667 A1 WO2014167667 A1 WO 2014167667A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
unit
rotating machine
torque
phase
Prior art date
Application number
PCT/JP2013/060809
Other languages
English (en)
French (fr)
Inventor
孝志 保月
山崎 尚徳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/767,665 priority Critical patent/US9998043B2/en
Priority to KR1020157027854A priority patent/KR101758004B1/ko
Priority to JP2015511011A priority patent/JP5936770B2/ja
Priority to BR112015025020A priority patent/BR112015025020A2/pt
Priority to CN201380075438.XA priority patent/CN105103435B/zh
Priority to PCT/JP2013/060809 priority patent/WO2014167667A1/ja
Publication of WO2014167667A1 publication Critical patent/WO2014167667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a rotating machine control device that suppresses torque ripple that occurs during rotation of a rotating machine.
  • a PM motor Permanent Magnet Synchronous Motor
  • PM motor includes a harmonic component in the induced voltage due to its structure
  • the generated torque has a torque ripple. Since this can cause problems such as vibration, noise, mechanical resonance, etc., reduction techniques are required.
  • a reduction technique a technique that suppresses torque ripple by superimposing a compensation signal for suppressing torque ripple on a current command is known (see, for example, Patent Document 1).
  • the control frequency band of the current control unit is set to the frequency band of the torque ripple to be suppressed.
  • the compensation signal according to the command is not output, and there is a problem that the torque ripple suppression performance is deteriorated.
  • the torque ripple frequency increases in proportion to the rotational speed of the PM motor, this problem is particularly important when the motor is rotating at high speed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotating machine control device that can more effectively suppress torque ripple in a wide speed range.
  • a torque compensator, a current controller, a voltage command generator, and a phase compensator are provided, and the rotating machine is driven by a drive voltage applied via a power converter according to a three-phase drive voltage command output from the voltage command generator.
  • a rotating machine control device for controlling, The torque compensation unit includes a voltage estimation unit, a torque estimation unit, a first command generation unit, and a second command generation unit, The voltage estimation unit estimates an estimated induced voltage of the rotating machine based on an actual current flowing through the rotating machine and the driving voltage.
  • the torque estimation unit estimates the estimated torque of the rotating machine based on the estimated induced voltage and the actual current
  • the first command generation unit generates a first command for suppressing torque ripple of the rotating machine based on the estimated torque.
  • the second command generating unit generates a second command for suppressing torque ripple of the rotating machine based on the estimated induced voltage
  • the current control unit generates a q-axis voltage command by compensating a difference between a q-axis current command for commanding a current supplied from the power converter to the rotating machine and the actual current by the first command.
  • the voltage command generation unit compensates the q-axis voltage command with the second command, and generates the three-phase drive voltage command based on the compensated q-axis voltage command,
  • the phase compensation unit compensates at least one of the control delay of the current control system including the current control unit and the estimation delay of the torque estimation unit by compensating at least one of the first command and the second command.
  • the rotating machine control device according to the present invention is configured as described above, it is possible to obtain a rotating machine control device that can more effectively suppress torque ripple in a wide speed range.
  • FIG. 1 to 6 show a first embodiment for carrying out the present invention.
  • FIG. 1 is a block diagram showing a configuration of a rotating machine control device.
  • FIG. 2 is a block diagram of a first command generator of FIG.
  • FIG. 3 is a block diagram showing a detailed configuration of the second command generation unit in FIG. 1.
  • 4 is a diagram for explaining the setting of the control parameter Kp in FIG. 3
  • FIG. 5 is a voltage waveform diagram for explaining the phase delay of the power converter compensated in the present invention
  • FIG. 6 is shown in FIG. It is a figure which shows the simulation result in the case of performing torque ripple suppression control by a rotary machine control apparatus.
  • the rotating machine control device includes a current command generation unit 1, a current control unit 2, a dq-three-phase conversion unit 3, a current detection unit 5, a three-phase-dq conversion unit 6, an estimation unit 7, a subtractor 8, 9, adders 10 and 11, a rotation position detector (pulse generator) 13, a first command generation unit 100, and a second command generation unit 200.
  • the estimation unit 7 estimates the torque and induced voltage of a PM motor (Permanent Magnet Synchronous Motor) (hereinafter simply referred to as a motor) 12 as a rotating machine.
  • the rotational position detector 13 detects the rotational position of the motor. As shown in detail in FIG.
  • the first command generation unit 100 includes a processing unit 101, calculation units 102 and 103, calculation units 105 and 106, and an adder 107, and a first command for suppressing torque ripple. Is generated.
  • the processing unit 101 includes an extraction unit 101a and a phase compensation unit 101b.
  • the extraction unit 101a extracts a vibration component (pulsation component) of the estimated torque ⁇ .
  • the phase compensation unit 101b compensates the phase of the vibration component of the estimated torque ⁇ extracted by the extraction unit 101a based on the compensation setting value for compensating the estimated delay of the estimated torque ⁇ from the actual torque (details will be described later).
  • the calculation units 102 and 103 calculate a torque ripple vibration suppression value.
  • the calculation units 102 and 103 have subtracters 102a and 103a and suppression control units 102b and 103b, respectively.
  • the arithmetic units 105 and 106 include signal generation units 105a and 106a and multipliers 105b and 106b.
  • the signal generators 105a and 106a generate a periodic signal and compensate for the control delay of the current control system.
  • the estimation part 7, the 1st command generation part 100, and the 2nd command generation part 200 are the torque compensation parts in this invention.
  • the first command generation unit 100 and the second command generation unit 200 also serve as a phase compensation unit in the present invention (details will be described later).
  • the current control unit 2, the dq-three-phase conversion unit 3, the estimation unit 7, and the first command generation unit 100 constitute a current control system in the present invention.
  • the estimation unit 7 is a voltage estimation unit and a torque estimation unit in the present invention, and the dq-three-phase conversion unit 3 and the adder 11 are voltage command generation units.
  • the extraction unit 101a is the first extraction unit in the present invention, and the phase compensation unit 101b is the first phase compensation unit.
  • the computing units 102 and 103 are the first computing unit in the present invention, and the computing units 105 and 106 are the second computing unit.
  • the signal generation units 105a and 106a are the second phase compensation unit in the present invention.
  • the second command generation unit 200 includes a processing unit 201, calculation units 202 and 203, an adder 204, and an adjustment unit 205, and is a torque ripple compensation voltage command for suppressing torque ripple.
  • a second command is generated.
  • the processing unit 201 includes an extraction unit 201a and a phase compensation unit 201b.
  • the extraction unit 201a extracts a vibration component in the induced voltage.
  • the phase compensation unit 201b compensates the phase of the vibration component in the induced voltage extracted by the extraction unit 201a based on the compensation setting value for compensating the estimated delay from the actual voltage of the q-axis induced voltage estimated value eq ( Details will be described later).
  • the calculation units 202 and 203 include signal generation units 202a and 203a and multipliers 202b and 203b, respectively, and calculate the second command.
  • the signal generators 202a and 203a generate periodic signals and compensate for control delays in the current control system.
  • the extraction unit 201a is the second extraction unit in the present invention, and the phase compensation unit 201b is the third phase compensation unit.
  • the calculation units 202 and 203 are the third calculation unit in the present invention.
  • the signal generation units 202a and 203a are the fourth phase compensation unit in the present invention.
  • a torque set value ⁇ ** and a phase-compensated first command ⁇ * rip (detailed later) that is a torque ripple compensation command are added by an adder 10, and a current command generator is generated as a torque command ⁇ *. 1 is output (given).
  • the current command generator 1 the q-axis current command iq * is calculated based on the torque command ⁇ * and the motor constant, and is output to the subtracter 8. Further, the current detection unit 5 detects the actual current vector i of the motor 12 and outputs it to the three-phase-dq conversion unit 6.
  • the three-phase-dq converter 6 calculates the q-axis actual current iq and the d-axis actual current id based on the actual current vector i, the q-axis actual current iq is subtracted to the subtracter 8, and the d-axis actual current id is subtracted. Is output to the device 9.
  • the subtracter 8 the difference between the q-axis current command iq * and the q-axis actual current iq is calculated and output to the current control unit 2.
  • the subtracter 9 calculates the difference between the d-axis current command id * and the d-axis actual current id and outputs the difference to the current control unit 2.
  • the current control unit 2 calculates a d-axis voltage command vd * and a q-axis voltage command vq *, and outputs the d-axis voltage command vd * to the dq-three-phase conversion unit 3.
  • the q-axis voltage command vq * and the phase-compensated second command vq * rip are added by the adder 11 and output to the dq-three-phase converter 3.
  • the dq-three-phase converter 3 calculates a voltage command vector v * as a three-phase drive voltage command from the d-axis voltage command vd * and the q-axis voltage command vq * and outputs it to the power converter 4.
  • the phase-compensated first command ⁇ * obtained by the estimation unit 7, the first command generation unit 100, the second command generation unit 200, and the like .
  • Control compensation is performed based on the rip and the phase-compensated second command vq * rip .
  • the details will be described below.
  • the estimation unit 7 Based on the motor constant, the actual current vector i, the voltage command vector v * to the motor 12, and the electrical angle ⁇ re of the motor detected by the rotational position detector 13 such as an encoder, the estimation unit 7 performs the following calculation.
  • An estimated voltage vector e as an estimated induced voltage of the motor is estimated.
  • R is the winding resistance of the motor
  • L is the self-inductance
  • Pm is the number of pole pairs
  • p is the differential operator
  • I is the unit matrix
  • J is the substitution matrix
  • F (s) is the gain of the low-pass filter
  • ⁇ rm is mechanical angular velocity
  • ⁇ re represents the electrical angular velocity.
  • the gain F (s) is a transfer function of a low-pass filter realized by software processing by a microprocessor in the estimation unit 7.
  • the estimation unit 7 estimates the estimated torque ⁇ of the motor from the estimated voltage vector e, the actual current vector i, and the electrical angular velocity ⁇ re by the following equation (2).
  • i T is a transposed matrix of i.
  • the pulsating component of the estimated torque ⁇ is extracted in the extraction unit 101a.
  • Any known technique can be used as the calculation method.
  • the calculation of the following equation (3) with reference to the Fourier series expansion is used for the estimated torque ⁇ .
  • ⁇ Cn is the cosine coefficient of the estimated torque ⁇
  • ⁇ Sn is the sine coefficient of the estimated torque ⁇
  • F LPF (s) is the gain of the low-pass filter
  • n is the torque ripple order.
  • ⁇ ⁇ -est is a phase compensation setting value for compensating an estimated delay of the estimated torque ⁇ from the actual torque, and is set by the phase compensation unit 101b. The compensation set value ⁇ ⁇ -est is determined in advance from actual measurements or models.
  • the cosine coefficient ⁇ Cn and the sine coefficient ⁇ Sn are output to the subtracters 102 a and 103 a of the calculation unit 102, respectively.
  • the torque ripple compensation cosine coefficient ⁇ Cn * and the torque ripple compensation sine coefficient ⁇ Sn are calculated as torque ripple vibration suppression values by the calculation of the following equation (4). * Is calculated and output to the multipliers 105b and 106b of the calculation units 105 and 106, respectively.
  • G rip (s) represents the transfer characteristics of the suppression controllers 102b and 103b
  • ⁇ Cn ** and ⁇ Sn ** represent torque ripple suppression command values.
  • Expressions (5) are calculated in multipliers 105b and 106b and adder 107 of arithmetic units 105 and 106, converted into a conversion signal synchronized with the torque ripple period, and a first command ⁇ * rip is output.
  • phase compensation ( ⁇ i ) is performed based on the electrical angular velocity ⁇ re of the motor 12, and the converted signal is generated.
  • the compensation set value ⁇ i is obtained in advance from actual measurements or models, and is set in advance.
  • ⁇ i represents a set value of phase compensation based on a control delay related to the generation of the first command by the current control system including the power converter 4.
  • the following equation (6) is calculated in the extraction unit 201a and the phase compensation unit 201b.
  • F LPF (s) is a transfer function of a low-pass filter realized by software processing by a microprocessor in the extraction unit 201a.
  • ⁇ eq-est is a compensation setting value that compensates for an estimation delay from the actual voltage of the q-axis induced voltage estimation value eq, and is set by the phase compensation unit 201b.
  • the compensation set value ⁇ eq-est is determined in advance from actual measurements or models.
  • vibration components synchronized with the period of torque ripple of the q-axis induced voltage estimated value eq are extracted as Fourier coefficients eq Cn and eq Sn . These values are output to the multipliers 202b and 203b of the arithmetic units 202 and 203.
  • a periodic signal subjected to phase compensation ( ⁇ v ) is generated based on the electrical angular velocity ⁇ re of the motor 12.
  • the compensation set value ⁇ v is obtained in advance from actual measurements or models, and is set in advance.
  • the multipliers 202b and 203b and the adder 204 of the arithmetic units 202 and 203 perform the calculation of Expression (7), and the result is converted into a periodic signal eq rip synchronized with the period of torque ripple and output to the adjusting unit 205.
  • ⁇ v represents a phase compensation setting value based on a control delay related to the second command generation by the dq-three-phase conversion unit 3, the power converter 4, the estimation unit 7, and the processing unit 201.
  • control parameter Kp ( ⁇ re ) is changed according to the electrical angular velocity ⁇ re as the rotation speed of the rotating machine, for example, as indicated by the broken line F in FIG. That is, at a low speed (low frequency range), a current command value sufficient to suppress torque ripple is output from the current control unit 2, so that the control parameter Kp ( ⁇ re ) is up to a certain electrical angular velocity (frequency) ⁇ 1.
  • the control parameter Kp ( ⁇ re ) increases in proportion to the electrical angular velocity. Has been.
  • the second command vq * rip corresponding to the rotation speed is output from the adjustment unit 205.
  • the first command ⁇ * rip corrected in phase according to the estimated delay and the control delay of the control system is output from the first command generation unit 100, and the second command vq * rip corrected in phase is also generated. Output from the second command generator 200.
  • the adder 10 adds the first command ⁇ * rip to the torque command ⁇ * and outputs it to the current command generator 1
  • the adder 11 adds the second command vq * to the q-axis voltage command vq * .
  • the rip is added and output to the dq-three-phase converter 3. In this way, the torque (current) command ⁇ * and the q-axis voltage command vq * are simultaneously compensated.
  • FIG. 5 is a diagram for explaining a phase delay that occurs in a motor drive system using power conversion means such as a power converter, as an example of a control delay.
  • a command Va such as a solid black line from the current controller 2
  • Vb the staircase waveform
  • Vc The average value (dotted line waveform) Vc.
  • FIG. 6 is a diagram showing a simulation result when the torque ripple suppression control is performed by the rotating machine control device shown in FIG. 1, and the first embodiment is applied to a 10 pole pair motor model having a torque ripple of a 6th-order component.
  • the current control band is 2000 [rad / sec]
  • the motor 12 is rotated at a constant 1000 [r / min] from the load side.
  • the torque ripple frequency of the sixth-order component is approximately 6280 [rad / sec], so that it is difficult to suppress by the conventional technique.
  • the first command generation unit 100 and the second command generation unit 200 are not operated, and the suppression control is not performed.
  • the torque command and the q-axis voltage command are simultaneously compensated by the first and second commands in which the control delay and the estimated delay are compensated, so that the q-axis voltage command vq * in the high frequency range is increased. Since the shortage is compensated for, an effect that torque ripple is more effectively suppressed in a wide speed range up to a high speed range can be obtained.
  • the first and second commands are generated based on the value compensated for the phase delay such as the control delay and the estimated delay, the torque ripple can be reduced without performing complicated pre-measurement work using the measurement equipment. It can be effectively suppressed.
  • Embodiment 2 Since the configuration in the present embodiment is the same as that in the first embodiment shown in FIGS. 1 to 6, the illustration is omitted.
  • the calculation of the expression (3) is performed by the extraction unit 101a, and the calculation of the expression (4) is performed by the calculation units 102 and 103.
  • the calculation of equation (5) is performed by the units 105 and 106, the calculation of equation (6) is performed by the extraction unit 201a in the second command generation unit 200, and the equation (7) is calculated by the calculation units 202 and 203 and the adder 204.
  • torque ripple order n is set to ni in the first command generation unit 100 and n is set to nv in the second command generation unit 200
  • torque ripples of different orders will be used. Can be operated to compensate.
  • suppression effect can be enhanced by setting the second command generation unit 200 to suppress higher-order torque ripple.
  • an effect that enables torque ripple suppression in the high-speed rotation region is obtained as in the first embodiment, and the first command generation unit 100 and the second command generation unit 200 are subject to suppression.
  • the order (frequency) of the torque ripple it is possible to obtain an effect of enabling appropriate torque ripple suppression according to motor characteristics and operating conditions.
  • FIG. 7 is a block diagram showing a mathematical model of the current control system for explaining the operation in this embodiment.
  • the first command generation unit 100 performs the calculation of Expression (3) by the extraction unit 101a
  • the calculation units 102 and 103 perform Expression (4).
  • the second command generation unit 200 the calculation of equation (6) is performed in the extraction unit 201 a by the calculation units 202 and 203 and the adder 204.
  • the phase compensation amount ⁇ v in the second command generation unit 200 and the adjustment amount Kp ( ⁇ re ) in the adjustment unit 205 are determined by calculation based on the mathematical model of the control system, Since eq rip and the second command vq * rip are calculated based on the equations (7) and (8), the control system can be easily adjusted.
  • the adder 10 adds the first command ⁇ * rip obtained by the first command generation unit 100 to the torque command ⁇ * .
  • the first command ⁇ * rip output from the one command generation unit 100 may be converted into a q-axis current and added to the q-axis current command iq * .
  • the above-described embodiments can be freely combined, and each embodiment can be appropriately changed or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 推定部(7)においてPMモータ(12)のq軸誘起電圧推定値eq及び推定トルクτが推定され、加算器(10)にてトルク指令τと第1指令とが加算される。第1指令は、第1指令生成部(100)において推定トルクτに基づいて求められる。加算器(11)にてq軸電圧指令vqと第2指令とが加算される。第2指令は第2指令生成部(200)においてq軸誘起電圧推定値eqに基づいて求められる。併せて第1及び第2指令生成部(100,200)において、電流制御部(2)を含む電流制御系の制御遅れ並びに推定部(7)におけるPMモータ(12)の推定トルク及び推定誘起電圧の推定遅れが補償される。制御遅れ及び推定遅れが補償された第1及び第2指令によってトルク指令とq軸電圧指令とを同時補償することで、高周波域でのq軸電圧指令vqの不足分が補われるため、高速域まで広い速度域においてトルクリプルが効果的に抑制される。

Description

回転機制御装置
 本発明は、回転機の回転中に生じるトルクリプルを抑制する回転機制御装置に関する。
 回転機としてのPMモータ(Permanent Magnet Synchronous Motor)は小型かつ高効率という特徴を持ち、近年では、産業機器用などに広く利用されている。しかし、PMモータはその構造上、誘起電圧に高調波成分を含むため発生トルクにトルクリプルを持つ。これは振動や騒音、機械的共振等の問題を引き起こす原因となりうるためその低減技術が必要となる。
 低減技術として、電流指令に対しトルクリプルを抑制するための補償信号を重畳することでトルクリプルを抑制するようにしたものが知られている(例えば、特許文献1参照)。
特開2006-288076号公報
 従来の回転機制御装置は、以上のように構成され、電流指令に補償信号を重畳することでトルクリプルを抑制するものであるので、電流制御部の制御周波数帯域が抑制対象のトルクリプルの周波数帯域を下回る場合に指令通りの補償信号が出力されずに、トルクリプル抑制性能が低下するという問題点があった。トルクリプル周波数はPMモータの回転速度に比例して増加するため、この問題点はモータが高速回転中の場合において特に重要である。
 この発明は前記のような問題点を解決するためになされたものであり、広い範囲の速度域においてトルクリプルをより効果的に抑制できる回転機制御装置を得ることを目的とする。
 この発明に係る回転機制御装置においては、
トルク補償部と電流制御部と電圧指令生成部と位相補償部を備え、前記電圧指令生成部から出力される3相の駆動電圧指令により電力変換器を介して印加される駆動電圧により回転機を制御する回転機制御装置であって、
前記トルク補償部は、電圧推定部とトルク推定部と第1指令生成部と第2指令生成部とを有するものであって、
前記電圧推定部は、前記回転機に流れる実電流と前記駆動電圧とに基づき前記回転機の推定誘起電圧を推定するものであり、
前記トルク推定部は、前記推定誘起電圧と前記実電流とに基づいて前記回転機の推定トルクを推定するものであり、
前記第1指令生成部は、前記推定トルクに基づいて前記回転機のトルクリプルを抑制する第1指令を生成するものであり、
前記第2指令生成部は、前記推定誘起電圧に基づいて前記回転機のトルクリプルを抑制する第2指令を生成するものであり、
前記電流制御部は、前記電力変換器から前記回転機へ供給される電流を指令するq軸電流指令と前記実電流との差を前記第1指令にて補償してq軸電圧指令を生成するものであり、
前記電圧指令生成部は、前記q軸電圧指令を前記第2指令にて補償し、補償された前記q軸電圧指令に基づき、前記3相の駆動電圧指令を生成するものであり、
前記位相補償部は、前記第1指令及び第2指令の少なくとも一方を補償して前記電流制御部を含む電流制御系の制御遅れと前記トルク推定部の推定遅れの少なくとも一方を補償するものである。
 この発明にかかる回転機制御装置は、以上のように構成されているので、広い範囲の速度域においてトルクリプルをより効果的に抑制できる回転機制御装置を得ることができる。
この発明の実施の形態1である回転機制御装置の構成を示すブロック図である。 図1の第1指令生成部の詳細構成を示すブロック図である。 図1の第2指令生成部の詳細構成を示すブロック図である。 図3の制御パラメータKpの設定について説明するための図である。 本発明で補償する電力変換器の位相遅れを説明するための電圧波形図である。 図1に示した回転機制御装置によりトルクリプル抑制制御を行う場合のシミュレーション結果を示す図である。 この発明の実施の形態3の動作を説明するための電流制御系の数理モデルを示すブロック図である。
実施の形態1.
 図1~図6は、この発明を実施するための実施の形態1を示すものであり、図1は回転機制御装置の構成を示すブロック図、図2は図1の第1指令生成部の詳細構成を示すブロック図、図3は図1の第2指令生成部の詳細構成を示すブロック図である。図4は、図3の制御パラメータKpの設定について説明するための図、図5は本発明で補償する電力変換器の位相遅れを説明するための電圧波形図、図6は図1に示した回転機制御装置によりトルクリプル抑制制御を行う場合のシミュレーション結果を示す図である。
 図1において、回転機制御装置は、電流指令生成部1、電流制御部2、dq-三相変換部3、電流検出部5、三相-dq変換部6、推定部7、減算器8,9、加算器10,11、回転位置検出器(pulse generator)13、第1指令生成部100、第2指令生成部200を有する。推定部7は、回転機としてのPMモータ(Permanent Magnet Synchronous Motor)(以下単にモータと称する)12のトルク及び誘起電圧を推定するものである。回転位置検出器13は、モータの回転位置を検出する。第1指令生成部100は、図2にその詳細を示すように、処理部101、演算部102,103、演算部105,106、加算器107を有し、トルクリプルを抑制するための第1指令を生成する。処理部101は、抽出部101a及び位相補償部101bを有する。抽出部101aは、推定トルクτの振動成分(脈動成分)を抽出する。位相補償部101bは、推定トルクτの実トルクからの推定遅れを補償するための補償設定値に基づき抽出部101aにて抽出された推定トルクτの振動成分の位相を補償する(詳細後述)。演算部102,103は、トルクリプル振動抑制値を演算する。演算部102,103は、それぞれ、減算器102a,103a、抑制制御部102b,103bを有する。演算部105,106は、信号生成部105a,106a、乗算器105b,106bを有する。信号生成部105a,106aは、周期信号を生成し、併せて電流制御系の制御遅れを補償する。なお、推定部7、第1指令生成部100、第2指令生成部200がこの発明におけるトルク補償部である。また、第1指令生成部100及び第2指令生成部200がこの発明における位相補償部を兼ねている(詳細後述)。電流制御部2、dq-三相変換部3、推定部7、第1指令生成部100にてこの発明における電流制御系が構成されている。推定部7がこの発明における電圧推定部及びトルク推定部であり、dq-三相変換部3及び加算器11が電圧指令生成部である。抽出部101aがこの発明における第1抽出部、位相補償部101bが第1位相補償部である。演算部102,103がこの発明における第1演算部であり、演算部105,106が第2演算部である。信号生成部105a,106aが、この発明における第2位相補償部である。
 第2指令生成部200は、図3にその詳細を示すように処理部201、演算部202,203、加算器204、調節部205を有し、トルクリプルを抑制するためのトルクリプルの補償電圧指令である第2指令を生成する。処理部201は、抽出部201a及び位相補償部201bを有する。抽出部201aは、誘起電圧中の振動成分を抽出する。位相補償部201bは、q軸誘起電圧推定値eqの実電圧からの推定遅れを補償するための補償設定値に基づき抽出部201aにて抽出された誘起電圧中の振動成分の位相を補償する(詳細後述)。演算部202,203は、それぞれ信号生成部202a,203a、乗算器202b,203bを有し、第2指令を演算する。信号生成部202a,203aは、周期信号を生成し、電流制御系の制御遅れを補償する。抽出部201aがこの発明における第2抽出部、位相補償部201bが第3位相補償部である。演算部202,203が、この発明における第3演算部である。信号生成部202a,203aが、この発明における第4位相補償部である。
 次に、動作を説明する。図1において、トルクの設定値τ**とトルクリプル補償指令である位相補償された第1指令τ rip(詳細後述)とが加算器10にて加算され、トルク指令τとして電流指令生成部1へ出力される(与えられる)。電流指令生成部1では、トルク指令τとモータ定数とに基づいてq軸電流指令iqが演算され、減算器8へ出力される。また、電流検出部5では、モータ12の実電流ベクトルiが検出され、三相-dq変換部6へ出力される。そして、三相-dq変換部6では実電流ベクトルiに基づき、q軸実電流iq及びd軸実電流idが演算され、q軸実電流iqは減算器8へ、d軸実電流idは減算器9へ出力される。
 減算器8ではq軸電流指令iqとq軸実電流iqとの差が演算され電流制御部2へ出力される。減算器9ではd軸電流指令idとd軸実電流idとの差が演算され、同じく電流制御部2へ出力される。電流制御部2ではd軸電圧指令vd及びq軸電圧指令vqが演算され、d軸電圧指令vdはdq-三相変換部3へ出力される。また、q軸電圧指令vqと位相補償された第2指令vq rip(詳細後述)とが加算器11にて加算され、dq-三相変換部3へ出力される。dq-三相変換部3ではd軸電圧指令vd及びq軸電圧指令vqから三相の駆動電圧指令としての電圧指令ベクトルvが演算され、電力変換器4へ出力される。電力変換器4では電圧指令ベクトルvに従って三相電圧が出力され、トルク指令τと等しいトルクを発生させるよう、モータ12が駆動される。
 以上が、動作の概略であるが、本実施の形態においては、推定部7、第1指令生成部100、第2指令生成部200等にて求められた、位相補償された第1指令τ rip及び位相補償された第2指令vq ripに基づいて制御の補償が行なわれる。以下に、その詳細を説明する。推定部7ではモータ定数と、実電流ベクトルiと、モータ12への電圧指令ベクトルvと、エンコーダ等の回転位置検出器13によって検出されたモータの電気角θreに基づき、以下の演算によってモータの推定誘起電圧としての推定電圧ベクトルeが推定される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Rはモータの巻線抵抗、Lは自己インダクタンス、Pmは極対数、pは微分演算子、Iは単位行列、Jは交代行列、F(s)はローパスフィルタのゲイン、ωrmは機械角速度、ωreは電気角速度を表している。ゲインF(s)は、図示していないが推定部7内においてマイクロプロセッサによるソフトウエア処理により実現されているローパスフィルタの伝達関数である。
 そして、推定部7では、推定電圧ベクトルeと前記実電流ベクトルi及び電気角速度ωreから以下の式(2)の演算によってモータの推定トルクτが推定される。なお、式(2)中、iはiの転置行列である。
Figure JPOXMLDOC01-appb-M000002
 次に図2を参照して第1指令生成部100の動作を説明する。まず、抽出部101aにおいて推定トルクτの脈動成分が抽出される。その演算方法は任意の公知技術を用いることができるが、ここでは一例として、推定トルクτに対してフーリエ級数展開を参考にした次式(3)の演算を用いる。
Figure JPOXMLDOC01-appb-M000003
 ここで、τCnは推定トルクτの余弦係数、τSnは推定トルクτの正弦係数、FLPF(s)はローパスフィルタのゲイン、nはトルクリプル次数である。Δθτ-estは推定トルクτの実トルクからの推定遅れを補償するための位相の補償設定値であり、位相補償部101bにて設定される。補償設定値Δθτ-estは、実測やモデルから求めて、予め設定される。
 次に、図2に詳細を示すように前記余弦係数τCn、及び正弦係数τSnがそれぞれ演算部102の減算器102a、103aへ出力される。演算部102,103(減算器102a、103a及び抑制制御部102b,103b)では、次の式(4)の演算によってトルクリプル振動抑制値としてトルクリプル補償余弦係数τCn 、及びトルクリプル補償正弦係数τSn が演算され、それぞれ演算部105,106の乗算器105b、106bへ出力される。
Figure JPOXMLDOC01-appb-M000004
 ここで、Grip(s)は抑制制御部102b,103bの伝達特性、τCn **、τSn **はトルクリプル抑制指令値を表している。
 演算部105,106の乗算器105b、106b及び加算器107において式(5)の演算が行なわれ、トルクリプルの周期に同期した変換信号へと変換され、第1指令τ ripが出力される。なお、信号生成部105a,106aにおいて、モータ12の電気角速度ωreに基づき、位相補償(Δθ)が行われ前記変換信号が生成される。補償設定値Δθは、実測やモデルから求めて、予め設定される。
 Δθは、電力変換器4を含む電流制御系による、第一指令生成に係る制御遅れに基づく位相補償の設定値を表している。
 次に図3を参照して第2指令生成部200の詳細な動作を説明する。まず、推定電圧ベクトルe中のq軸誘起電圧推定値eqについて、抽出部201a及び位相補償部201bにおいて以下の式(6)の演算が行なわれる。FLPF(s)は、図示していないが、抽出部201a内においてマイクロプロセッサによるソフトウエア処理により実現されているローパスフィルタの伝達関数である。また、Δθeq-estはq軸誘起電圧推定値eqの実電圧からの推定遅れを補償する補償設定値であり、位相補償部201bにより設定される。補償設定値Δθeq-estは、実測やモデルから求めて、予め設定される。
Figure JPOXMLDOC01-appb-M000006
 前記式(6)により、q軸誘起電圧推定値eqのトルクリプルの周期に同期した振動成分がフーリエ係数eqCn,eqSnとして抽出される。そして、これらの値が演算部202,203の乗算器202b、203bへと出力される。なお、信号生成部202a,203aにおいては、モータ12の電気角速度ωreに基づき、位相補償(Δθ)が行われた周期信号が生成される。補償設定値Δθは、実測やモデルから求めて、予め設定される。
 演算部202,203の乗算器202b、203b及び加算器204では式(7)の演算が行なわれ、トルクリプルの周期に同期した周期信号eqripへと変換され、調節部205へ出力される。
Figure JPOXMLDOC01-appb-M000007
 ただし、Δθは、dq-三相変換部3、電力変換器4、推定部7及び処理部201による、第二指令生成に係る制御遅れに基づく位相の補償設定値を表している。
 ここでは簡単のため、調節部205において次式(8)のような比例制御が行なわれるものとする。制御パラメータKp(ωre)は例えば図4の折線Fに示すように回転機の回転速度としての電気角速度ωreに応じて変化させられる。すなわち、低速(低周波域)では、電流制御部2からトルクリプルを抑制するための充分な電流指令値が出力されるので、ある電気角速度(周波数)ωまでは制御パラメータKp(ωre)は0とされ、これ以上の領域では電気角速度が大きくなって電流制御部2から出力される指令値が小さくなるのを補うために制御パラメータKp(ωre)が電気角速度に比例して大きくなるようにされている。これにより、調節部205から回転速度に応じた第2指令vq ripが出力される。
Figure JPOXMLDOC01-appb-M000008
 以上のようにして、推定遅れ及び制御系の制御遅れに応じて位相補正された第1指令τ ripが第1指令生成部100から出力され、同じく位相補正された第2指令vq ripが第2指令生成部200から出力される。
 図1に戻って、加算器10ではトルク指令τに第1指令τ ripを加算して電流指令生成部1へ出力し、加算器11ではq軸電圧指令vqに第2指令vq ripを加算してdq-三相変換部3へ出力する。このようにしてトルク(電流)指令τ及びq軸電圧指令vqを同時に補償する。
 トルクリプルの周波数帯域が電流制御部2の制御周波数帯域を上回るような高速領域では、トルク(電流)指令τのみを補償してもその影響は電流制御部2で減衰され、トルクリプル抑制を行うのに十分な高周波のq軸電圧指令vqがdq-三相変換部3へ出力されない。しかし、q軸電圧指令vqを同時に補償することによって、高周波域におけるq軸電圧指令vqの不足分を補うことができるため、高速領域においてもトルクリプル抑制を効果的に行うことができ、広い範囲の速度域においてトルクリプルを抑制できる回転機制御装置を得ることができる。
 式(3)、式(5)、式(7)から明らかなように本実施の形態では推定トルクが持つ推定遅れと、電流制御系全体が持つ制御遅れとを独立して補償しているので位相補償量の調整が容易となる。
 図5は制御遅れの一例として、電力変換器等の電力変換手段を用いたモータ駆動系で生じる位相遅れについて説明する図である。図5に示したように、dq-三相変換部3が電流制御部2から黒実直線のような指令Vaが与えられたとしても、実際に制御入力として入力されるのは階段波形Vbの平均値(点線の波形)Vcである。Tを電力変換器の実際の電圧の更新周期の間隔とすると点線の平均値Vcは実線の指令Vaから時間としてTa+Tb=1.5T(Ta=T,Tb=0.5T)[sec]、すなわち位相として1.5T×nωre[rad]だけ遅れている。したがって、電流制御部2における制御遅れを∠θ、抑制制御部102b,103bにおける制御遅れを∠θripとすれば、式(5)及び式(7)における位相補償量を、次の式(9)
Figure JPOXMLDOC01-appb-M000009
のように選ぶことができる。
 図6は図1に示した回転機制御装置によりトルクリプル抑制制御を行った場合のシミュレーション結果を示す図であるが、6次成分のトルクリプルを持つ10極対のモータモデルに対して実施の形態1による回転機制御装置を取り付け、電流制御帯域を2000[rad/sec]とし、負荷側からモータ12を1000[r/min]一定で回転させている。このとき6次成分のトルクリプル周波数はおよそ6280[rad/sec]となるため、従来技術では抑制困難となる。区間aは第1指令生成部100及び第2指令生成部200を動作させず、抑制制御を行っていない。区間bでは第1指令生成部100のみ動作させ、最後に区間cにおいて第2指令生成部200も動作させ、実施の形態1による回転機制御装置として完全な動作をさせている。
 1000[r/min]の高速域において、第1指令生成部100のみではトルクリプルを完全には抑制できていないが、第2指令生成部200を合わせて動作させることで、高い抑制効果が得られていることが分かる。
 このように本実施の形態では、制御遅れ及び推定遅れが補償された第1及び第2指令によってトルク指令とq軸電圧指令とを同時補償することにより、高周波域におけるq軸電圧指令vqの不足分が補われるため、高速域まで広い範囲の速度域においてトルクリプルがより効果的に抑制されるという効果が得られる。
 加えて、本発明では制御遅れや推定遅れといった位相遅れを補償した値に基づいて第1及び第2指令を生成するので、計測設備を用いた煩雑な事前計測作業を行うことなしに、トルクリプルを効果的に抑制することができる。
実施の形態2.
 本実施の形態における構成は、図1~図6に示した実施の形態1と同様のものであるので、図示を省略する。本実施の形態では、実施の形態1と同様に、第1指令生成部100では抽出部101aにて式(3)の演算が、演算部102,103にて式(4)の演算が、演算部105,106にて式(5)の演算が行なわれ、第2指令生成部200では抽出部201aにて式(6)の演算が、演算部202,203、加算器204にて式(7)の演算が、調節部205にて式(8)の演算が行なわれることで、第n次のトルクリプルを補償するための指令を生成する。
 このとき相異なる自然数ni、nv(ni<nv)を用いて、第1指令生成部100においてトルクリプル次数nをni、第2指令生成部200においてnをnvと設定すれば、それぞれ異なる次数のトルクリプルを補償するように動作させることができる。また、より高次のトルクリプルの抑制を第2指令生成部200において行うように設定することで抑制効果を高めることができる。
 これにより、例えば、トルクリプルが増大する低速度領域ではトルクリプルの主要な成分である6次成分と12次成分の両方を抑制するためにni=6、nv=12とすることで複数の次数のトルクリプルを抑制するよう動作させ、トルクリプルが減少するが抑制は困難となる高速度領域では、最も主要な成分である6次成分のみに着目してni=nv=6として実施の形態1のように動作させ、6次成分の抑制効果を高めるというような、動作モードの切り替えが可能となる。
 このように本実施の形態によれば、実施の形態1と同様に高速回転域でのトルクリプル抑制が可能となる効果が得られ、第1指令生成部100と第2指令生成部200において抑制対象とするトルクリプルの次数(周波数)を独立して設定することによって、モータ特性や運転条件に応じて適切なトルクリプル抑制が可能となる効果が得られる。
実施の形態3.
 本実施の形態における構成は、図1~図6に示した実施の形態1と同様のものであるので、図示を省略する。なお、図7はこの実施の形態における動作を説明するための電流制御系の数理モデルを示すブロック図である。本実施の形態では、実施の形態1や実施の形態2と同様に、第1指令生成部100では抽出部101aにて式(3)の演算が、演算部102,103にて式(4)の演算が、演算部105,106にて式(5)の演算が行なわれ、第2指令生成部200では抽出部201aにて式(6)の演算が、演算部202,203、加算器204にて式(7)の演算が、調節部205にて式(8)の演算が行なわれることで、第n次のトルクリプルを補償するための第1及び第2指令が生成される。
 ところで、q軸上の数理モデルとして推定部7を含む電流制御系の伝達特性は図7のようになる。すなわち、電流指令生成部1の伝達関数は、
  1/Pφ
電流制御部2の伝達関数は、
  K+K/s
モータ12の伝達関数は、
  1/(Ls+R)
図7中の推定部7における電圧降下分の伝達関数は、 
  F(s)(Ls+R)
となる。ここで、q軸電圧指令値vqは、
  vq=vq rip+(Ls+R)iq
であり、q軸誘起電圧推定値eqは電圧指令値vqから電圧降下分を差し引くことにより求められるため、
  eq=vq-F(s)(Ls+R)iq
である。従って、vq ripからiqまでの伝達特性も考慮すると、第2指令vq ripを入力としたq軸誘起電圧推定値eqの算出までの伝達特性Gv(s)は
Figure JPOXMLDOC01-appb-M000010
のように計算できる。そのため、式(10)に基づいて図3における第2指令生成部200の演算部202,203において、
Figure JPOXMLDOC01-appb-M000011
と設定することができる。ただしjは虚数単位を表す。
 このように本実施の形態によれば、制御系の数理モデルに基づいた演算によって、第2指令生成部200における位相補償量Δθ、調節部205における調節量Kp(ωre)を決定し、式(7)、式(8)に基づいてeqrip、第2指令vq ripを演算するので、制御系の調整が容易になる効果がある。
 なお、前記実施の形態においては、加算器10(図1参照)においてトルク指令τに第1指令生成部100にて求められた第1指令τ ripを加算するものを示したが、第1指令生成部100から出力される第1指令τ ripをq軸電流に換算したものをq軸電流指令iqに加算するようにしてもよい。
 また、本発明は、その発明の範囲内において、上述した各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変更、省略することが可能である。

Claims (10)

  1. トルク補償部と電流制御部と電圧指令生成部と位相補償部を備え、前記電圧指令生成部から出力される3相の駆動電圧指令により電力変換器を介して印加される駆動電圧により回転機を制御する回転機制御装置であって、
    前記トルク補償部は、電圧推定部とトルク推定部と第1指令生成部と第2指令生成部とを有するものであって、
    前記電圧推定部は、前記回転機に流れる実電流と前記駆動電圧とに基づき前記回転機の推定誘起電圧を推定するものであり、
    前記トルク推定部は、前記推定誘起電圧と前記実電流とに基づいて前記回転機の推定トルクを推定するものであり、
    前記第1指令生成部は、前記推定トルクに基づいて前記回転機のトルクリプルを抑制する第1指令を生成するものであり、
    前記第2指令生成部は、前記推定誘起電圧に基づいて前記回転機のトルクリプルを抑制する第2指令を生成するものであり、
    前記電流制御部は、前記電力変換器から前記回転機へ供給される電流を指令するq軸電流指令と前記実電流との差を前記第1指令にて補償してq軸電圧指令を生成するものであり、
    前記電圧指令生成部は、前記q軸電圧指令を前記第2指令にて補償し、補償された前記q軸電圧指令に基づき、前記3相の駆動電圧指令を生成するものであり、
    前記位相補償部は、前記第1指令及び第2指令の少なくとも一方を補償して前記電流制御部を含む電流制御系の制御遅れと前記トルク推定部の推定遅れの少なくとも一方を補償するものである
    回転機制御装置。
  2. 前記第1指令生成部及び前記第2指令生成部は、前記第1指令生成部の抑制対象とする前記トルクリプルの周波数と前記第2指令生成部の抑制対象とする前記トルクリプルの周波数とが、異なる周波数にされたものである
    請求項1に記載の回転機制御装置。
  3. 前記第1指令生成部及び第2指令生成部は、前記第1指令生成部の抑制対象とする前記トルクリプルの周波数と前記第2指令生成部の抑制対象とする前記トルクリプルの周波数とを独立して変更しうるようにされたものである
    請求項1に記載の回転機制御装置。
  4. 前記第2指令生成部は、調節部を有するものであって、
    前記調節部は、前記回転機の回転速度に応じて前記第2指令の指令値の大きさを変えるものである
    請求項1に記載の回転機制御装置。
  5. 前記第1指令生成部は、第1抽出部と第1演算部と第2演算部とを有し、
    前記第1抽出部は、前記推定トルク中の前記トルクリプルの振動成分を抽出するものであり、
    前記第1演算部は、前記抽出されたトルクリプルの振動成分と抑制指示値との差からトルクリプル振動抑制値を求めるものであり、
    前記第2演算部は、前記トルクリプル振動抑制値を前記トルクリプルの周期に同期した変換信号に変換し前記変換信号に基づいて前記第1指令を生成するものである
    請求項1から請求項4のいずれか1項に記載の回転機制御装置。
  6. 前記位相補償部は、前記第1指令を補償するものであって、第1位相補償部及び第2位相補償部を有し、
    前記第1位相補償部は、前記トルクリプルの振動成分の位相を補償することにより前記推定トルクの推定遅れを補償し、
    前記第2位相補償部は、前記変換信号の位相を補償することにより前記電流制御系の制御遅れを補償するものである
    請求項5に記載の回転機制御装置。
  7. 前記第2指令生成部は、第2抽出部と第3演算部とを有し、
    前記第2抽出部は、前記トルクリプルの周波数における前記推定誘起電圧中の振動成分を抽出するものであり、
    前記第3演算部は、前記抽出された推定誘起電圧中の振動成分を前記トルクリプルの周期に同期した同期信号に変換し前記同期信号に基づいて前記第2指令を生成するものである
    請求項1から請求項4のいずれか1項に記載の回転機制御装置。
  8. 前記位相補償部は、前記第2指令を補償するものであって、第3位相補償部及び第4位相補償部を有し、
    前記第3位相補償部は、前記推定誘起電圧中の振動成分の位相を補償することにより上記推定トルクの推定遅れを補償し、
    前記第4位相補償部は、前記同期信号の位相を補償することにより前記電流制御系の制御遅れを補償するものである
    請求項7に記載の回転機制御装置。
  9. 前記第4位相補償部は、前記電圧指令生成部におけるキャリアの半周期をT[sec]、前記トルクリプルの次数をn、前記回転機の電気角速度をωre[rad/sec]とするとき、前記電圧指令生成部が有する前記制御遅れを補償するよう、前記第2指令の位相補償量Δθ[rad]をΔθ=1.5T×nωreで与えるものである
    請求項8に記載の回転機制御装置。
  10. 前記第4位相補償部は、前記電流制御系の伝達特性の数理モデルに基づき数理モデル位相補償量を演算し、前記数理モデル位相補償量に基づいて前記同期信号の位相を補償することにより前記電流制御系の制御遅れを補償するものである
    請求項8に記載の回転機制御装置。
PCT/JP2013/060809 2013-04-10 2013-04-10 回転機制御装置 WO2014167667A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/767,665 US9998043B2 (en) 2013-04-10 2013-04-10 Rotary machine controller
KR1020157027854A KR101758004B1 (ko) 2013-04-10 2013-04-10 회전 기기 제어 장치
JP2015511011A JP5936770B2 (ja) 2013-04-10 2013-04-10 回転機制御装置
BR112015025020A BR112015025020A2 (pt) 2013-04-10 2013-04-10 controlador de máquina rotativa
CN201380075438.XA CN105103435B (zh) 2013-04-10 2013-04-10 旋转机控制装置
PCT/JP2013/060809 WO2014167667A1 (ja) 2013-04-10 2013-04-10 回転機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060809 WO2014167667A1 (ja) 2013-04-10 2013-04-10 回転機制御装置

Publications (1)

Publication Number Publication Date
WO2014167667A1 true WO2014167667A1 (ja) 2014-10-16

Family

ID=51689101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060809 WO2014167667A1 (ja) 2013-04-10 2013-04-10 回転機制御装置

Country Status (6)

Country Link
US (1) US9998043B2 (ja)
JP (1) JP5936770B2 (ja)
KR (1) KR101758004B1 (ja)
CN (1) CN105103435B (ja)
BR (1) BR112015025020A2 (ja)
WO (1) WO2014167667A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213178A1 (ja) * 2019-04-18 2020-10-22 三菱電機株式会社 電動機の制御装置
WO2022236988A1 (zh) * 2021-05-10 2022-11-17 青岛大学 永磁同步电机的控制方法、装置、电子设备及计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343037B1 (ja) * 2017-01-11 2018-06-13 日立ジョンソンコントロールズ空調株式会社 モータ駆動装置および冷凍機器
CN108696213A (zh) * 2017-04-05 2018-10-23 南京海益开电子科技有限公司 电动工具的电机输出参数控制方法和电动工具
JP6608883B2 (ja) * 2017-08-10 2019-11-20 本田技研工業株式会社 回転電機の制御装置及び制御方法
JP7012901B2 (ja) * 2019-03-22 2022-01-28 三菱電機株式会社 交流電動機の速度推定装置、交流電動機の駆動装置、冷媒圧縮機及び冷凍サイクル装置
US11611305B2 (en) * 2020-10-23 2023-03-21 GM Global Technology Operations LLC Bandwidth-partitioning harmonic regulation for improved acoustic behavior of an electric drive system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223582A (ja) * 2001-01-26 2002-08-09 Hitachi Ltd 永久磁石式同期モータの制御装置および方法
JP2010239681A (ja) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd 回転電機制御装置
JP2011176952A (ja) * 2010-02-25 2011-09-08 Meidensha Corp 回転電気機械のトルクリプル抑制制御装置および制御方法
JP2012210067A (ja) * 2011-03-30 2012-10-25 Meidensha Corp 電動機の脈動抑制装置および電動機の脈動抑制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928594B2 (ja) 1990-06-22 1999-08-03 株式会社日立製作所 電力変換装置
JPH07170777A (ja) * 1993-12-14 1995-07-04 Fuji Electric Co Ltd 電動機の振動抑制制御装置
JP4221307B2 (ja) 2004-01-07 2009-02-12 日立アプライアンス株式会社 同期電動機の制御装置,電気機器およびモジュール
JP4335123B2 (ja) * 2004-11-26 2009-09-30 ファナック株式会社 制御装置
US7141943B2 (en) * 2004-12-30 2006-11-28 Korean Institute Of Science And Technology Brushless DC motor system and method of controlling the same
JP2006288076A (ja) 2005-03-31 2006-10-19 Toshiba Elevator Co Ltd 制御装置
JP4709218B2 (ja) * 2005-07-11 2011-06-22 株式会社日立製作所 界磁巻線型同期モータの制御装置,電動駆動システム,電動4輪駆動車およびハイブリッド自動車
US7643733B2 (en) * 2007-07-27 2010-01-05 Gm Global Technology Operations, Inc. Control device for driving a brushless DC motor
JP2010105763A (ja) * 2008-10-29 2010-05-13 Hitachi Ltd 電力変換装置およびそれを用いたエレベータ
JP5538529B2 (ja) 2010-05-20 2014-07-02 三菱電機株式会社 モータ制御装置
KR101382305B1 (ko) * 2010-12-06 2014-05-07 현대자동차주식회사 하이브리드 차량용 모터 제어 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223582A (ja) * 2001-01-26 2002-08-09 Hitachi Ltd 永久磁石式同期モータの制御装置および方法
JP2010239681A (ja) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd 回転電機制御装置
JP2011176952A (ja) * 2010-02-25 2011-09-08 Meidensha Corp 回転電気機械のトルクリプル抑制制御装置および制御方法
JP2012210067A (ja) * 2011-03-30 2012-10-25 Meidensha Corp 電動機の脈動抑制装置および電動機の脈動抑制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213178A1 (ja) * 2019-04-18 2020-10-22 三菱電機株式会社 電動機の制御装置
US11936311B2 (en) 2019-04-18 2024-03-19 Mitsubishi Electric Corporation Controller for motor
WO2022236988A1 (zh) * 2021-05-10 2022-11-17 青岛大学 永磁同步电机的控制方法、装置、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
JPWO2014167667A1 (ja) 2017-02-16
US9998043B2 (en) 2018-06-12
KR101758004B1 (ko) 2017-07-14
US20160013738A1 (en) 2016-01-14
CN105103435B (zh) 2017-03-22
CN105103435A (zh) 2015-11-25
BR112015025020A2 (pt) 2017-07-18
KR20150130388A (ko) 2015-11-23
JP5936770B2 (ja) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5936770B2 (ja) 回転機制御装置
JP5446988B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
KR100655702B1 (ko) 영구자석 동기 모터 제어방법
JP5413400B2 (ja) 交流電動機の制御装置
JP5877733B2 (ja) 電動モータの制御装置
JP5929863B2 (ja) 制御装置
JP5510842B2 (ja) 3相モータ制御装置、3相モータシステム、3相モータ制御方法及びプログラム
JP2007252052A (ja) 永久磁石モータのベクトル制御装置
WO2015019495A1 (ja) モータ駆動システムおよびモータ制御装置
JP2007267466A (ja) Ipmモータのベクトル制御装置
JP2010057217A (ja) 電動機のトルク脈動抑制装置および抑制方法
WO2015025356A1 (ja) モータ駆動システムおよびモータ制御装置
KR20130025387A (ko) 동기기의 위치 센서리스 제어 장치
JP5488043B2 (ja) モータのトルク制御装置
JP6183554B2 (ja) 周期外乱自動抑制装置
JP6809958B2 (ja) 電動機の制御装置
EP2747273B1 (en) Method and arrangement for torque estimation of a synchronous machine
JP4924115B2 (ja) 永久磁石同期電動機の駆動制御装置
JP4680754B2 (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP2011176952A (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
JP2001352798A (ja) 永久磁石形同期電動機の制御装置及び制御方法
JP6417881B2 (ja) 誘導モータの制御装置
Zhao et al. Model reference adaptive system-based speed estimators for sensorless control of interior permanent magnet synchronous machines
JP2021057956A (ja) モータ制御装置
JP2020202643A (ja) 回転機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075438.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767665

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157027854

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025020

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13881531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015025020

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150929