WO2014162950A1 - 限流装置 - Google Patents
限流装置 Download PDFInfo
- Publication number
- WO2014162950A1 WO2014162950A1 PCT/JP2014/058537 JP2014058537W WO2014162950A1 WO 2014162950 A1 WO2014162950 A1 WO 2014162950A1 JP 2014058537 W JP2014058537 W JP 2014058537W WO 2014162950 A1 WO2014162950 A1 WO 2014162950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current limiting
- current
- limiting device
- superconducting
- series
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
- H02H9/023—Current limitation using superconducting elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Definitions
- the present invention relates to a current limiting device, and more particularly, to a current limiting device using a superconductor.
- Patent Document 1 a current limiting device using a superconductor installed in an electric power system has been proposed (see, for example, Japanese Patent Laid-Open No. 9-130966 (Patent Document 1)).
- Patent Document 1 a current limiting device including a current limiting element including a superconductor and a current limiting reactor connected in parallel to the current limiting element is disclosed.
- the superconductor of the current limiting element shifts to the normal conducting state (quenching) due to an excessive current due to an accident or the like, and the resistance is increased and the current is commutated to the current limiting reactor.
- a current limiting impedance is generated in the current limiting reactor, and an excessive current can be limited.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a current limiting device capable of shortening the time from the current limiting operation to the return. .
- a current limiting device is a current limiting device that performs a current limiting operation using a superconductor, and includes a superconducting current limiting element including a superconductor, a capacitor, a reactor, and a bypass switch.
- the capacitor is connected in series with the superconducting current limiting element.
- the reactor is further connected in series to a series circuit including a superconducting current limiting element and a capacitor.
- the bypass switch is connected in parallel to a series circuit including a superconducting current limiting element and a capacitor.
- the reactor in the current limiting device has a function as a current limiting reactor.
- the capacitor connected in series with the reactor is for realizing the impedance reduction of the current limiting device in the normal state by canceling the inductance (L) of the reactor by LC resonance. If an excessive current flows to the current limiting device due to an accident or the like, the superconducting current limiting element autonomously shifts to the normal conducting state at high speed as described above. However, it is possible to reliably prevent an excessive load (excessive voltage) from being applied between the terminals of the capacitor even if the operation is delayed from the current limiting operation. Further, by using the superconducting current limiting element as described above, it is possible to suppress the transient component of the passing current due to the delay in the operation timing of the bypass switch.
- a current limiting device according to the present invention will be described with reference to FIG.
- a current limiting device 10 according to the present invention includes a series capacitor 1, a superconducting current limiting element 8, a current limiting reactor 6, a thyristor switch 4, a suppression reactor 2, a current suppression circuit formed by a suppression resistor 9, and a control. Circuit 5.
- Superconducting current limiting element 8 is connected to series capacitor 1.
- the superconducting current limiting element 8 is connected to the current limiting reactor 6 on the side opposite to the side connected to the series capacitor 1.
- a parallel circuit including the thyristor switch 4, the suppression reactor 2, and the suppression resistor 9 is formed so as to be connected in parallel with a series circuit including the series capacitor 1 and the superconducting current limiting element 8.
- This parallel circuit is connected to the series circuit including the superconducting current limiting element 8 and the series capacitor 1 at connection points 21 and 22.
- the suppression reactor 2 and the suppression resistor 9 are connected in parallel, and the thyristor switch 4 is connected in series with the suppression reactor 2 and the suppression resistor 9 connected in parallel.
- a control circuit 5 is connected to the thyristor switch 4.
- the superconducting current limiting element 8 is quenched when an excessive current flows through the current limiting device 10 due to an accident in the power system in which the current limiting device 10 is installed. Therefore, the current limiting operation can be performed quickly and autonomously, so that it is possible to reliably suppress application of an overvoltage between the terminals of the series capacitor 1. Further, after the current limiting operation as described above, the current flows by bypassing the superconducting current limiting element 8 by the parallel circuit including the thyristor switch 4. And the processing heat energy generated in the superconducting current limiting element 8 can be reduced. As a result, the superconducting current limiting element 8 can be returned at high speed. Further, the portion where the suppression reactor 2 and the suppression resistor 9 arranged in the parallel circuit are connected in parallel is a current suppression circuit, and has a function of suppressing the discharge current from the capacitor during the bypass switch operation.
- current limiting device 10 basically has the same structure as current limiting device 10 shown in FIG. 1, but the configuration of the parallel circuit is different from that of current limiting device 10 shown in FIG. ing. That is, in the current limiting device 10 shown in FIG. 2, the suppression resistor 9 and the suppression reactor 2 are not arranged in the parallel circuit, and only the thyristor switch 4 is installed in the parallel circuit.
- the current limiting device 10 having such a structure also suppresses the overvoltage between terminals of the series capacitor 1 as well as the current generated by the superconducting current limiting device 8 during the current limiting operation, similarly to the current limiting device 10 shown in FIG. It is possible to obtain the current limiting device 10 capable of reducing energy and returning at high speed.
- a current limiting device 10 is a current limiting device 10 that performs a current limiting operation using a superconductor, and includes a superconducting current limiting element 8 including a superconductor, a capacitor (series capacitor 1), and a reactor. (Current limiting reactor 6) and a bypass switch (thyristor switch 4).
- the series capacitor 1 is connected in series with the superconducting current limiting element 8.
- Current limiting reactor 6 is further connected in series to a series circuit including superconducting current limiting element 8 and series capacitor 1.
- the thyristor switch 4 is connected in parallel to the series circuit.
- the current limiting reactor 6 in the current limiting device 10 has a function as a current limiting element.
- the series capacitor 1 connected in series with the current limiting reactor 6 cancels the inductance (L) of the current limiting reactor 6 by LC resonance, thereby realizing low impedance in the normal state of the current limiting device 10. Is for.
- the superconducting current limiting element 8 autonomously shifts to the normal conducting state at high speed as described above. Even if the operation timing is delayed from the current limiting operation, it is possible to reliably prevent an excessive load (excessive voltage) from being applied between the terminals of the series capacitor 1.
- the superconducting current limiting element 8 as described above, it is possible to suppress the transient component of the passing current caused by the delay in the operation timing of the thyristor switch 4.
- the bypass switch may include the thyristor switch 4.
- the bypass switch may include another type of switch different from the thyristor switch 4.
- a semiconductor switch using a self-excited element as a bypass switch, a mechanical switch, or the like can be used.
- the current limiting device 10 may further include a current suppression circuit connected in series to the bypass switch.
- a current suppression circuit for example, a circuit in which a suppression resistor 9 and a suppression reactor 2 (coil) are connected in parallel can be used as shown in FIG.
- Model system used for simulation The model system examined in the simulation with reference to FIG. 3 is a system that transmits power from the power source 14 via the transformer 15, and is connected to the secondary bus of the transformer 15. A case where a new power supply 13 is installed is assumed. The rated voltage of the transformer secondary bus 12 was 77 kV. The transformer 15 is assumed to operate with a rated capacity of 250 MVA. The short-circuit impedance of the transformer 15 was assumed to be 22%.
- the transient reactance Xd 'of the newly established power supply 13 is assumed to be 20% (based on the self-capacitance).
- the current limiting device 10 is installed at a power transmission end of a line connecting the bus 12 to the power transmission line 16. That is, the bus 12 and the two power transmission lines 16 are connected via the current limiting device 10. Circuit breakers 18 are installed at both ends of the power transmission line 16.
- the model system shown in FIG. 3 is a case where the rated current of the circuit breaker will be exceeded unless the current limiting device 10 is installed.
- the configuration of the current limiting device 10 is the same as that of the current limiting device 10 shown in FIG. In the following simulation, the simulation was performed under the condition of performing two-line collective compensation by the current limiting device 10 as shown in FIG.
- the capacitive reactance Xc1 of the series capacitor 1 is set to ⁇ j0.05 pu
- the inductive reactance XL1 of the current limiting reactor 6 is set to j0.05 pu.
- the current limiting device 100 having the configuration shown in FIG. 4 is replaced with the current limiting device 10 shown in FIG. 1 instead of the current limiting device 10 shown in FIG.
- the current limiting device 100 of the comparative example has a current limiting reactor 6 and a superconducting current limiting element 8 connected in parallel.
- the inductive reactance XL1 of the current limiting reactor 6 shown in FIG. 4 is the same as the inductive reactance XL1 of the current limiting reactor 6 shown in FIG.
- the operation start current of the superconducting current limiting element 8 in the current limiting devices 10 and 100 was 2400 Arms (3.4 kAp). This value is a value that is twice the steady-state current (1200 A).
- the current limiting device 10 when the thyristor switch 4 operates, when the superconducting current limiting element 8 is bypassed, the passing current to the superconducting current limiting element 8 is suppressed. For this reason, after the current limiting operation (after quenching in the superconducting current limiting element 8), it is assumed that the superconducting current limiting element 8 returns to the superconducting state in 0.1 seconds after the thyristor switch 4 operates and the current is bypassed. .
- FIGS. 5 to 7 show simulation results when the current limiting device 10 according to the present invention is applied
- FIGS. 8 to 10 show simulation results when the comparative current limiting device 100 shown in FIG. 4 is applied.
- Show. 5 to 10 the horizontal axis of each graph represents time, and the vertical axis of the graphs of FIGS. 5 and 8 represents the fault current (current passing through the current limiting device).
- the unit of current-limiting device passing current is kA.
- shaft of FIG. 6 and FIG. 9 is the energy consumption (three-phase total value) in a current limiting device, The unit is MJ.
- the current limiting resistance has shown the current limiting resistance, and the unit is (omega
- the AC component of the short-circuit current excluding the DC component is about 28 kArms (40 kAp / ⁇ 2) in any of the examples of the present invention and the comparative example.
- Current is limited. 5 and 8, the respective components of the three phases in the current limiting device passage current are shown as graph A, graph B, and graph C.
- the magnitude of the short-circuit current is determined by the characteristics of the current-limiting reactor 6, the difference between the cases is small.
- the energy consumption of the current limiting device 10 according to the present invention is 1.5 MJ, and the energy consumption of the current limiting device 100 of the comparative example is 4 MJ.
- energy consumption is suppressed as compared with the comparative example.
- the time for returning to the superconducting state after the transition of the superconducting current limiting element 8 to the normal conducting state is shortened (returning to the superconducting state is speeded up). Therefore, the current limiting device 10 according to the present invention can speed up the re-insertion of the current limiting device 10 into the power system at the time of failure recovery.
- the energy consumption increases.
- the fault current is bypassed to the parallel circuit by the operation of the thyristor switch 4, the energy consumption hardly increases when viewed as a whole during the fault period.
- the resistance value of the superconducting current limiting element 8 gradually decreases during the failure period, and a fault current is shunted to the superconducting current limiting element 8 side accordingly, but this is hardly a problem.
- the current limiting device 100 of the comparative example since the fault current is diverted to the current limiting reactor 6 immediately after the superconducting current limiting element 8 is operated (quenched), the energy consumption immediately after the occurrence of the fault is As shown in FIG. 9, it is suppressed compared to FIG. However, since a fault current continues to flow through the superconducting current limiting element 8, the energy consumption continuously increases during the fault period. Therefore, as a result, the total energy consumption in the comparative example is larger than that when the current limiting device 100 according to the present invention is used. It should be noted that the degree of diversion to the current limiting reactor 6 in the current limiting device 100 varies depending on the relationship between the current limiting reactor and the current limiting resistance value (resistance value of the superconducting current limiting element 8).
- the energy consumed by the current limiting device during the current limiting operation is suppressed to be extremely low as compared with the comparative example, and the current limiting resistance value is also reduced early. Yes. For this reason, the current limiting device can be quickly reinserted into the system at the time of failure recovery.
- the superconducting current limiting element 8 autonomously operates due to a fault current, transient components of overvoltage and passing current applied between terminals of the series capacitor 1 due to response delay of the thyristor switch 4 are reduced. It can be effectively suppressed.
- the present invention is particularly advantageously applied to a current limiting device including a superconducting current limiting element.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
図1を参照して、本発明による限流装置を説明する。本発明による限流装置10は、直列コンデンサ1と、超電導限流素子8と、限流リアクトル6と、サイリスタスイッチ4と、抑制リアクトル2と、抑制抵抗9から形成される電流抑制回路と、制御回路5とを備える。超電導限流素子8は直列コンデンサ1と接続されている。また、超電導限流素子8は、直列コンデンサ1と接続された側と反対側において限流リアクトル6と接続されている。直列コンデンサ1と超電導限流素子8とからなる直列回路と並列に接続されるように、サイリスタスイッチ4、抑制リアクトル2および抑制抵抗9を含む並列回路が形成されている。この並列回路は、超電導限流素子8と直列コンデンサ1とからなる上記直列回路と、接続ポイント21、22において接続されている。並列回路においては、抑制リアクトル2と抑制抵抗9とが並列に接続されるとともに、この並列に接続された抑制リアクトル2および抑制抵抗9と直列にサイリスタスイッチ4が接続されている。サイリスタスイッチ4には制御回路5が接続されている。
図2を参照して、本発明による限流装置の実施の形態2を説明する。
以下、本発明の効果を確認するためシミュレーションを行なった。
(1) シミュレーションに用いたモデル系統について
図3を参照して、シミュレーションにおいて検討したモデル系統は、電源14から変圧器15を介して送電している系統であり、変圧器15の2次母線に新しく電源13が設置されたケースを想定している。変圧器2次母線12の定格電圧は77kVとした。変圧器15は定格容量250MVA3台運用を想定した。変圧器15の短絡インピーダンスは22%と想定した。
上記のようなモデル系統において、図3の事故点17にて3相短絡が発生することにより電流値が最大となったときの故障電流を30kA以下に抑制することを検討した。このような条件を満足する限流装置10の特性としては、以下のように決定した。具体的には、実施例である限流装置10の限流リアクトル6の誘導性リアクタンス(XL)について、変圧器15のインピーダンスを29.33%@1000MVAとし、電源14の過渡リアクタンスを66.7%@1000MVAとすると、電源14と変圧器15との合成インピーダンスは20.4%@1000MVAとなる。そして、故障電流Is=1/(XL+0.204)×1000000kVA/(√3×77kV)≦30kAよりXL≧0.046puとなる。
比較例として、図1に示した限流装置10に代えて、図4に示した構成の限流装置100を図1に示した限流装置10に代えてモデル系統中に設置した場合についても同様のシミュレーションを行なった。図4に示すように、比較例の限流装置100は、限流リアクトル6と超電導限流素子8とを並列に接続したものである。なお、図4に示した限流リアクトル6の誘導性リアクタンスXL1は図1に示した限流リアクトル6の誘導性リアクタンスXL1と同様である。また、図4に示した限流装置100の超電導限流素子8が常電導状態へ移行した時の限流抵抗は6Ωとした。
超電導限流素子8の解析用モデルとしては、電気学会技術報告第1088号の4.3.1(SN転位型超電導限流器のEMTP解析簡易モデル)を用いた。また、故障除去後の限流抵抗は、故障除去から直線的に減少するように設定した。限流装置10、100について、金属系NbTi線材からなる6.6kV1.5kA級クエンチ型限流器用超電導コイルによる抵抗発生波形(発生した抵抗値の時間変化)を参考にして、超電導限流素子8の動作時間Topは1msとした。
想定した故障種別としては、図3に示した事故点17において3相短絡(3LS)が発生したと想定した(電源側母線至近端3LS)。故障シーケンスとしては、時刻T=0.1秒において3相短絡が発生し、時刻T=0.2秒において遮断器18が動作し(CB両端開放)、故障回線が遮断される。
図5~7に、本発明による限流装置10を適用した場合のシミュレーションの結果を示し、図8~10に、図4に示した比較例の限流装置100を適用した場合のシミュレーション結果を示す。図5~10において、各グラフの横軸は時間であり、図5および図8のグラフの縦軸は故障電流(限流装置通過電流)を表わしている。なお、限流装置通過電流の単位はkAである。また、図6および図9の縦軸は限流器における消費エネルギー(3相合計値)であり、その単位はMJである。また、図7および図10の縦軸は限流抵抗を示しており、その単位はΩである。図5および図8から分かるように、本発明の実施例および比較例のいずれのケースにおいても、直流分を除いた短絡電流の交流成分は28kArms(40kAp/√2)程度となっており、適切に限流されている。なお、図5および図8では、限流装置通過電流における3相のそれぞれの成分をグラフA、グラフB、グラフCとして示している。ここで、短絡電流の大きさは、限流リアクトル6の特性によって決まるため、各ケース間での差異は小さい。
Claims (3)
- 超電導体を利用して限流動作を行なう限流装置であって、
前記超電導体を含む超電導限流素子と、
前記超電導限流素子と直列に接続されたコンデンサと、
前記超電導限流素子と前記コンデンサとを含む直列回路に、さらに直列に接続されたリアクトルと、
前記直列回路に並列に接続されたバイパススイッチとを備える、限流装置。 - 前記バイパススイッチは、サイリスタスイッチを含む、請求項1に記載の限流装置。
- 前記バイパススイッチに直列に接続された抑制回路をさらに備える、請求項1または2に記載の限流装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14778416.9A EP2983262A4 (en) | 2013-04-01 | 2014-03-26 | Current-limiting device |
KR1020157031174A KR20150139559A (ko) | 2013-04-01 | 2014-03-26 | 한류 장치 |
US14/770,953 US10218170B2 (en) | 2013-04-01 | 2014-03-26 | Current-limiting device utilizing a superconductor for a current-limiting operation |
CN201480019219.4A CN105075049B (zh) | 2013-04-01 | 2014-03-26 | 限流装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013075908A JP6069073B2 (ja) | 2013-04-01 | 2013-04-01 | 限流装置 |
JP2013-075908 | 2013-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014162950A1 true WO2014162950A1 (ja) | 2014-10-09 |
Family
ID=51658248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058537 WO2014162950A1 (ja) | 2013-04-01 | 2014-03-26 | 限流装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10218170B2 (ja) |
EP (1) | EP2983262A4 (ja) |
JP (1) | JP6069073B2 (ja) |
KR (1) | KR20150139559A (ja) |
CN (1) | CN105075049B (ja) |
WO (1) | WO2014162950A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107665766A (zh) * | 2016-11-18 | 2018-02-06 | 云南电网有限责任公司电力科学研究院 | 一种超导限流电抗器的铁心 |
EP3304670A1 (de) * | 2015-07-17 | 2018-04-11 | Siemens Aktiengesellschaft | Strombegrenzereinrichtung mit spule und schalter |
CN118630712A (zh) * | 2024-08-14 | 2024-09-10 | 四川大学 | 用于多端直流输电系统的故障限流器及其参数设定方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2978091B1 (de) * | 2014-07-22 | 2020-04-01 | Nexans | Verfahren zur übertragung elektrischer energie |
PL3485550T3 (pl) | 2016-09-05 | 2022-12-19 | Siemens Energy Global GmbH & Co. KG | Układ ograniczający prąd |
CN110212505B (zh) * | 2019-05-28 | 2020-07-10 | 清华大学 | 基于超导限流器的柔性直流输电系统限流电抗选取方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03245725A (ja) * | 1990-02-22 | 1991-11-01 | Takaoka Electric Mfg Co Ltd | 過電流限流装置 |
JPH04207924A (ja) * | 1990-11-30 | 1992-07-29 | Tokyo Electric Power Co Inc:The | 超電導限流装置 |
JPH09130966A (ja) | 1995-11-01 | 1997-05-16 | Nissin Electric Co Ltd | 超電導限流装置 |
JP2000090788A (ja) * | 1998-09-09 | 2000-03-31 | Toshiba Corp | 限流装置及び限流遮断装置 |
JP2004350337A (ja) * | 2003-05-20 | 2004-12-09 | National Institute Of Advanced Industrial & Technology | 限流機能付き潮流制御装置 |
JP2007236108A (ja) * | 2006-03-01 | 2007-09-13 | Toshiba Corp | 超電導限流装置および電力システム |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1932379C3 (de) | 1969-06-26 | 1978-05-11 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Spule mit veränderlicher Induktivität als Strombegrenzungseinrichtung für Energieübertragungsanlagen |
JP2901068B2 (ja) * | 1988-10-07 | 1999-06-02 | 株式会社東芝 | 限流装置 |
JPH02116184A (ja) | 1988-10-26 | 1990-04-27 | Toshiba Corp | パルスレーザ電源装置 |
JP2941833B2 (ja) * | 1989-01-27 | 1999-08-30 | 株式会社東芝 | 超電導限流装置 |
JPH04350337A (ja) * | 1991-05-28 | 1992-12-04 | Hitachi Ltd | 車体振動低減方法 |
JPH07209371A (ja) | 1994-01-21 | 1995-08-11 | Fuji Electric Co Ltd | ケーブルの交流耐電圧試験装置および方法 |
JPH0950743A (ja) * | 1995-08-08 | 1997-02-18 | Mitsubishi Electric Corp | 直流遮断装置 |
JPH0974682A (ja) | 1995-09-04 | 1997-03-18 | Hitachi Ltd | 直列コンデンサ制御装置 |
JPH11146555A (ja) | 1997-11-05 | 1999-05-28 | Toshiba Corp | 超電導限流装置 |
JP2001078362A (ja) * | 1999-09-07 | 2001-03-23 | Toshiba Corp | 電力系統安定化装置 |
DE19963181C2 (de) * | 1999-12-27 | 2002-04-18 | Siemens Ag | Resistive Strombegrenzereinrichtung für Gleich- oder Wechselstrom mit wenigstens einer Leiterbahn mit Hoch-T¶c¶-Supraleitermaterial |
JP3965037B2 (ja) * | 2001-10-12 | 2007-08-22 | 東芝三菱電機産業システム株式会社 | 直流用真空遮断装置 |
KR100780706B1 (ko) * | 2006-08-17 | 2007-11-30 | 엘에스산전 주식회사 | 복합형 초전도 한류기 |
US20080056327A1 (en) | 2006-08-30 | 2008-03-06 | Hatch Ltd. | Method and system for predictive electrode lowering in a furnace |
KR100888147B1 (ko) | 2007-08-20 | 2009-03-13 | 한국전력공사 | 하이브리드 초전도 한류기 |
CN101183129A (zh) * | 2007-11-26 | 2008-05-21 | 天津理工大学 | 一种失超型超导故障限流器的故障检测系统及其检测方法 |
JP5187750B2 (ja) | 2008-07-04 | 2013-04-24 | 株式会社前川製作所 | 磁気飽和型限流器 |
CN102035196A (zh) | 2010-12-30 | 2011-04-27 | 东南大学 | 一种基于可控串补的故障限流装置 |
CN102646968B (zh) | 2012-05-04 | 2015-03-18 | 中国科学院电工研究所 | 一种电抗器型短路故障限流器 |
JP2014204460A (ja) * | 2013-04-01 | 2014-10-27 | 住友電気工業株式会社 | 限流・潮流制御装置 |
-
2013
- 2013-04-01 JP JP2013075908A patent/JP6069073B2/ja not_active Expired - Fee Related
-
2014
- 2014-03-26 WO PCT/JP2014/058537 patent/WO2014162950A1/ja active Application Filing
- 2014-03-26 KR KR1020157031174A patent/KR20150139559A/ko not_active Application Discontinuation
- 2014-03-26 US US14/770,953 patent/US10218170B2/en not_active Expired - Fee Related
- 2014-03-26 EP EP14778416.9A patent/EP2983262A4/en not_active Withdrawn
- 2014-03-26 CN CN201480019219.4A patent/CN105075049B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03245725A (ja) * | 1990-02-22 | 1991-11-01 | Takaoka Electric Mfg Co Ltd | 過電流限流装置 |
JPH04207924A (ja) * | 1990-11-30 | 1992-07-29 | Tokyo Electric Power Co Inc:The | 超電導限流装置 |
JPH09130966A (ja) | 1995-11-01 | 1997-05-16 | Nissin Electric Co Ltd | 超電導限流装置 |
JP2000090788A (ja) * | 1998-09-09 | 2000-03-31 | Toshiba Corp | 限流装置及び限流遮断装置 |
JP2004350337A (ja) * | 2003-05-20 | 2004-12-09 | National Institute Of Advanced Industrial & Technology | 限流機能付き潮流制御装置 |
JP2007236108A (ja) * | 2006-03-01 | 2007-09-13 | Toshiba Corp | 超電導限流装置および電力システム |
Non-Patent Citations (2)
Title |
---|
"Technical Report", vol. 1088, INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN |
See also references of EP2983262A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3304670A1 (de) * | 2015-07-17 | 2018-04-11 | Siemens Aktiengesellschaft | Strombegrenzereinrichtung mit spule und schalter |
CN107665766A (zh) * | 2016-11-18 | 2018-02-06 | 云南电网有限责任公司电力科学研究院 | 一种超导限流电抗器的铁心 |
CN107665766B (zh) * | 2016-11-18 | 2023-10-27 | 云南电网有限责任公司电力科学研究院 | 一种超导限流电抗器的铁心 |
CN118630712A (zh) * | 2024-08-14 | 2024-09-10 | 四川大学 | 用于多端直流输电系统的故障限流器及其参数设定方法 |
CN118630712B (zh) * | 2024-08-14 | 2024-10-11 | 四川大学 | 用于多端直流输电系统的故障限流器及其参数设定方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150139559A (ko) | 2015-12-11 |
JP6069073B2 (ja) | 2017-01-25 |
US20160013635A1 (en) | 2016-01-14 |
EP2983262A1 (en) | 2016-02-10 |
CN105075049B (zh) | 2018-12-14 |
JP2014204458A (ja) | 2014-10-27 |
EP2983262A4 (en) | 2017-01-04 |
US10218170B2 (en) | 2019-02-26 |
CN105075049A (zh) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2740012C1 (ru) | Продольный компенсатор и способ управления | |
WO2014162950A1 (ja) | 限流装置 | |
Moran et al. | A fault protection scheme for series active power filters | |
JPWO2009104277A1 (ja) | 保護回路を備えた磁気エネルギー回生スイッチ | |
Radmanesh et al. | Novel high performance DC reactor type fault current limiter | |
WO2014162949A1 (ja) | 限流・潮流制御装置 | |
Jakka et al. | Protection design considerations of a 10 kV SiC MOSFET enabled mobile utilities support equipment based solid state transformer (MUSE-SST) | |
JP4328860B2 (ja) | 故障電流限流器及びそれを用いた電力システム | |
KR20090086141A (ko) | 피티시 소자에 의한 전류 제한형 보호기능이 구비된지그재그 결선 변압기형 영상고조파 저감장치 | |
JP5118397B2 (ja) | 限流装置 | |
Kirubavathi et al. | Fault Current and Overvoltage Limitation in a Distribution Network with Distributed Generation units Through Superconducting Fault Current Limiter | |
RU2805669C1 (ru) | Устройство защиты обмоток трёхфазного трансформатора от витковых замыканий | |
US10666088B2 (en) | Inductive element protection in a power supply system | |
Lulbadda et al. | Protection Schemes of Solid State Transformers for Different Fault Conditions | |
KR20110110894A (ko) | 직류리액터 및 저항 혼합형 3상 초전도 사고전류 제한기 | |
RU110556U1 (ru) | Токоограничивающее устройство трансформаторного типа | |
Komatsu et al. | Experimental setup of fault current limiters | |
Im et al. | Characteristics of the Fault Current and the Protection for Superconducting and Normal Conducting Limiter combined with a Transformer | |
Choi et al. | Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault | |
Thankachen et al. | Flux Charge Controller for Fault Current Interruption Using DVR | |
UA26390U (en) | Transformer-reactor protection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480019219.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14778416 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14770953 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014778416 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157031174 Country of ref document: KR Kind code of ref document: A |