JP5187750B2 - 磁気飽和型限流器 - Google Patents

磁気飽和型限流器 Download PDF

Info

Publication number
JP5187750B2
JP5187750B2 JP2008175812A JP2008175812A JP5187750B2 JP 5187750 B2 JP5187750 B2 JP 5187750B2 JP 2008175812 A JP2008175812 A JP 2008175812A JP 2008175812 A JP2008175812 A JP 2008175812A JP 5187750 B2 JP5187750 B2 JP 5187750B2
Authority
JP
Japan
Prior art keywords
current
magnetic saturation
current limiter
reactor
fault current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008175812A
Other languages
English (en)
Other versions
JP2010017016A (ja
Inventor
紀治 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2008175812A priority Critical patent/JP5187750B2/ja
Publication of JP2010017016A publication Critical patent/JP2010017016A/ja
Application granted granted Critical
Publication of JP5187750B2 publication Critical patent/JP5187750B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、磁気飽和型限流器に係り、特に、磁気飽和現象を直列共振回路から並列共振回路への切り替えに用いて限流動作を行わせ、従来の磁気飽和型限流器に必要であった寸法の大きな可飽和リアクトルの必要数を減らすと共に、直流のバイアス磁束を不用とし、構造を単純化して信頼性を向上させた磁気飽和型限流器に関するものである。
電力の自由化は電力料金の低価格化に有効な策とされ、今後とも特定規模電気事業者(PPS:Power Producer and Supplier)や、多くの個人的電源設備(IPP:Independent Power Producer)の開設が進むことが予想される。また、地球規模で進む温暖化対策の重要性については多くの人が関心を示すようになり、電力の世界でも図12に示したように、廃棄物を燃焼させた熱により発電するゴミ燃焼発電95、また廃棄物処理により生じたメタンガスや水素ガスを使う燃料電池発電96、風力を用いた風力発電97、太陽光発電98など、分散型電源92の普及が注目されている。これらの分散型電源92の活用は、COの削減に寄与するのみならず地域経済の活性化にも貢献するので、今後、加速度的な普及が予想される。
しかし各地域がクリーンでエネルギー効率が高い自律分散電源網を整備しても、電力の融通ができないと産業活力は低下する。産業の活力を維持して地域経済も活性化した上にCOも削減させるには、電力の融通が不可欠であり、図12に示したように、大口需要家93や小口需要家94に電力を供給する電力会社の基幹電力網90と、前記したゴミ燃焼発電95、燃料電池発電96、風力発電97、太陽光発電98などを有した自律分散電力系92との接続が重要な課題になる。
しかしながら反面、こういった自立型の分散電力系92が電力会社の電力基幹系90に接続されることで生じる種々の危険性が指摘されている。すなわち電力の自由化は、需要者が安い電力を利用できる利点があるが、誰もが電力会社の電力基幹系90を使って電力販売できるとなると、電力会社は品質や信頼性の低い電力を買わざるを得なくなる上に、所有する既存の電力基幹系90を前記したPPSやIPPに開放する必要があり、系統全体の不安定要因が増して大規模な停電に繋がる可能性がある。
そのため、自律分散電力系92と電力会社の電力基幹系90とを結ぶには、精密で正確な電力制御系91が必要であり、過大電流対策も万全である必要がある。しかし事故を含む全ての事象解決に対し電力制御系91だけに頼るのは危険である。すなわち、万が一、電力制御系91が故障した上に故障点99における事故が重なる、あるいは事故により電力制御系91も停止するような最悪の事態では、局部的な故障99が全域の電力系に大きな影響を与え、とんでもない大事故に発展する可能性がある。
例えば、故障点99で故障が生じると故障点99の電圧は零に近くなり、上位の電力会社の電力基幹系90からその故障点99へ通常より1桁以上大きい短絡電流、或いは地落電流が流れ込む。この電流によって系統機器が損傷を受けないよう、通常は電力制御系91の遮断器で故障点99を系統から切り離すが、遮断器には定格電流があって定格以上の電流が流れる場合には使用することができないから、遮断器を使用する場合は事故電流がその容量を超えてしまわないよう、機器配置をしなければならず、分散電源系の構築に大きな制約条件が発生する。
また、遮断器は遮断完了までには数サイクルの時間が必要である。すなわち故障点99で故障が発生し、通常の数倍の電流が流れたことにより電力制御系91がこの故障を検出し、遮断命令を発するが、まず電力制御系91がこの故障を検出するまでに或る程度の時間を要し、さらに遮断命令を発しても、同期開閉制御装置が実際に遮断器に遮断指令を出すまでにさらに時間を必要とする。そして、この遮断指令によって遮断器が開極するまでには開極動作時間を要し、その上、遮断器が実際に開極しても、接点の間にアークが生じて完全に遮断が完了するまでに更にアーク時間が必要となる。
そのため、故障電流が完全に遮断されるまでは数サイクル以上、すなわち略0.1秒の時間が必要であり、この間、故障電流が膨大だと電力会社の電力基幹系90全体に影響を及ぼす可能性がある。こういった問題を回避するため、遮断器技術を今以上に高信頼、高速にする必要があるが、電力制御系とは独立して動作し、この遮断器が動作するまでの間、故障電流を抑制する限流器により他の系統に影響が波及しないようにすることが、電力自由化の推進には不可欠である。
また、現存する遮断器の容量限界は63kAなので、限流器によって故障電流を63kA以下に抑制するということも望まれている。しかしながら、故障電流を63kA以下に抑制する限流器には巨大な電流容量が必要となるため、現時点では経済性が成立せず、もっぱら遮断器が動作するまでの時間、故障電流を抑制することが限流器開発の主な目的となっている。さらに、分散電力系92と電力会社の電力基幹系90との接続で使われる限流器は、これまで電力会社が必要としてきた大電力容量用の限流器とは異なり、66(kV)/数100(A)、もしくは6.6(kV)/数k(A)程度と規模が小さく、この容量規模で最適な限流器についての再検討が必要である。
しかしながら限流器は、電力会社自体にとっては設置するメリットが小さい。また、直列機器であるため電圧降下が生じやすいし、大電流を制御するため電力用半導体素子が必要となるがそのために機器が高価となり、逆に安価な非半導体素子式の限流器では限流動作を自由に制御できない、などの問題がある。すなわち限流器には、常時の損失は限り無く小さく、また、どんなことがあっても故障領域を主系統から切り離す方向に動作することが望まれているわけである。
また、限流器に電力用半導体素子を使う場合、素子が高価なので限流器だけの使用例は殆ど無く、通常は位相や周波数、電圧、電流等、あらゆるパラメータを制御する回路と共に用いられるのが一般的である。仮に限流器回路のみをSCR、IGBT、GTOなどの電力用半導体素子で構成する場合、バイパス抵抗を用いて限流動作時に故障電流がパイパス抵抗を流れるようにして抑制する方法になるが、万が一の事故対策にだけ高価な電力用半導体素子を用いるのでは経済性が全く成立しない。
そのため、電力用半導体素子を用いない限流器が注目されていて、例えば半導体素子を使わない最も簡単な限流器としては、直列接続した数mH程度の値のリアクトルがある。このリアクトルは限流リアクトルとも呼ばれ、磁気飽和が生じないようにヨークにギャップを設けるのが普通である。しかしながら限流リアクトルは、常に電圧降下を生じるため、その分、電源の電圧を上げる必要がある。
正常動作時に電圧降下が生じない限流器としては、アーク駆動式限流器と超電導限流器がある。アーク駆動式限流器は基本的にはバイパス抵抗を有する遮断器であるが、上位電力制御系の判断を待たずに故障電流を遮断器で遮断し、その時に発生するアークを消去しながら、電流をバイパス回路に流して故障電流を抑制する方法である。このアーク駆動方式限流器の場合、小型・軽量化が容易であり、しかも常温動作するので既に小規模のものは実用段階にある。しかし機械的な遮断動作があるために不安が残り、万一、遮断動作が不調でも、大事故に繋がらないような系統に利用されていることが多い。
一方の超電導限流器は、臨界温度、臨界磁界、臨界電流の3つの超電導特性が満たされると電気抵抗がゼロとなる超電導体の臨界電流特性を利用し、臨界電流値以下の電流であればゼロ抵抗の状態(S状態:Super)だが、臨界電流値以上の過大電流が流れると、超電導体が常電導状態(N状態:Normal)に転位することで発生した抵抗が故障電流を抑制する方法である。超電導限流器は、冷却系を含めた装置の何処に不調があっても必ず限流動作状態になるセルフセーフ機能を有し、信頼性が高いので、これまでにも多種多様な超電導限流器が提案されている。その中で代表的なものは、超電導体に直接電流を流して動作させるSN(Super/Normal)転移抵抗型限流器と、変圧器の2次側の超電導体を常電導転位させる変圧器型超電導限流器、それに磁気飽和型限流器である。
SN転移抵抗型超電導限流器は超電導体に大きな電流が流れ、上記した超電導条件が壊されることで発現する有限な抵抗を利用するもので、構造も原理も簡単だが、超電導体に高電圧が掛かるので低温電気絶縁の問題が常に最重要課題になる。そこで冷却材には密度が均一な液体窒素冷却が使われる。しかし限流動作時には超電導体の発熱で必ず気液混合状態になるため、セラミックスやFRPなどの固体絶縁体で電気絶縁を確保する必要があり、クライオスタット設計が難しい。
また、抵抗転位型の超電導限流器は超電導体が常電導状態に転位すると膨大な発熱が生じ、最悪の場合、超電導体の破壊を招くという問題がある。そこで通常の抵抗転位型超電導限流器では、遮断器と組み合わせた協調動作を前提にして、遮断器が応答できない数サイクルの間の過大電流を抑制し、後は遮断器に委ねるように設計する。
しかし分散電力系92のような小容量設備に、基幹系90で用いる高価な高速遮断器の設置が必要になったり、電力会社からの制御にも従属できる柔軟な電力制御系導入が必要になったりするのでは、電力接続システムの高コスト化を招いて自律分散電力系92の普及を阻害する要因にもなる。多少装置自身が大きくなっても、メンテナンスが楽でシステムの独立性を保てる限流器を導入した方が使いやすい。
変圧器型超電導限流器は、電力系統に接続される常電導体を含む1次コイルと、超電導体を含んで両端を短絡した2次コイルとから構成される。通常運転時は2次コイルが超電導状態を保つように設計され、その状態では、1次コイルが発生する磁束は2次コイルに流れる誘導電流による磁束により打ち消されている。短絡事故等で1次コイル側に過大な電流が流れると2次コイルに流れる電流も大きくなるため、2次コイルの超電導体がクエンチしてクエンチ抵抗が発生する。従って2次コイルに流れる誘導電流は小さくなり、1次コイルで発生する磁束を十分に打ち消すことができなくなって限流器のインピーダンスが大きくなり、この増大したインピーダンスで事故のときに発生した電流を限流する。
しかしながら、これらSN転位抵抗型限流器、変圧器型限流器等は、電流抑制時に膨大な発熱があるため、常電導状態から超電導状態への復帰時間が長いという問題があった。そのため、これまでの超電導限流器は遮断器が動作できない故障初期状態のみを担当し、あとの故障電流の処理を遮断器に任せて超電導体の発熱を低減させる設計になっている。また、故障状態が除去された後は、予備器を系統に接続して第二波や第三波の故障電流にも対処するなどで系統運用上の問題を解決させている。
しかし、故障が次々に続くケースでは、従来の超伝導限流器では対応が難しくなる。尤も故障が次々に発生する事態では、再接続しないことが最良の動作なのかもしれないが、できれば特別な制御を考えなくても限流器自身が再復帰してくれる方が運用上遥かに便利である。
こういった問題を解決するため、遮断器の助け無しでも単独で故障電流を処理でき、再復帰時間も短い超電導限流器として、可飽和リアクトルを用いる磁気飽和型限流器が検討され、試作も行われてきた。この磁気飽和型限流器は磁気の飽和特性を利用するものであるが、このように磁気の飽和特性を利用する電力機器として有名なものに磁気増幅器がある。従来の磁気飽和型限流器は、この磁気増幅器を限流器として動作させたものであり、巻線に超電導線を用いたものを磁気飽和型超電導限流器と呼んでいる。
図9は従来の磁気飽和型限流器70の基本構成図であり、この回路は前記したように磁気増幅器と全く同じで、磁気増幅器を限流器として用いた方式である。図中71、72は磁気ヨーク1と2、73、74は系統電流(I)、75は直流電源、76はコイルL、77はコイルL、78、79は直流磁場用コイル、80は直流電源が作る磁場、81は系統電流(I)73、74が作る磁場である。
この限流器70に用いる磁気ヨーク71、72は、通信機器で用いられるフェライトとかα−Fe鋼板等を用い、磁性体のヒステリシス損失を小さくすると共に、容易に磁気飽和が生じる磁性体とする。例えば図10に示したグラフは、このα−Fe鋼板の磁気特性であるB−H曲線(磁束密度−磁界曲線)の一例であり、横軸はアンペア・ターン、縦軸は磁束密度B(T)で、磁束密度が1テスラ(T)を超すと磁気飽和が生じ、急激に傾きが小さくなる事がわかる。
この磁性材料を用いてB=1(T)付近から磁束飽和が生じると、透磁率μs=dB/dH(傾き)の値がゼロに近づくので、コイルのインダクタンスLが急速に小さくなる。これはコイルのインダクタンスLが、下記(1)式に示すように透磁率μsに比例するためであり、飽和磁束以上の状態で使うとLは小さく、非飽和状態で使用すればLは大きくなって、非線形な磁気特性を示すリアクトルになる。そのため、これを可飽和リアクトルと呼ぶわけである。
Figure 0005187750
交流通電では正振幅の電流と負振幅の電流があるため、図9の構成例に示すように、2つの磁気ヨーク71、72が必要である。2つのヨーク71、72共に直流コイル78、79に直流電源75から直流電流を流して磁場80を発生させ、ヨークの磁束密度を1(T)以上の状態に設定すると、ヨーク71、72は磁気的に飽和し、
μ≒0
となる。その結果、ヨークに巻かれた交流コイルL76、L77のインダクタンスLは、
L≒0
となる。従って、交流電流は何らの抵抗を受けずに流れる。
しかし交流コイルL76、L77もヨーク71、72内に磁束81を発生するので、交流磁場φACと直流磁場φDCとはヨーク内で合成される。その結果、Bsatを磁気ヨーク71、72の磁束飽和値とすると、大きな交流電流に対し、
|φDC−φAC|<Bsat(T)
になる可能性がある。すなわち、ヨーク71、72が磁気飽和領域から非飽和領域になる可能性がある。ヨークが非飽和領域になると、Lが急激に大きくなって交流電流は流れ難い状態になり、限流器として動作する。
図11はこの様子を模式的に示したグラフである。この図11において横軸は磁界を意味し、電流に比例する値である。縦軸はヨーク71、72内の磁束密度を意味しており、交流電流の振幅が小さい範囲であればL=0なので、交流コイル76、77の端子間電圧はゼロに、大振幅の交流電流が流れると交流コイルに大きな端子間電圧が現れ、電流が流れ難い状態になる。
しかしながら、図9に示した従来式の磁気飽和型限流器は、大きなヨークを磁気的に飽和させるために一定の直流磁場が必要であり、これを実現するには永久磁石を使う方法も考えられるが、大きな電力機器では電力損失が無い超電導コイルを使用した方が現実的である。また、この限流器では、万が一、直流用の超電導コイルが壊れるとリアクトルは非飽和領域になるので交流電流は流れ難くなり、他の超電導限流器と同様にセルフ・セーフ機能を有している。また、故障状況が除去された後の再復帰時間については、磁気増幅器の応答性と同じなので数ミリ秒である。
また、現在製作できる磁気増幅器の最大規模は1万kW程度と言われており、限流器の最大容量も同じ規模になる。この限流器の交流コイルL76及びL77は、超電導線である必要性はないが、損失低減のために超電導線が使われる。従来の磁気飽和型限流器70は、この図9から明らかなように1相当りに2個の可飽和リアクトルが必要であり、3相交流の場合は全体で6個の可飽和リアクトルが必要となる。しかし、ここで用いる可飽和リアクトルは大型であり、そのため、装置全体が巨大になることからなかなか実用化されないでいる。
こういった装置全体の大型化を招かない磁気飽和型限流器の先行技術については、例えば特許文献1に、交流電源(系統電力)と負荷との間に全波整流器を設け、その全波整流器の直流出力端子を可飽和直流リアクトルの一次側コイルLに接続すると共に、可飽和直流リアクトルの二次側コイルLに該飽和直流リアクトルの可飽和鉄芯を飽和させるための直流電源を接続し、平常状態では可飽和鉄芯が飽和していることでインダクタンスが小さいが、故障により一次側コイルLに流れる直流電流が増えると、可飽和鉄芯が非飽和領域に入って限流動作が行われる限流器が示されている。
特開2002−291150号公報
この特許文献1に示された限流器は、可飽和直流リアクトルが1つだけのため、装置の大型化は招かないが、直流電源が必要であると共に系統電流を全波整流器に流しており、この全波整流器を電力用半導体素子で構成した場合、前記したように万が一の事故対策にだけ高価な電力用半導体素子を用いることになり、コスト的に問題がある。また全波整流器は、故障電流が大電流の場合に限流動作が開始される前に壊れる可能性がある。
そのため本発明においては、可飽和リアクトルを用いる磁気飽和型限流器の利点である、遮断器の助け無しでも単独で故障電流を処理でき、再復帰時間も短い点、及びセルフ・セーフ機能はそのままに、寸法の大きな可飽和リアクトルの必要数を少なくすると共に、直流のバイアス磁束を用いないようにした磁気飽和型限流器を提供することが課題である。
上記課題を解決するため本発明になる磁気飽和型限流器は、
強磁性体ヨークと、該強磁性体ヨークに巻回されて電力系統に接続されたコイルとからなり、前記コイルに流れる電流の大きさにより磁気的に非飽和状態と飽和状態とに変化する可飽和リアクトルを用い、電力系統に生じた故障電流を限流する磁気飽和型限流器において、
一端を電力系統に接続されて前記コイルに直列に接続され、前記電力系統の平常電流で非飽和状態の可飽和リアクトルと直列共振回路を形成し、前記電力系統に対して低インピーダンスを示す回路を構成する第1のコンデンサと、
前記直列共振回路に並列に接続され、前記電力系統の故障電流で飽和状態となる前記可飽和リアクトルの存在により前記第1のコンデンサと並列共振回路を形成し、前記電力系統に対して高インピーダンス示す回路を構成する第1の非飽和リアクトルとからなり、
前記電力系統の故障電流で生じる前記並列共振回路により前記故障電流を限流するように構成するとともに、
更に前記第1のコンデンサと電力系統の間に接続された第2のコンデンサと、該第2のコンデンサに並列に接続された第2の非飽和リアクトルとからなり、前記可飽和リアクトルの非飽和状態から飽和状態への移行に伴って発生する高調波を抑えるフィルタ回路を付加したことを特徴とする。
このように磁気飽和型限流器を構成することで、系統電流が平常電流の場合は可飽和リアクトルが非飽和状態であり、そのために生じるインダクタンスと第1のコンデンサとで系統電流周波数に対して直列共振回路を形成すると、この直列共振回路は電力系統に対して理論上ゼロ・インピーダンスの回路となり、平常電流の系統電流は大きな電圧降下を生ぜずに流れる。それに対して故障電流により、可飽和リアクトルが磁気飽和状態となると可飽和リアクトルのインダクタンスは略0となり、第1のコンデンサと第1の非飽和リアクトルとで並列共振回路が形成されるが、この並列共振回路は系統電流に対して理論上無限大インピーダンスになるので、故障電流は限流される。しかもこの限流動作は、並列共振回路が理論上無限大インピーダンスを示すために発現するもので、電流抑制効果が従来の限流器より大きく、それにもかかわらず系統電流が平常電流に戻ることで可飽和リアクトルが非飽和状態に戻れば、もとの直列共振回路が形成されて理論上、ゼロ・インピーダンス状態に復帰する。
すなわち従来の磁気飽和型限流器は、リアクトルの磁気飽和現象をコイルのインダクタンス変化として直接利用しているのに対し、本発明になる磁気飽和型限流器は、可飽和リアクトルを直列共振回路と並列共振回路の切り換えに利用しているため、寸法の大きな可飽和リアクトルの必要数が1相あたり1つでよく、限流器の小型化を図ることができる。また本発明の磁気飽和型限流器は、可飽和リアクトルを用いる磁気飽和型限流器の利点である、遮断器の助け無しでも単独で故障電流を処理できる点、再復帰時間も短い点、及びセルフ・セーフ機能などはそのままに、特許文献1の限流器のように整流回路や直流電源も不用であるから、構造が簡単で安価に構成することができる磁気飽和型限流器を提供することができる。
そして、前記可飽和リアクトルにおける非飽和時のインダクタンスをL、前記電力系統の周波数をω(ω=2πf:fは周波数)とした時、前記第1のコンデンサの容量Cを、
C=1/(ω
と設定することで、前記したように小振幅の交流電流(系統電流が平常電流の場合)の場合、可飽和リアクトルは磁気飽和しないので有限な値のLとなり、直列共振回路はインピーダンスが非常に小さくなって交流電流(系統電流)は全く抵抗を受けずに流れることができる。
なお、本発明になる磁気飽和型限流器では、可飽和リアクトルが前記したように限流器内の共振回路を切り替えるスィッチング素子として機能しているため、スイッチング動作時にノイズが発生する。そのため、この切換の際に可飽和リアクトルに蓄えられた電磁エネルギーが解放され、高調波電流となって限流器内を流れて系統電流に漏れ出るが、前記第1のコンデンサと電力系統の間に接続された第2のコンデンサと、該第2のコンデンサに並列に接続された第2の非飽和リアクトルとからなり、前記可飽和リアクトルの非飽和状態から飽和状態への移行に伴って発生する高調波を抑えるフィルタ回路を付加することで、こういった漏れだしを防止することもできる。
また、前記第1と第2の非飽和リアクトルは、磁気的飽和が生じない空心リアクトルとすると、本発明になる磁気飽和型限流器を安価に、小型に構成することができる。
さらに、前記可飽和リアクトルに巻回されたコイルは超電導線材を含んで構成され、超電導環境に置かれていることで、損失を低減した磁気飽和型限流器とすることができる。
また、前記超電導体は、酸化物高温超電導体であり、YBaCuまたはBiSrCuであることで、液体ヘリウム冷却のように冷却技術が煩雑とならず、電気絶縁耐力も低くならないから、装置寸法の大型化や高いコストを招かずに超電導限流器を構成することができる。
以上記載のごとく本発明になる磁気飽和型限流器は、寸法の大きな可飽和リアクトルは1つで済み、また、直流のバイアス磁束を用いないから直流電源も不用となる。それにもかかわらず電流抑制効果が従来の限流器より大きく、系統電流が平常電流に戻ることで可飽和リアクトルが非飽和状態に戻れば、もとの直列共振回路が形成されて低抵抗状態に復帰し、可飽和リアクトルを用いる磁気飽和型限流器の利点である、遮断器の助け無しでも単独で故障電流を処理できる点、再復帰時間も短い点、及びセルフ・セーフ機能などはそのままに、構造が簡単で安価に構成することができる磁気飽和型限流器を提供することができる。
また、可飽和リアクトルが限流器内の共振回路を切り替えるスィッチング素子として機能するとき、ノイズが発生するが、高調波を抑えるフィルタ回路を付加することで、系統電流に漏れ出るノイズを防止され、可飽和リアクトルに巻回されたコイルを超電導線材で構成すると共に、超電導環境に置くことで、損失を低減した磁気飽和型限流器とすることができる。
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は、本発明になる磁気飽和型限流器10の構成概略(A)と、その等価回路(B)である。図中11の番号を付したLは可飽和リアクトル、12、13の番号を付したL、Lは非飽和リアクトル(例えば、磁気的に飽和しない空心リアクトル)、14、15の番号を付したC、Cはコンデンサである。本発明においてはこれらの構成要素により、直列に接続されて20の楕円により囲んだ可飽和リアクトルL11とコンデンサC14とで直列共振回路が構成され、この直列共振回路に並列に接続された非飽和リアクトルL12が、後記するように過大電流が流れたとき、21で示した楕円で囲んだコンデンサC14とで並列共振回路を構成し、過大電流を抑制して限流器本体16を構成する。
また、限流器本体16に直列に接続されたコンデンサC15と非飽和リアクトルL13とは、限流動作時に発生する高調波を抑えるフィルタ回路17を構成する。これら直列共振回路20、並列共振回路21は、電力系統が平常状態で可飽和リアクトルL11が磁気的に非飽和の時、可飽和リアクトルL11とコンデンサC14とが、理論上、ゼロインピーダンス、もしくは低インピーダンスを示す直列共振回路を構成し、電力系統に故障が生じて異常電流が流れ、可飽和リアクトルL11が磁気的に飽和状態になるとコンデンサC14と非飽和リアクトルL12とが並列共振回路を形成し、理論上、無限大インピーダンス、もしくは高インピーダンスを示す回路を構成して限流動作を行う。
すなわち、限流器は電流の振幅に対して何らかの非線形特性が必要であり、前記したSN(Super/Normal)転移抵抗型限流器では、超電導体が超電導状態から常電導状態に転位したときに生じる抵抗がこれを担い、本発明になる磁気飽和型限流器10においては、可飽和リアクトルL11の電流に対する非線形特性がこれを担うわけである。
この限流器本体(L11、L12、C14)16に用いる可飽和リアクトルL11は、鉄やニッケル、あるいはフェライト等の強磁性体ヨークにコイルを巻いたものであり、一定以上のコイル電流が流れると磁気ヨークが飽和し、コイルのインダクタンスが小さくなる。一方、非飽和リアクトルL12は、想定できる電流の値では磁気飽和が起きないよう大面積の磁気ヨークを用いたり、あるいは磁気飽和が無い空心コイルを採用する。
これらの構成要素は、まず、可飽和リアクトルL11の非飽和時におけるインダクタンスをLとした場合、非飽和リアクトルL12のインダクタンスも同じ値のLとなるよう設定する。Lの値は自由であるが、造り易さやコンデンサの容量を考えて、周波数がf=50(Hz)であれば、0.2〜0.05(H)の設定が適当である。例えば、L=0.05(H)とする。
コンデンサC14は、系統周波数をω(ω=2πf:fは周波数)とした時、
=1/(ω
を満たすように設定する。例えば、f=50(Hz)、L=0.05(H)の場合、
=202(μF)
となる。
フィルタ回路(L13、C15)17は、前記したように高調波の遮断が目的である。ここに示した磁気飽和型限流器10では、可飽和リアクトルL11が限流器内の共振回路を切り替えるスィッチング素子として機能しており、スイッチング動作時にノイズが発生する。すなわちコイルに電流を流すと、
/2(Lはコイルのインダクタンス、Iは電流)
の電磁エネルギーがコイル内に蓄積される。過大電流で可飽和リアクトルL11が磁気飽和してLから0に変化すると、可飽和リアクトルL11の電磁エネルギーが解放され、高調波電流となって限流器内を流れる。この高調波電流は通常導線で巻かれた空心リアクトルL12の抵抗で消費されるが、主系統にも漏れ出る。従ってフィルタ回路17は高調波電流の主系統への漏洩を小さくするために必要である。
このフィルタ回路17を構成する非飽和リアクトルL13、コンデンサC15の値は、フィルタ共振周波数ωが系統周波数ω以上であれば自由に選定できる。例えば、
=20(μF)
とし、
=5(mH)
とすれば、
ω=500(Hz)
となる。
しかしながら、このフィルタ回路17の非飽和リアクトルL13、コンデンサC15の値は、自由度が大きくて一義的には決らない。例えば、
ω<ω
の条件があっても、フィルタの共振周波数は
ω=150(Hz)
でも500(Hz)でも良い。仮に、
ω=500(Hz)
と固定しても、
ω=1/(L
を満たせば、L、Cは自由に選ぶことができる。
ただし非飽和リアクトルL13、コンデンサC15の選択で考慮すべき点は、共振周波数ωが系統周波数ωに近づくと、優れた高調波の抑制効果を期待できる反面、正常動作時のフィルタ・インピーダンスが大きくなり、正常時の電圧降下が大きくなることである。またωを固定しても、前述のように、
ω=1/(L
を満たせば、非飽和リアクトルL13、コンデンサC15の選択は自由であるが、簡単な計算から、正常電流通電時の電圧降下を小さくするには図2に示すように、フィルタ・インピーダンスZを小さくすれば良い。この図2は、高調波の主要周波数を500(Hz)としたときの回路定数及び回路インピーダンスのグラフであり、横軸はコンデンサC15の容量(単位:μF)、縦軸はフィルター回路17のインピーダンスZ(単位:Ω)と必要なリアクトルL(単位:H)である。
このグラフから分かるとおり、非飽和リアクトルL13を小さく、コンデンサC15を大きく設定すればフィルター回路17のインピーダンスZが小さくなり、電圧降下が小さくなる。しかしながら、コンデンサC15を大きくすることでZを小さくすると、フィルタに大容量のコンデンサが必要になるし、ω以外の高調波電流が通りやすくなるので単純に決めることはできない。実際の系統に合わせて最良なフィルタを見つける必要がある。
次に、本発明になる磁気飽和型限流器10の動作原理について説明する。前記した図1(B)に示した回路に交流回路解析で一般的なフーリエ変換を用い、回路全体のインピーダンスZを求めると、下記(2)式となる。
Figure 0005187750
この(2)式において、第1項が限流器本体16、第2項がフィルタ回路17のインピーダンスである。ここに、ωは系統の(角)周波数[ω=2πf:fは周波数]である。
説明を簡単にするため、フィルタ回路17のインピーダンスを無視し、
=L=L
であると仮定する。小振幅の交流電流に対し、可飽和リアクトルL11は磁気飽和しないので、有限な値のLとなってコンデンサC14と直列共振する(直列共振回路20)。この時、コンデンサC14が、
1=ω
を成立するように設定されていると、
FCL=0
となる。すなわち、交流電流は全く抵抗を受けないことになる。
一方、大振幅の交流が流れて可飽和リアクトルL11が磁気飽和し、
=0
になると、可飽和リアクトルL11が存在しないのと同じになり、コンデンサC14と非飽和リアクトルL12とが直接接続され、並列共振回路21が現れる。このとき、
=L
に設定したので、
1=ω
が成立する。これは(1)式の分母をゼロにするので、
FCL=∞
となり、電流は殆ど流れなくなって過大電流に対して極めて大きなインピーダンスを示し、回路は限流器として動作する。
すなわち本発明になる磁気飽和型限流器10は、系統電流18、19が正常であれば可飽和リアクトルL11が磁気飽和せず、インダクタンスが有限な値のLとなってコンデンサC14と直列共振回路20を構成し、交流電流は全く抵抗を受けずに流れる。それに対して系統電流18、19が故障し、異常電流が流れて可飽和リアクトルL11が磁気飽和すると、可飽和リアクトルL11が存在しないのと同じになってコンデンサC14と非飽和リアクトルL12とが直接接続され、並列共振回路21が現れて過大電流に対し、極めて大きなインピーダンスを示して限流器として動作するわけである。
なお、本発明になる磁気飽和型限流器10では、正常時に電流が流れる可飽和リアクトルL11の巻線を超電導線にしてもよく、そうすることで、磁気飽和型限流器10の損失を減らすことができるが、この超電導線が冷凍機を含めた機器の異常で機能しなくなった場合でも、超電導線が常電導状態に転位して損失増加が大きくなるだけで、限流器としての機能はそのまま維持される。
このように本発明になる磁気飽和型限流器10は、従来方式では巨大寸法の可飽和リアクトルが2個必要だったのを1個に減らせること、また、電流抑制効果を並列共振回路の無限大インピーダンスで実現していて、従来の磁気飽和型限流器より大きな電流抑制効果が得られることが特徴である。
従来の限流器と本発明になる磁気飽和型限流器10との違いを列記すると、以下のようになる。
1)従来の限流器では、リアクトルの磁気飽和現象をコイルのインダクタンス変化として直接利用するのに対し、本発明になる磁気飽和型限流器10は、磁気飽和現象を共振回路の切り替えに利用している。
2)本発明になる磁気飽和型限流器10では、寸法の大きな可飽和リアクトルが1個で済むので装置の小型化が可能。
3)従来の限流器では正常時に磁気飽和状態の維持が必要なため、直流のバイアス磁束が不可欠であるのに対し、本発明になる磁気飽和型限流器10では磁気飽和は異常時にのみ生じるので、直流電源、あるいは永久磁石は不要である。
4)本発明になる磁気飽和型限流器10の電流抑制は、並列共振回路の無限大インピーダンスで実現しているため、電流抑制効果が従来の限流器より大きい。
次に、本発明になる磁気飽和型限流器10の、具体的設計シミュレーション例について、リアクトルL11のコイル線材に酸化物高温超電導体のY系超電導線を用い、液体窒素で超電導環境とした場合を例に説明する。なお、前記したようにコイル線材として超電導線を用いない場合、損失が多少増えるが動作そのものに支障が生じることはない。
本発明になる磁気飽和型限流器10において、最も重要な部品は可飽和リアクトルL11である。この可飽和リアクトルL11に用いる磁気材料としては、前記したように、例えば磁気増幅器で用いられる体心立方格子構造のα−Fe鋼板などを使用する。このα−Fe鋼板にも様々な種類があるが、ここでは一例として、前記図10のグラフに模式的に示した初期透磁率μs=1000(B−H曲線の傾き)、飽和する磁束密度Bmax=1(T)のものを用いることとする。
また、図3に可飽和リアクトルL11の構造概略一例を示した。この図3は、(A)が本発明になる磁気飽和型限流器10に用いる可飽和リアクトルL11の概略構造であり、(B)がコイルの線材として超電導線を用いた場合のクライオスタット部分の構造一例、及び(C)は(B)における点線の○で示した部分の拡大図で、超電導線を使ったコイルの構造をそれぞれ示している。
まず図3(A)において、30はα−Fe鋼板を用いたヨーク、31は図3(C)に構造の概略を示したコイル、32はヨーク30の平均磁気回路長さ(lmag)、Aはヨーク30の断面積、φは磁束密度、Nはコイル31のターン数、Lはコイル31のインダクタンスである。また(B)において33はコイル・ボビン、34は超電導線を冷却するためのクライオスタット、35はクライオスタット34の内部を満たす液体窒素であり、(C)において341はクライオスタット側面、36は25mm×4mm程度の板状の高純度銅線、37はこの高純度銅線36の横幅面上に2本並列に接合した、市販されている幅12mmのY系超電導線である。なお、Y系超電導線としては、酸化物高温超電導体のYBaCu、またはBiSrCuなどを用いることが好ましい。
図3(A)に示したように、透磁率がμsでヨーク断面積がA、平均磁気回路長さlmagの磁気ヨークにNターンのコイルを巻くと、コイルのインダクタンスLは前記した(1)式で表わせる。
Figure 0005187750
ここに4π10−7は真空中の透磁率であり定数である。このコイルに電流I(A)を流すと、ヨーク内に発生する磁束密度φは(3)式で表わせる。
Figure 0005187750
例えば、可飽和リアクトルL11の非飽和時のインダクタンスが
=0.05(H)
で、最大電流400(A)の通電で磁束密度が
φ=1(T)
になるとすると、(1)及び(2)式から、図5のグラフに示すようなヨーク寸法の関係が得られる。この図5において横軸は磁気ヨーク直径、縦軸は平均磁気ヨーク長(m)、及びコイルターン数(N)である。
この図5のグラフからわかるとおり、ヨーク直径を約1.0mとすると、ヨーク長約16m、ヨーク1辺の長さは4m、コイルターン数を20ターンにすればよい。そのため、以後の計算はこの寸法を用いて進める。
このヨークに巻き込む巻線導体として図3(C)に示したように、25mm×4mmの板状の高純度銅線36を用い、横幅面上に市販の幅12mmのY系の例えば交流用超電導線37を2本並列に接合すると、超電導線の臨界電流が1本あたり250(A)程度なので、500(A)以下の通電に対して抵抗ゼロの導体が実現できる。これより正常動作であれば、図1に示した可飽和リアクトルL11の巻線の損失は理論的にはゼロになる。導線の巻枠(コイル・ボビン)33は、超電導線を冷却する液体窒素用のクライオスタット34が必要なので、ヨーク32の直径1mよりも大きくなり、図3(B)に示したように1.2mと仮定し、導体全長が72mになると仮定すると、使用するY系薄膜超電導線37の量も少なく、超電導線によるコスト高を招くことがない。また、導体の長さが短いので電気抵抗も小さい。
具体的には、銅の電気抵抗率がσ=1.69(μΩ・cm)[常温]なので、72mの長さでは常温で0.012(Ω)となる。更に、これを液体窒素35で冷却しているので、抵抗は1(mΩ)程度になる。従って故障電流が流れても導体の発熱は十分小さく、仮に故障時間が0.1秒で1000(A)の故障電流が流れても、発熱エネルギーは100(J)程度に収まる。この程度の発熱であれば、故障状態が除去されると超電導線37も直ちに超電導状態に回復できる。尤も本発明になる磁気飽和型限流器10は、可飽和リアクトルL11の共振回路切り替えが動作の基本なので、超電導体37の超電導状態への復帰は限流器の再復帰と関係なく、故障状態が除去されると直ちに再復帰する。このことは、超電導線37や冷凍機等の新技術が電力機器に入り込む不安を払拭するのに役立つし、超電導電力機器導入へ心理的な障壁を取り除くのにも役に立つ。
この、本発明になる磁気飽和型限流器10を実際に用いる時に必要な配慮は、電力系統が3相交流なのでこの大型の可飽和リアクトルL11が3個必要になり、大きな設置空間が必要なことである。
一方、図1に示した非飽和リアクトルL12は空心コイルであるとし、図4に示したように磁束漏れが無いトロイド巻構造とする。この図4において40は非磁性体ボビン、41はコイルで、Rは非磁性体ボビン40の大直径、rは同じく非磁性体ボビン40の小直径であり、この例では空心コイルを円形として示したが、磁力線が閉じていれば楕円でも四角形でも構わない。また、この空心コイルは磁束の飽和現象を考えなくても良いので、(3)式を無視して小さく設計できる。
例えば、(2)式においてμs=1と置き、L=0.05(H)を満たすには、図4の大直径Rが1m、小直径rが0.2mのボビンの上に1130ターンのコイル41を巻けば、コイルのインダクタンスはL=0.05(H)となる。コイル41に巻き込む銅線として断面積10mmの高純度銅線を使うと、連続通電電流値は150〜200(A)になる。本発明になる磁気飽和型限流器10の場合、空心の非飽和リアクトルL12に電流が流れるのは故障状態の時だけであり、時間は0.1〜1秒と考えられるので、非飽和リアクトルL12の許容電流は3000(A)程度と考えても十分余裕がある。ちなみに非飽和リアクトルL12は常温設置であり、コイル41の電気抵抗は、銅の電気抵抗率が常温でσ=1.69(μΩ・cm)なので、小直径0.2mの1130ターン・コイルの場合R2≒0.12(Ω)となる。
更に、フィルタ用コイルLも常温に設置された空心コイルであると仮定し、Lと同様に大直径1m、小直径0.2mのボビンで同じ面積の銅線を使うとすると、L=5(mH)にするには356ターンで、コイル抵抗はR3=0.038(Ω)になる。
このようにして設計したコイルL〜Lを用い、高調波フィルタ周波数を500(Hz)とすると、コンデンサC、Cは、それぞれ、202(μF)、20(μF)となる。ちなみに、コンデンサの耐電圧は系統電圧の最高値以上にする必要がある。例えば、系統電圧が66(kV)であれば、
Figure 0005187750
以上の耐電圧性能が必要である。
図6は、シミュレーション計算に用いた模擬故障回路である。この図6の回路は、故障事故が分散系統内部で生じたと仮定した場合で、図中、60は系統電源、61は系統電源60の送電線抵抗(R)、62は自律分散系統内部、63は正常時の分散系統内部の総負荷抵抗(R)、64は事故により減少した総負荷抵抗、65は想定事故としてのスイッチである。同図において電力会社の送電線抵抗R61は、R=1(Ω)と仮定する。また、分散系統内部の総負荷抵抗R63は通常400(Ω)とするが、これが何らかの理由により生じた想定事故65により、数サイクルの間、急に64で示した20(Ω)に低下したとして計算した。
図7はこの図6に示した回路を用い、本発明になる磁気飽和型限流器10が故障により系統に生じた大電流を限流した場合のシミュレーション結果の一例のグラフであり、フィルター回路15を用いた場合である。この図7において、50は限流器10が有る場合の系統電流で、51は限流器10が無い場合の系統電流、52はY系超電導線材37(図3(C)参照)の温度である。
時間tで自律分散系統内部62において想定事故65が生じると、限流器10が無い51のグラフでは、故障電流が最大で3300(A)近い大電流となって他系統への影響が無視できなくなる。それに対して限流器10が存在する50のグラフでは、故障電流が最大で750(A)程度に抑えられ、しかも、故障期間3サイクル後の時間tで故障が除去されると、限流器10は殆ど瞬時に故障前の状態に復帰している。
また、故障期間3サイクルの間におけるこのY系超電導線材の温度52は、可飽和リアクトルL11のコイル抵抗が小さいので発熱(温度上昇)も小さく、時間tで故障が除去されると約5サイクル後に超電導状態に戻っている。ただし、超電導状態への回復時間は冷凍系の冷却能力に大きく依存するので、必ずしも5サイクル後に回復するとは限らない。重要なことは、本発明になる磁気飽和型限流器10が、超電導状態とは無関係に故障電流を抑制できることと、再復帰も瞬時に行われることである。
ただしこの限流器10は、500(Hz)フィルタ回路17が存在しているために若干、正常状態時の電流が低下している。この現象は、フィルタ回路17の定数ωや非飽和リアクトルL13、コンデンサC15の選択で小さくできるが、非飽和リアクトルL13のインピーダンスによる電圧降下が原因であり、発熱を伴う損失ではない。
図8は図6に示した回路を用い、本発明になる磁気飽和型限流器10が故障により系統に生じた大電流を限流した場合のシミュレーション結果の一例の他の例のグラフであり、フィルター回路15を用いない場合である。この図8において、55は限流器10が有る場合の系統電流で、56は限流器10が無い場合の系統電流、57はY系超電導線材37(図3(C)参照)の温度である。
時間tで自律分散系統内部62において想定事故65が生じると、限流器10が無い56のグラフでは、図7の場合と同様故障電流が最大で3300(A)近い大電流となって他系統への影響が無視できなくなる。それに対して限流器10が存在する55のグラフでは、故障電流が最大で1500(A)程度に抑えられ、しかも、故障期間3サイクル後の時間tで故障が除去されると、限流器10は約2サイクル後に故障前の状態に復帰している。
このようにフィルタ回路17が無くても故障電流を抑制できるし、故障状態が除去されると直ちに限流器10は故障前の状態に復帰するが、限流動作時に発生する高調波電流が系統に大きく漏れ出ることがわかる。限流器10の動作に伴う高調波電流が系統に漏れ出ても大きな障害が発生するとは思えないが、可能であれば漏れ出ない方が良い。したがってフィルタ回路17の存在は必要である。しかしながらフィルタ回路17が無いことにより、正常動作時における限流器10内の電圧降下が全く無くなる点は考慮すべき点である。
以上、種々述べてきたように、本発明になる磁気飽和型限流器10は、寸法が大きくなる可飽和リアクトルL11は1つで済み、また、直流のバイアス磁束を用いないから直流電源も不用となる。それにもかかわらず電流抑制効果が従来の限流器よりも大きく、系統電流が平常電流に戻ることで可飽和リアクトルL11が非飽和状態に戻れば、もとの直列共振回路が形成されて低抵抗状態に復帰し、可飽和リアクトルL11を用いる磁気飽和型限流器の利点である、遮断器の助け無しでも単独で故障電流を処理できる点、再復帰時間も短い点、及びセルフ・セーフ機能などはそのままに、構造が簡単で安価に構成することができる磁気飽和型限流器を提供することができる。
本発明によれば、分散電力系などにおける万一の事故により、系統全体が不安定となって大規模な停電に繋がる、といったことを未然に防止する限流器を、可飽和リアクトルを用いることで、遮断器の助け無しでも単独で故障電流を処理でき、再復帰時間が短く、セルフ・セーフ機能を有して実現できるから、電力自由化の推進に貢献することができる。
本発明になる磁気飽和型限流器の構成概略(A)と、その等価回路(B)である。 本発明になる磁気飽和型限流器を構成するフィルター回路の特性を示したグラフである。 本発明になる磁気飽和型限流器に用いる、可飽和リアクトルの概略構造(A)とクライオスタット部分の構造(B)、及び超電導線を使ったコイルの構造(C)をそれぞれ示した図である。 本発明になる磁気飽和型限流器に用いる、非飽和リアクトルLとしてのトロコイド巻空心コイルの構成例である。 可飽和リアクトルの寸法を算出する基礎となる、磁気ヨーク直径と平均磁気ヨーク長さ(m)、コイルターン数のグラフである。 本発明になる磁気飽和型限流器のシミュレーション計算に用いた模擬故障回路である。 本発明になる磁気飽和型限流器を用い、故障により系統に生じた大電流を限流した場合のシミュレーション結果の一例のグラフで、フィルター回路を用いた場合である。 本発明になる磁気飽和型限流器を用い、故障により系統に生じた大電流を限流した場合のシミュレーション結果の一例のグラフで、フィルター回路を用いない場合である。 従来の磁気飽和型限流器の構成概略である。 磁気飽和型限流器の可飽和リアクトルに用いる、α−Fe鋼板で作成した磁気ヨークの磁化曲線のグラフである。 従来の磁気飽和型限流器の動作説明のためのグラフである。 自律分散電力系のイメージ図である。
符号の説明
10 磁気飽和型限流器
11 可飽和リアクトルL
12 非飽和リアクトルL
13 非飽和リアクトルL
14 コンデンサC
15 コンデンサC
16 限流器本体
17 フィルタ回路
18、19 系統電流
20 直列共振回路
21 並列共振回路

Claims (6)

  1. 強磁性体ヨークと、該強磁性体ヨークに巻回されて電力系統に接続されたコイルとからなり、前記コイルに流れる電流の大きさにより磁気的に非飽和状態と飽和状態とに変化する可飽和リアクトルを用い、電力系統に生じた故障電流を限流する磁気飽和型限流器において、
    一端を電力系統に接続されて前記コイルに直列に接続され、前記電力系統の平常電流で非飽和状態の可飽和リアクトルと直列共振回路を形成し、前記電力系統に対して低インピーダンスを示す回路を構成する第1のコンデンサと、
    前記直列共振回路に並列に接続され、前記電力系統の故障電流で飽和状態となる前記可飽和リアクトルの存在により前記第1のコンデンサと並列共振回路を形成し、前記電力系統に対して高インピーダンス示す回路を構成する第1の非飽和リアクトルとからなり、
    前記電力系統の故障電流で生じる前記並列共振回路により前記故障電流を限流するように構成するとともに、
    更に前記第1のコンデンサと電力系統の間に接続された第2のコンデンサと、該第2のコンデンサに並列に接続された第2の非飽和リアクトルとからなり、前記可飽和リアクトルの非飽和状態から飽和状態への移行に伴って発生する高調波を抑えるフィルタ回路を付加したことを特徴とする磁気飽和型限流器。
  2. 前記可飽和リアクトルにおける非飽和時のインダクタンスをL、前記電力系統の周波数をω(ω=2πf:fは周波数)とした時、前記第1のコンデンサの容量Cを、
    C=1/(ω
    と設定することを特徴とする請求項1に記載した磁気飽和型限流器。
  3. 前記第1と第2の非飽和リアクトルは、磁気的飽和が生じない空心リアクトルであることを特徴とする請求項1に記載した磁気飽和型限流器。
  4. 前記可飽和リアクトルに巻回されたコイルは超電導線材を含んで構成され、超電導環境に置かれていることを特徴とする請求項1乃至のいずれかに記載した磁気飽和型限流器。
  5. 前記超電導体は、酸化物高温超電導体であることを特徴とする請求項1またはに記載した磁気飽和型限流器。
  6. 前記超電導体は、YBaCuまたはBiSrCuであることを特徴とする請求項1乃至のいずれかに記載した磁気飽和型限流器。
JP2008175812A 2008-07-04 2008-07-04 磁気飽和型限流器 Expired - Fee Related JP5187750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175812A JP5187750B2 (ja) 2008-07-04 2008-07-04 磁気飽和型限流器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175812A JP5187750B2 (ja) 2008-07-04 2008-07-04 磁気飽和型限流器

Publications (2)

Publication Number Publication Date
JP2010017016A JP2010017016A (ja) 2010-01-21
JP5187750B2 true JP5187750B2 (ja) 2013-04-24

Family

ID=41702554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175812A Expired - Fee Related JP5187750B2 (ja) 2008-07-04 2008-07-04 磁気飽和型限流器

Country Status (1)

Country Link
JP (1) JP5187750B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120880A1 (en) * 2015-01-30 2016-08-04 Gridon Ltd Fault current limiter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223354A (ja) * 2012-04-17 2013-10-28 Mayekawa Mfg Co Ltd 整流器
JP2014204460A (ja) * 2013-04-01 2014-10-27 住友電気工業株式会社 限流・潮流制御装置
JP6069073B2 (ja) 2013-04-01 2017-01-25 住友電気工業株式会社 限流装置
CN103762576B (zh) * 2014-02-14 2016-09-21 戴先兵 自饱和电抗器型故障限流器
WO2022024185A1 (ja) * 2020-07-27 2022-02-03 株式会社東芝 磁気飽和型限流器システム及び磁気飽和型限流器システムの設置方法
CN112366668B (zh) * 2020-11-16 2022-08-09 中国科学院电工研究所 一种低损耗分裂电抗型限流断路器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241873A (ja) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd 放電灯点灯装置
JP3879889B2 (ja) * 1998-11-20 2007-02-14 株式会社小松製作所 インジェクションロック型狭帯域化パルスレーザ装置
JP2004350337A (ja) * 2003-05-20 2004-12-09 National Institute Of Advanced Industrial & Technology 限流機能付き潮流制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120880A1 (en) * 2015-01-30 2016-08-04 Gridon Ltd Fault current limiter

Also Published As

Publication number Publication date
JP2010017016A (ja) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5187750B2 (ja) 磁気飽和型限流器
Moriconi et al. Development and deployment of saturated-core fault current limiters in distribution and transmission substations
Li et al. Technical requirements of the DC superconducting fault current limiter
Xin et al. Manufacturing and test of a 35 kV/90 MVA saturated iron-core type superconductive fault current limiter for live-grid operation
US20090021875A1 (en) Fault current limiters (fcl) with the cores saturated by superconducting coils
US20120154966A1 (en) Fault current limiters (fcl) with the cores saturated by non-superconducting coils
WO2002005400A1 (en) Fault-current limiter with multi-winding coil
JP2006504254A (ja) 超伝導限流装置
Zhou et al. Performance investigation on a novel high inductance changing ratio MMC-based direct current system saturated core FCL
Eladawy et al. A novel five-leg design for performance improvement of three-phase presaturated core fault-current limiter
Ren et al. Techno-economic evaluation of a novel flux-coupling type superconducting fault current limiter
CN202840498U (zh) 新型磁屏蔽空心变压器耦合桥式固态限流器
Yuan et al. Saturated‐core fault current limiters for AC power systems: towards reliable, economical and better performance application
Yuan et al. A novel six-leg three-phase fault current limiter
Heidary et al. A self-activated fault current limiter for distribution network protection
Chen et al. A novel fast energy storage fault current limiter topology for high-voltage direct current transmission system
Ise et al. Reduction of inductance and current rating of the coil and enhancement of fault current limiting capability of a rectifier type superconducting fault current limiter
Heidary et al. The TRV improvement of fast circuit breakers using solid-state series superconducting reactor
Guo et al. Optimized design and electromagnetic analysis of a hybrid type DC SFCL in MMC system
Yuan et al. A compact saturated core fault current limiter magnetically integrated with decoupling windings
Tseng et al. Quasi‐bridge‐type fault current limiter for mitigating fault transient phenomena
Moscrop et al. Design and development of a 3-phase saturated core high temperature superconducting fault current limiter
Xiang et al. SF6 passive resonance DC circuit breaker combined with a superconducting fault current limiter
JP5039985B2 (ja) 変圧器型超電導限流器
Ning et al. Analysis and reduction of magnetizing inrush current for switch-on unloaded transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees