CN101183129A - 一种失超型超导故障限流器的故障检测系统及其检测方法 - Google Patents

一种失超型超导故障限流器的故障检测系统及其检测方法 Download PDF

Info

Publication number
CN101183129A
CN101183129A CNA2007101503864A CN200710150386A CN101183129A CN 101183129 A CN101183129 A CN 101183129A CN A2007101503864 A CNA2007101503864 A CN A2007101503864A CN 200710150386 A CN200710150386 A CN 200710150386A CN 101183129 A CN101183129 A CN 101183129A
Authority
CN
China
Prior art keywords
module
current
analog
circuit
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101503864A
Other languages
English (en)
Inventor
周雪松
王辉
马幼捷
周永兵
龚娟
何杰
侯明
张智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CNA2007101503864A priority Critical patent/CN101183129A/zh
Publication of CN101183129A publication Critical patent/CN101183129A/zh
Pending legal-status Critical Current

Links

Images

Abstract

一种失超型超导故障限流器的故障检测系统及其检测方法,其特征在于它是由全波整流模块、逻辑电路模块、模数转换模块、超导控制开关模块、电流变化率检测模块所构成。本发明的工作方法:(1)信号采集、(2)信号处理及传递、(3)模数转换及输出、(4)确定限流器动作。本发明的优越性在于:1.硬件装置与计算机软件编程相结合,硬件装置设计简单,软件编程通俗易懂;2.采用di/dt故障电流变化率来控制超导故障限流器的动作,避免了其在传统控制方式下的误动作;3.通过模数模数转换模块与逻辑电路配合,使超导故障限流器的动作更加精确可靠;4.利用计算机高速的数据计算和数据处理能力,大大提高了该控制系统的可靠性。

Description

一种失超型超导故障限流器的故障检测系统及其检测方法
(一)技术领域:
本发明属于电力系统失超型超导故障限流器控制检测技术领域,特别是一种失超型超导故障限流器的故障检测系统及其检测方法。
(二)背景技术:
随着电力系统规模的不断扩大,当线路发生故障时,限流装置能否迅速有效地动作成为相关人士关注的技术热点之一。超导故障限流器的触发电流(Triggle Level),是超导体临界电流的峰值,当短路冲击电流大于触发电流时,超导体由超导态转变为正常态以限制短路电流,使得被限制的短路冲击电流不超过断路器的瞬时开断能力,这样,可以选用“轻型”断路器。在工程中,触发电流的幅值应该结合超导线圈的S/N临界电流、故障电流的瞬时峰值与断路器最大电流开断能力的差值。在留有欲度的前提下,经过反复试验(trial-and-error)的原则来确定。
但是,超导故障限流器(SFCL)的触发方式若仅仅依靠峰值电流,容易导致误动作。因为故障电流可以有相同的峰值,不同的有效值。在具有相同峰值的前提条件下,不对称短路电流的有效值要小于对称短路电流的有效值。工程实际中往往结合di/dt来触发SFCL。di/dt是故障电流随时间的变化率,它与电流幅值触发方式共同作用来控制超导故障限流器由超导态向正常态转变的过程。避免仅由电流幅值触发SFCL而引发的误动作。所以,改进以往技术的不足之处以提高故障限流器所需触发条件的稳定性和可靠性已经变得至关重要。
(三)发明内容:
本发明的目的在于提供一种失超型超导故障限流器的故障检测系统及其检测方法,它采用高性能的信号处理器和灵活的控制技术以获得高精度的控制效果,大大的提高了失超型超导故障限流器的稳定性和可靠性,并从最大程度上减小了电网短路故障带来的损失,保证了相关电力设备、线路的稳定运行。
本发明的技术方案:一种失超型超导故障限流器的故障检测系统,其特征在于它是由全波整流模块、逻辑电路模块、模数转换模块、超导控制开关模块、电流变化率检测模块所构成;所说的全波整流模块的输入端通过电流互感器与外电网相连接,其输出端连接模数转换模块、电流变化率检测模块和超导控制开关模块的输入端,模数转换模块和电流变化率检测模块输出端连接逻辑电路模块的输入端,逻辑电路模块的输出端与超导控制开关模块的输入端相连接,超导控制开关模块的输出端控制超导故障限流器的动作。
上述所说的全波整流模块是不可控整流电路,其中不可控整流电路由二极管桥路构成,三相电分别连接二极管桥路的输入端。
上述所说的模数转换模块内部采用开关电容逐次近似来得到模数转换结果,芯片有4路模拟信号输入通道,通过芯片内部参数设置选择不同通道输入,进行模数转换输出。
上述所说的逻辑电路模块、超导控制开关模块采用常规的模块电路组合。
上述所说的电流变化率检测模块由微分电路、放大电路、迟滞比较电路和可重复触发的单稳态触发电路组成,该电路组合关系采用电流变化率检测电路常规模式。
一种失超型超导故障限流器的故障检测方法,其特征在于它包括以下工作步骤:
(1)信号采集:电流互感器从电网采集电流信号量;
(2)信号处理及传递:电流信号量经过全波整流得到一个单向电流信号,给模数转换模块、电流变化率检测模块、超导控制开关模块供电;
(3)模数转换及输出:模数转换模块将采集到的模拟量转换成数字量,其输出信号通过延时电路模块,跟电流变化率模块的输出经或门相连来控制超导控制开关的动作;
(4)确定限流器动作:根据电流变化率触发逻辑电路和电流幅值触发逻辑电路的逻辑状态确定超导故障限流器的动作,限制短路故障电流。
上述所说的步骤(3)中的模数转换通过软件来实现,其软件流程如下:①初始化ADC寄存器;②启动来自ADC的信号;③在AUTO_SEQ_SR寄存器中装初值;④启动ADC,每转换完一次,AUTO_SEQ_SR寄存器中的值就自动减1;⑤将转换结果保存到相应的寄存器中;⑥判断全部通道转换是否完成;若完成,就申请中断,转换结束;否则就继续转换。
本发明的工作原理:电流互感器(CT)从电网取电流信号量,通过全波整流(Full-Wave Rectifier)输出一个与电网电流数值成正比例的单向电流信号,给逻辑电路提供电源,同时为控制超导故障限流器动作的超导控制开关提供电源。电流互感器输出的电流信号,同时为di/dt传感器和电流幅值采样-保持两个逻辑单元提供信号,其中电流幅值采样-保持电路采集的是模拟量,通过模数变换将其转换为数字信号,模数转换软件组成主要涉及到DSP串行口的初始化和芯片的内部参数设置及转换结果的接收,串行口的初始化为对McBSP的控制寄存器的配置,使DSP可以为提供片选、时钟、帧同步信号等控制信号,同时从DX串行发送的内部设置参数,并从DR串行接收转换后的数据,完成一次完整的A/D转换过程;系统上电后,DSP的控制引脚经一译码器将的
Figure S2007101503864D00031
位置高电平,转换芯片处于非激活状态,并关闭所有中断。初始化McBSP后,打开接收及外部中断,DSP的控制引脚经一译码器将的
Figure S2007101503864D00032
位置低电平,转换芯片开始工作;发送转换速度选择及通道选择参数,芯片开始模/数转;程序进入等待状态,转换结束时由低变高,进入外部中断处理程序,接收转换输出的数字信号,存入相应的数据空间以待进一步处理;全部的程序可以用TI公司的集成开发平台Code Composer Studio,即CCS,采用C语言编程完成。
模数变换后,通过微秒延时电路与di/dt信号通过或门相连,来控制超导故障限流器的动作。di/dt触发逻辑电路和电流幅值触发逻辑电路共有四种逻辑状态,逻辑电路模块的控制,也可以通过软件来实现;由于逻辑变量主要是按位来操作的,通过位变量的复位或置位来控制开关量的关断或开通,因此可以用单片机对片内地址区及某些特殊功能寄存器的位进行操作。在80C51系列单片机的硬件结构中,有个位处理器(布尔处理器),它具有一套处理位变量的指令集,包括位变量传送、逻辑运算、控制运算、控制程序转移等指令。该程序的实现,可以通过汇编语言来实现,程序简单,占用存储空间小,运行速度快。该程序可以在KeilC51μvision 2集成开发平台下完成。若电流的di/dt和幅值逻辑值分别为(1,1)表示电网处于正常工作状态,超导故障限流器处于超导态;其它三种[(0,1),(1,0),(0,0)]分别表示电网发生短路故障时,故障电流幅值越限、故障电流变化率di/dt越限或故障电流幅值和故障电流变化率di/dt均越限的情况,上述三种情况下,逻辑控制电路就有“0”作为或门的输入信号,则输出动作信号均为“0”,使超导故障限流器的正确动作。
本发明的优越性在于:1、硬件装置与计算机软件编程相结合,硬件装置设计简单,软件编程通俗易懂;2、采用di/dt故障电流变化率来控制超导故障限流器的动作,避免了其在传统控制方式下的误动作;3、通过模数模数转换模块与逻辑电路配合,使超导故障限流器的动作更加精确可靠;4、利用计算机高速的数据计算和数据处理能力,大大提高了该控制系统的可靠性。
(四)附图说明:
附图1为本发明所涉一种失超型超导故障限流器的故障检测系统的总体结构框图。
附图2为本发明所涉一种失超型超导故障限流器故障检测系统中的全波整流模块电路结构图。
附图3为本发明所涉一种失超型超导故障限流器故障检测系统中的模数转换模块电路结构图。
附图4为本发明所涉一种失超型超导故障限流器故障检测系统中的模数转换模块程序流程图。
(五)具体实施方式:
实施例:一种失超型超导故障限流器的故障检测系统(见图1),其特征在于它是由全波整流模块、逻辑电路模块、模数转换模块、超导控制开关模块、电流变化率检测模块所构成,所说的全波整流模块的输入端通过电流互感器与外电网相连接,其输出端连接模数转换模块、电流变化率检测模块和超导控制开关模块,模数转换模块和电流变化率检测模块输出端连接逻辑电路模块,而后再与超导控制开关模块相连接,超导控制开关模块的输出端控制超导故障限流器的动作。
上述所说的整流模块(见图2)是由不可控整流电路或可控整流电路组成,其中不可控整流电路由二极管桥路构成,包括VD1-VD6,三相电分别连接二极管桥路的输入端;可控整流电路由可关断晶闸管或者绝缘栅双极型晶闸管类的大功率电力电子器件搭构成桥式电路。
上述所说的模数转换模块(见图3)拟采用TI公司的A/D(模/数)转换芯片ADS8364,将其生成的数字量经DSP处理,以达到对超导故障限流器精确可靠的失超控制。该芯片是TI公司生产的CMOS型10b模数转换芯片,其内部采用开关电容逐次近似来得到模数转换结果。芯片有4路模拟信号输入通道,通过芯片内部参数设置选择不同通道输入,进行A/D转换输出。
上述所说的逻辑电路模块、超导控制开关模块采用常规的模块电路组合。
上述所说的电流变化率检测模块由微分电路、放大电路、迟滞比较电路和可重复触发的单稳态触发电路组成。
一种失超型超导故障限流器的故障检测方法,其特征在于它是由以下步骤所构成:
(1)电流互感器从电网采集电流信号量;
(2)电流信号量经过全波整流得到一个单向电流信号,给模数转换模块、电流变化率检测模块、超导控制开关模块供电;
(3)模数转换模块将采集到的模拟量转换成数字量,其输出信号通过延时电路模块,跟电流变化率模块的输出经或门相连来控制超导控制开关的动作;
(4)根据电流变化率触发逻辑电路和电流幅值触发逻辑电路的逻辑状态确定超导故障限流器的动作,限制短路故障电流。
上述所说的步骤(3)中的模数转换要通过软件来实现(见图4),其软件流程如下:①初始化ADC寄存器;②启动来自ADC的信号;③在AUTO_SEQ_SR寄存器中装初值;④启动ADC,每转换完一次,AUTO_SEQ_SR寄存器中的值就自动减1;⑤将转换结果保存到相应的寄存器中;⑥判断全部通道转换是否完成;若完成,就申请中断,转换结束;否则就继续转换。
上述所说的计算机软件组成主要涉及到DSP串行口的初始化和芯片的内部参数设置及转换结果的接收,串行口的初始化为对MeBSP的控制寄存器的配置,使DSP可以为提供片选、时钟、帧同步信号等控制信号,同时从DX串行发送的内部设置参数,并从DR串行接收转换后的数据,完成一次完整的A/D转换过程;系统上电后,DSP的控制引脚经一译码器将的
Figure S2007101503864D00061
位置高电平,转换芯片处于非激活状态,并关闭所有中断。初始化McBSP后,打开接收及外部中断,DSP的控制引脚经一译码器将的
Figure S2007101503864D00062
位置低电平,转换芯片开始工作;发送转换速度选择及通道选择参数,芯片开始模/数转;程序进入等待状态,转换结束时
Figure S2007101503864D00063
由低变高,进入外部中断处理程序,接收转换输出的数字信号,存入相应的数据空间以待进一步处理;全部的程序可以用TI公司的集成开发平台Code Composer Studio,即CCS,采用C语言编程完成。
上述所说的对逻辑电路模块的控制,也可以通过软件来实现;由于逻辑变量主要是按位来操作的,通过位变量的复位或置位来控制开关量的关断或开通,因此可以用单片机对片内地址区及某些特殊功能寄存器的位进行操作。在80C51系列单片机的硬件结构中,有个位处理器(布尔处理器),它具有一套处理位变量的指令集,包括位变量传送、逻辑运算、控制运算、控制程序转移等指令。该程序的实现,可以通过汇编语言来实现,程序简单,占用存储空间小,运行速度快。该程序可以在KeilC51μvision 2集成开发平台下完成。

Claims (7)

1.一种失超型超导故障限流器的故障检测系统,其特征在于它是由全波整流模块、逻辑电路模块、模数转换模块、超导控制开关模块、电流变化率检测模块所构成;所说的全波整流模块的输入端通过电流互感器与外电网相连接,其输出端连接模数转换模块、电流变化率检测模块和超导控制开关模块的输入端,模数转换模块和电流变化率检测模块输出端连接逻辑电路模块的输入端,逻辑电路模块的输出端与超导控制开关模块的输入端相连接,超导控制开关模块的输出端控制超导故障限流器的动作。
2.根据权利要求1所说的一种失超型超导故障限流器的故障检测系统,其特征在于所说的全波整流模块是不可控整流电路,其中不可控整流电路由二极管桥路组成,三相电分别连接二极管桥路的输入端。
3.根据权利要求1所说的一种失超型超导故障限流器的故障检测系统,其特征在于所说的模数转换模块内部采用开关电容逐次近似来得到模数转换结果,芯片有4路模拟信号输入通道,通过芯片内部参数设置选择不同通道输入,进行模数转换输出。
4.根据权利要求1所说的一种失超型超导故障限流器的故障检测系统,其特征在于所说的逻辑电路模块、超导控制开关模块采用常规的模块电路组合。
5.根据权利要求1所说的一种失超型超导故障限流器的故障检测系统,其特征在于所说的电流变化率检测模块由微分电路、放大电路、迟滞比较电路和可重复触发的单稳态触发电路组成,该电路组合关系采用电流变化率检测电路常规模式。
6.一种失超型超导故障限流器的故障检测系统的检测方法,其特征在于它包括以下工作步骤:
(1)电流互感器从电网采集电流信号量;
(2)电流信号量经过全波整流得到一个单向电流信号,给模数转换模块、电流变化率检测模块、超导控制开关模块供电;
(3)模数转换模块将采集到的模拟量转换成数字量,其输出信号通过延时电路模块,跟电流变化率模块的输出经或门相连来控制超导控制开关的动作;
(4)根据电流变化率触发逻辑电路和电流幅值触发逻辑电路的逻辑状态确定超导故障限流器的动作,限制短路故障电流。
7.根据权利要求6所说的一种失超型超导故障限流器的故障检测系统的检测方法,其特征在于所说的步骤(3)中的模数转换要通过软件来实现,其软件流程如下:①初始化ADC寄存器;②启动来自ADC的信号;③在AUTO_SEQ_SR寄存器中装初值;④启动ADC,每转换完一次,AUTO_SEQ_SR寄存器中的值就自动减1;⑤将转换结果保存到相应的寄存器中;⑥判断全部通道转换是否完成;若完成,就申请中断,转换结束;否则就继续转换。
CNA2007101503864A 2007-11-26 2007-11-26 一种失超型超导故障限流器的故障检测系统及其检测方法 Pending CN101183129A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101503864A CN101183129A (zh) 2007-11-26 2007-11-26 一种失超型超导故障限流器的故障检测系统及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101503864A CN101183129A (zh) 2007-11-26 2007-11-26 一种失超型超导故障限流器的故障检测系统及其检测方法

Publications (1)

Publication Number Publication Date
CN101183129A true CN101183129A (zh) 2008-05-21

Family

ID=39448468

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101503864A Pending CN101183129A (zh) 2007-11-26 2007-11-26 一种失超型超导故障限流器的故障检测系统及其检测方法

Country Status (1)

Country Link
CN (1) CN101183129A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495329A (zh) * 2011-11-14 2012-06-13 中国科学院等离子体物理研究所 一种聚变装置中超导线圈失超保护信号传输线通断自动测试方法
CN103248001A (zh) * 2013-04-25 2013-08-14 国家电网公司 一种具有反时限特性的电子式低压配变熔丝箱
CN103247999A (zh) * 2013-04-25 2013-08-14 国家电网公司 一种采用仿真方式来实现熔丝真实物理特性的电子熔丝装置
CN103346528A (zh) * 2013-06-27 2013-10-09 浙江大学 一种基于电力电子复合开关的限流式混合直流断路器
CN105075049A (zh) * 2013-04-01 2015-11-18 住友电气工业株式会社 限流装置
CN106200739A (zh) * 2016-06-28 2016-12-07 张升泽 电子芯片的电流预处理方法及系统
CN106291236A (zh) * 2016-07-29 2017-01-04 国家电网公司 基于暂态故障行波的限流器用故障检测方法
US9762051B2 (en) 2013-04-01 2017-09-12 Sumitomo Electric Industries, Ltd. Current-limiting and power-flow control device
CN109917310A (zh) * 2019-01-29 2019-06-21 兰州大学 一种超导实验中失超信号高速同步采集与保护控制系统
CN110045219A (zh) * 2019-04-17 2019-07-23 南宁学院 一种电流变化率的短路检测方法
CN110209065A (zh) * 2019-04-30 2019-09-06 南方电网科学研究院有限责任公司 Mmc功率模块级故障及保护逻辑动态模拟系统与方法
CN112419847A (zh) * 2020-11-12 2021-02-26 广东电网有限责任公司 一种限流器的动态展示方法及展示系统

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495329A (zh) * 2011-11-14 2012-06-13 中国科学院等离子体物理研究所 一种聚变装置中超导线圈失超保护信号传输线通断自动测试方法
US10218170B2 (en) 2013-04-01 2019-02-26 Sumitomo Electric Industries, Ltd. Current-limiting device utilizing a superconductor for a current-limiting operation
US9762051B2 (en) 2013-04-01 2017-09-12 Sumitomo Electric Industries, Ltd. Current-limiting and power-flow control device
CN105075049A (zh) * 2013-04-01 2015-11-18 住友电气工业株式会社 限流装置
CN103247999B (zh) * 2013-04-25 2015-11-18 国家电网公司 一种采用仿真方式来实现熔丝真实物理特性的电子熔丝装置
CN103247999A (zh) * 2013-04-25 2013-08-14 国家电网公司 一种采用仿真方式来实现熔丝真实物理特性的电子熔丝装置
CN103248001A (zh) * 2013-04-25 2013-08-14 国家电网公司 一种具有反时限特性的电子式低压配变熔丝箱
CN103346528A (zh) * 2013-06-27 2013-10-09 浙江大学 一种基于电力电子复合开关的限流式混合直流断路器
CN106200739A (zh) * 2016-06-28 2016-12-07 张升泽 电子芯片的电流预处理方法及系统
CN106291236A (zh) * 2016-07-29 2017-01-04 国家电网公司 基于暂态故障行波的限流器用故障检测方法
CN109917310A (zh) * 2019-01-29 2019-06-21 兰州大学 一种超导实验中失超信号高速同步采集与保护控制系统
CN110045219A (zh) * 2019-04-17 2019-07-23 南宁学院 一种电流变化率的短路检测方法
CN110209065A (zh) * 2019-04-30 2019-09-06 南方电网科学研究院有限责任公司 Mmc功率模块级故障及保护逻辑动态模拟系统与方法
CN110209065B (zh) * 2019-04-30 2022-03-08 南方电网科学研究院有限责任公司 Mmc功率模块级故障及保护逻辑动态模拟系统与方法
CN112419847A (zh) * 2020-11-12 2021-02-26 广东电网有限责任公司 一种限流器的动态展示方法及展示系统
CN112419847B (zh) * 2020-11-12 2023-01-10 广东电网有限责任公司 一种限流器的动态展示方法及展示系统

Similar Documents

Publication Publication Date Title
CN101183129A (zh) 一种失超型超导故障限流器的故障检测系统及其检测方法
CN101882927A (zh) 一种交流固态功率控制器的软开关装置
CN86103901A (zh) 数字电路断流器的均方根值计算电路
CN111103503B (zh) 基于仿真的微电网故障定位方法
CN201752109U (zh) 一种交流固态功率控制器的软开关装置
CN104682394B (zh) 一种基于自适应的双向无隙换流的防晃电装置及方法
CN101188413B (zh) 一种变频器模拟输入检测电路
CN103904770B (zh) 一种交流电源与电池供电切换控制系统及方法
CN205330742U (zh) 一种汽轮机真空保护自动投入系统
CN101651336A (zh) 一种配电保护方法及配电保护装置
CN100427962C (zh) 失超型超导故障限流器的故障检测方法
CN110307103A (zh) 一种航空发动机尾喷管喉部面积控制系统
CN102110985A (zh) 一种晶闸管循环投切电容器无功补偿装置
CN1945915A (zh) 基于dsp的失超型超导故障限流器故障检测系统及其检测方法
CN2932793Y (zh) 失超型超导故障限流器故障检测装置
CN110729745B (zh) 一种多端直流系统转换开关参数计算方法
WO2023098681A1 (zh) 基于直流断路器前摄预动的柔性直流电网故障线路隔离方法、保护装置、系统、计算机存储介质和计算机程序产品
CN200962519Y (zh) 基于dsp的失超型超导故障限流器故障检测装置
CN201690267U (zh) 一种能实现电厂核电站用电快切的综合保护装置
CN104600682A (zh) 有源电力滤波器电流保护电路及方法
CN105569749B (zh) 一种汽轮机真空保护自动投入方法与系统
CN104678860B (zh) 基于cpld的交流电中保护继电器及其缺相保护系统
CN1945475A (zh) 基于dsp技术和专家控制系统的负荷管理控制系统及其工作方法
CN102946252A (zh) 一种降低adc采样时刻地平面信号噪声的方法及相应系统
CN208241325U (zh) 三相不平衡换相装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080521