WO2014162768A1 - プロジェクタ、色補正装置および投写方法 - Google Patents

プロジェクタ、色補正装置および投写方法 Download PDF

Info

Publication number
WO2014162768A1
WO2014162768A1 PCT/JP2014/052236 JP2014052236W WO2014162768A1 WO 2014162768 A1 WO2014162768 A1 WO 2014162768A1 JP 2014052236 W JP2014052236 W JP 2014052236W WO 2014162768 A1 WO2014162768 A1 WO 2014162768A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
light
pixel
signal
basic
Prior art date
Application number
PCT/JP2014/052236
Other languages
English (en)
French (fr)
Inventor
健 森本
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to JP2015509934A priority Critical patent/JP6057397B2/ja
Priority to US14/780,998 priority patent/US9635327B2/en
Priority to CN201480019785.5A priority patent/CN105074566B/zh
Publication of WO2014162768A1 publication Critical patent/WO2014162768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources

Definitions

  • the present invention relates to a projector that projects a color image using a plurality of color lights.
  • the performance of green LEDs that emit green light is currently the lowest, and blue LEDs that emit blue light. The highest performance. For this reason, in order to project an image with excellent white balance, the luminance of the blue LED must be suppressed.
  • Patent Document 1 describes a projection display device provided with an additional green LED that mixes green light with blue light separately from the green LED used as a green light source.
  • blue light is mixed with green light by using an LED array in which blue LEDs and additional green LEDs are arranged as a blue light source.
  • the amount of green light can be increased, so that an image with a bright white color and excellent white balance can be projected without suppressing the luminance of the blue LED.
  • FIG. 1A and 1B are diagrams for explaining the color reproducibility of the projection display device described in Patent Document 1.
  • FIG. 1A and 1B are diagrams for explaining the color reproducibility of the projection display device described in Patent Document 1.
  • FIG. 1A is an xy chromaticity diagram showing a color gamut 1 of a projected image when only blue light is emitted from a blue light source
  • FIG. 1B emits blue light and green light from the blue light source
  • FIG. 6 is an xy chromaticity diagram showing a color gamut 2 of a projected image in the case where
  • the color gamut of the projected image is wide like color gamut 1 in FIG. 1A, but when blue light and green light are emitted from the blue light source, As for the color gamut of the projected image, the color gamut 2 in FIG. For this reason, when blue light and green light are emitted from the blue light source, a cyan image is actually projected even if a blue image is projected.
  • the projector is A light source unit that emits a plurality of basic lights having different colors, and additional light having the same color as any of the colors of the plurality of basic lights; Based on the input video signal, the first modulation signal for modulating each basic light according to the color of each pixel of the image shown in the input video signal, and the color of the pixel in each pixel A second modulation signal for modulating the additional light in accordance with a color characteristic indicating a closeness to a predetermined color different from the color of the additional light among the plurality of basic light colors; A control unit; A modulation unit that modulates and emits each basic light according to the first modulation signal and modulates and emits the additional light according to the second modulation signal.
  • the color correction apparatus of the present invention is A light source unit that emits a plurality of basic lights having different colors and an additional light having the same color as any one of the plurality of basic lights, and each basic light according to a first modulation signal for modulating each basic light
  • a color correction device used in a projector comprising: a modulation unit that modulates and emits, and modulates and emits the additional light according to a second modulation signal for modulating the additional light, Based on the inputted input video signal, the first modulation signal corresponding to the color of each pixel of the image shown in the input video signal, the color of the pixel in each pixel, and the colors of the plurality of basic lights Of these, the control unit outputs the second modulation signal corresponding to the color characteristic indicating the closeness with a predetermined color different from the color of the additional light.
  • the projection method of the present invention Emitting a plurality of basic lights having different colors, and additional light having the same color as any one of the plurality of basic lights, Based on the input video signal, the first modulation signal for modulating each basic light according to the color of each pixel of the image shown in the input video signal, and the color of the pixel in each pixel A second modulation signal for modulating the additional light in accordance with a color characteristic indicating similarity with a predetermined color different from the color of the additional light among the colors of the plurality of basic lights. , Each basic light is modulated and emitted according to the first modulation signal, and the additional light is modulated and emitted according to the second modulation signal.
  • FIG. 4 is a chromaticity diagram illustrating a color gamut of a projected image by the projector according to the first embodiment of the present invention. It is a figure which shows the structure of the optical system of the projector of the 2nd Embodiment of this invention.
  • FIG. 2 is a diagram showing the configuration of the projector according to the first embodiment of the present invention.
  • the projector 10 according to the present embodiment includes a light source unit 11, a control unit 12, and a modulation unit 13.
  • the light source unit 11 emits a plurality of basic lights having different colors and additional light having the same color as any one of the plurality of basic lights.
  • the control unit 12 outputs a PWM (pulse width modulation) signal which is a modulation signal for modulating each basic light and additional light emitted from the light source unit 11 based on the input video signal.
  • a PWM signal pulse width modulation
  • a first modulation signal that is a PWM signal for modulating the basic light is referred to as a first PWM signal
  • a second modulation signal that is a PWM signal for modulating the additional light is referred to as a second PWM signal.
  • control unit 12 determines, based on the input video signal, the first PWM signal corresponding to the color of each pixel of the image indicated by the input video signal, the color of the pixel and the color of the basic light in each pixel
  • the second PWM signal corresponding to the characteristic degree indicating the closeness to a predetermined color different from the color of the additional light is output to the modulation unit 13.
  • the modulation unit 13 modulates and emits each basic light from the light source unit 11 according to the first PWM signal from the control unit 12 and adds from the light source unit 11 according to the second PWM signal from the control unit 12. Light is modulated and emitted.
  • FIG. 3 is a diagram showing the configuration of the optical system of the projector 10.
  • the optical system shown in FIG. 3 includes a red light source 101, a green light source 102, a white light source 103, a color wheel 104, prisms 105 to 107, DMD (Digital Mirror Device) 108 to 110, a dichroic prism 111, A projection lens 112.
  • DMD Digital Mirror Device
  • the red light source 101, the green light source 102, the white light source 103, and the color wheel 104 constitute the light source unit 11 shown in FIG.
  • the light source unit 11 emits red light, green light, and blue light as basic light, and emits green light as additional light.
  • the red light source 101 emits red light which is one of basic lights.
  • the green light source 102 emits green light that is one of the basic lights.
  • the white light source 103 emits white light.
  • the color wheel 104 is disposed on the optical path of white light emitted from the white light source 103, and time-divides the incident white light into blue light which is one of basic lights and green light which is additional light. Exit.
  • the color wheel 104 has a substrate that can rotate around a predetermined rotation axis, and the substrate includes a blue filter that transmits blue light and a green filter that transmits green light. It shall be provided.
  • the prism 105 is provided on the optical path of red light emitted from the red light source 101, reflects the red light and makes it incident on the DMD 108.
  • the prism 106 is provided on the optical path of the green light emitted from the green light source 102, reflects the green light, and enters the DMD 109.
  • the prism 107 is provided on the optical path of blue light and green light emitted from the color wheel 104, reflects the blue light and green light, and enters the DMD 110.
  • DMDs 108 to 110 constitute the modulation unit 13 shown in FIG.
  • a DMD has a configuration in which a plurality of micromirrors provided corresponding to each of a plurality of pixels are arranged in a matrix, and modulates incident light by switching the state of each micromirror. To do.
  • the DMDs 108 to 110 of the present embodiment as the states of the micromirrors, an on-state that emits incident light in a first direction that is a direction toward the dichroic prism 111, and a second that is different from the first direction. Off-state that emits in the direction of.
  • the DMDs 108 to 110 modulate incident light by switching between an on state and an off state for each micromirror (for each pixel) in accordance with the input PWM signal.
  • DMD 108 modulates the red light from prism 105 according to the first PWM signal
  • DMD 109 modulates the green light from prism 106 according to the first PWM signal
  • DMD 110 performs the first PWM signal.
  • the blue light from the prism 107 is modulated according to the signal
  • the green light from the prism 107 is modulated according to the second PWM signal.
  • the dichroic prism 111 emits each basic light and additional light from the DMDs 108 to 110 through the projection lens 112 in the same direction (light output direction in FIG. 3).
  • the dichroic prism 111 and the projection lens 112 are an example of the configuration of the projection optical unit, and project each basic light and additional light from the DMDs 108 to 110 onto a projection surface (not shown) such as a screen.
  • the DMDs 108 to 110 project the light incident on the micromirrors onto the projection surface via the projection optical unit (that is, exit to the outside) when in the on state, and enter the micromirrors when in the off state.
  • the emitted light is emitted in a direction where projection is not performed.
  • control unit 12 shown in FIG. 2 will be described in more detail.
  • FIG. 4 is a diagram illustrating a configuration of the control unit 12 according to the present embodiment.
  • the control unit 12 illustrated in FIG. 4 includes a spot color calculation unit 201, a data generation unit 202, a sequence generation unit 203, and DMD driving units 204 to 206. Further, a red signal, a green signal, and a blue signal indicating the luminance values of red, green, and blue for each pixel are input to the control unit 12 as video signals.
  • the spot color calculation unit 201 calculates the closeness between the color of the pixel and a predetermined color for each pixel of the image indicated in the input video signal.
  • the specific color degree is calculated, and the special color signal indicating the special color degree of each pixel and the input video signal are output to the data generation unit 202.
  • the predetermined color is blue
  • the special color degree calculation unit 201 outputs a blue signal corresponding to blue, which is a predetermined color of the input video signal, to the data generation unit 202.
  • the data generation unit 202 calculates a mixture amount that is a luminance value of additional light in each pixel. decide. For example, the data generation unit 202 determines a mixing ratio, which is a ratio of the luminance value of the additional light to the luminance value of blue that is a predetermined color, according to the special color degree, and the mixing ratio and the blue color that is the predetermined color. The mixing amount is determined based on the luminance value.
  • the data generation unit 202 When the mixing amount of each pixel is determined, the data generation unit 202 outputs a mixing amount signal indicating the mixing amount of each pixel to the sequence generation unit 203.
  • the sequence generation unit 203 generates a blue signal during the blue period in which the color wheel 104 emits blue light based on the mixing amount signal from the data generation unit 202, the input blue signal, and the synchronization signal of the input video signal. In the additional light period in which the color wheel 104 emits green light, a sequence signal indicating the mixing amount indicated by the mixing amount signal is generated and output.
  • FIG. 5 is a diagram illustrating an example of a blue period and an additional light period when the color wheel 104 time-divides white light into blue light and green light within one frame period.
  • one frame period is divided into a blue period 301 and an additional light period 302.
  • the synchronization signal may be included in the input video signal or may be input separately from the input video signal.
  • the synchronization signal is assumed to be included in the input video signal (specifically, each of the red signal, the green signal, and the blue signal).
  • the DMD driving unit 204 obtains a red on-ratio that is an on-ratio of each micromirror of the DMD 108 according to a luminance value indicated by the red signal for each frame period of the input video signal, and a red on-ratio of each micromirror. Is output to the DMD 108.
  • the ON ratio is the ratio of the ON time during which the micromirror is turned on to the OFF time during which the micromirror is turned OFF within the lighting period of each light source within one frame period.
  • the ON ratio may be defined as the ratio of the ON time during which the micromirror is turned on to the lighting period of each light source within the lighting period of each light source within one frame period.
  • the DMD driving unit 205 obtains a green ON ratio that is an ON ratio of each micromirror of the DMD 109 according to a luminance value indicated by the green signal for each frame period of the input video signal, and a green ON ratio of each micromirror. Is output to the DMD 109.
  • the DMD driving unit 206 obtains a blue ON ratio that is an ON ratio of each micromirror of the DMD 110 in the blue period within the one frame period according to the blue luminance value indicated by the sequence signal for each frame period. Further, the DMD driving unit 206 sets an additional light on ratio, which is an on ratio of each micromirror of the DMD 110, in the additional light period in the one frame period according to the mixing amount indicated by the sequence signal for each frame period. Ask. Then, the DMD driving unit 206 outputs a first PWM signal indicating the blue ON ratio to the DMD 110 for each blue period, and outputs a second PWM signal indicating the additional light ON ratio to the DMD 110 for each additional light period. .
  • the DMD driving units 204 to 206 increase the ON ratio (ON time) as the luminance value or mixing amount of each color increases, thereby reducing the amount of light projected onto the projection surface via the projection lens 112. Enlarge. For example, the DMD driving units 204 to 206 increase the ON ratio (ON time) in proportion to the luminance value or the mixing amount of each color.
  • FIG. 6 is a flowchart for explaining the operation of the control unit 12. The following processing is executed for each frame of the input video signal.
  • the red signal is input to the spot color calculation unit 201 and the DMD drive unit 204
  • the green signal is input to the spot color calculation unit 201 and the DMD drive unit 205
  • the blue signal is It is input to the spot color degree calculating unit 201 and the DMD driving unit 206 (step S401).
  • the DMD driving unit 204 obtains a red ON ratio based on the red luminance value indicated by the input red signal, generates a first PWM signal indicating the red ON ratio, and inputs the first PWM signal to the DMD 108. Further, the DMD driving unit 205 obtains a green ON ratio based on the green luminance value indicated by the input green signal, generates a first PWM signal indicating the green ON ratio, and inputs the first PWM signal to the DMD 109. As a result, the DMDs 108 and 109 modulate the red light and the green light, which are basic lights, based on the first PWM signal (step S402).
  • the special color calculation unit 201 calculates the special color for each pixel based on the input red signal, green signal, and blue signal, and generates a special color signal indicating the special color of each pixel. Then, the special color calculation unit 201 outputs the special color signal and the blue signal to the data generation unit 202 (step S403).
  • the data generation unit 202 receives a blue signal and a special color signal, determines a mixing amount of each pixel based on the special color signal and the blue signal, and generates a mixing amount signal indicating the mixing amount of each pixel. Then, the data generation unit 202 outputs the mixture amount signal to the sequence generation unit 406 (step S404).
  • the sequence generation unit 203 receives the mixing amount signal and the blue signal, and indicates the blue luminance value indicated by the blue signal during the blue period of the color wheel 104 based on the mixing amount signal and the blue signal. In the additional light period 104, a sequence signal indicating the mixing amount indicated by the mixing amount signal is generated and output to the DMD driving unit 206 (step S405).
  • the DMD driving unit 206 receives the sequence signal, obtains the blue on ratio and the additional light on ratio based on the sequence signal, and the first PWM signal indicating the blue on ratio and the second PWM indicating the additional light on ratio. A signal is generated and input to the DMD 110. Thereby, the DMD 110 modulates the blue light according to the first PWM signal, and modulates the additional green light according to the second PWM signal (step S406).
  • step S403 the process of calculating the special color degree in step S403 and the process of determining the mixing amount in step S404 will be described in more detail.
  • the special color degree is a degree indicating the closeness of the target color to the reference color, and becomes 1.0 when the target color matches the reference color, and decreases as the target color moves away from the reference color. Value.
  • the special color is represented by a function having the hue H, saturation S, and brightness V of the target color as variables.
  • the chromaticity calculation unit 201 first applies a target that is the color of the pixel for each pixel from the input video signal. The hue H, saturation S, and brightness V of the color are calculated.
  • the spot color degree calculation unit 201 calculates the hue H, saturation S, and brightness V of each pixel based on the values (luminance values) of the red signal, the green signal, and the blue signal as follows. .
  • the input video signal indicates the luminance value of each color as an integer value of 0 to 255
  • the values of the red signal, the green signal, and the blue signal indicated by the real values are denoted as R, G, and B, respectively.
  • the special color degree calculation unit 201 calculates the hue H using Expression 1.
  • Max (X, Y, Z) is a function indicating the maximum value of X, Y, Z
  • Min (X, Y, Z) is a function indicating the minimum value of X, Y, Z. It is.
  • the coefficients A and B ′ are values determined from the luminance values R, G, and B. The correspondence relationship between the coefficients A and B ′ and the luminance values R, G, and B is specifically shown in Table 1.
  • the spot color degree calculation unit 201 calculates the saturation S using Expression 2.
  • the spot color degree calculation unit 201 calculates the lightness V using Expression 3.
  • the special color calculation unit 201 calculates the special color of each pixel based on the hue H, saturation S, and lightness V.
  • the special color degree ⁇ 1 is calculated from the hue H, the saturation S, and the lightness V by using Expression 4, which is a basic calculation expression.
  • the function pos (x) is a function that becomes x when x is positive and becomes 0 when x is not positive.
  • Hc1 is a central hue that is a hue of the reference color
  • m1 is a detected hue range that is a value indicating a hue range for calculating the special color degree of the target color.
  • the detected hue range is a preset value and includes the hue of the reference color.
  • FIG. 7 is a diagram showing the relationship between the central hue Hc1 and the detected hue range m1.
  • the axis from the center point O toward the outer edge of the circle represents the saturation S
  • the angle that rotates counterclockwise around the center point O represents the hue H
  • the detected hue range m1 is represented by a center angle of a circle as shown in FIG.
  • the special color degree ⁇ 1 is 1.0 when the hue H of the target color is the central hue Hc1 and the saturation S and the lightness V of the target color are maximum. Become.
  • the special chromaticity ⁇ 1 decreases as the chromaticity H of the target color moves away from the central hue Hc1, and as the saturation S and the brightness H of the target color decrease.
  • the special color degree ⁇ 1 is zero.
  • FIG. 8 is a diagram showing the relationship between the hue H of the target color and the special color degree ⁇ 1 when the saturation S and the lightness V of the target color are fixed.
  • the hue H of the target color is the central hue Hc1
  • the special color degree ⁇ 1 of the target color is a value of saturation S ⁇ lightness V
  • the hue H of the target color is changed from the central hue Hc1. Decreases linearly with distance.
  • the special color degree calculated in the present embodiment is the special color degree for the blue color of each pixel. That is, the reference color is blue, and the target color is the color of each pixel.
  • the special color of the target color with respect to blue is referred to as blue special color.
  • FIG. 9 is a diagram showing the blue characteristic. As shown in FIG. 9, the blue characteristic chromaticity ⁇ B is 1.0 when the target color is blue, and decreases as the target color moves away from blue.
  • the spot color degree calculation unit 201 calculates the blue spot color degree of each pixel from the calculated hue H, saturation S, and brightness V of each pixel by using Equation 5.
  • the data generation unit 202 determines the mixing amount MG of each pixel based on the blue characteristic ⁇ Bc of each pixel and the value B of each pixel of the blue signal. Specifically, the data generation unit 202 decreases the mixing amount as the pixel has a higher blue spot color characteristic ⁇ Bc.
  • the data generation unit 202 determines the mixing amount MG by applying Expression 6 for each pixel.
  • the DMD driving unit 206 when the mixing amount MG is B, the DMD driving unit 206 outputs a second PWM signal in which the additional light ON ratio is equal to the blue ON ratio, and when the mixing amount MG is 0.5 ⁇ B.
  • the second PWM signal with an additional light ON ratio of 50% of the blue ON ratio is output.
  • the mixing amount is 0, the second PWM signal with an ON ratio of 0% is output.
  • (1 ⁇ Bc) in Expression (6) is a mixing ratio that is a ratio of the luminance value of the additional light to the blue luminance value.
  • FIG. 10 is an xy chromaticity diagram showing an example of the color gamut of the projected image of the projector according to the present embodiment.
  • a color gamut 3 a characteristic curve 4, and reference coordinates 5 are shown.
  • Color gamut 3 is the color gamut of the projected image.
  • the characteristic curve 4 is a curve showing the color of the projected image when the pixel color is changed from white to blue by changing the color saturation of the pixel of the image shown in the input video signal.
  • Reference coordinate 5 is when the color of the pixel of the image shown in the input video signal is blue when blue light and green light are emitted from the blue light source as in the projection display device described in Patent Document 1. The coordinates of the color of the projected image.
  • the color gamut 3 of the projected image is an area representing blue, similar to the color gamut 1 of the projected image when only blue light is emitted from the blue light source shown in FIG. 1A. included. Therefore, the blue color reproducibility is high. Moreover, since the mixing amount is high in the vicinity of white, it is possible to achieve high brightness.
  • the DMDs 108 to 110 are used as the modulation elements for modulating the incident light in the modulation unit 13 of the projector according to the present embodiment described above, a modulation element different from the DMD may be used.
  • the modulation unit 13 uses an element that modulates incident light, such as an LCD (Liquid Crystal Display) or LCOS (Liquid crystal on silicon), by modulating the amount of light that transmits or reflects the incident light. May be.
  • the light source unit 11 includes a red light source 101, a green light source 102, a white light source 103, a color wheel 104, and the like. However, instead of the white light source 103 and the color wheel 104, a green light source different from the green light source 102 is used. You may comprise with a blue light source.
  • the control unit 12 may modulate the basic light and the additional light by adjusting the light emission time and the amount of light emitted by the light source unit 11 in addition to the modulation of the basic light and the additional light by the modulation unit 13. .
  • the control unit 12 sets the light emission time and the light emission amount as predetermined values, If it is less than the threshold value, the basic light and the additional light are modulated by decreasing at least one of the light emission time and the light emission amount as the maximum luminance value is smaller.
  • the special color degree, the mixing amount, and the mixing ratio are determined using the calculation formula, but the determination method of the special color degree, the mixing amount, and the mixing ratio is not limited to this example.
  • the special color degree calculation unit 201 holds a look-up table indicating the correspondence between a pixel color and the color of the pixel and a predetermined color (blue), and the special color degree of each pixel is stored using the look-up table. May be determined.
  • the data generation unit 202 may hold a lookup table indicating a correspondence relationship between the special color degree and the mixing amount or the mixing rate, and may determine the mixing amount or the mixing rate using the lookup table.
  • the spot color degree calculation unit 201 may determine the mixing rate using a look-up table and then calculate the mixing amount using Expression (6).
  • the projection lens 112 is used as a configuration of the projection optical unit, a projection mirror or the like may be used instead of the projection lens 112 or in addition to the projection lens 112.
  • the green light that is the additional light is modulated according to the characteristic color indicating the closeness between the color of the pixel and the blue color, the color of the pixel is near white.
  • the amount of green light can be decreased to improve color reproducibility. Is possible. Therefore, it is possible to improve color reproducibility while realizing high brightness of a white image.
  • FIG. 11 is a diagram showing a configuration of the optical system of the projector according to the present embodiment.
  • the optical system shown in FIG. 11 is different from the optical system of the first embodiment shown in FIG. 3 in the configuration for emitting and modulating the red light and the green light, which are basic lights.
  • the configurations for emitting and modulating the blue light and the additional green light are the same.
  • the optical system shown in FIG. 11 includes white light sources 103 and 501, color wheels 104 and 502, prisms 107 and 503, DMDs 110 and 504, and a dichroic prism 111.
  • the white light sources 103 and 501 and the color wheels 104 and 502 constitute the light source unit 11 shown in FIG.
  • the DMDs 110 and 504 constitute the modulation unit 13 shown in FIG.
  • White light source 501 emits white light.
  • the color wheel 502 is disposed on the optical path of the white light emitted from the white light source 501 and emits the incident white light in a time-division manner into red light and green light as basic light.
  • the color wheel 502 includes a disk-shaped substrate that can rotate around a predetermined rotation axis.
  • the substrate has a red filter that transmits red light and a green filter that transmits green light. It is assumed that a filter is provided.
  • the color wheel 502 is controlled to time-divide white light into red light and green light within one frame period of the input video signal.
  • the prism 503 is provided on the optical path of red light and green light time-divided by the color wheel 502, and reflects the red light and green light to enter the DMD 504.
  • the DMD 504 modulates and emits red light and green light incident from the prism 503 by switching between the on-state and off-state of each micromirror according to the input PWM signal.
  • the dichroic prism 111 emits each color light from the DMDs 110 and 504 toward the same direction (light output direction in FIG. 11) via the projection lens 112.
  • FIG. 12 is a block diagram showing the configuration of the control unit of the present embodiment. Compared with the control unit 12 of the first embodiment shown in FIG. 4, the control unit 12 of the present embodiment shown in FIG. 12 is different in configuration for modulating red light and green light, which are basic lights. However, the configuration for modulating blue light, which is basic light, and green light, which is additional light, is the same.
  • control unit 12 shown in FIG. 12 includes a spot color calculation unit 201, a data generation unit 202, sequence generation units 203 and 601 and DMD drive units 204 and 602.
  • the sequence generation unit 601 indicates the luminance value indicated by the red signal during the red period in which the color wheel 502 emits red light based on the red and green signals that are input video signals and the synchronization signal. During the green period in which the 502 emits green light, a sequence signal indicating the luminance value indicated by the green signal is generated and output.
  • the color wheel 502 in one frame period emits red light according to the red luminance value indicated by the sequence signal output from the sequence generation unit 601 for each frame period of the input video signal.
  • a red ON ratio that is an ON ratio of each micromirror of the DMD 504 in the red period is obtained.
  • the DMD driving unit 602 performs a green period in which the color wheel 502 in one frame period emits green light according to the green luminance value indicated by the sequence signal output from the sequence generation unit 601 for each frame period.
  • the green ON ratio which is the ON ratio of each micromirror of the DMD 504, is obtained.
  • the DMD driving unit 206 outputs a first PWM signal indicating the red ON ratio to the DMD 110 for each red period, and outputs a first PWM signal indicating the green ON ratio to the DMD 110 for each green period.
  • the DMD 110 modulates and outputs the red light and green light incident from the color wheel 502 in accordance with the first PWM signal.
  • the configuration for modulating the blue light as the basic light and the green light as the additional light is the same as that in the first embodiment, and the high luminance of the white image is the same as in the first embodiment. It is possible to improve the color reproducibility while realizing the conversion.
  • FIG. 13 is a diagram showing the configuration of the optical system of the projector according to the third embodiment of the present invention.
  • the optical system shown in FIG. 13 includes a red light source 701, green light sources 702 and 704, blue light source 703, dichroic prisms 705 and 710, prisms 706 and 707, DMD (Digital Mirror Device) 708 and 709, and projection.
  • a lens 711 is a diagram showing the configuration of the optical system of the projector according to the third embodiment of the present invention.
  • the optical system shown in FIG. 13 includes a red light source 701, green light sources 702 and 704, blue light source 703, dichroic prisms 705 and 710, prisms 706 and 707, DMD (Digital Mirror Device) 708 and 709, and projection.
  • a lens 711 is a diagram showing the configuration of the optical system of the projector according to the third embodiment of the present invention.
  • the optical system shown in FIG. 13 includes a red light source 701, green light sources 702 and 704, blue light
  • the red light source 701, the green light sources 702 and 704, and the blue light source 703 constitute the light source unit 11 shown in FIG.
  • the light source unit emits red light, green light, and blue light as basic light, and emits green light as additional light, as in the first embodiment.
  • the red light source 701, the green light source 702, and the blue light source 703 emit red light, green light, and blue light as basic light, respectively.
  • the green light source 704 emits green light as additional light.
  • each of the red light source 701, the green light sources 702 and 704, and the blue light source 703 is assumed to be composed of light emitting elements that can blink at high speed, such as LEDs or LDs (Laser-Diodes).
  • the dichroic prism 705 emits each basic light emitted from each of the red light source 701, the green light source 702, and the blue light source 703 in the same direction.
  • the prism 706 reflects each basic light emitted from the dichroic prism 705 and causes it to enter the DMD 708.
  • the prism 707 reflects the green light emitted from the green light source 704 and causes it to enter the DMD 709.
  • DMDs 708 and 709 constitute the modulation unit 13 shown in FIG. Specifically, the DMD 708 modulates and emits each basic light from the prism 706 according to the first PWM signal, and the DMD 709 emits green light as additional light from the prism 707 according to the second PWM signal. Modulated and emitted.
  • the dichroic prism 710 emits each basic light from the DMD 708 and additional light from the DMD 709 in the same direction (light output direction in FIG. 13) via the projection lens 711.
  • the dichroic prism 710 and the projection lens 711 are an example of the configuration of the projection optical unit, and project each basic light and additional light from the DMDs 708 and 709 onto the projection surface.
  • the red light source 701, the green light source 702, and the blue light source 703 may be collectively referred to as basic light sources 701 to 703.
  • FIG. 14 is a block diagram showing the configuration of the control unit of the present embodiment.
  • the control unit 12 illustrated in FIG. 14 includes a first control unit 810 and a second control unit 820.
  • an RGB digital video signal indicating the luminance values of red, green and blue for each pixel is input to the control unit 12 as a video signal.
  • the first control unit 810 outputs to the DMD 708 a first PWM signal corresponding to the color of each pixel of the input video signal that has been input.
  • the first control unit 810 includes a sequence generation unit 801, a light source driving unit 802, and a DMD driving unit 803.
  • the sequence generation unit 801 generates a basic lighting timing signal indicating a lighting period during which each of the basic light sources 701 to 703 is turned on based on the synchronization signal of the input video signal.
  • the sequence generation unit 801 generates a basic lighting timing signal so that the basic light sources 701 to 703 are sequentially turned on within one frame of the input video signal.
  • the sequence generation unit 801 generates the basic lighting timing signal so that the basic light sources 701 to 703 are lit during the lighting periods 901 to 903 in one frame of the input video signal, as shown in FIG. Shall. Note that the lighting periods 901 to 903 do not overlap each other, and the lengths of the lighting periods 901 to 903 are the same.
  • the sequence generation unit 801 time-divides the input video signal into a plurality of luminance signals indicating the luminance values of red, green, and blue for each pixel according to the basic lighting timing signal. Then, the sequence generation unit 401 outputs the basic lighting timing signal to the light source driving unit 802 and the DMD driving unit 803, and outputs each luminance signal to the DMD driving unit 803. At this time, the sequence generation unit 801 outputs each luminance signal in accordance with the lighting period of the basic light source that emits the basic light of the color indicated by the luminance signal in accordance with the basic lighting timing signal.
  • the light source driving unit 802 lights each of the basic light sources 701 to 703 according to the basic lighting timing signal from the sequence generation unit 801. As a result, the basic light sources 701 to 703 are sequentially turned on every frame as shown in FIG.
  • the DMD driving unit 803 Based on the basic lighting timing signal and each luminance signal from the sequence generation unit 801, the DMD driving unit 803 generates a first PWM signal for modulating each of the red light, the green light, and the blue light that is the basic light And output to the DMD 708.
  • the DMD driving unit 803 obtains a basic ON ratio that is an ON ratio of each micromirror of the DMD 708 in the lighting period of each basic light source 701 to 703 within one frame period based on each luminance signal, A first PWM signal corresponding to the basic ON ratio is generated. Then, the DMD driving unit 803 inputs a first PWM signal corresponding to the color light emitted from the basic light source to the DMD 709 in accordance with the lighting period of each basic light source indicated by the basic lighting timing signal. As a result, the DMD 709 modulates each basic light according to the first PWM signal.
  • the second control unit 820 calculates, for each pixel of the image indicated by the input video signal, a special chromaticity that is a degree of approximation between the color of the pixel and blue light that is a predetermined color. Then, a second PWM signal corresponding to the characteristic degree of each pixel is output to the DMD 709. Specifically, the second control unit 820 includes a special color degree calculation unit 804, a data generation unit 805, a sequence generation unit 806, a light source drive unit 807, and a DMD drive unit 808.
  • the spot color degree calculation unit 804 calculates, for each pixel of the image shown in the input video signal, a spot color degree indicating the closeness with respect to blue, which is a predetermined color of the pixel, based on the input video signal.
  • a special color signal indicating the special color of the pixel and the input video signal are output to the data generation unit 805.
  • the data generation unit 805 determines the luminance of the additional light in each pixel based on the special color degree indicated by the special color signal from the special color degree calculation unit 804 and the blue luminance value indicated by the input video signal from the special color degree calculation unit 804. Determine the amount of mixing.
  • the sequence generation unit 806 generates an additional lighting timing signal indicating a lighting period for lighting the green light source 704 based on the synchronization signal of the input video signal from the data generation unit 805. In the present embodiment, the sequence generation unit 806 generates an additional lighting timing signal so that the lighting period 904 of the green light source 704 is the same as the lighting period 903 of the blue light source 703, as shown in FIG.
  • the sequence generation unit 806 outputs the additional lighting timing signal to the light source driving unit 807 and the DMD driving unit 808, and outputs the mixing amount signal to the DMD driving unit 808. At this time, the sequence generation unit 806 outputs the mixture amount signal in accordance with the lighting period of the green light source 704 in accordance with the additional lighting timing signal.
  • the light source driving unit 807 turns on the green light source 704 according to the additional lighting timing signal from the sequence generation unit 806. As a result, as shown in FIG. 15, the green light source 704 lights the green light source 704 in the same lighting period 904 as the lighting period 903 of the blue light source 703.
  • the DMD drive unit 808 Based on the additional lighting timing signal and the mixture amount signal from the sequence generation unit 806, the DMD drive unit 808 generates a second PWM signal that is a second modulation signal for modulating the green light that is the additional light. To the DMD 709.
  • the DMD driving unit 808 first obtains the ON ratio of each micromirror of the DMD 709 during the lighting period of the green light source 704 within one frame period based on the mixture amount signal. At this time, the DMD driving unit 408 increases the ON ratio as the mixing amount increases.
  • the DMD driving unit 808 generates a second PWM signal indicating the ON ratio of each micromirror of the DMD 709, and matches the second PWM signal with the lighting period of the green light source 704 indicated by the additional lighting timing signal.
  • the DMD 709 modulates the additional light according to the special color of each pixel.
  • the method for obtaining the characteristic color and the mixing amount is the same as that in the first embodiment.
  • FIG. 16 is a flowchart for explaining the operation of the control unit.
  • an input video signal input from an external device is input to the sequence generation unit 801 and the characteristic calculation unit 804 (step S1001).
  • the input video signal includes a red signal, a green signal, and a blue signal indicating the luminances of red, green, and blue, respectively.
  • the following processing is executed for each frame of the input video signal.
  • the sequence generation unit 801 generates a basic lighting timing signal based on the synchronization signal of the input video signal, outputs the basic lighting timing signal to the light source driving unit 802 and the DMD driving unit 803, and converts the input video signal to red according to the basic lighting timing signal.
  • a signal, a green signal, and a blue signal are time-divided and output to the DMD driving unit 803.
  • the sequence generation unit 801 outputs a red signal in accordance with the lighting period 901 of the red light source 701 in FIG. 15, outputs a green signal in accordance with the lighting period 902 of the green light source 702, and turns on the blue light source 703.
  • a blue signal is output in accordance with 903 (step S1002).
  • the light source driving unit 802 receives the basic lighting timing signal and lights the basic light sources 701 to 703 according to the basic lighting timing signal.
  • the DMD driving unit 803 receives a basic lighting timing signal, a red signal, a green signal, and a blue signal, and generates a first PWM signal based on the basic lighting timing signal, the red signal, the green signal, and the blue signal.
  • the DMD 709 modulates each basic light in accordance with the first PWM signal (step S1003).
  • the spot color degree calculation unit 804 calculates the spot color degree for each pixel based on the input video signal, and generates a spot color signal indicating the spot color degree of each pixel. Then, the special color degree calculation unit 804 outputs the special color degree signal and the input video signal to the data generation unit 805 (step S1004).
  • the data generation unit 805 receives the characteristic color signal and the input video signal, determines a mixing amount for each pixel of the image indicated in the input video signal based on the characteristic signal, and generates a mixing amount signal for each pixel. . Then, the data generation unit 805 outputs the mixing amount signal and the input video signal to the sequence generation unit 806 (step S1005).
  • the sequence generation unit 806 receives the mixing amount signal and the input video signal.
  • the sequence generation unit 806 generates an additional lighting timing signal based on the synchronization signal of the input video signal, outputs the additional lighting timing signal to the light source driving unit 807 and the DMD driving unit 808, and displays the mixing amount signal according to the additional lighting timing signal.
  • 15 is output to the DMD driving unit 808 in accordance with the lighting period 904 of the green light source 704 (step S1006).
  • the light source driving unit 807 receives the additional lighting timing signal and turns on the green light source 704 according to the additional lighting timing signal.
  • the DMD driving unit 808 receives the additional lighting timing signal and the mixing amount signal, generates a second PWM signal based on the additional lighting timing signal and the mixing amount signal, and inputs the second PWM signal to the DMD 709.
  • the DMD 709 modulates the green light from the green light source 704 in accordance with the second PWM signal (step S1007).
  • the basic light sources 701 to 703 (the red light source 701, the green light source 702, and the blue light source 703) are controlled in a field sequential manner, and thus light up in order. Accordingly, red light, green light, and blue light are emitted in order from the basic light sources 701 to 703.
  • Each color light from the basic light sources 701 to 703 is emitted in the same direction by the dichroic prism 705, then reflected by the prism 706 and incident on the DMD 708.
  • Each color light is modulated by the DMD 708 according to the first PWM signal and emitted toward the dichroic prism 710.
  • the green light source 704 is turned on during the same period as the blue light source 703 and emits green light. Green light from the green light source 704 is reflected by the prism 707 and enters the DMD 709. Then, the green light is modulated by the DMD 709 according to the second PWM signal and emitted toward the dichroic prism 710.
  • the dichroic prism 710 emits each color light from the DMD 709 and green light from the DMD 709 through the projection lens 112 in the same direction (specifically, the light output direction in FIG. 3). At this time, the blue light from the DMD 709 and the green light from the DMD 709 reach the dichroic prism 710 at the same timing, and the dichroic prism 710 combines and emits the blue light and the green light.
  • the green light that is the additional light is modulated according to the characteristic color indicating the closeness between the color of the pixel and the blue color, so when the color of the pixel is near white, The amount of green light can be increased to brighten the image, and when the pixel color is near blue, the amount of green light can be decreased to improve color reproducibility. become. Therefore, it is possible to improve color reproducibility while realizing high brightness of a white image.
  • the characteristic color of each pixel color with respect to blue is calculated.
  • green light is mixed with blue light
  • blue basic light and other basic light red and green light are mixed.
  • magenta and cyan which are mixed light colors mixed with
  • the configuration of the projector in the present embodiment is assumed to be the same as that of the projector of the first embodiment shown in FIGS. 3 and 4, but the projector of the second embodiment and the third embodiment. But the same thing is possible.
  • the spot color degree calculation unit 201 further includes a magenta spot color degree ⁇ Mc that is a spot color degree of each pixel color with respect to magenta and a spot color degree with respect to cyan of each pixel color.
  • a cyan special color degree ⁇ Cc is calculated.
  • the spot color degree calculation unit 201 calculates the magenta spot color degree ⁇ Mc using Expression 7.
  • the special color degree calculation unit 201 calculates the cyan special color degree ⁇ Cc using Expression 8.
  • the data generation unit 202 determines the mixture amount MG based on the blue spot color degree ⁇ Bc, the magenta spot color degree ⁇ Mc, and the cyan spot color degree ⁇ Cc. Specifically, the data generation unit 405 decreases the mixing amount as the sum of the blue spot color degree ⁇ Bc, the magenta spot color degree ⁇ Mc, and the cyan spot color degree ⁇ Cc increases.
  • the data generation unit 405 calculates the mixing amount MG using Equation 9.
  • the special color degrees for the three colors of blue, magenta, and cyan are calculated.
  • the special color degrees for the two kinds of colors of blue and magenta or the two kinds of colors of blue and cyan are calculated. May be.
  • the mixing ratio can be calculated using Expression 10 obtained by removing the cyan special color degree ⁇ Cc from Expression 9.
  • the mixing ratio can be calculated using Expression 11 obtained by subtracting the magenta special color degree ⁇ Mc from Expression 9.
  • magenta special color degree ⁇ Mc and the cyan special color degree ⁇ Cc in this embodiment are examples of other special color degrees.
  • green light which is additional light

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

光源部は、色の異なる複数の基本光と、複数の基本光のいずれかの色と同じ色の追加光とを出射する。制御部(12)は、入力された入力映像信号に基づいて、入力映像信号に示される画像の各画素の色に応じた、各基本光を変調するための第1の変調信号と、各画素における当該画素の色と複数の基本光の色のうち追加光の色とは異なる所定の色との近似性を示す特色度に応じた、追加光を変調するための第2の変調信号と、を出力する。変調部(108、109、110)は、第1の変調信号に従って各基本光を変調して出射し、第2の変調信号に従って追加光を変調して出射する。

Description

プロジェクタ、色補正装置および投写方法
 本発明は、複数の色光を用いてカラー画像を投写するプロジェクタに関する。
 複数の色光を用いてカラー画像を投写するプロジェクタでは、ホワイトバランスの優れた画像を投写するためには、人間の各色光に対する視感度や、各色光を出射する光源の光出力性能などに応じて、各色光の光量を調整する必要がある。このため、各色光の光出力性能を十分に発揮させることができず、白色の画像が暗くなってしまうという問題がある。
 例えば、赤色光、緑色光および青色光のそれぞれを出射する複数のLEDを光源として利用したプロジェクタの場合、現状では、緑色光を出射する緑色LEDの性能が最も低く、青色光を出射する青色LEDの性能が最も高い。このため、ホワイトバランスの優れた画像を投写するためには、青色LEDの輝度を抑制しなければならない。
 これに対して特許文献1には、緑色光源として使用される緑色LEDとは別に、青色光に緑色光を混合させる付加的な緑色LEDを備えた投射型表示装置が記載されている。この投射型表示装置では、青色LEDと付加的な緑色LEDとを並べたLEDアレイを青色光源として用いることで、青色光に緑色光を混合させている。これにより、緑色光の光量を増加させることが可能になるので、青色LEDの輝度を抑制しなくても、白色が明るくホワイトバランスの優れた画像を投写することが可能になる。
国際公開第2011/037014号
 しかしながら、特許文献1に記載の投射型表示装置では、青色光源から青色光だけでなく、緑色光が出射されてしまうので、色再現性に関しては改良の余地がある。
 図1Aおよび図1Bは、特許文献1に記載の投射型表示装置の色再現性を説明するための図である。
 具体的には、図1Aは、青色光源から青色光だけが出射される場合における投写画像の色域1を示すxy色度図であり、図1Bは、青色光源から青色光および緑色光が出射される場合における投写画像の色域2を示すxy色度図である。
 青色光源から青色光だけが出射される場合、投写画像の色域は、図1Aにおける色域1のように広くなっているが、青色光源から青色光および緑色光が出射される場合には、投写画像の色域は、図1Bにおける色域2のように、青色を表す領域がなくなっている。このため、青色光源から青色光および緑色光が出射される場合、青色の画像を投写しようとしても、実際には、シアン色の画像が投写されることとなる。
 本発明は、上記の課題を解決することが可能なプロジェクタおよびその駆動方法を提供することを目的とする。
 本発明によるプロジェクタは、
 色の異なる複数の基本光と、前記複数の基本光のいずれかの色と同じ色の追加光とを出射する光源部と、
 入力された入力映像信号に基づいて、前記入力映像信号に示される画像の各画素の色に応じた、各基本光を変調するための第1の変調信号と、各画素における当該画素の色と前記複数の基本光の色のうち前記追加光の色とは異なる所定の色との近似性を示す特色度に応じた、前記追加光を変調するための第2の変調信号と、を出力する制御部と、
 前記第1の変調信号に従って各基本光を変調して出射し、前記第2の変調信号に従って前記追加光を変調して出射する変調部と、を有する。
 本発明の色補正装置は、
 色の異なる複数の基本光と前記複数の基本光のいずれかの色と同じ色の追加光とを出射する光源部と、各基本光を変調するための第1の変調信号に従って各基本光を変調して出射し、前記追加光を変調するための第2の変調信号に従って前記追加光を変調して出射する変調部と、を備えるプロジェクタに用いられる色補正装置であって、
 入力された入力映像信号に基づいて、前記入力映像信号に示される画像の各画素の色に応じた前記第1の変調信号と、各画素における当該画素の色と前記複数の基本光の色のうち前記追加光の色とは異なる所定の色との近似性を示す特色度に応じた前記第2の変調信号と、を出力する制御部を有する。
 本発明の投写方法は、
 色の異なる複数の基本光と、前記複数の基本光のいずれかの色と同じ色の追加光とを出射し、
 入力された入力映像信号に基づいて、前記入力映像信号に示される画像の各画素の色に応じた、各基本光を変調するための第1の変調信号と、各画素における当該画素の色と前記複数の基本光の色のうち前記追加光の色とは異なる所定の色との近似性を示す特色度に応じた、前記追加光を変調するための第2の変調信号と、を出力し、
 前記第1の変調信号に従って各基本光を変調して出射し、前記第2の変調信号に従って前記追加光を変調して出射する。
 本発明によれば、白色の画像の高輝度化を実現しつつ、色再現性を向上させることが可能になる。
第1の関連技術のプロジェクタによる投写画像の色域を示す色度図である。 第2の関連技術のプロジェクタによる投写画像の色域を示す色度図である。 本発明の第1の実施形態のプロジェクタの構成を示す図である。 本発明の第1の実施形態のプロジェクタの光学系の構成を示す図である。 本発明の第1の実施形態のプロジェクタの制御部の構成を示す図である。 光の出射期間の一例を示す図である。 本発明の第1の実施形態のプロジェクタの制御部の動作の一例を説明するためのフローチャートである。 中心色相と検出色相範囲との関係を示す図である。 対象色の色相と特色度の関係を示す図である。 青色に対する対象色の特色度を示す図である。 本発明の第1の実施形態のプロジェクタによる投写画像の色域を示す色度図である。 本発明の第2の実施形態のプロジェクタの光学系の構成を示す図である。 本発明の第2の実施形態のプロジェクタの制御部の構成を示す図である。 本発明の第3の実施形態のプロジェクタの光学系の構成を示す図である。 本発明の第3の実施形態のプロジェクタの制御部の構成を示す図である。 本発明の第3の実施形態の光源の点灯期間を示すタイミングチャートである。 本発明の第3の実施形態のプロジェクタの制御部の動作の一例を説明するためのフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。
 図2は、本発明の第1の実施形態のプロジェクタの構成を示す図である。図2に示すように、本実施形態のプロジェクタ10は、光源部11と、制御部12と、変調部13とを含む。
 光源部11は、色の異なる複数の基本光と、複数の基本光のいずれかの色と同じ色の追加光とを出射する。
 制御部12は、入力された入力映像信号に基づいて、光源部11から出射された各基本光および追加光を変調するための変調信号であるPWM(pulse width modulation:パルス幅変調)信号を出力する。以下では、基本光を変調するためのPWM信号である第1の変調信号を第1のPWM信号と称し、追加光を変調するためのPWM信号である第2の変調信号を第2のPWM信号と称することもある。
 制御部12は、具体的には、入力映像信号に基づいて、その入力映像信号が示す画像の各画素の色に応じた第1のPWM信号と、各画素における画素の色と基本光の色のうちの追加光の色とは異なる所定の色との近似性を示す特色度に応じた第2のPWM信号と、を変調部13に出力する。
 変調部13は、制御部12からの第1のPWM信号に従って、光源部11からの各基本光を変調して出射し、制御部12からの第2のPWM信号に従って、光源部11からの追加光を変調して出射する。
 以下、光源部11および変調部13を有する光学系についてより詳細に説明する。
 図3は、プロジェクタ10の光学系の構成を示す図である。図3に示す光学系は、赤色光源101と、緑色光源102と、白色光源103と、カラーホイール104と、プリズム105~107と、DMD(Digital Mirror Device)108~110と、ダイクロイックプリズム111と、投写レンズ112とを有する。
 赤色光源101、緑色光源102、白色光源103およびカラーホイール104は、図2に示した光源部11を構成する。なお、図3の例では、光源部11は、基本光として赤色光、緑色光および青色光を出射し、追加光として緑色光を出射する。
 具体的には、赤色光源101は、基本光の一つである赤色光を出射する。緑色光源102は、基本光の一つである緑色光を出射する。白色光源103は、白色光を出射する。
 カラーホイール104は、白色光源103から出射された白色光の光路上に配置され、入射された白色光を基本光の一つである青色光と、追加光である緑色光とに時分割して出射する。なお、本実施形態では、カラーホイール104は、所定の回転軸を中心に回転可能な基板を有し、その基板には、青色光を透過する青色フィルタと、緑色光を透過する緑色フィルタとが設けられているものとする。
 プリズム105は、赤色光源101から出射される赤色光の光路上に設けられ、その赤色光を反射してDMD108に入射させる。プリズム106は、緑色光源102から出射される緑色光の光路上に設けられ、その緑色光を反射してDMD109に入射させる。プリズム107は、カラーホイール104から出射される青色光および緑色光の光路上に設けられ、その青色光および緑色光を反射してDMD110に入射させる。
 DMD108~110は、図2に示した変調部13を構成する。なお、一般的にDMDは、複数の画素のそれぞれに対応して設けられた複数のマイクロミラーがマトリックス状に配列された構成を有し、各マイクロミラーのステートを切り替えることで、入射光を変調するものである。
 本実施形態のDMD108~110は、各マイクロミラーのステートとして、入射光をダイクロイックプリズム111に向かう方向である第1の方向に出射するオンステートと、入射光を第1の方向とは異なる第2の方向に出射するオフステートとを有する。また、DMD108~110は、入力されたPWM信号に従ってオンステートとオフステートとをマイクロミラーごとに(画素ごとに)切り替えることで、入射光を変調する。
 具体的には、DMD108は、第1のPWM信号に従ってプリズム105からの赤色光を変調し、DMD109は、第1のPWM信号に従ってプリズム106からの緑色光を変調し、DMD110は、第1のPWM信号に従ってプリズム107からの青光を変調し、第2のPWM信号に従ってプリズム107からの緑色光を変調する。
 ダイクロイックプリズム111は、DMD108~110からの各基本光および追加光を、投写レンズ112を介して同じ方向(図3の光出力の方向)に向けて出射する。なお、ダイクロイックプリズム111および投写レンズ112は、投写光学部の構成の一例であり、DMD108~110からの各基本光および追加光をスクリーンのような投写面(図示せず)に投写する。
 つまり、DMD108~110は、オンステートのときには、マイクロミラーに入射された光を投写光学部を介して投写面に投写し(つまり、外部に出射し)、オフステートのときには、マイクロミラーに入射された光を投写が行われない方向に出射する。
 次に図2に示した制御部12についてより詳細に説明する。
 図4は、本実施形態の制御部12の構成を示す図である。図4に示す制御部12は、特色度算出部201と、データ生成部202と、シーケンス生成部203と、DMD駆動部204~206とを有する。また、制御部12には、映像信号として、赤色、緑色および青色のそれぞれの輝度値を画素ごとに示す赤色信号、緑色信号および青色信号が入力される。
 特色度算出部201は、入力映像信号である赤色信号、緑色信号および青色信号に基づいて、その入力映像信号に示される画像の画素ごとに、その画素の色と所定の色との近似性を示す特色度を算出し、各画素の特色度を示す特色度信号と入力映像信号とをデータ生成部202に出力する。ここでは、所定の色は、青色であるとし、特色度算出部201は、入力映像信号のうちの所定の色である青色に対応する青色信号をデータ生成部202に出力するものとする。
 データ生成部202は、特色度算出部201からの特色度信号と、特色度算出部201からの所定の色である青色信号とに基づいて、各画素における追加光の輝度値である混合量を決定する。例えば、データ生成部202は、特色度に応じて、所定の色である青色の輝度値に対する追加光の輝度値の比率である混合率を決定し、その混合率と所定の色である青色の輝度値とに基づいて混合量を決定する。
 各画素の混合量を決定すると、データ生成部202は、各画素の混合量を示す混合量信号をシーケンス生成部203に出力する。
 シーケンス生成部203は、データ生成部202からの混合量信号と、入力された青色信号と、入力映像信号の同期信号に基づいて、カラーホイール104が青色光を出射する青色期間には、青色信号にて示される青色の輝度値を示し、カラーホイール104が緑色光を出射する追加光期間には、混合量信号にて示される混合量を示すシーケンス信号を生成して出力する。
 なお、本実施形態では、カラーホイール104は、入力映像信号の1フレーム期間内で白色光を青色光と緑色光とに時分割するように制御されているものとする。図5は、カラーホイール104が1フレーム期間内で白色光を青色光と緑色光とに時分割する場合における青色期間および追加光期間の一例を示す図である。図5の例では、1フレーム期間が青色期間301と追加光期間302とに分割されている。
 また、同期信号は入力映像信号に含まれていてもよいし、入力映像信号とは別に入力されてもよい。本実施形態では、同期信号は入力映像信号(具体的には、赤色信号、緑色信号および青色信号のそれぞれ)に含まれているものとする。
 DMD駆動部204は、入力映像信号の1フレーム期間ごとに、赤色信号にて示される輝度値に応じてDMD108の各マイクロミラーのオン比率である赤色オン比率を求め、各マイクロミラーの赤色オン比率を示す第1のPWM信号をDMD108に出力する。なお、オン比率とは、1フレーム期間内の各光源の点灯期間内における、マイクロミラーをオンステートにするオン時間の、マイクロミラーをオフステートにするオフ時間に対する比率である。また、オン比率は、1フレーム期間内の各光源の点灯期間内における、マイクロミラーをオンテートにするオン時間の、各光源の点灯期間に対する比率で定義してもよい。
 DMD駆動部205は、入力映像信号の1フレーム期間ごとに、緑色信号にて示される輝度値に応じてDMD109の各マイクロミラーのオン比率である緑色オン比率を求め、各マイクロミラーの緑色オン比率を示す第1のPWM信号をDMD109に出力する。
 DMD駆動部206は、1フレーム期間ごとに、シーケンス信号が示す青色の輝度値に応じて、その1フレーム期間内の青色期間における、DMD110の各マイクロミラーのオン比率である青色オン比率を求める。また、DMD駆動部206は、1フレーム期間ごとに、シーケンス信号が示す混合量に応じて、その1フレーム期間内の追加光期間における、DMD110の各マイクロミラーのオン比率である追加光オン比率を求める。そして、DMD駆動部206は、青色期間ごとに、青色オン比率を示す第1のPWM信号をDMD110に出力し、追加光期間ごとに追加光オン比率を示す第2のPWM信号をDMD110に出力する。
 なお、DMD108~110では、オン比率が高いほど、つまり、1フレーム期間におけるオン時間が長いほど、ダイクロイックプリズム111および投写レンズ112を介して投写面に投写される光の光量が高くなり、投写画像が明るくなる。このため、DMD駆動部204~206は、各色の輝度値または混合量が大きいほど、オン比率(オン時間)を大きくすることで、投写レンズ112を介して投写面に投写される光の光量を大きくする。例えば、DMD駆動部204~206は、オン比率(オン時間)を、各色の輝度値または混合量に比例させて大きくする。
 本実施形態のプロジェクタの動作について説明する。
 図6は、制御部12の動作を説明するためのフローチャートである。なお、以下の処理は、入力映像信号の1フレームごとに実行される。
 先ず、外部装置から入力された入力映像信号のうち赤色信号は特色度算出部201とDMD駆動部204に入力され、緑色信号は特色度算出部201とDMD駆動部205に入力され、青色信号は特色度算出部201とDMD駆動部206に入力される(ステップS401)。
 DMD駆動部204は、入力された赤色信号にて示される赤色の輝度値に基づいて赤色オン比率を求め、その赤色オン比率を示す第1のPWM信号を生成してDMD108に入力する。また、DMD駆動部205は、入力された緑色信号にて示される緑色の輝度値に基づいて緑色オン比率を求め、その緑色オン比率を示す第1のPWM信号を生成してDMD109に入力する。これにより、DMD108および109は、基本光である赤色光および緑色光を、第1のPWM信号に基づいて変調することになる(ステップS402)。
 特色度算出部201は、入力された赤色信号、緑色信号および青色信号に基づいて、特色度を画素ごとに算出し、各画素の特色度を示す特色度信号を生成する。そして、特色度算出部201は、特色度信号と青色信号とをデータ生成部202に出力する(ステップS403)。
 データ生成部202は、青色信号および特色度信号を受け付け、その特色度信号および青色信号に基づいて、各画素の混合量を決定し、その各画素の混合量を示す混合量信号を生成する。そして、データ生成部202は、混合量信号をシーケンス生成部406に出力する(ステップS404)。
 シーケンス生成部203は、混合量信号および青色信号を受け付け、その混合量信号および青色信号に基づいて、カラーホイール104の青色期間には、青色信号にて示される青色の輝度値を示し、カラーホイール104の追加光期間には、混合量信号にて示される混合量を示すシーケンス信号を生成してDMD駆動部206に出力する(ステップS405)。
 DMD駆動部206は、シーケンス信号を受け付け、そのシーケンス信号に基づいて、青色オン比率および追加光オン比率を求め、青色オン比率を示す第1のPWM信号および追加光オン比率を示す第2のPWM信号を生成してDMD110に入力する。これにより、DMD110は、青色光を第1のPWM信号に従って変調し、追加光である緑色光を第2のPWM信号に従って変調することになる(ステップS406)。
 以下ステップS403における特色度を算出する処理と、ステップS404における混合量を決定する処理についてより詳細に説明する。
 特色度は、一般的に言えば、対象色の基準色に対する近似性を示す度合いであり、対象色が基準色と一致するときに、1.0となり、対象色が基準色から離れるにつれて小さくなる値である。また、特色度は、対象色の色相H、彩度Sおよび明度Vを変数とする関数で表される。
 本実施形態では、入力映像信号(赤色信号、緑色信号および青色信号)はRGB形式であるため、特色度算出部201は、先ず、入力映像信号から、画素ごとに、その画素の色である対象色の色相H、彩度Sおよび明度Vを算出する。
 具体的には、特色度算出部201は、以下のように、赤色信号、緑色信号および青色信号の値(輝度値)に基づいて、各画素の色相H、彩度Sおよび明度Vを算出する。このとき、入力映像信号が各色の輝度値を0~255の整数値で示す場合、入力映像信号をHSV形式に変換する前に、各色の輝度値を0~1.0の実数値で示す信号に変換する。以下、実数値で示された赤色信号、緑色信号および青色信号の値をそれぞれR、GおよびBと表記する。
 特色度算出部201は、色相Hについては、式1を用いて算出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、Max(X,Y,Z)は、X,Y,Zのうちの最大値を示す関数であり、Min(X,Y,Z)は、X,Y,Zの最小値を示す関数である。また、係数AおよびB’は、輝度値R、GおよびBから決定される値である。係数AおよびB’と輝度値R、GおよびBとの対応関係は、具体的には、表1で表される。
Figure JPOXMLDOC01-appb-T000004
 また、特色度算出部201は、彩度Sについては、式2を用いて算出する。
Figure JPOXMLDOC01-appb-M000005
 さらに、特色度算出部201は、明度Vについては、式3を用いて算出する。
Figure JPOXMLDOC01-appb-M000006
 以上のように各画素の色相H、彩度Sおよび明度Vを算出すると、特色度算出部201は、その色相H、彩度Sおよび明度Vに基づいて、各画素の特色度を算出する。
 一般的には、特色度Δ1は、色相H、彩度Sおよび明度Vから基本算出式である式4を用いて算出される。
Figure JPOXMLDOC01-appb-M000007
 ここで、関数pos(x)は、xが正のときにxとなり、xが正でないときは0となる関数である。また、Hc1は、基準色の色相である中心色相、m1は、対象色における特色度を算出する色相の範囲を示す値である検出色相範囲である。なお、検出色相範囲は、予め設定される値であり、基準色の色相を含む。
 図7は、中心色相Hc1と検出色相範囲m1との関係を示す図である。図7では、中心点Oから円の外縁部に向かう軸が彩度Sを表し、中心点Oを中心として左回りに回転する角度が色相Hを表し、中心点Oを通り紙面に垂直な軸が明度Vを表す。また、検出色相範囲m1は、図7に示すように、円の中心角で表される。
 数4および図7で示されたように、特色度Δ1は、対象色の色相Hが中心色相Hc1であり、かつ、対象色の彩度Sおよび明度Vが最大の場合に、1.0となる。また、特色度Δ1は、対象色の色度Hが中心色相Hc1から離れるにつれ、また、対象色の彩度Sおよび明度Hが低くなるにつれ、小さくなる。なお、対象色の色相が検出色相範囲m1外にある場合、特色度Δ1は0となる。
 図8は、対象色の彩度Sおよび明度Vを固定としたときの、対象色の色相Hと特色度Δ1との関係を示す図である。図8に示されたように、対象色の色相Hが中心色相Hc1のときに、対象色の特色度Δ1は、彩度S×明度Vの値となり、対象色の色相Hが中心色相Hc1から離れるにつれて直線的に減少する。
 本実施形態で算出される特色度は、各画素の色の青色に対する特色度である。つまり、基準色が青色となり、対象色が各画素の色となる。以下、青色に対する対象色の特色度を青色特色度と呼ぶ。
 図9は、青色特色度を示す図である。図9で示されたように、青色特色度ΔBは、対象色が青色の場合、1.0となり、対象色が青色から離れるにつれて、小さくなる。
 また、青色特色度ΔBcは、式4において、中心色相Hc1を青色の色相(Hc1=300)とした場合に対応し、具体的には、式5で表される。
Figure JPOXMLDOC01-appb-M000008
 したがって、特色度算出部201は、式5を用いて、算出した各画素の色相H、彩度Sおよび明度Vから各画素の青色特色度を算出する。
 続いて、データ生成部202は、各画素の青色特色度ΔBcと青色信号の各画素の値Bとに基づいて、各画素の混合量MGを決定する。具体的には、データ生成部202は、青色特色度ΔBcが大きい画素ほど、混合量を小さくする。
 例えば、データ生成部202は、画素ごとに式6を適用して混合量MGを決定する。
Figure JPOXMLDOC01-appb-M000009
 この例では、DMD駆動部206は、例えば、混合量MGがBの場合、追加光オン比率が青色オン比率と等しい第2のPWM信号を出力し、混合量MGが0.5×Bの場合、追加光オン比率が青色オン比率の50%となる第2のPWM信号を出力し、混合量が0の場合、オン比率が0%の第2のPWM信号を出力する。なお、式(6)における(1-ΔBc)は、青色の輝度値に対する追加光の輝度値の比率である混合率となる。
 図10は、本実施形態のプロジェクタの投写画像の色域の一例を示すxy色度図である。図10では、色域3と、特性曲線4と、参考座標5とが示されている。
 色域3は、投写画像の色域である。特性曲線4は、入力映像信号に示される画像の画素の色の彩度を変化させることで、画素の色を白色から青色まで変えたときの投写画像の色を示す曲線である。また、参考座標5は、特許文献1に記載の投射型表示装置のように青色光源から青色光および緑色光が出射された場合における、入力映像信号に示される画像の画素の色が青色のときの、投写画像の色の座標である。
 図10に示されたように、投写画像の色域3は、図1Aに示した青色光源から青色光だけが出射される場合における投写画像の色域1と同じように、青色を表す領域が含まれる。したがって、青色の色再現性が高くなっていることになる。また、白色付近では、混合量が高くなっているため、高輝度化を実現することができる。
 以上説明した本実施形態のプロジェクタの変調部13には、入射光を変調する変調素子としてDMD108~110が使用されていたが、DMDとは異なる変調素子が用いられてもよい。例えば、変調部13は、LCD(Liquid Crystal Display)やLCOS(Liquid crystal on silicon)のような、入射光を透過または反射する光量を調整することで、入射光を変調するものを変調素子として使用してもよい。
 また、光源部11は、赤色光源101、緑色光源102、白色光源103およびカラーホイール104などで構成されたが、白色光源103およびカラーホイール104の代わりに、緑色光源102とは別の緑色光源と青色光源とで構成されてもよい。
 また、制御部12は、変調部13による基本光および追加光の変調に加えて、光源部11が発光する発光時間や発光量を調節することで、基本光および追加光を変調してもよい。例えば、制御部12は、入力映像信号が示す画像の各画素の輝度値のうち最大の輝度値が予め定められた閾値以上の場合、発光時間および発光量を所定値とし、最大の輝度値が閾値未満の場合、最大の輝度値が小さいほど、発光時間および発光量の少なくとも一方を小さくすることで、基本光および追加光を変調する。
 また、特色度、混合量および混合率は、計算式を用いて決定されていたが、特色度、混合量および混合率の決定方法はこの例に限らない。例えば、特色度算出部201は、画素の色と、その画素の色と所定の色(青色)との対応関係を示すルックアップテーブルを保持し、そのルックアップテーブルを用いて各画素の特色度を決定してもよい。また、データ生成部202は、特色度と混合量または混合率との対応関係を示すルックアップテーブルを保持し、そのルックアップテーブルを用いて混合量または混合率を決定してもよい。このとき、特色度算出部201は、ルックアップテーブルを用いて混合率を決定し、その後、式(6)を用いて混合量を算出してもよい。
 また、投写光学部の構成として投写レンズ112が使用されていたが、投写レンズ112の代わりに、または、投写レンズ112に加えて、投写ミラーなどが使用されてもよい。
 以上説明したように本実施形態によれば、画素の色と青色との近似性を示す特色度に応じて、追加光である緑色光が変調されるので、画素の色が白色付近の場合には、緑色の光の光量を高くして、画像を明るくすることが可能になり、画素の色が青色付近の場合には、緑色の光の光量を低くして、色再現性を向上させることが可能になる。したがって、白色の画像の高輝度化を実現しつつ、色再現性を向上させることが可能になる。
 また、本実施形態では、各画素について、当該画素に対応する特色度が高いほど、投写光学部から投写される追加光の当該画素の光量が低くなるので、白色の画像の高輝度化と色再現性の向上とをより適確に実現することが可能になる。
 次に本発明の第2の実施形態について説明する。
 図11は、本実施形態のプロジェクタの光学系の構成を示す図である。図11に示す光学系は、図3に示した第1の実施形態の光学系と比較すると、基本光である赤色光および緑色光を出射、変調するための構成が異なっているが、基本光である青色および追加光である緑色光を出射、変調するための構成は同じである。
 具体的には、図11に示す光学系は、白色光源103および501と、カラーホイール104および502と、プリズム107および503と、DMD110および504と、ダイクロイックプリズム111とを有する。
 なお、本実施形態では、白色光源103および501とカラーホイール104および502とが図2に示した光源部11を構成する。また、DMD110および504が図2で示した変調部13を構成する。
 白色光源501は、白色光を出射する。カラーホイール502は、白色光源501から出射された白色光の光路上に配置され、入射された白色光を基本光である赤色光および緑色光に時分割して出射する。
 なお、本実施形態では、カラーホイール502は、所定の回転軸を中心に回転可能な円盤状の基板を有し、その基板には、赤色光を透過する赤色フィルタと、緑色光を透過する緑色フィルタとが設けられているものとする。また、カラーホイール502は、入力映像信号の1フレーム期間内で白色光を赤色光と緑色光とに時分割するように制御されるものとしている。
 プリズム503は、カラーホイール502で時分割された赤色光および緑色光の光路上に設けられ、その赤色光および緑色光を反射してDMD504に入射させる。
 DMD504は、入力されたPWM信号に従って、自身の各マイクロミラーのオンステートとオフステートと切り替えることで、プリズム503から入射された赤色光および緑色光を変調して出射する。
 ダイクロイックプリズム111は、DMD110および504からの各色光を投写レンズ112を介して同じ方向(図11の光出力の方向)に向けて出射する。
 次に本実施形態の制御部について説明する。
 図12は、本実施形態の制御部の構成を示すブロック図である。図12に示す本実施形態の制御部12は、図4に示した第1の実施形態の制御部12と比較すると、基本光である赤色光および緑色光を変調するための構成が異なっているが、基本光である青色光および追加光である緑色光を変調するための構成は同じである。
 具体的には、図12に示す制御部12は、特色度算出部201と、データ生成部202と、シーケンス生成部203および601と、DMD駆動部204および602とを有する。
 シーケンス生成部601は、入力映像信号である赤色信号および緑色信号と、その同期信号に基づいて、カラーホイール502が赤色光を出射する赤色期間には、赤色信号が示す輝度値を示し、カラーホイール502が緑色光を出射する緑色期間には、緑色信号が示す輝度値を示すシーケンス信号を生成して出力する。
 DMD駆動部602は、入力映像信号の1フレーム期間ごとに、シーケンス生成部601から出力されたシーケンス信号が示す赤色の輝度値に応じて、1フレーム期間内のカラーホイール502が赤色光を出射する赤色期間における、DMD504の各マイクロミラーのオン比率である赤色オン比率を求める。また、DMD駆動部602は、1フレーム期間ごとに、シーケンス生成部601から出力されたシーケンス信号が示す緑色の輝度値に応じて、1フレーム期間内のカラーホイール502が緑色光を出射する緑色期間における、DMD504の各マイクロミラーのオン比率である緑色オン比率を求める。そして、DMD駆動部206は、赤色期間ごとに、赤色オン比率を示す第1のPWM信号をDMD110に出力し、緑色期間ごとに緑色オン比率を示す第1のPWM信号をDMD110に出力する。これにより、DMD110は、カラーホイール502から入射された赤色光および緑色光を第1のPWM信号に従って変調して出力することになる。
 本実施形態でも、基本光である青色光および追加光である緑色光を変調するための構成は第1の実施形態と同じであり、第1の実施形態と同様に、白色の画像の高輝度化を実現しつつ、色再現性を向上させることが可能になる。
 次に本発明の第3の実施形態について説明する。
 図13は、本発明の第3の実施形態のプロジェクタの光学系の構成を示す図である。図13に示す光学系は、赤色光源701と、緑色光源702および704と、青色光源703と、ダイクロイックプリズム705および710と、プリズム706および707と、DMD(Digital Mirror Device)708および709と、投写レンズ711とを有する。
 赤色光源701と、緑色光源702および704と、青色光源703とは図2に示した光源部11を構成する。本実施形態では、光源部は、第1の実施形態と同様に、基本光として赤色光、緑色光および青色光を出射し、追加光として緑色光を出射するものとする。
 具体的には、赤色光源701、緑色光源702および青色光源703は、それぞれ赤色光、緑色光および青色光を基本光として出射する。また、緑色光源704は、追加光として緑色光を出射する。なお、本実施形態では、赤色光源701、緑色光源702、704および青色光源703のそれぞれは、LEDやLD(Laser Diode)のような高速に点滅が可能な発光素子で構成されるものとする。
 ダイクロイックプリズム705は、赤色光源701、緑色光源702および青色光源703のそれぞれから出射された各基本光を同一の方向に出射する。
 プリズム706は、ダイクロイックプリズム705から出射された各基本光を反射してDMD708に入射させる。プリズム707は、緑色光源704から出射された緑色光を反射してDMD709に入射させる。
 DMD708および709は図2で示した変調部13を構成する。具体的には、DMD708は、第1のPWM信号に従って、プリズム706からの各基本光を変調して出射し、DMD709は、第2のPWM信号に従って、プリズム707からの追加光である緑色光を変調して出射する。
 ダイクロイックプリズム710は、DMD708からの各基本光と、DMD709からの追加光とを、投写レンズ711を介して同じ方向(図13の光出力の方向)に向けて出射する。なお、ダイクロイックプリズム710および投写レンズ711は投写光学部の構成の一例であり、DMD708および709からの各基本光および追加光を投写面に投写する。
 次に本実施形態の制御部について説明する。なお、以下の説明および図面では、赤色光源701、緑色光源702および青色光源703をまとめて基本光源701~703と表記することもある。
 図14は、本実施形態の制御部の構成を示すブロック図である。図14に示す制御部12は、第1の制御部810と、第2の制御部820とを有する。また、制御部12には、映像信号として、赤色、緑色および青色のそれぞれの輝度値を画素ごとに示すRGB形式のデジタル映像信号が入力される。
 第1の制御部810は、入力された入力映像信号の各画素の色に応じた第1のPWM信号をDMD708に出力する。具体的には、第1の制御部810は、シーケンス生成部801と、光源駆動部802と、DMD駆動部803とを有する。
 シーケンス生成部801は、入力映像信号の同期信号に基づいて、基本光源701~703のそれぞれを点灯させる点灯期間を示す基本点灯タイミング信号を生成する。本実施形態では、入力映像信号の1フレーム内で複数の光源を順番に点灯させるフィールドシーケンシャル方式で基本光源701~703を点灯させるものとする。このため、シーケンス生成部801は、入力映像信号の1フレーム内で基本光源701~703が順番に点灯するように、基本点灯タイミング信号を生成する。
 以下では、シーケンス生成部801は、図15に示すように、入力映像信号の1フレーム内で、基本光源701~703がそれぞれ点灯期間901~903に点灯するように、基本点灯タイミング信号を生成するものとする。なお、各点灯期間901~903は重複せず、各点灯期間901~903の長さがそれぞれ等しいものとしている。
 シーケンス生成部801は、基本点灯タイミング信号に応じて、入力映像信号を、赤色、緑色および青色のそれぞれの輝度値を画素ごとに示す複数の輝度信号に時分割する。そして、シーケンス生成部401は、基本点灯タイミング信号を光源駆動部802およびDMD駆動部803に出力し、各輝度信号をDMD駆動部803に出力する。このとき、シーケンス生成部801は、基本点灯タイミング信号に応じて、各輝度信号を、その輝度信号にて示される色の基本光を出射する基本光源の点灯期間に合わせて出力する。
 光源駆動部802は、シーケンス生成部801からの基本点灯タイミング信号に応じて、基本光源701~703のそれぞれを点灯させる。これにより、図15に示したように基本光源701~703は1フレームごとに順次点灯されることになる。
 DMD駆動部803は、シーケンス生成部801からの基本点灯タイミング信号および各輝度信号に基づいて、基本光である赤色光、緑色光および青色光のそれぞれを変調するための第1のPWM信号を生成してDMD708に出力する。
 具体的には、DMD駆動部803は、各輝度信号に基づいて、1フレーム期間内の各基本光源701~703の点灯期間における、DMD708の各マイクロミラーのオン比率である基本オン比率を求め、その基本オン比率に応じた第1のPWM信号を生成する。そして、DMD駆動部803は、基本点灯タイミング信号が示す各基本光源の点灯期間に合わせて、その基本光源が出射する色光に対応する第1のPWM信号をDMD709に入力する。これにより、DMD709は、第1のPWM信号に従って各基本光を変調することになる。
 第2の制御部820は、入力映像信号に基づいて、その入力映像信号に示される画像の画素ごとに、その画素の色と所定の色である青色光との近似度である特色度を算出し、各画素の特色度に応じた第2のPWM信号をDMD709に出力する。具体的には、第2の制御部820は、特色度算出部804と、データ生成部805と、シーケンス生成部806と、光源駆動部807と、DMD駆動部808とを有する。
 特色度算出部804は、入力映像信号に基づいて、入力映像信号に示される画像の画素ごとに、その画素の色の所定の色である青色に対する近似性を示す特色度を算出し、その各画素の特色度を示す特色度信号と入力映像信号とをデータ生成部805に出力する。
 データ生成部805は、特色度算出部804からの特色度信号が示す特色度と、特色度算出部804からの入力映像信号が示す青色の輝度値とに基づいて、各画素における追加光の輝度値である混合量を決定する。
 シーケンス生成部806は、データ生成部805からの入力映像信号の同期信号に基づいて、緑色光源704を点灯させる点灯期間を示す追加点灯タイミング信号を生成する。本実施形態では、シーケンス生成部806は、図15に示すように、緑色光源704の点灯期間904が青色光源703の点灯期間903と同じになるように追加点灯タイミング信号を生成する。
 そして、シーケンス生成部806は、追加点灯タイミング信号を光源駆動部807およびDMD駆動部808に出力し、混合量信号をDMD駆動部808に出力する。このとき、シーケンス生成部806は、混合量信号を、追加点灯タイミング信号に応じて、緑色光源704の点灯期間に合わせて出力する。
 光源駆動部807は、シーケンス生成部806からの追加点灯タイミング信号に応じて、緑色光源704を点灯させる。これにより、図15に示したように緑色光源704は、青色光源703の点灯期間903と同じ点灯期間904で緑色光源704を点灯する。
 DMD駆動部808は、シーケンス生成部806からの追加点灯タイミング信号および混合量信号に基づいて、追加光である緑色光を変調するための第2の変調信号である第2のPWM信号を生成してDMD709に入力する。
 具体的には、DMD駆動部808は、先ず、混合量信号に基づいて、1フレーム期間内の緑色光源704の点灯期間における、DMD709の各マイクロミラーのオン比率を求める。このとき、DMD駆動部408は、混合量が高いほどオン比率を大きくする。
 続いて、DMD駆動部808は、DMD709の各マイクロミラーのオン比率を示す第2のPWM信号を生成し、その第2のPWM信号を、追加点灯タイミング信号が示す緑色光源704の点灯期間に合わせてDMD709に入力する。これにより、DMD709は、各画素の特色度に応じて追加光を変調することになる。
 なお、本実施形態において、特色度や混合量を求める方法は、第1の実施形態と同様である。
 次に本実施形態のプロジェクタの動作について説明する。
 図16は、制御部の動作を説明するためのフローチャートである。
 先ず、外部装置から入力された入力映像信号は、シーケンス生成部801および特色度算出部804に入力される(ステップS1001)。なお、入力映像信号には、赤色、緑色および青色のそれぞれの輝度を示す赤色信号、緑色信号および青色信号が含まれるものとする。また、以下の処理は、入力映像信号の1フレームごとに実行される。
 シーケンス生成部801は、入力映像信号の同期信号に基づいて、基本点灯タイミング信号を生成して光源駆動部802およびDMD駆動部803に出力するとともに、基本点灯タイミング信号に応じて入力映像信号を赤色信号、緑色信号および青色信号に時分割してDMD駆動部803に出力する。このとき、シーケンス生成部801は、図15における赤色光源701の点灯期間901に合わせて赤色信号を出力し、緑色光源702の点灯期間902に合わせて緑色信号を出力し、青色光源703の点灯期間903に合わせて青色信号を出力する(ステップS1002)。
 光源駆動部802は、基本点灯タイミング信号を受け付け、その基本点灯タイミング信号に応じて基本光源701~703を点灯させる。一方、DMD駆動部803は、基本点灯タイミング信号、赤色信号、緑色信号および青色信号を受け付け、その基本点灯タイミング信号、赤色信号、緑色信号および青色信号に基づいて第1のPWM信号を生成してDMD709に出力する。これにより、DMD709は、第1のPWM信号に従って各基本光を変調することになる(ステップS1003)。
 一方、特色度算出部804は、入力映像信号に基づいて、画素ごとに特色度を算出し、各画素の特色度を示す特色度信号を生成する。そして、特色度算出部804は、特色度信号および入力映像信号をデータ生成部805に出力する(ステップS1004)。
 データ生成部805は、特色度信号および入力映像信号を受け付け、その特色度信号に基づいて、入力映像信号に示される画像の画素ごとに混合量を決定し、各画素の混合量信号を生成する。そして、データ生成部805は、混合量信号および入力映像信号をシーケンス生成部806に出力する(ステップS1005)。
 シーケンス生成部806は、混合量信号および入力映像信号を受け付ける。シーケンス生成部806は、入力映像信号の同期信号に基づいて、追加点灯タイミング信号を生成して光源駆動部807およびDMD駆動部808に出力するとともに、その追加点灯タイミング信号に従って、混合量信号を図15における緑色光源704の点灯期間904に合わせてDMD駆動部808に出力する(ステップS1006)。
 光源駆動部807は、追加点灯タイミング信号を受け付け、その追加点灯タイミング信号に応じて緑色光源704を点灯させる。一方、DMD駆動部808は、追加点灯タイミング信号および混合量信号を受け付け、その追加点灯タイミング信号および混合量信号に基づいて第2のPWM信号を生成してDMD709に入力する。これにより、DMD709は、緑色光源704からの緑色光を第2のPWM信号に従って変調することとなる(ステップS1007)。
 次に図14に示した光学系の動作について説明する。
 基本光源701~703(赤色光源701、緑色光源702および青色光源703)は、フィールドシーケンシャル方式で制御されるため、順番に点灯する。これにより、基本光源701~703から、赤色光、緑色光および青色光が順番に出射する。
 基本光源701~703からの各色光は、ダイクロイックプリズム705にて同一の方向に出射され、その後、プリズム706で反射されてDMD708に入射する。そして、各色光は、DMD708で第1のPWM信号に従って変調されてダイクロイックプリズム710に向けて出射される。
 一方、緑色光源704は、青色光源703の点灯期間と同じ期間に点灯して、緑色光を出射する。緑色光源704からの緑色光は、プリズム707で反射されてDMD709に入射する。そして、緑色光は、DMD709で第2のPWM信号に従って変調されてダイクロイックプリズム710に向けて出射される。
 ダイクロイックプリズム710は、DMD709からの各色光と、DMD709からの緑色光を投写レンズ112を介して同一の方向(具体的には、図3の光出力の方向)に出射する。このとき、DMD709からの青色光と、DMD709からの緑色光は同じタイミングでダイクロイックプリズム710に到達し、ダイクロイックプリズム710は、その青色光と緑色光とを合成して出射する。
 以上説明したように本実施形態でも、画素の色と青色との近似性を示す特色度に応じて、追加光である緑色光が変調されるので、画素の色が白色付近の場合には、緑色の光の光量を高くして、画像を明るくすることが可能になり、画素の色が青色付近の場合には、緑色の光の光量を低くして、色再現性を向上させることが可能になる。したがって、白色の画像の高輝度化を実現しつつ、色再現性を向上させることが可能になる。
 次に本発明の第4の実施形態について説明する。
 第1~第3の実施形態では、各画素の色の青色に対する特色度を算出していたが、青色光に緑色光が混合されると、青色の基本光と他の基本光(赤色および緑色)とが混合された混合光の色であるマゼンタやシアンの色再現性も低下する可能性がある。このため、本実施形態では、各画素の色の青色に対する特色度だけでなく、各画素の色のマゼンタやシアンに対する特色度も算出する。
 以下の説明では、本実施形態におけるプロジェクタの構成は、図3および図4で示した第1の実施形態のプロジェクタと同じであるとするが、第2の実施形態および第3の実施形態のプロジェクタでも同様なことが可能である。
 特色度算出部201は、各画素の色の青色特色度ΔBcに加えて、さらに、各画素の色のマゼンタに対する特色度であるマゼンタ特色度ΔMcと、各画素の色のシアンに対する特色度であるシアン特色度ΔCcとを算出する。
 例えば、特色度算出部201は、マゼンタ特色度ΔMcについては、式7を用いて算出する。
Figure JPOXMLDOC01-appb-M000010
 また、特色度算出部201は、シアン特色度ΔCcについては、式8を用いて算出する。
Figure JPOXMLDOC01-appb-M000011
 この場合、データ生成部202は、青色特色度ΔBc、マゼンタ特色度ΔMcおよびシアン特色度ΔCcに基づいて、混合量MGを決定する。具体的には、データ生成部405は、青色特色度ΔBc、マゼンタ特色度ΔMcおよびシアン特色度ΔCcの総和が高いほど、混合量を低くする。
 例えば、データ生成部405は、混合量MGを、式9を用いて算出する。
Figure JPOXMLDOC01-appb-M000012
 なお、本実施形態では、青色、マゼンタおよびシアンの3種類の色に対する特色度を算出したが、例えば、青色とマゼンタの2種類の色または青色とシアンの2種類の色に対する特色度を算出してもよい。青色とマゼンタの2種類の色に対する特色度を使用する場合、混合率は、式9からシアン特色度ΔCcを除いた式10を用いて算出することができる。また、青色とシアンの2種類の色に対する特色度を使用する場合、混合率は、式9からマゼンタ特色度ΔMcを除いた式11を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000013
 なお、本実施形態におけるマゼンタ特色度ΔMcおよびシアン特色度ΔCcは、他特色度の一例である。
 本実施形態によれば、青色に対する特色度だけでなく、マゼンタやシアンに対する特色度に応じて追加光である緑色光が変調されるので、白色の画像の高輝度化と色再現性の向上とをより正確に実現することが可能になる。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 10  プロジェクタ
 11  光源部
 12  制御部
 13  変調部
 101、701 赤色光源
 102、702、704 緑色光源
 103、501 白色光源
 104、502 カラーホイール
 105~107、503、706、707 プリズム
 108~110、504、708、709 DMD
 111、705、710 ダイクロイックプリズム
 112、711 投写レンズ
 201、804 特色度算出部
 202、805 データ生成部
 203、601、801、806 シーケンス生成部
 204~206、602、803、808 DMD駆動部
 703 青色光源
 802、807 光源駆動部
 810 第1の制御部
 820 第2の制御部

Claims (11)

  1.  色の異なる複数の基本光と、前記複数の基本光のいずれかの色と同じ色の追加光とを出射する光源部と、
     入力された入力映像信号に基づいて、前記入力映像信号に示される画像の各画素の色に応じた、各基本光を変調するための第1の変調信号と、各画素における当該画素の色と前記複数の基本光の色のうち前記追加光の色とは異なる所定の色との近似性を示す特色度に応じた、前記追加光を変調するための第2の変調信号と、を出力する制御部と、
     前記第1の変調信号に従って各基本光を変調して出射し、前記第2の変調信号に従って前記追加光を変調して出射する変調部と、を有するプロジェクタ。
  2.  請求項1に記載のプロジェクタにおいて、
     前記変調部にて変調された各基本光および前記追加光を投写面に投写する投写光学部をさらに有し、
     前記制御部は、各画素について、当該画素に対応する特色度が高いほど、前記投写光学部から投写される追加光の当該画素の光量が小さくなる前記第2の変調信号を出力する、プロジェクタ。
  3.  請求項2に記載のプロジェクタにおいて、
     前記変調部は、前記第2の変調信号に従って、前記追加光を前記投写光学部に向かう方向に出射するオンステートと、前記追加光を前記方向とは異なる方向に出射するオフステートとを前記画素ごとに切り替えることで、前記追加光を変調し、
     前記制御部は、各画素について、当該画素に対応する特色度が高いほど、当該画素を前記オンステートにする時間を短くする、プロジェクタ。
  4.  請求項1ないし3のいずれか1項に記載のプロジェクタにおいて、
     前記制御部は、前記特色度をΔ1とし、前記画素の色相をH、彩度をS、明度をVとし、前記所定の色の色相をHclとし、前記画素における前記特色度を算出する色相の範囲を示す値をmlとし、関数pos(x)を、xが正のときにxとなり、xが正でないときは0となる関数とすると、前記特色度Δ1を、
    Figure JPOXMLDOC01-appb-M000001
    から決定する、プロジェクタ。
  5.  請求項1ないし3のいずれか1項に記載のプロジェクタにおいて、
     前記制御部は、前記画素の色と、当該画素の色の前記所定の色に対する特色度との対応関係を示すルックアップテーブルを保持し、当該ルックアップテーブルを用いて各画素の特色度を決定する、プロジェクタ。
  6.  請求項1ないし5のいずれか1項に記載のプロジェクタにおいて、
     前記制御部は、前記入力映像信号に基づいて、前記画素ごとに、当該画素の色と、前記所定の色の基本光と他の基本光とが混合された混合光の色との近似性を示す他特色度を算出し、各画素の特色度および他特色度に応じた前記第2の変調信号を出力する、プロジェクタ。
  7.  請求項1ないし6のいずれか1項に記載のプロジェクタにおいて、
     前記入力映像信号は、各画素の色を、前記所定の色の輝度値を含む複数の色の輝度値で表し、
     前記制御部は、各画素の特色度と、前記入力映像信号が示す各画素の所定の色の輝度値とに基づいて、前記追加光の輝度値である混合量を決定し、前記混合量に応じた前記第2の変調信号を出力する、プロジェクタ。
  8.  請求項7に記載のプロジェクタにおいて、
     前記制御部は、前記特色度をΔ1、前記所定の色の輝度値をXとすると、前記混合量MGを、
    Figure JPOXMLDOC01-appb-M000002
    から決定する、プロジェクタ。
  9.  請求項7に記載のプロジェクタにおいて、
     前記制御部は、前記特色度と前記混合量との対応関係を示すルックアップテーブルを保持し、当該ルックアップテーブルを用いて前記混合量を決定する、プロジェクタ。
  10.  色の異なる複数の基本光と前記複数の基本光のいずれかの色と同じ色の追加光とを出射する光源部と、各基本光を変調するための第1の変調信号に従って各基本光を変調して出射し、前記追加光を変調するための第2の変調信号に従って前記追加光を変調して出射する変調部と、を備えるプロジェクタに用いられる色補正装置であって、
     入力された入力映像信号に基づいて、前記入力映像信号に示される画像の各画素の色に応じた前記第1の変調信号と、各画素における当該画素の色と前記複数の基本光の色のうち前記追加光の色とは異なる所定の色との近似性を示す特色度に応じた前記第2の変調信号と、を出力する制御部を有する色補正装置。
  11.  色の異なる複数の基本光と、前記複数の基本光のいずれかの色と同じ色の追加光とを出射し、
     入力された入力映像信号に基づいて、前記入力映像信号に示される画像の各画素の色に応じた、各基本光を変調するための第1の変調信号と、各画素における当該画素の色と前記複数の基本光の色のうち前記追加光の色とは異なる所定の色との近似性を示す特色度に応じた、前記追加光を変調するための第2の変調信号と、を出力し、
     前記第1の変調信号に従って各基本光を変調して出射し、前記第2の変調信号に従って前記追加光を変調して出射する、投写方法。
PCT/JP2014/052236 2013-04-05 2014-01-31 プロジェクタ、色補正装置および投写方法 WO2014162768A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015509934A JP6057397B2 (ja) 2013-04-05 2014-01-31 プロジェクタ、色補正装置および投写方法
US14/780,998 US9635327B2 (en) 2013-04-05 2014-01-31 Projector, color correction device, and projection method
CN201480019785.5A CN105074566B (zh) 2013-04-05 2014-01-31 投影仪、颜色校正装置和投影方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/060462 WO2014162590A1 (ja) 2013-04-05 2013-04-05 プロジェクタおよびその制御方法
JPPCT/JP2013/060462 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014162768A1 true WO2014162768A1 (ja) 2014-10-09

Family

ID=51657916

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/060462 WO2014162590A1 (ja) 2013-04-05 2013-04-05 プロジェクタおよびその制御方法
PCT/JP2014/052236 WO2014162768A1 (ja) 2013-04-05 2014-01-31 プロジェクタ、色補正装置および投写方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060462 WO2014162590A1 (ja) 2013-04-05 2013-04-05 プロジェクタおよびその制御方法

Country Status (4)

Country Link
US (1) US9635327B2 (ja)
JP (1) JP6057397B2 (ja)
CN (1) CN105074566B (ja)
WO (2) WO2014162590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191223A (ja) * 2016-04-14 2017-10-19 大日本印刷株式会社 投射型表示装置及び投射表示方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180802A (ja) * 2015-03-23 2016-10-13 キヤノン株式会社 投影制御装置、及び制御方法、プログラム
CN108957923B (zh) * 2017-05-17 2021-07-23 深圳光峰科技股份有限公司 激发光强度控制系统、方法及投影系统
CN112601062B (zh) * 2021-02-22 2021-07-02 深圳市火乐科技发展有限公司 投影设备控制方法、装置、介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198795A (ja) * 1996-11-18 1998-07-31 Nec Corp 画像の色補正装置及び色補正プログラムを記録した記録媒体
JP2005189472A (ja) * 2003-12-25 2005-07-14 Olympus Corp 表示装置及びそれに使用する照明装置
JP2005321524A (ja) * 2004-05-07 2005-11-17 Seiko Epson Corp 光源装置およびプロジェクタ
JP2006018162A (ja) * 2004-07-05 2006-01-19 Seiko Epson Corp 照明装置及びプロジェクタ
JP2007228255A (ja) * 2006-02-23 2007-09-06 Nec Electronics Corp 色補正装置、色補正方法及びプログラム
JP2008185992A (ja) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd 投写型映像表示装置及び照明装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640173B2 (ja) * 2001-04-02 2005-04-20 ソニー株式会社 画像表示装置
US6688747B2 (en) * 2001-06-08 2004-02-10 Infocus Corporation Achieving color balance in image projection systems by injecting compensating light
KR20040102301A (ko) * 2003-05-27 2004-12-04 삼성전자주식회사 보조광원을 채용하는 조명 장치 및 프로젝션 시스템
JP4464118B2 (ja) * 2003-12-10 2010-05-19 キヤノン株式会社 照明光学系及びそれを有する画像表示装置
JP2006023436A (ja) * 2004-07-07 2006-01-26 Olympus Corp 照明装置及びプロジェクタ
CN1769998A (zh) * 2004-11-05 2006-05-10 南京Lg同创彩色显示系统有限责任公司 光学系统中能提高颜色性能的设备
JP4625851B2 (ja) * 2008-04-28 2011-02-02 株式会社日立製作所 冷却システム及びそれを備えた電子機器
US9429761B2 (en) 2009-09-28 2016-08-30 Nec Corporation Color synthesis optical element, projection-type display device using same, and method for controlling display thereof
JP5672861B2 (ja) * 2010-08-27 2015-02-18 セイコーエプソン株式会社 プロジェクター
JP2014048354A (ja) * 2012-08-30 2014-03-17 Hitachi Consumer Electronics Co Ltd プロジェクタ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198795A (ja) * 1996-11-18 1998-07-31 Nec Corp 画像の色補正装置及び色補正プログラムを記録した記録媒体
JP2005189472A (ja) * 2003-12-25 2005-07-14 Olympus Corp 表示装置及びそれに使用する照明装置
JP2005321524A (ja) * 2004-05-07 2005-11-17 Seiko Epson Corp 光源装置およびプロジェクタ
JP2006018162A (ja) * 2004-07-05 2006-01-19 Seiko Epson Corp 照明装置及びプロジェクタ
JP2007228255A (ja) * 2006-02-23 2007-09-06 Nec Electronics Corp 色補正装置、色補正方法及びプログラム
JP2008185992A (ja) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd 投写型映像表示装置及び照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191223A (ja) * 2016-04-14 2017-10-19 大日本印刷株式会社 投射型表示装置及び投射表示方法

Also Published As

Publication number Publication date
CN105074566A (zh) 2015-11-18
WO2014162590A1 (ja) 2014-10-09
US9635327B2 (en) 2017-04-25
JP6057397B2 (ja) 2017-01-11
US20160044290A1 (en) 2016-02-11
CN105074566B (zh) 2017-03-08
JPWO2014162768A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
US9667929B2 (en) Display uniformity compensation method, optical modulation apparatus, signal processor, and projection system
US8184136B2 (en) Image display device provided with multiple light sources emitting different colors to display color images in color sequential display method
JP4222392B2 (ja) 画像表示装置および画像表示方法
JP4552986B2 (ja) 画像表示装置
JP6212713B2 (ja) 映像投写装置および映像投写方法
JP6047987B2 (ja) 投射型表示装置及びその制御方法
US9978315B2 (en) Image display apparatus and method of controlling image display apparatus
JP6331382B2 (ja) 画像表示装置、および画像表示装置の制御方法
US20190037181A1 (en) Multi-projection system, projector, and method for controlling projector
JP6057397B2 (ja) プロジェクタ、色補正装置および投写方法
JP2006284982A (ja) 調光情報生成装置、その方法、そのプログラム、そのプログラムを記録した記録媒体、および画像表示装置
US9076389B2 (en) Projection-type image display device, image projection control device, and image projection control method
JP2019024180A (ja) プロジェクター、マルチプロジェクションシステムおよびプロジェクターの制御方法
US7972001B2 (en) Projection illumination device and method for projection visual display system using multiple controlled light emitters having individual wavelengths
WO2012032644A1 (ja) 画像投射装置および色補正方法
JP2006330177A (ja) 表示装置及びプロジェクタ
JP2009058656A (ja) 画像表示装置
US20130002728A1 (en) Duty cycle calculation and implementation for solid state illuminators
JP2008026355A (ja) 光源制御装置
JP5150183B2 (ja) 投写型映像表示装置
JP2014066805A (ja) プロジェクター、及び、プロジェクターにおける発光制御方法
JP2011095402A (ja) 投写型表示装置
JP2008233487A (ja) 光源制御装置
JP2009098627A (ja) 投写型映像表示装置
WO2019024361A1 (zh) 显示设备及显示方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019785.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509934

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780998

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778448

Country of ref document: EP

Kind code of ref document: A1