WO2014157671A1 - 植物育成設備 - Google Patents

植物育成設備 Download PDF

Info

Publication number
WO2014157671A1
WO2014157671A1 PCT/JP2014/059300 JP2014059300W WO2014157671A1 WO 2014157671 A1 WO2014157671 A1 WO 2014157671A1 JP 2014059300 W JP2014059300 W JP 2014059300W WO 2014157671 A1 WO2014157671 A1 WO 2014157671A1
Authority
WO
WIPO (PCT)
Prior art keywords
growing
plant
partition wall
space
biological
Prior art date
Application number
PCT/JP2014/059300
Other languages
English (en)
French (fr)
Inventor
聡 江崎
士福 良元
和弘 八川
和宏 林
Original Assignee
株式会社三菱ケミカルホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三菱ケミカルホールディングス filed Critical 株式会社三菱ケミカルホールディングス
Priority to CA2907852A priority Critical patent/CA2907852A1/en
Priority to JP2015508790A priority patent/JP6245256B2/ja
Priority to CN201480017064.0A priority patent/CN105163576A/zh
Publication of WO2014157671A1 publication Critical patent/WO2014157671A1/ja
Priority to US14/866,821 priority patent/US10194596B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • A01G9/022Pots for vertical horticulture
    • A01G9/023Multi-tiered planters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a biological growing facility, for example, a plant growing facility.
  • a breeding unit has been proposed for growing creatures in a form in which creatures are stored in a plurality of storage containers and connected to a support structure in the vertical direction.
  • a breeding unit including a multistage storage container is known for growing the plant (Patent Document 1, Non-Patent Document 1).
  • this method since living organisms can be grown in a relatively small space, the energy required for air conditioning and the site can be saved.
  • the present inventors have attempted large-scale growth of protein synthesis plants and industrial production of proteins.
  • the protein productivity of protein synthesis plants varies greatly depending on the growth environment. Control was needed.
  • plant storage containers are installed in multi-stage growth units to actually grow the plant for protein synthesis in order to increase space efficiency. In that case, it is necessary for an operator or an engineer to observe and manage the growing state of the plant and to manage and maintain the growing apparatus related to water. Therefore, the training unit is practically high enough to allow an operator to get on the platform.
  • Non-Patent Document 1 a growing unit having a height of 5 m or more is also known.
  • a special space necessary for accessing the vicinity of the living creature or the breeding unit in which the worker or engineer is cultivated for example, an elevating device carrying the worker or engineer is operated, Sufficient passages and spaces are required for safe installation of ladders and the like for engineers and engineers to work at high places.
  • the main air flow of air conditioning is in the vertical direction above or below, so the longer the distance between the ceiling and floor of the building and the longer the air flow path in the building space, the farther away from the air flow It is difficult for each stage to suppress variations in air conditioning in the vicinity of the biological containment vessel that is stacked and installed. Even if the airflow is made to be horizontal as a countermeasure, the desired effect cannot be obtained because it is hindered by the convection phenomenon orthogonal to the airflow. For this reason, there is a natural economic limit on the height of the training unit.
  • the present inventors have intensively studied a technique for growing a large amount of an organism that requires strict management of a growth environment such as a plant for protein synthesis economically at a low production cost.
  • a breeding unit installed in a building suitable for environmental control and capable of storing a large number of organism storage containers with high density, a transport device for transporting organism storage containers suitable for use together, and
  • the present inventors have found that the above-mentioned problems can be solved by using a biological breeding facility configured by partition walls that divide the space in the building appropriately and in a timely manner, and have reached the present invention.
  • the gist according to the first embodiment of the present invention is as follows.
  • a plant growing facility for growing a plant for protein synthesis In buildings with floors, walls, and ceilings, A plant storage container that can store plants, and a growing unit that includes a support structure that supports the plant storage container in a plurality of stages in the vertical direction;
  • a transfer device In order to arrange the plant storage container in the growing unit, a transfer device that can move the plant storage container in the vertical direction of the growing unit;
  • a space excluding the plant growing unit in the building can be divided into two or more spaces in the vertical direction, and at least a part of the movable space can form an opening for moving the transfer device in the vertical direction.
  • One or more partitions having a portion; At least each space divided into two or more spaces by the partition wall has a blowout port and a suction port of the air conditioner, Plant growing equipment.
  • the plant growing facility according to any one of [1] to [8], wherein the protein synthesis plant is a plant containing a recombinant gene.
  • the present invention can be preferably applied to a protein synthesis plant, but can be applied not only to a protein synthesis plant but also to a plant, and thus to a living organism depending on the purpose. That is, the gist according to the second embodiment of the present invention is as follows.
  • a biological storage container that can store a living thing in a building having a floor, a wall, and a ceiling, a growth unit that includes a support structure that supports the biological storage container in a plurality of stages in the vertical direction, and In order to arrange the biological containment vessel in the growing unit, the biological growing facility includes a transfer device capable of moving the biological containment vessel in the vertical direction of the growing unit, A biological breeding facility having a movable partition wall that can divide the space of the operation area of the transfer device into two or more spaces in the height direction.
  • the air conditioning apparatus includes a blowout port and a suction port, and the blowout port and the suction port are installed so that an air-conditioning airflow is in a horizontal direction.
  • the biological breeding facility according to any one of the above.
  • the biological breeding facility according to one.
  • the movable partition wall divides the space of the operation area of the transfer device into two or more spaces in the height direction by the movable partition wall, the upper surface of the movable partition wall and the upper surface of the fixed partition wall And / or the biological breeding facility according to any one of [6] to [8], wherein the lower surface of the movable partition wall and the lower surface of the fixed partition wall are disposed so as to be positioned in substantially the same plane. .
  • the present invention it is possible to use a breeding unit that can store the biological storage containers stacked in a high density in the height direction in one space.
  • the efficiency can be greatly increased.
  • since the air-conditioning air flow can be maintained in the horizontal direction while eliminating the influence due to the vertical convection, a container for storing organisms such as protein synthesis plants that require strict management of the growing environment. Even if many are arranged vertically and horizontally, their surrounding environment can be controlled with extremely small variations.
  • extremely good workability can be realized in performing observation and maintenance for biological growth, maintenance work of related facilities, etc. while maintaining all the above features.
  • FIG. It is an illustration figure of the opening / closing method of the movable partition which concerns on embodiment of this invention. It is an illustration figure of the opening / closing method of the movable partition which concerns on embodiment of this invention. It is a figure which shows the result of the example 1 of a simulation. It is a figure which shows the result of the simulation example 2. FIG. It is the projection figure which projected the biological breeding equipment from the ceiling direction.
  • the biological breeding facility includes a biological storage container 2 that can store living things in a building 1 having a floor 1-1, a wall 1-2, and a ceiling 1-3, and the biological storage container in a vertical direction.
  • a living unit including a growing unit 4 provided with a support structure 3 supported in a plurality of stages, and a transporting device 5 that can move the biological container 2 in the vertical direction in order to place the biological container 2 in the growing unit 4. It is a training facility.
  • the biological growth equipment which concerns on this invention contains the 1 or more partition which can divide
  • the growing unit 4 is installed in a building 1 composed of a floor 1-1, a wall 1-2, and a ceiling 1-3.
  • the breeding unit 4 has a structure in which a plurality of organism storage containers 2 are supported in the vertical direction by a support structure 3 composed of pillars 3-1 and mounting members 3-2.
  • the support structure 3 is constituted by the pillar 3-1 and the mounting member 3-2, but may be constituted by only the pillar 3-1. In this case, the organism storage container 2 and the pillar 3-1 are directly fixed.
  • the partition includes a movable partition 7 and a fixed partition 8 which are movable parts.
  • the space in the building 1 is vertically divided into two by the partition walls, but may be divided into three or more spaces by increasing the number of partition walls.
  • the fixed partition wall 8 is fixed to the column 3-1 of the support structure 3. However, the fixed partition wall 8 may be fixed to the mounting member 3-2 or may be integrated with the mounting member 3-2. Further, when the biological containment vessel 2 is fixed to the pillar of the support structure 3 or the mounting member 3-2, it may be fixed to the biological containment vessel 2 directly or via a fixing member.
  • the movable partition wall 7 has substantially the same thickness as the fixed partition wall 8, and is installed so that the upper surface and the lower surface thereof are substantially flush with the upper surface and the lower surface of the fixed partition wall 8.
  • the conveying device 5 is disposed so as to contact the short side of the growing unit 4.
  • the transport device 5 is used for transporting the organism storage container 2 upward and storing it in the growing unit 4. It can also be used to transport the organism storage container 2 taken out from the growing unit 4 downward.
  • the transport device rail 5-1 may be a guide or a mark as long as the transport device 5 does not contact the opening of the movable partition 7 during operation of the transport device 5.
  • the transfer device 5 finishes the operation of storing the organism storage container 2 in the growth unit 4, the transfer device 5 moves appropriately, the movable partition 7 is closed and closed, and the space is divided in the height direction.
  • the air flow is formed in a substantially horizontal direction by the air outlet 9 and the air inlet 10 of the air conditioning equipment installed on the opposing wall surfaces of each divided environment space, and the building 1 is formed by the fixed partition wall 8 and the movable partition wall 7.
  • Undesirable air movement in the vertical direction due to the convection phenomenon is prevented.
  • the air outlet 9 and the air inlet 10 of the air-conditioning equipment are preferably provided so that airflow is formed in the long side direction of the growing unit. In FIG.
  • the movable partition wall 7 exists on the air outlet 9 side of the air conditioning equipment with respect to the growing unit 4.
  • the movable partition wall 7 is connected to the growing unit 4. It is preferable that it exists in the inlet 10 side of an air conditioning installation. Thereby, the air supplied from the blower outlet 9 can be efficiently applied to the growing unit 4.
  • the growing unit 4 has a structure in which a plurality of organism storage containers 2 are supported in the vertical direction by a support structure 3 composed of a pillar 3-1 and a mounting member 3-2.
  • the support structure 3 is constituted by the pillar 3-1 and the mounting member 3-2, but may be constituted by only the pillar 3-1. In this case, the organism storage container 2 and the pillar 3-1 are directly fixed.
  • the fixed partition wall 8 is fixed to the column 3-1 of the support structure 3, but may be fixed to the mounting member 3-2 or integrated with the mounting member 3-2. Further, when the biological containment vessel 2 is fixed to the column of the support structure 3 or the mounting member 3-2, the fixed partition wall 8 may be fixed to the biological containment vessel 2 directly or via a fixing member. Good.
  • a lighting facility 11 (not shown) is fixed to the lower surface of the mounting member 3-2, and is configured to irradiate the organism stored in the organism storage container 2 for the purpose of growing it. .
  • the plurality of support structures 3 are connected via the fixed partition walls 8, but the plurality of support structures 3 may not be connected via the fixed partition walls 8.
  • the biological breeding facility according to the present invention does not have to have the fixed partition wall 8, the biological storage container 2 that can store the biological body, the support structure 3 that supports the biological storage container 2, and the support structure 3 It is preferable to provide a fixed partition wall 8 fixed to the organism storage container 2.
  • FIG. 2B shows an example of the configuration of the growing unit 4 with respect to the installation position of the fixed partition wall 8 in order to improve work efficiency. Normally, as shown in FIG.
  • the mounting member or the like blocks the air flow in the vertical direction
  • the upper or lower surface of the fixed partition 8 is the upper surface or the upper surface of the mounting member. It is comprised so that it may become a surface position substantially the same as a lower surface. Outside the growth unit 4, the partition blocks the air flow in the vertical direction, thereby improving the efficiency of air conditioning in the divided space.
  • a reflecting plate 3-3 is newly provided, and the upper surface or the lower surface of the fixed partition 8 is substantially the same as the upper surface or the lower surface of the reflecting plate 3-3, not the mounting member 3-2. It is installed so that it becomes the position of.
  • the organism storage container 2 When working on the fixed partition wall 8, if the upper surface of the fixed partition wall 8 is set so as to be substantially at the same position as the upper surface of the mounting member 3-2, the organism storage container 2 is carried into or out of the growth unit 4. In doing so, since there is no gap between the lower surface of the biological containment vessel 2 and the fixed partition 8, the organism containment vessel 2 is difficult to handle. Accordingly, the mounting member 3-2 is installed so as to be positioned higher than the fixed partition wall 8, and the air flow in the vertical direction in the growth unit 4 is blocked by the reflecting plate 3-3. It is possible to facilitate handling of the biological storage container 2 located at the lowest level in the divided space while maintaining the efficiency.
  • the support structure includes a column 3-1 and a plurality of mounting members 3-2, and the plurality of mounting members 3-2 are fixed to the columns 3-1.
  • the biological storage container 2 is installed on the mounting member 3-2.
  • the fixed partition 8 is fixed to a column 3-1 that is a part of the support structure 3.
  • fixed partition walls 8 are installed on three side surfaces.
  • the number of side surfaces on which the fixed partition walls 8 are installed is not limited. It is sufficient that the fixed partition wall 8 is formed on at least one side surface of the.
  • the plurality of support structures 3 have a structure connected via fixed partition walls 8, and all adjacent support structures 3 are connected via fixed partition walls 8.
  • the fixed partition 8 in FIG. 4 includes a column and a mounting member as shown in FIG. 3, and the organism storage container 2 is installed on the mounting member.
  • the fixed partition 8 is formed on the three side surfaces of all the support structures 3.
  • the fixed partition wall 8 is substantially continuously installed.
  • the worker can freely move when the fixed partition wall 8 can function as a scaffold in addition to the function of space division.
  • An operator can go up the stairs 6 from the floor to reach the fixed partition 8 as a scaffold.
  • the staircase 6 is provided only in one place, but a plurality of steps can be provided according to the scale of the biological breeding facility.
  • the staircase 6 is installed at any one of the four corners of the plurality of support structures 3 because the airflow is not hindered.
  • fixed partition walls 8 are installed on three side surfaces among the four side surfaces of each support structure 3.
  • the biological storage container 2 can be installed directly on the support structure 3 from the transport device 5. It is preferable that the fixed partition wall 8 is not formed on at least one side surface.
  • the type of the transport device 5 is not particularly limited as long as it can transport the biological containment vessel 2 in the vertical direction, and a lift, a forklift, a crane, an aerial work device, or the like can be used.
  • FIG. 5 shows an example of a structure in which the biological breeding facility includes water supply pipes 14, 15 and 16, which are facilities for supplying water to the biological containment vessel 2, and the lighting facility 11.
  • a fixed partition wall 8 as a scaffold is fixed to the support structure, and a state in which an operator is directly on the fixed partition wall 8 as a scaffold is shown on the left side in the figure.
  • a step may be placed on a fixed partition wall 8 as a scaffold, and an operator may ride on it.
  • the lighting equipment 11 fixed to the support structure is supplied with electric power by the electric wirings 12 and 13.
  • the biological containment vessel 2 is supplied with water guided by the water supply pipes 14, 15 and 16.
  • FIG. 6 is an example of a structure in the case where the breeding unit 4 is installed in a closed building and is provided with air conditioning equipment. Air generated by an air conditioner (not shown) is supplied to the building from the outlet 18 through the outlet duct 17. The air in the building is returned to the air conditioner from the suction port 18 through the suction duct 19 or discharged outside. The blowout duct 17 and the suction duct 20 are exposed in the room or embedded in the wall. It is preferable to appropriately determine the size and arrangement of the air outlet 18 and the air inlet 19 so that an optimal airflow can be obtained.
  • Air generated by an air conditioner (not shown) is supplied to the building from the outlet 18 through the outlet duct 17.
  • the air in the building is returned to the air conditioner from the suction port 18 through the suction duct 19 or discharged outside.
  • the blowout duct 17 and the suction duct 20 are exposed in the room or embedded in the wall. It is preferable to appropriately determine the size and arrangement of the air outlet 18 and the air inlet 19 so that an optimal air
  • the air conditioner, the blow-out duct, and the suction duct are preferably integrated into one for cost reduction.
  • the air-conditioning apparatus, the blow-out duct, and the suction duct are installed in only one space divided by the fixed partition wall 8 or in a plurality of spaces.
  • the blower outlet 18 and the suction inlet 19 are provided in the position of the mutually substantially same height in each space from a viewpoint of circulation efficiency.
  • the fixed partition wall 8 is in contact with the building wall, but the fixed partition wall 8 may not necessarily be in contact with the building wall.
  • FIG. 7 is an exemplary view of a method for opening and closing the movable partition wall 7 according to the present invention.
  • 7 (a) illustrates a method of opening and closing the movable movable partition wall 7 in the closed state by the variable load element 21.
  • the variable load element means a physical mechanism capable of changing its weight or vertical load, that is, an actuator, or a combination of an actuator and a balance weight.
  • actuators include mechanical elements that convert energy into mechanical work, such as servo motors, AC motors, DC motors, hydraulic motors, hydraulic cylinders, pneumatic cylinders, electric cylinders, and combinations thereof.
  • the movable partition wall 7 can be returned to the closed state.
  • the wire 24 may be replaced with a chain or a timing belt.
  • the movable partition wall 7 is divided into two parts, and an independent variable load element 21 and a wire 24 are connected to each of the movable partition wall 7 so that the movable partition wall 7 is opened or closed like a double door. It is also possible to make it.
  • FIG. 7 (b) illustrates a method of opening and closing the closed movable partition wall 7 by the pneumatic cylinder 22.
  • the cylinder can be driven by controlling pressurization and release to the atmosphere inside the pneumatic cylinder 22 with a solenoid valve or the like, and the movable partition 7 can be opened or closed.
  • the movable partition wall 7 may be bent like a bellows. It has a possible shape and is arranged on the movable partition rail 25.
  • the movable partition 7 can be opened to the right by using the left variable load element, or the movable partition 7 can be opened to the left by using the right variable load element. You can also.
  • 7 (d) exemplifies a method for opening and closing the closed movable partition 7 using a variable load element as in 7 (a).
  • the movable partition 7 is wound into a roll. Is arranged so as to be automatically wound around a winding portion 23 having a spring mechanism. By releasing the downward tensile stress applied to the wire 24 applied by the variable load element 21, the movable partition wall 7 is automatically wound around the winding portion 23 and can be opened.
  • Building 1 The building is used to store the growing unit and manage the growing environment in the vicinity of the biological containment vessel within a predetermined condition range. It is only necessary to store the growing unit and provide a necessary space such as a space for the operation area of the transfer device around the growing unit, and it is preferable to minimize the space to be controlled for growing the organism.
  • the present invention can be suitably used as equipment for industrially growing organisms, and the length of one side of the building is usually 2 m or more, preferably 3 m or more, more preferably 4 m or more, and usually 30 m. Hereinafter, it is preferably 20 m or less, more preferably 10 m or less.
  • the height of the ceiling is usually 2 m or more, preferably 2.5 m or more, more preferably 3 m or more, and usually 20 m or more, preferably 15 m or more, more preferably 10 m or less.
  • the temperature control becomes difficult when the height of the building room increases, the height can be set according to the strictness of the required temperature control. For example, control is performed at about ⁇ 2 ° C with respect to the target temperature. In this case, 10 m or less is preferable.
  • control is performed at about ⁇ 2 ° C with respect to the target temperature. In this case, 10 m or less is preferable.
  • it also varies depending on the outside air conditions of the site and the amount of heat sources in the room such as lighting devices.
  • the wall surface and roof may be optionally insulated. In order to insulate, it is desirable to use an insulating material having a thickness of about 40 mm to 200 mm.
  • the size of the interior of the building must include the space necessary for the storage of the breeding unit, the handling and observation of living organisms, the maintenance of the growing unit, etc., for example, the growing unit closest to the wall of the building
  • the distance is 50 cm or more, preferably 70 cm or more.
  • the distance between the top of the growing unit and the ceiling of the building is 1 m or more, more preferably 1.5 m or more, it may be advantageous for air conditioning air conditioning.
  • the plurality of growing units are preferably arranged so as to be adjacent on their long sides.
  • the building walls preferably have sufficient heat and air tightness to reasonably manage the environment for biological growth.
  • the floor, the wall, and the ceiling are formed by preferably using a plywood laminated with a heat insulating material, a material having low thermal conductivity, such as wood, a foamed material, and a plywood material thereof.
  • the inner wall of the building and the fixed partition may be in close contact with each other or may be separated from each other.
  • the fixed partition can be used as a scaffold, it is preferable to take safety measures such as installing a handrail on the scaffold when the inner wall and the scaffold are separated so that workers and engineers can work safely.
  • the inner walls, ceiling and floor of the building use materials suitable for the environmental temperature and humidity for growing organisms, especially materials that do not easily corrode with moisture, and dust, dirt, mold, etc. will adhere to the surface.
  • a material having a smooth shape, and when they adhere it is preferable to use a water resistant material so that wiping and cleaning with water or the like can be performed.
  • a drainage basin and a drain outlet for draining dirty water are preferably installed so as to be convenient for cleaning. At that time, a flow stop is appropriately provided in the opening so that the drainage does not leak inappropriately.
  • the inner wall, ceiling, and floor surfaces of the building may be appropriately subjected to surface treatment in order to provide necessary functions.
  • the building is preferably a building in which the space including the breeding unit and the transfer device can be closed.
  • a panel having a heat insulating function, a decorative calcium plate, and the like are used, and a hard urethane material is particularly preferably used for the floor material.
  • the building includes air conditioning equipment
  • the air conditioning duct such as the blowout duct 17 and the suction duct 20 in order to realize its proper operation and effect.
  • the air outlet 18 and / or the inlet 19 of the air conditioning equipment on a wall
  • the duct connecting the air conditioning equipment and the mouth has a simple shape with a sufficiently reasonable size. It is buried so that the air passage can be maintained.
  • the organism containment vessel is for growing, cultivating and / or holding an organism. It has the function of holding and / or discharging water as needed. Although the shape is arbitrary, in order to increase the efficiency of the space required for the installation of the biological breeding equipment, it is desirable to stack biological storage containers vertically at narrow intervals, so a relatively thin tray shape in the horizontal direction is preferably used. .
  • the organism to be stored is not limited as long as it is a living organism, but the growing facility of the present invention is particularly suitable for plants, particularly plants having many leaf parts.
  • the shape of the bottom surface is not particularly limited and may be any of a circle, an ellipse, and / or a polygon, but a quadrangle is preferable in terms of space use efficiency.
  • the size in the horizontal direction is not particularly limited, but in the case of a circle, the diameter is long, in the case of an ellipse, the longest diameter is in the case of a polygon, and the maximum diagonal length is usually 20 m or less, preferably 5 m or less, more preferably 2 m. Hereinafter, it is further preferably 1.5 m or less, usually 10 cm or more, preferably 20 cm or more, more preferably 30 cm or more.
  • the height is usually 2 m or less, preferably 1 m or less, more preferably 50 cm or less, still more preferably 10 cm or less, and the lower limit is usually 5 mm or more, preferably 1 cm or more, more preferably 3 cm or more. In the case of having side surfaces, the height of the side surfaces is preferably constant.
  • the organism storage container may be provided with a partition or a plurality of small containers as required.
  • the storage container may be appropriately provided with a structure such as a section for holding or fixing a living organism, a gripping portion, and the like, a flow channel for supplying water, a water supply unit, a drainage unit, and the like.
  • the material of the containment vessel there are no particular restrictions on the material of the containment vessel, but usually resin materials such as ABS, vinyl chloride, polypropylene, polystyrene, acrylic resin, polycarbonate, urethane, expanded polystyrene, and alloys and filler composite materials thereof, carbon steel, stainless steel, aluminum steel
  • resin materials such as ABS, vinyl chloride, polypropylene, polystyrene, acrylic resin, polycarbonate, urethane, expanded polystyrene, and alloys and filler composite materials thereof, carbon steel, stainless steel, aluminum steel
  • a metal material such as wood, glass, or the like is used.
  • a resin material is preferable because a component that affects the growth of a living organism is hardly generated.
  • the containment vessel should have a necessary minimum capacity in order to improve air conditioning efficiency, and preferably has a shape that does not have unnecessary irregularities on the surface so as to be advantageous for airflow of air conditioning.
  • the containment is preferably arranged regularly.
  • the support structure is used for supporting a plurality of biological storage containers in the vertical direction.
  • the support may be fixed or placed.
  • the method for fixing is not particularly limited as long as the support structure and the biological containment vessel are fixed with a required strength. It is fixed directly or via a connecting member between the biological breeding container and the support structure. Specifically, screwing, bolting, welding, adhesion and the like can be mentioned.
  • the support structure and the biological containment vessel may be fixed on the side surface or the bottom surface of the biological containment vessel. In the case of being fixed via the connection member, the connection member may be installed between the support structure and the side surface of the biological containment vessel, or may be installed between the support structure and the bottom surface of the organism containment vessel. Good. When installing between a support structure and the bottom face of a biological storage container, the method of installing a biological storage container directly or indirectly on the upper surface of the mounting member mentioned later is mentioned.
  • the pillar which consists of prismatic or rod-shaped material is used preferably.
  • the support structure is a member that can place the biological containment vessel on the column 3-1 made of a prismatic or rod-like material (hereinafter referred to as a placement device).
  • a plurality of members 3-2) are fixed in the vertical direction, and the biological storage container 2 is placed on the members.
  • the mounting member 3-2 is fixed to the column 3-1 directly or via a fixing member, such as screwing, bolting, welding, adhesion, etc. The method of fixing by a method is mentioned.
  • a plurality of mounting members 3-2 are provided in the vertical direction, and the biological storage containers 2 are stacked in multiple stages in the vertical direction by placing the biological storage containers 2 on each of the mounting members 3-2.
  • the mounting member 3-2 may be provided with a member for aligning the biological storage container 2 on the upper surface thereof. Examples of the member include a rail.
  • the biological containment vessel When the support is placed, the biological containment vessel can be handled independently of the support structure, so that the biological containment vessel 2 can be carried into the support structure from another place and can be carried out from the support structure 3 to another place. This is preferable.
  • the mounting member In order to facilitate carrying in and out of the biological storage container from the support structure, it is preferable that the mounting member includes a roller, a rail, a belt, and the like. Working efficiency can be improved by adopting a structure that can be moved by simply applying force in the direction of carrying in and out of the biological containment vessel. Usually, the movement is performed in a direction connecting the side of the biological storage container in which the transport device is installed and the opposite side.
  • the size of the entire growth unit including the support structure and the biological containment vessel as a constituent element is not particularly limited as long as the biological containment vessel can be appropriately accommodated, but the maximum horizontal length is usually 100 m or less, preferably It is 50 m or less, More preferably, it is 20 m or less, More preferably, it is 15 m or less, and the minimum is 10 cm or more, Preferably it is 20 cm or more, More preferably, it is 30 cm or more.
  • the upper limit of the height is usually 20 m or less, preferably 10 m or less, more preferably 8 m or less, and the lower limit is usually 1 m or more, preferably 1.5 m or more, more preferably 2 m or more, still more preferably 4 m or more, and most preferably It is 5 m or more.
  • the size of the support structure is not more than the above upper limit, the installation space does not become too large, air conditioning is facilitated, and the operation path of work when performing industrial production of living organisms is in an appropriate range. It can be.
  • the required quantity of the support structure required for a certain amount of organism growth can be suppressed, and the volume of the space required around each support structure can also be suppressed.
  • the upper limit of the height of the mounting member is usually 50 cm or less, preferably 15 cm or less, more preferably 10 cm or less, further preferably 5 cm or less, most preferably 3 cm or less, and the lower limit is usually 1 mm or more, preferably 3 mm or more. is there.
  • the height is equal to or less than the upper limit, the weight of the entire support structure can be suppressed, which is preferable in terms of facilitating installation work.
  • being above the lower limit is preferable in that it is easy to ensure sufficient strength to place the biological containment vessel.
  • a biological storage container is multistage, for example, can be 5 steps or more, 10 steps or more, 15 steps or more, 20 steps or more.
  • wood or metal materials such as carbon steel, stainless steel, and aluminum steel are preferably used in terms of high strength, but they are more stable and have high installation accuracy.
  • a metal material is more preferable.
  • metal materials that are not easily corroded such as stainless steel, aluminum steel, and alloy materials thereof are preferable.
  • a metal material that has been appropriately coated, passivated or plated it is also possible to use a metal material that has been appropriately coated, passivated or plated.
  • a lighting facility When light is necessary for the growth of the organism, a lighting facility may be provided in the organism growth facility. Specific examples of cases where light is necessary for the growth of organisms include those that require a light and dark period in order to maintain life for the intended period or to promote the growth of organisms, For example, when it is desired to grow in the desired shape and direction, light energy for photosynthesis is required. Since the light emitted from the lighting equipment needs to be appropriately irradiated according to the purpose to the living thing existing in the biological containment vessel, the lighting equipment is usually installed relatively near the biological containment vessel. In particular, it is convenient for the lighting equipment to be installed at the top of each biological containment vessel for the convenience of workers and engineers to observe and manage the growth state of the organism.
  • the fixing member for lighting equipment to which the fitting part or the concavo-convex part is given by the above-mentioned technique to the supporting structure by the method such as welding and adhesion fix the fixing part to the fitting part or the concavo-convex part.
  • Examples include a method of mounting and fixing the lighting equipment so that the position does not change by fitting. In that case, it is preferable to arrange so that the light to be radiated can be evenly irradiated to the organism to be grown.
  • a reflector can be used for the purpose of appropriately irradiating a living organism with light emitted from the lighting equipment.
  • the reflector is usually disposed on the back surface of the light emitting unit of the lighting equipment, and has a function of reflecting light emitted in a direction that is difficult to use for irradiation of living things in a preferable direction.
  • the reflecting plate is not particularly limited as long as it has a surface state and / or color having a high reflectance, but a white or milky white metal plate or plastic plate having a smooth surface is usually used.
  • the reflector is fixed to the support structure of the present invention, for example.
  • the lighting equipment is not limited as long as the object can be achieved, and known lighting equipment can be used.
  • types of lighting equipment include sodium lamps, mercury lamps, fluorescent lamps, metal halide lamps, ultraviolet lamps, infrared lamps, far-infrared lamps, microwave irradiation devices, LEDs, electroluminescence, neon lamps, and the like.
  • fluorescent lamps and LEDs with high luminous efficiency are preferable.
  • a cylindrical or flat transparent or semi-transparent case containing or emitting a light emitting part is used. .
  • the upper limit of the size in the horizontal direction is usually 3 m or less, preferably 2 m or less, more preferably 1.5 m or less, and the lower limit is 30 cm or more, preferably 50 cm or more, more preferably 1 m or more. If this size is too large, installation work becomes difficult, which is not preferable. On the other hand, if it is too small, light irradiation unevenness tends to occur and the electrical wiring required for the lighting equipment becomes complicated, which is not preferable. You may give a waterproof specification by the method of covering the electrical connection part of lighting equipment with a cap.
  • lighting equipment with high luminous efficiency and low heat generation is preferably used.
  • the biological breeding facility of the present invention includes an air conditioner, if the heat generated by the illumination is large, the energy in the air condition tends to increase and an undesirable convection phenomenon is easily promoted, which is not preferable.
  • a facility for supplying water for that purpose may be installed. it can.
  • the water supply facility is a pipe and / or water channel for transporting water to a predetermined position or height, a tray container for directly supplying water to a living organism, or a container for storing a water retention agent for holding water.
  • the water retention agent is called a culture medium when the organism to be grown is a plant.
  • the container is often installed so that the water surface can be kept horizontal.
  • the water supply facilities will not interfere with the growth of living organisms, and if lighting facilities are installed, the air conditioning efficiency will be further reduced so as not to block the light path from the lighting to the organisms. In order to prevent this, it is arranged so as to have a minimum size and a minimum required space for the installation.
  • screws or bolts can be used directly or via a fixing member using the side of the biological containment vessel or the support structure, or a dedicated space provided at the bottom of the support structure.
  • a fixing member provided with a fitting portion or a concavo-convex portion by the above-described method to a biological containment vessel or a support structure, and the fitting portion or the concavo-convex portion to the fixing member.
  • a method of mounting and fixing equipment for supplying water so that the position does not change by being fitted to the part is adopted.
  • the connection part of the equipment that supplies water is securely connected and properly connected so that there is no electrical wiring short circuit or leakage of water that may cause electric shock to workers and engineers.
  • Connections must be waterproof.
  • a waterproof plate may be used. If a waterproof board is a board which does not let water pass, there will be no restriction
  • a waterproof board is arrange
  • the water used in the biological breeding facility of the present invention may contain solutes or dispersed components for the purpose of nutrients, pH control, sterilization, condition monitoring, and the like.
  • the facility for supplying water may have ancillary facilities for realizing the concentration and dispersion state of the solution and for monitoring and / or controlling the state.
  • incidental equipment include a densitometer, a thermometer, a pH meter, an electrical conductivity meter, a photometer, and the like.
  • the material of the components other than the pump of the water supply pipes 14, 15 and 16, etc. usually ABS, vinyl chloride, polypropylene, polystyrene, acrylic resin, polycarbonate, urethane, polystyrene foam, etc.
  • Resin materials, metal materials such as carbon steel, stainless steel, and aluminum steel, wood, and glass materials are used. Among these, a resin material is preferable in that a component that affects the growth of a living organism is difficult to elute.
  • an air conveying device that effectively forms an air flow property including an air flow velocity and an air flow direction is preferably used in order to effectively realize an environment necessary for growing a living organism.
  • the air conveying device is not limited as long as it can be used for the purpose of uniforming the environment such as the temperature and humidity of the space or improving the ventilation efficiency by conveying air far away in a wide space.
  • a blower comprising a car, an electric motor, a casing, and an air conditioner can be used. Since the air conveyance device can be fixed and installed in any of the biological containment vessel, the support structure, and the scaffold, the desired air flow property can be formed more advantageously.
  • the biological breeding facility may include a transport means for transporting the biological containment vessel.
  • a transport means for transporting the biological containment vessel.
  • the transport means include a roller, a belt, a chain, and a wire.
  • the transport means is not particularly limited as long as the organism storage container can be transported in the growing unit.
  • the biological breeding facility of the present invention may have an incidental facility for monitoring the organism itself or the environment of the biological breeding facility. Specific examples of such incidental equipment include a thermometer, a hygrometer, an airflow measuring device, a carbon dioxide measuring device, an oxygen concentration meter, a fine particle measuring meter, and the like.
  • Air conditioning equipment The building 1 includes air conditioning equipment that can control at least one selected from the group consisting of temperature, humidity, cleanliness, oxygen concentration, and carbon dioxide concentration in the space including the growing unit 4. preferable.
  • air conditioning equipment known equipment can be used.
  • an air-conditioning facility is preferably used in order to effectively realize a preferable growing environment for living things.
  • a general air conditioning equipment can be used, which is usually a filter having a function of removing dust and microorganisms in the air, a blower for conveying air, and cooling the air. It comprises a heat exchanger for heating and / or conditioning, a humidifier and / or a dehumidifier, an air conditioner, and a duct facility serving as a conveyance path for conveying air to a desired space.
  • the gas concentration in a desired space is supplied by supplying those gases into the duct facility, for example, the blowout duct 17. Can be made uniform.
  • the air conditioning facility air outlet and the suction port are arranged so that the air conditioning air flow is also horizontal so that the movable partition and the air conditioning air flow do not interfere with each other. It is preferable to install a mouth. In that case, these ports are usually installed on the wall of the building, and preferably the outlet and the suction port are installed on the opposing walls of the building.
  • the air outlet and the suction port be installed avoiding the position of the movable partition wall so that the air-conditioning air flow is not disturbed or adversely affected by the convection phenomenon.
  • the biological breeding facility according to the present invention includes a fixed partition, it is preferable that the blowout port and the suction port are installed avoiding the position of the fixed partition.
  • the air outlet and the air inlet of the air conditioning equipment are positioned for each space that can be divided by the partition wall, so that not only air conditioning in the space that can be divided is facilitated, but also for each space that can be divided.
  • Air conditioning can be performed under different conditions. In particular, if you want to operate only a part of the biological breeding equipment, even if you stop one or more dedicated air conditioning operations in the divided spaces that are not in operation, the dedicated air conditioning operation in the active divided spaces Therefore, the air conditioning of the divided space can be maintained, so that it is possible to effectively save the air conditioning energy of the whole biological breeding facility, which is still preferable.
  • Air conditioning conditions are particularly important when growing plants for protein synthesis.
  • the conditions of air conditioning when a strict growing environment is required such as a protein synthetic plant, will be described in detail.
  • a general plant for example, for food and appreciation, only needs to be able to achieve its purpose. Therefore, the tolerance range for temperature is wide.
  • the amount of protein synthesized by the plant for protein synthesis can vary greatly depending on the growth conditions, that is, the atmosphere around the biological storage container of the growth unit in the present invention.
  • JFBuyel, R. Fischer Predictive Models for Transient Protein Expression in Tobacco (Nicotiana tabacum L.) Can Optimize Process Time, Yield, and Downstream Costs", Biotechnology and Bioengineering, Vol. 109, No. 10, October , 2012 and so on.
  • the amount of protein synthesized is reduced to about 1/3 only by changing the temperature by 5 ° C.
  • the protein synthesis plant is usually within ⁇ 5 ° C., preferably within ⁇ 4 ° C., more preferably within ⁇ 3 ° C., further preferably within ⁇ 2.5 ° C., and particularly preferably ⁇ 2 ° C. with respect to the optimum temperature. It is preferable to control the temperature within ° C. By controlling to the said range, a desired protein can be efficiently synthesize
  • the velocity of the air flow when the conditioned air supplied from the air outlet reaches the biological containment vessel is 0.2 m. / M or more, preferably 0.3 m / s or more, more preferably 0.5 m / s or more, and usually 2.0 m / s or less, preferably 1.8 m / s or less, more preferably 1.5 m / s. s or less.
  • the atmosphere around the biological containment vessel can be appropriately controlled, and when it is below the upper limit, the possibility of cultivation being hindered by the wind can be reduced.
  • Appropriate airflow velocity can promote photosynthesis and protein synthesis.
  • the temperature of the conditioned air supplied from the air outlet is usually ⁇ 20 ° C. or more, preferably ⁇ 18 ° C. or more, more preferably ⁇ 15 ° C. or more, and usually ⁇ 5 ° C. or less, preferably ⁇ 8 with respect to the indoor design temperature. C. or lower, more preferably ⁇ 10 ° C. or lower.
  • the size of the outlet is not limited as long as the above conditions can be realized, but the major axis of the outlet is usually 5 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and usually 10 m or less, preferably 5 m or less, more preferably 3 m. Hereinafter, it is more preferably 2 m or less.
  • the shape of the blowout is preferably a plane blowout, a lattice plate with blades in the vertical and / or horizontal direction (universal type), or a panel shape with a porous plate attached to the blowout surface. (Nozzle type, conical shape using air induction (anemo type / pan type)), line type (slot type), etc. can also be used.
  • the effect of the biological breeding facility of the present invention will be shown by simulation of indoor temperature distribution using a model of the biological breeding facility.
  • the following conditions are set to be the same, the difference in temperature distribution with and without the partition wall is simulated, and the result is visualized and shown in FIG.
  • Example 1 Using the simulation software FlowDesigner (Advanced Knowledge), the above conditions were set and the calculation was performed.
  • Example 1 as a comparative example, the temperature distribution in the building when no partition was provided was calculated.
  • Example 2 as an example, the temperature distribution in the building was calculated on the same assumption except that a partition wall was provided in Example 1.
  • ⁇ Calculation result> ⁇ Example 1> The calculation results are shown in FIG.
  • the temperature distribution in the building is 21 to 35 ° C
  • the temperature on the suction port side of the biological containment surface is 24 to 27.5 ° C.
  • the surface temperature of the biological containment vessel is 21 to 27.5 ° C (24.25 ° C ⁇ 3.25 ° C).
  • Example 2 The calculation results are shown in FIG.
  • the temperature distribution in the building is 21-32 ° C.
  • the temperature on the inlet side of the biological containment vessel is very well controlled at 24.5 to 25.5 ° C.
  • the temperature range on the surface of the biological containment vessel is also very well controlled at 21 to 25.5 ° C. (23.25 ° C. ⁇ 2.25 ° C.).
  • the vertical temperature distribution is large in a large space, which is consistent with the calculation result of Example 1, but it is possible to control the temperature by dividing the space vertically with partition walls and creating a horizontal air-conditioned airflow. It has become.
  • a plurality of environmental conditions such as temperature, humidity, airflow, and CO 2 concentration within specific values.
  • the optimal environmental conditions differ depending on the plant species and cultivation process (germination, cultivation, protein expression process in pharmaceutical plants, etc.), but according to the present invention, the internal heat generation, the shape of the cultivation equipment, the height of the room, etc.
  • high-precision environmental conditions for example, temperature Width ⁇ 2.5 ° C. or less is possible.
  • the control temperature range can be reduced by 1 ° C., that is, the temperature fluctuation range can be reduced by 2 ° C. due to the presence of the partition walls.
  • the control temperature range can be reduced by 1 ° C., that is, the temperature fluctuation range can be reduced by 2 ° C. due to the presence of the partition walls.
  • the biological breeding facility includes the breeding unit capable of storing a large amount of biological containment vessels at high density, and an industrial operation for mounting or collecting the large amount of biological containment vessels on the breeding unit. Is provided in the vicinity of the breeding unit and can be moved up and down. When the height of the transfer device is 2 m or more, it is preferable that the transfer device has a function capable of running or towing manually or automatically.
  • the transfer device is installed on the floor near the growing unit or on a table appropriately placed on the floor during the transfer operation.
  • the transport operation unit of the transport device can load one or more organism storage containers at a time, and has a function of moving the operation unit up and down while loading the storage container.
  • the biological containment vessel is mounted from the vicinity of the floor to a relatively high position of the breeding unit, for example, at a height of 1.5 m to 2 m or higher where the worker or engineer cannot reach the floor. Industrial operations such as collecting the containment vessel from a relatively high position near the floor.
  • the operating section may have a plurality of stages for loading the biological containment vessel.
  • the working section and the height of the growing rack and the horizontal direction are It may have a function of correcting the positional relationship.
  • you may have the safety function for preventing the fall of the biological containment container and the fall of the components required for biological containment container loading.
  • the transport device is preferably of a compact size that does not have unnecessary elements not directly related to the transport of the biological containment vessel, and the transport operation section is preferably of a type that operates in the vertical direction.
  • the operating unit may have a function of loading an operator or a technician and moving it to the upper part of the breeding unit or the scaffold.
  • the transfer device can shorten the tact time for handling the biological storage container.
  • the moving speed of the transfer device in the vertical direction is large and an operation switching time or the like not directly related to handling work is not required.
  • the moving speed of the conveying device in the vertical direction is preferably 5 cm per second, more preferably 10 cm per second, still more preferably 15 cm per second, and most preferably 20 cm per second.
  • a transfer device having the above functions, a large amount of biological storage containers can be handled by using only a limited space, so that the space required for its operation, that is, the space of the operation area can only be minimized.
  • the space for handling the necessary biological containment vessel around the growing unit can be minimized while maintaining workability.
  • the size of the transport device is such that the maximum horizontal width of the main body is usually 3 m or less, preferably 2.5 m or less, more preferably 2.3 m or less. Further, the height when the height is minimized when not in operation is usually 3 m or less, preferably 2.5 m or less, and more preferably 2.3 m or less. If the transfer device is too large, the space required for installation and operation of the transfer device becomes too large, and the efficiency of air conditioning in the building is deteriorated.
  • the maximum height for lifting the biological containment container during operation of the transport device is usually 1.5 m or more, preferably 2 m or more, more preferably 4 m or more, and even more preferably 5 m or more.
  • Specific examples of the transport device include a lift, a forklift, an escalator, an elevator, a crane, a conveyor, a robot, a pulley, a sprocket, a wire, a chain, and one or a combination of two or more Conveyors or construction equipment for working at heights.
  • a conveying device may be provided for each growing unit, but if the conveying device is capable of moving in any horizontal direction, the conveying device There may be only one device. In that case, it is preferable to provide a rail, a guide, etc. which guide to the place which a conveyance apparatus works in each growing unit.
  • the biological growing facility according to the present invention includes a movable partition wall in order to reasonably and sufficiently realize a growing environment of a living organism, particularly a living organism that requires strict control of the growing environment, for example, a plant for protein synthesis.
  • the movable partition is used when the transport device is not operated.
  • the movable partition is installed in the space of the operating area of the transfer device when in use, and has a function of dividing the space of the operating area into two or more in the height direction.
  • the film or plate required for the division itself is stored outside the space when the transfer device is in operation, that is, when the movable partition is not in operation, and is opened.
  • the membrane or plate is made of a flexible material, and when the movable partition is not in operation, it is wound out of the space and left open to operate the movable partition.
  • a method of projecting to a desired position and closing it only occasionally is mentioned.
  • movable of the movable partition wall means movement, opening / closing, and winding / unwinding.
  • the operation of the movable partition may be automatic or manual. It is preferable that the position of the movable partition wall can be controlled to an arbitrary angle in the horizontal direction or the vertical direction.
  • the installation location of the movable partition is not particularly limited, but it is preferably installed on the wall of the building for stable operation.
  • the movable partition is not operated when the transport device is used so that the transport device can move up and down the partition, and an opening is formed in the fixed partition.
  • the opening of the partition formed when the movable partition is not in operation is normally provided in the vicinity of the growing unit, but is preferably provided on the short side of the growing unit.
  • a conveying apparatus is arrange
  • the opening part of a partition exists in the suction inlet side of an air conditioning apparatus with respect to the growth unit.
  • the material of the movable partition there are no restrictions on the material of the movable partition as long as it functions. However, since it is lightweight and can be made relatively thin, it can be made of cloth, wood, plastic film or sheet, metal plate, and their materials. And a laminated sheet or a laminated sheet of a layer having a heat insulating function such as a foam material layer.
  • One movable partition may exhibit a function at one place, or a plurality of movable partitions may exhibit a function at one place. As an example in which a plurality of sheets form a set, there are door-like and blind-like forms.
  • the division of the space by the movable partition may divide the space completely or may divide a part of the space.
  • the size of the movable partition wall is determined when the transport device is in a closed state, that is, when the space of the operation region of the transport device is divided into two or more spaces in the height direction by the movable partition wall. It occupies 50% or more, preferably 70% or more, more preferably 80% or more, more preferably 90% or more, particularly preferably 95% or more, and most preferably 100% of the horizontal plane of the working area space. It is a size.
  • the movable partition wall of the biological breeding facility according to the present invention is in an open state only when the transfer device is operating, allowing free operation of the transfer device, and when the transfer device is not operating, Unless otherwise required, the closed state is maintained, and the state where the space is divided is maintained.
  • the closed movable partition is preferably in a substantially horizontal closed state.
  • the biological breeding equipment according to the present invention When the biological breeding equipment according to the present invention is equipped with air conditioning equipment, and its outlet and suction port are installed on the wall and the air conditioning airflow is in a substantially horizontal direction, the air conditioning airflow is disturbed, As described above, it is preferable that the movable movable partition wall in the closed state is closed in a substantially horizontal direction because it is difficult to be affected by an undesirably strong convection phenomenon.
  • the movable partition wall preferably has a simple shape at an appropriate position that does not interfere with the airflow generated by the air conditioner. Specifically, it is preferable to install at an angle or position that does not promote unnecessary convection, and does not have unnecessary protrusions or irregularities that cause turbulence of the airflow, and weakens the airflow.
  • the space of the operation area of the transfer device is divided into two or more spaces in the height direction by the movable partition wall.
  • the upper surface of the movable partition wall and the upper surface of the fixed partition wall, and / or the lower surface of the movable partition wall and the lower surface of the fixed partition wall are preferably disposed so as to be substantially in the same plane. More preferably, the movable partition wall is installed so that the lower surface of the movable partition wall is positioned substantially in the same plane as the lower surface of the fixed partition wall.
  • the movable lower surface, the lower surface of the fixed partition, and the lower surface of the biological containment vessel or the lower surface of the plate-like material of the support structure of the growth unit are installed on substantially the same plane, or the movable upper surface
  • the upper surface of the fixed partition and the upper surface of the biological containment vessel or the upper surface of the plate-like material of the support structure of the growth unit are installed on substantially the same plane, and are divided into the substantially same plane and the wall and the floor or ceiling.
  • Each of the divided divided environment control spaces can be air-conditioned independently, so that each divided environment control space is one or more elements selected from the group consisting of different individual temperatures, humidity, cleanliness, oxygen concentration, and carbon dioxide concentration. It can also be controlled.
  • the biological breeding facility according to the present invention increases the production scale, and even when cultivating a large number of organisms, it can handle a good biological containment vessel while maximizing the density of housing the biological containment vessel in the building.
  • the power and energy consumed when performing strict environmental management by air conditioning can be economically and economically saved. That is, it is possible to grow a large number of organisms that require strict environmental management industrially while maintaining economic efficiency.
  • the number of stages of the biological containment vessel in each divided space is usually 20 stages or less, preferably 18 stages or less, more preferably 15 stages. Or less, more preferably 10 or less. From the viewpoint of improving space efficiency, it is usually 1 stage or more, preferably 2 stages or more, more preferably 3 stages or more.
  • Fixed partition 8 A fixed partition is a partition for air conditioning in a building with the above-mentioned movable partition.
  • the present invention has a movable partition that can divide at least the space of the operation area of the transfer device into two or more spaces in the height direction, and all the regions that are desired to be divided into two or more spaces in the height direction are movable partition
  • the installation of the partition walls can be made more efficient by providing the fixed partition walls in the space where the transfer device does not operate.
  • environmental control for biological growth becomes extremely advantageous.
  • at least one surface of the movable partition wall is positioned substantially in the same plane as at least one surface of the fixed partition wall, so that airflow in the height direction derived from convection can be effectively prevented.
  • the lower surface of the movable partition wall is positioned substantially in the same plane as the lower surface of the fixed partition wall, so that the relatively high temperature air gathered on the lower surface of the fixed partition wall due to convection can move upward further. It can be effectively blocked.
  • the biological breeding facility of the present invention includes an air conditioning facility, the temperature of the air in the building is artificially changed, which may cause undesirable vertical air movement due to a very large convection phenomenon.
  • the fixed partition wall has a simple shape that does not hinder the airflow by air conditioning and is installed at an appropriate position.
  • the substantially the same plane means that the distance between the planes at the boundary is within 1 m, preferably within 50 cm, more preferably within 20 cm, and even more preferably within 10 cm.
  • the fixed bulkhead may be fixed by a connection part to the growing unit and a column and / or a beam protruding from the wall, or may be connected to each of a plurality of growing units to form a plurality of growing units. It may be fixed in the form of connecting the units.
  • the fixed partition wall is preferably one that can be used as a scaffold.
  • the fixed partition is a scaffold will be described.
  • Scaffolds are located in the vicinity of living organisms and cultivating devices that are being cultivated by workers and engineers for the purpose of observing and managing the nurturing state of organisms, and managing and maintaining cultivating devices related to water. If an operator or a technician can ride on for access, there is no particular limitation.
  • a support structure in which a plurality of organism storage containers are placed at a relatively high position, a support structure is installed to improve workability when an operator or engineer performs a predetermined work. Place the scaffolding higher than the surface.
  • the scaffold usually forms part of the breeding unit by being secured to the support structure and / or the biological containment vessel. Fixing to the support structure is preferable because the biological containment vessel can be carried in and out independently of the scaffold.
  • the scaffold is fixed to the support structure directly or through a fixing member by a method such as screwing, bolting, welding, adhesion, or the like, or the fitting part or the uneven part is attached to the support structure by the above method. Examples include a method of fixing a given beam member and placing a mounting member on the upper portion of the beam member so as to be fitted to the fitting portion or the concavo-convex portion so as not to change the position to form a scaffold.
  • the support structure has the mounting member as described above, the scaffold and the mounting member may be integrated.
  • the scaffold may be used in combination with a support provided separately from the growing unit and / or a method of fixing with a beam provided on the wall.
  • the scaffold has a flat plate shape having a horizontal size necessary for workers and engineers to work.
  • a shape that does not have unnecessary protrusions and irregularities on the surface is preferable.
  • the upper limit of the length from the end on the side of the support structure and / or the biological containment vessel to which the scaffold is fixed is usually 2 m or less, preferably 1.5 m or less, more preferably 1 m or less, More preferably, it is 80 cm or less, and a minimum is 20 cm or more normally, Preferably it is 30 cm or more, More preferably, it is 50 cm or more, More preferably, it is 70 cm or more.
  • the space for installing the scaffold does not become too large, and the overall size of the biological breeding facility can be reduced. Accordingly, the efficiency of air conditioning and light utilization can be increased. Moreover, the workability
  • the length in the direction along the support structure and / or the biological containment vessel is usually 100 m or less, preferably 50 m or less, more preferably 20 m or less, still more preferably 15 m or less, usually 50 cm or more, preferably 1 m or more, More preferably, it is 3 m or more. If this dimension is too large, installation work becomes difficult, which is not preferable. On the other hand, if it is too small, the workability of the operator or engineer is lowered, which is not preferable.
  • the thickness of the scaffold is usually 20 cm or less, preferably 10 cm or less, more preferably 5 cm or less, and usually 5 mm or more, preferably 1 cm or more, more preferably 2 cm or more.
  • the height from the floor on which the scaffold is installed can be arbitrarily set as necessary, but is usually 1 m or more, more preferably 1.5 m or more, still more preferably 2 m or more, and usually 3 m or less. If this height is too small, there are few advantageous works beyond the work contents that can be achieved if an operator or engineer reaches his hand from the ground or the floor, so the significance is small.
  • the distance in the height direction of the scaffold and the scaffold is usually 1 m or more, preferably 1.5 m or more, more preferably 2 m or more, usually 3 m or less, Preferably it is 2 m or less.
  • the distance in the height direction is equal to or more than the lower limit, it is possible to secure a working space for workers and engineers using the scaffold and to work in an ergonomically rational posture.
  • an operator or a technician uses an auxiliary fixture such as a step on the floor or a scaffold because the hand can easily reach the necessary work.
  • the scaffold may be composed of a single flat plate material and a beam material, or may be composed of a plurality of flat plate materials and a beam material. It is preferable to install so as not to form large holes or gaps so as not to scoop or fall during work, and handrails, lattices, walls, etc. can also be installed.
  • the material of the scaffold is not particularly limited, but resin materials such as fiber reinforced plastics such as FRP and engineering plastics, metal materials such as carbon steel, stainless steel, and aluminum steel, and wood are usually used. Among these, a metal material is preferable because of its high strength. For the purpose of preventing corrosion, it is also possible to use a metal material that has been appropriately coated, passivated or plated. When the scaffold has a high thermal conductivity, a metal material is preferable in that it is easy to adjust the temperature of the biological breeding facility and thereby easily control the growth of the biological organism.
  • the scaffold In order to minimize the space required for the installation of the entire biological breeding facility and to make air conditioning economically rational, the scaffold should be set to the minimum size and the thickness should be minimized. In addition, it is preferable to regularly arrange simple shapes having no unnecessary protrusions or irregularities. It is preferable that a plurality of breeding units are connected via a scaffold. It is possible not only to improve work efficiency by being able to move freely between the breeding units, but also to improve work efficiency when installing biological breeding equipment.
  • the horizontal structure is usually adjusted step by step by temporarily assembling the support structure and the biological containment vessel as necessary.
  • the leveling is performed, if a plurality of growing units are connected via a scaffold, the individual growing units are stabilized, so that work efficiency is improved. Moreover, even if it is the raising unit of the height which usually requires an aerial work vehicle, it becomes unnecessary.
  • the biological breeding facility according to the present invention includes a facility for supplying water to the biological containment vessel, it is easy to secure the level of water supply by ensuring the levelness. Since troubles are likely to occur around the water, it is necessary to increase the frequency of monitoring and maintenance, and the scaffold can be used effectively. And since the piping of water supply and / or drainage can be passed through the lower surface of a scaffold, the use efficiency of space can be raised.
  • Bulkheads including movable bulkheads and fixed bulkheads usually have a projected area of 50% or more of the floor area of the building (excluding the area where the breeding unit exists) when the biological breeding equipment is projected from the ceiling. It is preferably 70% or more, more preferably 75% or more, further preferably 80% or more, particularly preferably 90% or more, and most preferably 95% or more. Further, it is usually 99% or less. By satisfy
  • the projected area of the partition wall will be described with reference to FIG.
  • FIG. 9 is a projection view of the biological breeding facility projected from the ceiling direction.
  • a movable partition wall 7 and a fixed partition wall 8 are installed between the building 1 and the growing unit 4.
  • the movable wall partition 7 and the fixed partition 8 have a space between the building wall, the column 31 and the growing unit 4.
  • the shape of the cross section in the horizontal direction of the building is complicated, there is a gap between the growing unit 4, the building column 31, the pipe 33, and the wiring 34 when the partition wall is constructed. In order to increase the efficiency of air conditioning, these gaps may be filled as necessary.
  • the simulation example 2 was performed under the condition that the projected area of the partition wall was 80% of the floor area of the building. Increasing this value enables more precise temperature control, and the protein when the plant for protein synthesis is grown. Reduction of the synthesis amount can be further suppressed, and the protein synthesis amount can be 1.5 times or more, preferably 2 times or more, more preferably 3 times or more, compared with the case where there is no partition wall. .
  • the organism breeding equipment of the present invention can be used for the overall breeding of organisms, and is particularly suitable for plants, particularly plants with many leaf parts.
  • it is suitably used for protein synthesis plants.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Greenhouses (AREA)
  • Hydroponics (AREA)

Abstract

生物の育成に必要な空気調和を効率的に行うことにより、工業的経済的に大量に育成するために好適な生物育成設備を提供することを課題とする。 建屋内に、生物を格納できる生物格納容器、及び、前記生物格納容器を支持する支持構造体を備える育成ユニット、並びに、前記生物格納容器の搬送装置を含む生物育成設備であって、該搬送装置の稼動領域の空間を、高さ方向に2つ以上の空間に分割でき、その少なくとも一部が可動である隔壁を有する生物育成設備により課題を解決する。

Description

植物育成設備
 本発明は、生物の育成設備、例えば植物の育成設備に関する。
 大規模な工業的生産、すなわち大量の生物を育成しようとすると、生物を育成する空間が大きくなるため、必要となる用地がかさみ、必要な空気調和のための動力やエネルギーの消費が増大する。結果として、生物の製造に要するコストが増大し、経済性がなりたたなくなる問題が生じてくる。このことが、育成環境の厳格な管理を要する生物の工業的生産規模拡大を妨げていた。
 その解決手段として、生物を、複数の格納容器に格納し、かつそれらを支持構造体に接続して垂直方向に積み重ねた形態の生物を育成するための育成ユニットが提案されている。例えば生物のうち植物を例に取ると、その植物の育成のため、多段の格納容器を備えた育成ユニットが知られている(特許文献1、非特許文献1)。この方法によれば、比較的に狭い空間において生物を育成できるので、用地も空気調和にかかるエネルギーも節約できる。
特開2005-021064号公報
植物工場大全 2010年7月28日 日経BP社発行
 本発明らはタンパク合成用植物の大規模な育成およびタンパクの工業的な製造を試みたところ、タンパク合成用植物のタンパクの生産性は、育成環境により大幅に変化するため、育成環境の厳密な制御が必要であった。一方、公知の育成装置では育成環境の制御を厳密に行うのが難しため、タンパクの合成を効率的に行うのが困難であった。
 また、タンパク合成用植物を育成する際に、空間効率を上げるために多段の育成ユニットに植物格納容器を設置して実際にタンパク合成用植物を育成する。その際には、作業者や技術者が植物の育成状態の観察や管理、水が関係する育成装置の管理やメンテナンスを行う必要がある。従ってその育成ユニットは、現実的には作業者が台に乗って手が届く高さのものになる。非特許文献1に記載されているように、5m以上の高さを有する育成ユニットも知られている。しかしながらその場合は、作業者や技術者が育成されている生物や育成ユニットの近傍にアクセスするために必要な特別な空間、例えば作業者や技術者を搭載する昇降装置が稼働したり、作業者や技術者が高所作業をするためのはしご等を安全に設置したりするのに十分な通路や空間が必要となる。
 また、生産工程上、建屋内にて生物格納容器を移動させる必要がある場合、特に高さのある育成ユニットの高所に設置された生物格納容器を取り扱うためには、床から設置場所である高所までの上下方向の稼働領域を有する搬送装置を用いる必要性が生じる。従って、搬送装置を安全に稼働するための十分な空間も確保しなければならない。すなわち、育成ユニットを高くするほど、育成ユニットの周囲に空間が必要となり、生物育成設備の敷地や空気調和しなければならない空間が大きくなる。その結果、全体としての建設費用やエネルギーコストの増大を抑えきれない問題がある。
 更に、本発明者らの検討によると、部屋の高さを高くすると空間の空気の状態にむらがでるため、植物などの生物の育成状態を均一にするのが困難であることがわかった。高さのある育成ユニットを設置するための天井の高い建屋を空気調和する場合は一般に、対流現象に由来する比較的に温度の高い空気を建屋の天井部より吸い込んで冷房する方法や、比較的に温度の低い空気を建屋の床部より吸い込んで暖房する方法が採られる。その際、空気調和の主な気流は上方または下方の垂直方向となるため、建屋の天井と床の距離が広がって建屋内空間における気流の流路が長くなればなるほど、その気流から離れた位置に積み重ねて設置された生物格納容器の近傍の空気調和のばらつきを抑制することが各段に難しくなる。
 その対策として気流を水平方向にしようとしても、それに直交する対流現象に妨げられるので、所期の効果が得られない。そのため、育成ユニットの高さについて、自ずと経済的な限界が生じる。
 一方で、生物の搬入・搬出を頻繁に行う必要があるため、作業性を考慮して、一つの部屋の高さをあげるのではなく階を分けることが考えられる。しかしこの場合も、その建築コストが増大する問題や、階を分けることによる垂直方向の生物格納容器設置可能密度が低下する問題、および生物格納容器搬送の作業動線が直線性を寸断され極めて非効率になる問題等の問題が生じる。
 以上の様に、育成環境の厳密な管理を要するタンパク合成用植物の様な生物を、経済的合理性を維持しつつ、工業的に大量に育成することが実際上極めて困難であった。
 本発明者らは、タンパク合成用植物の様な育成環境の厳密な管理を要する生物を、製造コストを抑えて経済的に大量に育成するための技術を鋭意検討した。その結果、環境制御に適した建屋内に設置した、多数の生物格納容器を高密度に収納可能な育成ユニットと、合わせて使用するのに適した生物格納容器を搬送するための搬送装置、および建屋内の空間を適切かつ適時に分割する隔壁、によって構成された生物育成設備を用いることによって、前記の問題点を解決できることを見いだし、本発明に到達した。
 すなわち、本発明の第1の実施形態に係る要旨は以下に存する。
[1]タンパク合成用植物を育成する植物育成設備であって、
 床、壁、及び天井を有する建屋内に、
 植物を格納できる植物格納容器、及び、前記植物格納容器を上下方向に複数の段で支持する支持構造体を備える育成ユニットと、
 前記植物格納容器を前記育成ユニット内に配置するために、前記植物格納容器を前記育成ユニットの上下方向に移動できる搬送装置と、
 前記建屋内の、前記植物育成ユニットを除く空間を、上下方向に2つ以上の空間に分割でき、その少なくとも一部に、前記搬送装置が上下方向に移動するための開口部を形成しうる可動部を有する1以上の隔壁と、
 前記隔壁によって2つ以上の空間に分割された少なくともそれぞれの空間に、空気調和装置の吹出口と吸込口とを有する、
植物育成設備。
[2]前記建屋が、前記育成ユニット、前記搬送装置及び前記隔壁を含む空間を閉鎖系にしうる建屋である[1]に記載の植物育成設備。
[3]前記空気調和装置の吹出口と吸込口は、前記隔壁によって分割された少なくともそれぞれの空間において対向する壁面に設置されている、[1]または[2]のいずれかに記載の植物育成設備。
[4]前記複数の育成ユニットが、その長辺で隣接するように配置されている、[1]~[3]のいずれかに記載の植物育成設備。
[5]前記隔壁の可動部により形成される開口部が、前記育成ユニットの短辺側に設けられている[1]~[4]のいずれかに記載の植物育成設備。
[6]前記隔壁の可動部により形成される開口部が、前記育成ユニットに対して空気調和装置の吸込口側に設けられている[1]~[5]のいずれかに記載の植物育成設備。
[7]前記搬送装置が、前記育成ユニットの短辺と、該育成ユニットの短辺に対向する壁面との間に形成される空間に配置されている[1]~[6]のいずれかに記載の植物育成設備。
[8]前記育成ユニットの支持構造体が、植物格納容器を育成ユニットの長辺方向に移動させる搬送手段を備える、[1]~[7]のいずれかに記載の植物育成設備。
[9]前記タンパク合成用植物が組換え遺伝子を含む植物である、[1]~[8]のいずれかに記載の植物育成設備。
[10]前記隔壁を、植物育成設備を天井方向から投影した際に、隔壁の投影面積が建屋の床面積の70%以上である、[1]~[9]のいずれかに記載の生物育成設備。
 また、本発明はタンパク合成用植物に好ましく適用できるが、タンパク合成用植物のみならず、植物、ひいては目的に応じて生物にまで適用できる。すなわち、本発明の第2の実施形態に係る要旨は以下に存する。
[1]床、壁、及び天井を有する建屋内に、生物を格納できる生物格納容器、及び、前記生物格納容器を上下方向に複数の段で支持する支持構造体を備える育成ユニット、並びに、前記生物格納容器を育成ユニット内に配置するために、前記生物格納容器を育成ユニットの上下方向に移動できる搬送装置を含む生物育成設備であって、
 該搬送装置の稼動領域の空間を、高さ方向に2つ以上の空間に分割できる可動式隔壁を有する生物育成設備。
[2]前記建屋が、前記育成ユニット及び前記搬送装置を含む空間を閉鎖系にしうる建屋である[1]に記載の生物育成設備。
[3]前記建屋が、前記育成ユニットを含む空間の、温度、湿度、清浄度、酸素濃度、および/または二酸化炭素濃度を制御しうる空気調和設備を含む[1]または[2]に記載の生物育成設備。
[4]前記空気調和設備が吹出し口と吸い込み口を備え、該吹出し口と該吸い込み口とが空気調和の気流が水平方向となるように設置されている、請求項[1]~[3]のいずれか1つに記載の生物育成設備。
[5]前記空気調和設備が吹出し口と吸い込み口を備え、該吹出し口と該吸い込み口とが、それぞれ前記可動式隔壁により分割されうる空間毎に有する、[1]~[4]のいずれか1つに記載の生物育成設備。
[6]前記搬送装置の稼動領域以外の空間を、高さ方向に2つ以上の空間に分割できる固定式隔壁を有する[1]~[5]のいずれか1つに記載の生物育成設備。
[7]前記固定式隔壁が足場である、[6]に記載の生物育成設備。
[8]複数の前記育成ユニットが、前記固定式隔壁を介して連結された、[6]または[7]に記載の生物育成設備。
[9]前記可動式隔壁が、前記可動式隔壁により前記搬送装置の稼動領域の空間を高さ方向に2つ以上の空間に分割したとき、前記可動式隔壁の上面と前記固定式隔壁の上面、および/または、前記可動式隔壁の下面と前記固定式隔壁の下面が、略同一平面に位置するように設置された、[6]~[8]のいずれか1つに記載の生物育成設備。
[10]前記可動式隔壁の下面が、前記固定式隔壁の下面と略同一平面に位置する、[6]~[9]のいずれか1つに記載の生物育成設備
[11]前記可動式隔壁が、水平方向乃至垂直方向の任意の角度に制御できる、[1]~[10]のいずれか1つに記載の生物育成設備。
[12]前記可動式隔壁が、前記建屋の壁に設置された、[1]~[11]のいずれか1つに記載の生物育成設備。
[13]前記可動式隔壁の大きさが、前記可動式隔壁により前記搬送装置の稼動領域の空間を、高さ方向に2つ以上の空間に分割した際に、前記搬送装置の稼動領域の空間の水平方向の平面の50%以上を占める大きさである、[1]~[12]のいずれか1つに記載の生物育成設備。
 本発明によれば、一つの空間に、生物格納容器を高密度に高さ方向に高く積み上げて収納できる育成ユニットを用いることができる。加えて、有効な搬送装置の稼働空間を除いて非効率な作業空間や移動空間を設ける必要がなく、その育成ユニットに隣接する別の育成ユニットまたは壁との距離を小さくできるので、空間の利用効率を非常に大きくすることができる。
 また本発明によれば、垂直方向の対流による影響を解消しつつ、空気調和の気流を水平方向に維持できるので、育成環境の厳密な管理を要するタンパク合成用植物の様な生物を収納する容器を上下左右に多数配置しても、それらの近傍環境を極めて小さなばらつきで制御することができる。
 更に、本発明を応用すれば、上記特長を全て維持したまま、生物育成のための観察・維持、関連する設備のメンテナンス作業等を行うにあたって、極めて良好な作業性を実現させることができる。
本発明の実施の形態に係る生物育成設備の斜視図である。 (a)本発明の実施の形態に係る生物育成設備の部分構造の断面模式図である。 (b)本発明の実施の形態に係る生物育成設備の部分構造の断面模式図である。 本発明の実施の形態に係る生物育成設備を構成する育成ユニット及び固定式隔壁の斜視図である。 本発明の実施の形態に係る生物育成設備の斜視図である。 本発明の実施の形態に係る生物育成設備の断面模式図である。 本発明の実施の形態に係る生物育成設備の断面模式図である。 本発明の実施の形態に係る可動式隔壁の開閉方法の例示図である 本発明の実施の形態に係る可動式隔壁の開閉方法の例示図である シミュレーション例1の結果を示す図である。 シミュレーション例2の結果を示す図である。 生物育成設備を天井方向から投影した、投影図である。
 以下、図面を参照し、本発明の実施の形態について、詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、説明に用いる図面は、いずれも本発明に係る生物育成設備又はその構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、又は省略等を行っており、各構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、図面を用いた説明に用いる様々な数値は、いずれも一例を示すものであり、必要に応じて様々に変更することが可能である。また、以下の説明において生物は、適宜、タンパク合成用植物と読み替えることができる。
 本発明に係る生物育成設備は、床1-1、壁1-2、及び天井1-3を有する建屋1内に、生物を格納できる生物格納容器2、及び、前記生物格納容器を上下方向に複数の段で支持する支持構造体3を備える育成ユニット4、並びに、生物格納容器2を育成ユニット4内に配置するために、該生物格納容器2を上下方向に移動できる搬送装置5を含む生物育成設備である。また、本発明に係る生物育成設備は、建屋1内に、育成ユニットを除く建屋内の空間を上下方向に2つ以上の空間に分割できる1以上の隔壁を含む。
 図1においては、育成ユニット4が、床1-1、壁1-2および天井1-3で構成された建屋1内に設置されている。育成ユニット4は、複数の生物格納容器2が、柱3-1及び載置部材3-2により構成される支持構造体3により垂直方向に複数支持された構造を有している。図1において支持構造体3は柱3-1及び載置部材3-2により構成されるが、柱3-1のみにより構成されてもよい。この場合、生物格納容器2と柱3-1とが直接固定される。
 隔壁は、可動部である可動式隔壁7と固定式隔壁8とを含む。図1においては、隔壁により建屋内1の空間が上下方向に2分割されているが、隔壁の数を増やすことで3以上の空間に分割させてもよい。固定式隔壁8は支持構造体3の柱3-1に固定されているが、載置部材3-2に固定されていても、載置部材3-2と一体となっていてもよい。更に生物格納容器2が支持構造体3の柱又は載置部材3-2に固定されている場合には、生物格納容器2と直接又は固定部材を介して固定されていてもよい。可動式隔壁7は、固定式隔壁8と略同一厚みを有しており、その上面及び下面が固定式隔壁8の上面及び下面とそれぞれ略同一面になるように設置されている。
 搬送装置5は育成ユニット4の短辺に接するように配置されている。搬送装置5は、生物格納容器2を上方に搬送し、育成ユニット4に収納するために用いられる。また、育成ユニット4から取り出した生物格納容器2を下方に搬送するためにも用いることができる。搬送装置5を搬送装置用レール5-1に沿って移動させることにより、複数の育成ユニット4の間の移動が円滑になる。搬送装置用レール5-1は、搬送装置5の稼働中に、搬送装置5が可動式隔壁7の開口部に接触しないものであればよく、ガイドや目印でもよい。搬送装置5が稼動する際は、可動式隔壁7は上方に開いて開状態となり、搬送装置5が稼働するのに必要な空間を作る。搬送装置5が生物格納容器2を育成ユニット4に収納する作業を終えた際は、搬送装置5は適宜に移動し、可動式隔壁7は閉じて閉状態となり、空間を高さ方向に分割して複数の分割環境空間を形成する状態が保たれる。各分割環境空間の対向する壁面に設置された空気調和設備の吹出口9および吸込口10によって、気流は略水平方向に形成されており、かつ固定式隔壁8および可動式隔壁7によって、建屋1内の対流現象に由来する上下方向の好ましくない空気移動を阻止している。空気調和設備の吹出口9および吸込口10は、育成ユニットの長辺方向に気流が形成されるように設けられることが好ましい。
 また、図1においては可動式隔壁7は育成ユニット4に対して空気調和設備の吹出口9側に存在するが、空気調和の効率を上げるためには、可動式隔壁7は育成ユニット4に対して空気調和設備の吸込口10側に存在するのが好ましい。それにより、吹出口9から供給された空気を効率的に育成ユニット4に適用することができる。
 図2(a)において育成ユニット4は、複数の生物格納容器2が、柱3-1及び載置部材3-2により構成される支持構造体3により垂直方向に複数支持された構造を有する。図2において支持構造体3は柱3-1及び載置部材3-2により構成されるが、柱3-1のみにより構成されてもよい。この場合、生物格納容器2と柱3-1とが直接固定される。
 固定式隔壁8は支持構造体3の柱3-1に固定されているが、載置部材3-2に固定されていても、載置部材3-2と一体となっていてもよい。更に生物格納容器2が支持構造体3の柱又は載置部材3-2に固定されている場合には、固定式隔壁8は生物格納容器2と直接又は固定部材を介して固定されていてもよい。載置部材3-2の下面には照明設備11(図示せず)が固定されており、生物格納容器2に格納されている生物に、その育成を目的として光を照射できる構造になっている。
 図2(a)においては複数の支持構造体3が固定式隔壁8を介して接続されているが、複数の支持構造体3が固定式隔壁8を介して接続されていなくてもよい。本発明に係る生物育成設備は固定式隔壁8を有さなくてもよいが、生物を格納できる生物格納容器2、前記生物格納容器2を支持する支持構造体3、並びに、前記支持構造体3および/または前記生物格納容器2に固定された固定式隔壁8を備えるのが好ましい。
 また、図2(b)により、作業効率を向上させるために固定式隔壁8の設置位置に対する育成ユニット4の構成の例を示す。通常は、図2(a)に示した様に、育成ユニット4の内部では、載置部材等が上下方向の空気の流通を遮り、固定式隔壁8の上面または下面が載置部材の上面または下面と略同一の面位置となるように構成される。育成ユニット4の外部では隔壁が上下方向の空気の流通を遮ることで、分割された空間の空気調和の効率化を図る。
 一方、図2(b)では、反射板3-3を新たに設け、固定式隔壁8の上面または下面を、載置部材3-2ではなく、反射板3-3の上面または下面と略同一の位置となるように設置している。
 固定式隔壁8の上で作業する場合、固定式隔壁8の上面が載置部材3-2の上面と略同一の位置となるように設置すると、生物格納容器2を育成ユニット4に搬入または搬出する際に、生物格納容器2の下面と固定式隔壁8との間に隙間がないため、生物格納容器2が取り扱いづらくなる。従って、固定式隔壁8に対して載置部材3-2がより上方に位置するように設置し、育成ユニット4内の上下方向の空気の流通を反射板3-3により遮ることで、空調の効率を維持しつつ、分割された空間における最下段に位置する生物格納容器2を取り扱いやすくすることができる。
 図3において支持構造体は柱3-1および複数の載置部材3-2から構成され、複数の載置部材3-2が柱3-1と固定されている。載置部材3-2上に生物格納容器2が設置されている。図3において固定式隔壁8は支持構造体3の一部である柱3-1に固定されている。図3においては、それぞれの支持構造体の4つの側面のうち、3つの側面に固定式隔壁8を設置しているが、固定式隔壁8を設置する側面の数は限定されず、支持構造体の少なくとも1つの側面に固定式隔壁8が形成されていればよい。
 図4において、複数の支持構造体3は固定式隔壁8を介して連結された構造を有しており、隣接する支持構造体3は全て、固定式隔壁8を介して連結されている。なお、図4の固定式隔壁8は、図3に示したのと同様に柱と載置部材からなり、載置部材上に生物格納容器2が設置される。
 固定式隔壁8は全ての支持構造体3の3つの側面に形成されている。固定式隔壁8は実質的に連続的に設置されており、連続的に設置することで、空間分割の機能に加えて足場として機能しうる場合には、作業者が自由に移動できる。作業者は、床から階段6をのぼって足場としての固定式隔壁8に到達することができる。図4では階段6を一箇所にしか設けていないが、生物育成設備の規模に応じて複数設けることができる。生物育成設備を複数人で管理する場合には、階段6を二箇所以上設けることが好ましい。また、階段6は、複数の支持構造体3の四隅のいずれかに設置することが、気流の妨げにならず、好ましい。
 図4においては、それぞれの支持構造体3の4つの側面のうち、3つの側面に固定式隔壁8を設置している。生物格納容器2を、搬送装置5等を用いて支持構造体3に搬入または搬出する場合には、生物格納容器2を搬送装置5から直接、支持構造体3に設置できるため、支持構造体3の少なくとも1つの側面には固定式隔壁8を形成しない方が好ましい。搬送装置5の種類は生物格納容器2を上下方向に搬送できれば特に限定されず、リフト、フォークリフト、クレーン、高所作業装置等を用いることができる。
 図5は、生物育成設備が、生物格納容器2に水を供給する設備である給水配管14,15および16と、照明設備11を有する構造の例である。
 支持構造体に足場としての固定式隔壁8が固定されており、図中左側には足場としての固定式隔壁8の上に作業者が直接乗っている状態が示されている。図中右側のように、足場としての固定式隔壁8の上に踏み台を置き、その上に作業者が乗ってもよい。
 支持構造体に固定された照明設備11は、電気配線12および13によって電力が供給されている。また生物格納容器2には、給水配管14、15および16によって導かれる水が供給されている。
 図6は、育成ユニット4が閉鎖系の建屋に設置されており、かつ、空気調和設備を備える場合の構造の一例である。空気調和装置(図示せず)により生成された空気は、吹出ダクト17を通って吹出口18から建屋内に供給される。建屋内の空気は、吸込口18から吸込ダクト19を通って空気調和装置に戻されるか、もしくは屋外に排出される。吹出ダクト17および吸込ダクト20は室内に露出されているか、または壁に埋設される。吹出口18および吸込口19は、最適な気流が得られるようサイズおよび配置を適切に決定することが好ましい。
 吹出口18および吸込口19において風量および風向を調節できる機構を持たせると、気流の形成および調整が容易となる。空気調和装置、吹出ダクトおよび吸込ダクトは、コスト低減のためには、一つに統合されていることが好ましいが、固定式隔壁8により分割された一つの空間のみ乃至複数の空間毎に設置してもよく、空気調和のエネルギー効率の点からは、固定式隔壁8により分割された空間毎に設置するのが好ましい。
 吹出口18及び吸込口19は、循環効率の観点から、各空間において互いに略同一の高さの位置に設けられることが好ましい。また、各空間において高さ方向略中央地点に設けられることが好ましい。
 図6においては、固定式隔壁8が建屋の壁と接しているが、固定式隔壁8は必ずしも建屋の壁と接していなくてもよい。
 図7は、本発明に係る可動式隔壁7の開閉方法の例示図である。
 7(a)には、閉状態の可動式隔壁7を、可変荷重要素21によって開閉する方法が例示されている。可変荷重要素とは、その重量もしくは垂直方向の荷重を変化させることができる物理的機構、すなわちアクチュエーター、またはアクチュエーターとバランスウェイトの組み合わせを意味している。アクチュエーターの具体例としては、サーボモーター、ACモーター、DCモーター、油圧モーター、油圧シリンダー、空圧シリンダー、電動シリンダーおよびそれらの組み合わせ等のエネルギーを機械的仕事に変換する機械要素が挙げられる。アクチュエーターによって、可動式隔壁7に接続されたワイヤー24に対して下方に引っ張り応力を加えることにより、可動式隔壁7を開状態にすることができる。アクチュエーターを制御して該引っ張り荷重をゼロにすれば、可動式隔壁7を閉状態に戻すことができる。ワイヤー24は、チェーンまたはタイミングベルト等で置き換えてもよい。また、この原理の応用として、可動式隔壁7を2つに分割し、それぞれに独立の可変荷重要素21およびワイヤー24を接続することにより、可動式隔壁7を観音開き様に開状態にしたり閉状態にしたりすることも可能である。
 7(b)には、閉状態の可動式隔壁7を、空圧シリンダー22によって開閉する方法が例示されている。空圧シリンダー22の内部の加圧と大気解放を電磁弁等で制御することによってシリンダーを駆動し、可動式隔壁7を開状態にしたり閉状態にしたりできる。
 7(c)には、閉状態の可動式隔壁7を、7(a)と同様に可変荷重要素を用いて開閉する方法が例示されているが、可動式隔壁7は蛇腹様に折り曲げることが可能な形状を有しており、可動式隔壁用レール25に配置されている。左側の可変荷重要素を用いて可動式隔壁7を右側に開く形態に開状態にすることもできるし、右側の可変荷重要素を用いて可動式隔壁7を左側に開く形態に開状態にすることもできる。
 7(d)には、閉状態の可動式隔壁7を、7(a)と同様に可変荷重要素を用いて開閉する方法が例示されているが、可動式隔壁7はロール状に巻き取ることが可能な形状を有しており、バネ機構を備えた巻き取り部23に自動的に巻き取られるように配置されている。可変荷重要素21によって付加されているワイヤー24に対する下方への引っ張り応力を解放することによって、可動式隔壁7は巻き取り部23に自動的に巻き取られ、開状態とすることができる。
 以下、本発明に係る生物育成設備の各構成について詳細に説明する。
1.建屋1
 建屋は、育成ユニットを収納し、生物格納容器近傍の育成環境を所定の条件幅に管理するために用いられる。育成ユニットを収納し、その周囲に搬送装置の稼働領域の空間等の必要な空間が用意されていればよく、生物育成のために制御すべき空間を最小限にするのが好ましい。
 一方、本発明は生物を工業的に育成する設備として好適に用いることができるものであり、建屋の一辺の長さが通常2m以上、好ましくは3m以上、より好ましくは4m以上であり、通常30m以下、好ましくは20m以下、より好ましくは10m以下である。また、天井の高さは通常2m以上、好ましくは2.5m以上、より好ましくは3m以上であり、通常20m以上、好ましくは15m以上、より好ましくは10m以下である。
 上記下限以上であることにより、生物を効率的に育成することができ、上記上限以下であることにより、建屋内部の状態を制御しやすくなる。建屋室内の高さが高くなると温度制御が難しくなるため、必要とされる温度制御の厳密さにより高さを設定することができるが、たとえば、目標とする温度に対して±2℃程度で制御する場合には、10m以下が好ましい。但し、サイトの外気条件や、照明装置などの室内の熱源の量によっても変化する。建屋の外気条件により、壁面や屋根を任意に断熱してもよい。断熱するために40mm~200mm程度の厚さの断熱材を使用することが望ましい。
 建屋の内部の大きさは、育成ユニットの収納と、生物の取り扱いや観察、育成ユニットのメンテナンス等の作業に必要な空間を備えている必要があり、例えばその建屋の壁と最も近い育成ユニットとの距離は50cm以上、好ましくは70cm以上である。また、育成ユニットの最上部と建屋の天井との距離が1m以上、より好ましくは1.5m以上であると、空気調和の気流管理上有利になることがある。
 建屋内において育成ユニットは、1つのみ存在してもよく、複数の育成ユニットが存在してもよい。複数の育成ユニットが存在する場合には、複数の育成ユニットはその長辺で隣接するように配置されていることが好ましい。
 建屋の壁は、生物育成の環境を合理的に管理するのに十分な断熱性および気密性を有するのが好ましい。例えば床、壁および天井は、断熱材が積層された合板、熱伝導率の低い材料、例えば木材、発泡材およびその合板材等が好ましく用いられて形成される。また、生物の育成上好ましくない別の生物、例えば昆虫や菌、微生物や、ウイルス、汚れやチリなどが外部から侵入しない気密性や構造を有しているのが好ましい。
 建屋の内壁と前記固定式隔壁は、密接していてもよいし、離れていてもよい。固定式隔壁が足場として使用できるときは、作業者や技術者が安全に作業できるように、内壁と足場が離れている際は、足場に手すりを設置する等の安全措置を施すのが好ましい。
 建屋の内壁、天井および床としては、生物を育成するための環境温度や環境湿度に好適な材質、特に水分で容易に腐食しない材質を使用し、表面にホコリや汚れ、カビ等が付着するのを防止するため、平滑な形状を有するものが好ましく、仮にそれらが付着した際は、水等を用いた拭き取り清浄ができるよう耐水材料を用いるのが好ましい。特に床には、その清浄に便利となるよう、汚水を排水するための排水枡や排水口が好ましく設置される。その際、排水が不適切な漏洩を起こさないように、開口部には流れ止めが適宜設けられる。建屋の内壁、天井および床の表面は、必要な機能を備えさせるため、適宜表面処理を施してもよい。
 生物育成環境を管理する必要上、建屋内部の気圧を大気圧より高くあるいは低く維持する場合は、建屋の前記気密性が高いことが同様に好ましい。建屋に開口部を備えた建具が具備されている場合は、その建具の開口部の気密性に特に留意すべきである。また、生物が遺伝子工学的操作を要する生物、例えばタンパク合成用植物を扱うときは、建屋は前記育成ユニット及び前記搬送装置を含む空間を閉鎖系にしうる建物が好ましい。
 以上の要件から、建屋の天井および壁材の好ましい材質としては、断熱機能を有するパネルや化粧ケイカル板等が、また床材には硬質ウレタン材等が特に好適に用いられる。
 建屋に空気調和設備を含む場合は、その適切な稼働と効果を実現するために、吹出ダクト17や吸込ダクト20等の空気調和に要するダクトを、その気流を適切な位置と方向に形成するための位置に埋設するのに十分な空間を持たせるようにする。例えば空気調和設備の吹出口18および/または吸込口19を壁に設置する場合は、空気調和設備とそれらの口との間を接続するダクトは、十分に合理的な大きさの単純形状を有する通気路を維持できるように埋設される。
2.育成ユニット4
2.1 生物格納容器2
 生物格納容器は、生物を育成、栽培、および/または保持するためのものである。必要に応じて水を保持および/または排出する機能を有する。
 形状は任意であるが、生物育成設備の設置に要する空間の効率を上げるために、生物格納容器を狭い間隔で垂直に積み上げたいことから、水平方向に比較的薄いトレー状の形状が好ましく用いられる。
 格納される生物は生物である限り限定されないが、本発明の育成設備は特に植物、特に葉部の多い植物に好適に用いられる。とりわけ、比較的厳格で狭い管理幅内での管理を要求する医薬、創薬、食品、健康用の植物、遺伝子組み換え技術を用いる植物、タンパク合成用植物、中でもその実施の実績が蓄積された葉物野菜、シロイヌナズナ、タバコ等の植物の育成に好適に用いられる。
 底面の形状、すなわち水平方向の形状は特に限定されず、円、楕円および/または多角形のいずれでもよいが、空間使用の効率の点で四角形が好ましい。水平方向の大きさに特に制限はないが、円の場合は直径、楕円の場合は長径、多角形の場合は最大の対角線の長さが、通常20m以下、好ましくは5m以下、より好ましくは2m以下、更に好ましくは1.5m以下であり、通常10cm以上、好ましくは20cm以上、より好ましくは30cm以上である。高さは通常2m以下、好ましくは1m以下、より好ましくは50cm以下、更に好ましくは10cm以下であり、下限は通常5mm以上、好ましくは1cm以上、より好ましくは3cm以上である。側面を有する場合には、側面の高さは一定であるのが好ましい。
 生物格納容器の大きさが上記上限以下であることにより、生物の管理、生物格納容器の清掃等の取り扱いが容易になり、実用的に使用することができる。上記下限以上であることで、生物の育成空間を確保することで適切な育成を可能にし、更に、必要な生物格納容器の数量を減少できるため、生物格納容器の保守・管理に要する時間を抑制できる点で好ましい。
 生物格納容器は、必要に応じて、その内部に仕切りを設けたり、複数の小さい容器を収納してもよい。
 該格納容器には、生物を保持または固定するための区画や把持部分等、水を供給するための流水路、給水部、排水部等の構造を適宜付与してもよい。
 該格納容器の材質に特に制限はないが、通常ABS、塩化ビニル、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリカーボネート、ウレタン、発泡スチロール等の樹脂材料およびそのアロイやフィラー複合材料、炭素鋼、ステンレス鋼、アルミ鋼等の金属材料、木材、ガラス材等が用いられる。中でも、生物の育成に影響を及ぼす成分が発生しにくい点で、樹脂材料が好ましい。
 該格納容器は、空調効率を向上させるためにも、必要最小限の容量とすべきであり、かつ空調の気流に有利となるよう、表面に不要な凹凸を有さない形状が好ましく、かつ該格納容器は規則正しく配置するのが好ましい。
2.2 支持構造体3
 支持構造体は、生物格納容器を垂直方向に複数支持するために用いられる。前記支持は、固定でも載置でもよい。
 固定の場合の方法は、支持構造体と生物格納容器とが必要な強度で固定されていれば特に限定されない。生物育成容器と支持構造体との間で直接もしくは接続部材を介して固定される。具体的には、ネジ止め、ボルト止め、溶接、接着等が挙げられる。支持構造体と生物格納容器との固定は、生物格納容器の側面で行っても底面で行ってもよい。
 接続部材を介して固定される場合、接続部材は支持構造体と生物格納容器の側面との間に設置してもよいし、支持構造体と生物格納容器の底面との間に設置してもよい。
 支持構造体と生物格納容器の底面との間に設置する場合は、後述の載置部材の上面に、生物格納容器を直接または間接的に設置する方法が挙げられる。
 支持構造体の形状に特に制限はないが、角柱状もしくは棒状の材料よりなる柱が好ましく用いられる。
 支持が、生物格納容器の支持構造体への載置による場合、該支持構造体は、角柱状もしくは棒状の材料よりなる柱3-1に、生物格納容器を載置できる部材(以下、載置部材3-2ともいう)を、垂直方向に複数固定したものから構成され、該部材の上に生物格納容器2が載置される。
 柱3-1に載置部材3-2を固定する具体的方法としては、柱3-1に載置部材3-2を直接もしくは固定部材を介してネジ止め、ボルト止め、溶接、接着等の手法で固定する方法が挙げられる。
 垂直方向に複数の載置部材3-2を有し、これらの載置部材3-2のそれぞれに生物格納容器2を置くことで、生物格納容器2が垂直方向に多段に積み重ねられる。該載置部材3-2はその上面に、生物格納容器2を整列させるための部材を設置してもよい。該部材としては、レール等が例示される。
 支持が載置の場合、生物格納容器を支持構造体と独立して取り扱えるため、生物格納容器2を別の場所から支持構造体に搬入でき、また、支持構造体3から別の場所に搬出できる点で好ましい。
 生物格納容器を支持構造体から搬入および搬出しやすくするためには、載置部材がコロ、レール、ベルト等を含むのが好ましい。生物格納容器に搬入および搬出の方向に力を加えるだけで移動できる構造にすることで、作業効率を向上することができる。
 通常、移動は搬送装置が設置された生物格納容器の辺とその対向する辺を結ぶ方向に行う。長辺の長手方向に移動できるようにすると、載置された複数の生物格納容器の搬入および搬出を、作業者が移動することなく行える点で好ましい。
 支持構造体および生物格納容器を構成要素とする育成ユニット全体の大きさは、生物格納容器を適切に収納できる限り特に制限はないが、水平方向の最大の長さは、通常100m以下、好ましくは50m以下、より好ましくは20m以下、更に好ましくは15m以下であり、またその下限は10cm以上、好ましくは20cm以上、より好ましくは30cm以上である。高さの上限は通常20m以下、好ましくは10m以下、より好ましくは8m以下であり、下限は通常1m以上、好ましくは1.5m以上、より好ましくは2m以上、更に好ましくは4m以上、最も好ましくは5m以上である。支持構造体の大きさが上記上限以下であることで、設置のための空間が大きくなりすぎず、空気調和を容易にしたり、生物の工業的生産を行う際の作業の動作経路を適切な範囲とすることができる。一方、下限以上であることで、一定量の生物育成に要する支持構造体の必要数量を抑制し、また各支持構造体周囲に必要な空間の体積も抑制することができる。前記載置部材の高さの上限は通常50cm以下、好ましくは15cm以下、より好ましくは10cm以下、更に好ましくは5cm以下、最も好ましくは3cm以下であり、下限は通常1mm以上、好ましくは3mm以上である。高さが前記上限以下であることにより、支持構造体全体の重量を抑制でき、設置工事を容易にする点で好ましい。一方、下限以上であることにより、生物格納容器を載置するのに十分な強度を確保しやすい点で好ましい。
 また、生物格納容器が多段であることが好ましく、例えば5段以上、10段以上、15段以上、20段以上とすることができる。
 支持構造体および載置部材の材質に特に制限はないが、高い強度を有する点で、木材もしくは炭素鋼やステンレス鋼、アルミ鋼などの金属材料が好ましく用いられるが、より安定で設置精度の高い金属材料がより好ましい。生物育成に水を使用する場合は、腐食しにくい金属材料、例えばステンレス鋼やアルミ鋼およびそれらの合金材料が好ましい。腐食を防止する目的で、金属材料に適宜コーティングや不動態化処理、メッキ処理等を施したものを用いることもできる。
2.3 照明設備11
 生物の育成に光が必要な場合は、生物育成設備に照明設備を設けてもよい。生物の育成に光が必要な場合の具体例としては、生物が所期の期間生命を維持するため、もしくは生物の育成を促進するために、明暗期を要する場合や、生物ホルモンを刺激して所期の形状や方向に成長させたい場合、光合成のための光エネルギーを要する場合等が挙げられる。
 照明設備が発した光は、生物格納容器の中に存在する生物に目的に応じて適切に照射される必要があるので、照明設備は通常生物格納容器の比較的近傍に設置される。特に、作業者や技術者が生物の育成状態の観察や管理を行う都合上、照明設備は各生物格納容器の上部に設置されるのが便利である。
 その具体的設置方法としては、生物格納容器の上部に存在する別の生物格納容器の下面や支持構造体を構成する載置部材の下面に、直接もしくは固定部材を介してネジ止め、ボルト止め、溶接、接着等の手法で固定する方法や、支持構造体に前記手法によって嵌合部もしくは凹凸部を付与した照明設備用固定部材を固定し、その固定部材に、該嵌合部もしくは凹凸部に嵌合して位置が変動しないように照明設備を乗せて固定する方法等が挙げられる。その際、育成される生物に対して光が無駄なく、均等照射されるように配置するのが好ましい。照明設備から発光する光を生物に適切に照射する目的で、反射板を用いることができる。反射板は通常照明設備の発光部の背面に配置され、生物の照射に用いにくい方向に発する光を好ましい方向に反射させる機能を持つ。反射板は、反射率が高い表面状態および/または色のものであれば特に制限はないが、平滑な表面の白色もしくは乳白色の金属板やプラスチック板が通常用いられる。反射板は、例えば本発明の支持構造体に固定される。
 照明設備は目的を達成できる限り制限されず、公知の照明設備を使用することができる。
 照明設備の種類の具体例としては、ナトリウム灯、水銀灯、蛍光灯、メタルハライドランプ、紫外線ランプ、赤外線ランプ、遠赤外線ランプ、マイクロ波照射装置、LED、エレクトロルミネセンス、ネオン灯等が挙げられる。中でも、発光効率の高い蛍光灯およびLEDが好ましい。
 照明設備の形態の具体例としては、設置する空間を節約して空気調和の効率を高めるため、円筒状もしくは平板状の透明または半透明のケースに、発光部を収納または封入したものが用いられる。その水平方向の大きさの上限は通常3m以下、好ましくは2m以下、より好ましくは1.5m以下であり、下限は30cm以上、好ましくは50cm以上、より好ましくは1m以上である。この大きさが大きすぎると、設置工事が困難になるため好ましくない。逆に小さすぎると、光の照射ムラが生じやすくなり、かつ照明設備に要する電気配線が複雑になるため好ましくない。
 照明設備の電気接続部をキャップで覆う等の方法で防水仕様を施してもよい。
 生物の育成環境の適切な制御を妨げないように、照明設備は、発光効率が高く、発熱の小さいものが好ましく用いられる。とりわけ、本発明の生物育成設備が空気調和設備を含む場合は、照明の発熱が大きいと、空気調和に有するエネルギーが増大しやすく、かつ好ましくない対流現象を促進しやすいので好ましくない。
2.4 給排水設備
 本発明の生物育成設備で育成される生物が生命を維持するために断続的もしくは連続的に水の供給が必要な場合は、そのための水を供給する設備を設置することができる。特に該生物が植物の場合は、少なくとも生物格納容器に水を供給する設備を有することが好ましい。
 水を供給する設備は、水を所定の位置や高さに運搬するための配管および/または水路、生物に水を直接供給するためのトレー容器または水を保持するための保水剤を収納する容器、水を移動させるためのポンプ、および水を貯蔵するためのタンクで構成される。前記保水剤は、育成される生物が植物の場合は、培地と呼ばれる。前記容器は、水の漏洩を防止するため、多くの場合、水面が水平を維持できるように設置される。
 水を供給する設備は、生物の育成に支障がないように、また照明設備を設置する場合は、照明から生物に対して照射させる光の経路を遮らないように、更に空気調和の効率を低下させないために、必要最小限の大きさとし、かつその設置のための所要空間が最小となるように配置される。そのための具体的設置の方法としては、生物格納容器や支持構造体の側面や、支持構造体の最下部に設けた専用の空間を利用して、直接もしくは固定部材を介してネジ止め、ボルト止め、溶接、接着等の手法で固定する方法や、生物格納容器や支持構造体に前記手法によって嵌合部もしくは凹凸部を付与した固定部材を固定し、その固定部材に、該嵌合部もしくは凹凸部に嵌合して位置が変動しないように水を供給する設備を乗せて固定する方法等が採用される。照明設備を設置する場合は特に、電気配線のショートや、作業者や技術者の感電の原因となる水の漏洩がないよう、水を供給する設備の接続部分が確実に接続され、かつ適宜その接続部は防水仕様を備えていなければならない。その際、防水板を用いてもよい。防水板は水を通さない板であれば特に制限はなく、水の漏洩の恐れがある箇所と照明設備との間の位置に、両者を隔絶するように配置される必要がある。防水板は、例えば本発明の支持構造体に固定するなどの方法で配置される。
 本発明の生物育成設備で用いる水は、栄養分やpH制御、殺菌、状態監視等を目的とした溶質または分散成分を含んでいてもよい。その際、水を供給する設備は、溶液の濃度や分散状態を実現したり、その状態の監視および/または制御したりする付帯設備を有していてもよい。そのような付帯設備の具体例としては、濃度計、温度計、pH計、電気伝導度計、光度計等が挙げられる。
 給水配管14、15および16等の、水を供給する設備の、ポンプを除く構成要素の材質に特に制限はないが、通常ABS、塩化ビニル、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリカーボネート、ウレタン、発泡スチロール等の樹脂材料、炭素鋼、ステンレス鋼、アルミ鋼等の金属材料、木材、ガラス材等が用いられる。中でも、生物の育成に影響を及ぼす成分が溶出しにくい点で、樹脂材料が好ましい。
2.5 空気搬送装置
 本発明において、生物の育成に必要な環境を効果的に実現するため、気流速度や気流方向を含む気流性状を有効に形成させる空気搬送装置が好ましく使用される。空気搬送装置は、広い空間において空気を遠方まで搬送することによってその空間の温度や湿度など環境を均一化したり換気効率を改善したりする目的で使用できる装置であれば限定されず、例えば、羽根車、電動機、ケーシングおよび整風器からなる送風機などが挙げられる。
 空気搬送装置は、前記生物格納容器、支持構造体または足場のいずれにも固定し設置することができるので、所期の気流性状をより有利に形成することができる。
2.6 その他
 生物育成設備は、生物格納容器を運搬する搬送手段を備えていてもよい。搬送手段を備えることで、育成ユニットの長辺の長さが長い場合であっても、1か所のスペースにおける作業で、育成ユニットへの生物格納容器の搬入や搬出が可能となり、また、メンテナンスの際にも有利である。搬送手段の具体例としては、コロ、ベルト、チェーン、ワイヤーなどが挙げられるが、生物格納容器を、育成ユニット内において搬送可能であれば特段限定されない。
 本発明の生物育成設備は、生物自体、または生物育成設備の環境を監視する付帯設備を有していてもよい。そのような付帯設備の具体例としては、温度計、湿度計、気流測定装置、二酸化炭素測定装置、酸素濃度計、微粒子計測計等が挙げられる。
3.空気調和設備
 建屋1が、育成ユニット4を含む空間の、温度、湿度、清浄度、酸素濃度、および二酸化炭素濃度からなる群から選択される1種以上を制御しうる空気調和設備を含むのが好ましい。空気調和設備としては公知の設備を使用できる。
 本発明においては、生物の好ましい育成環境を効果的に実現するため、空気調和設備が好ましく用いられる。空気調和設備としては、一般的な空気調和設備を用いることができ、それは通常、空気中の塵埃や微生物類を除去する機能を有するフィルタ、空気を搬送するための送風機、ならびに、空気を冷却、加熱および/または調湿するための熱交換器、加湿器および/または除湿機、よりなる空気調和装置、および空気を所望の空間に搬送するための搬送経路となるダクト設備により構成される。
 生物を適切に育成するために酸素や二酸化炭素等の濃度を制御する必要がある場合は、それらの気体をダクト設備内部、例えば吹出ダクト17に供給することで、所望の空間におけるそれらの気体濃度の均一化を図ることができる。
 後述の可動式隔壁が略水平方向の閉状態にある際に、その可動式隔壁と空気調和の気流が干渉しないように、空気調和の気流も水平方向となるよう空気調和設備の吹出口と吸込口を設置するのが好ましい。その場合、それらの口は通常、建屋の壁に設置され、好ましくは吹出口と吸込口とが建屋の対向する壁に設置される。また、その空気調和の気流が乱れたり、対流現象の好ましくない強い影響をうけたりしないように、上記吹出口及び吸込口は、可動式隔壁の位置を避けて設置されるのが好ましい。本発明に係る生物育成設備が固定式隔壁を含む場合は、上記吹出口及び吸込口は、その固定式隔壁の位置も避けて設置されるのが好ましい。
 更に、前記空気調和設備の吹出口と該吸込口とが隔壁により分割されうる空間毎に位置することにより、該分割されうる空間の空気調和が容易になるのみならず、分割されうる空間ごとに異なる条件にて空気調和を行うことができる。とりわけ、生物育成設備の一部のみを稼働したい場合は、稼働させない分割空間の一つまたは二つ以上の専用の空気調和運転を停止しても、稼働している分割空間の専用の空気調和運転のみで、その分割空間の空気調和を保つことができるので、生物育成設備全体としての空気調和エネルギーを有効に節約でき、なお好ましい。
 空気調和の条件は、特にタンパク合成用植物を育成する際に重要である。
 以下、タンパク合成植物など、厳密な育成環境を要求される際の空気調和の条件について詳述する。
 一般の、例えば食用や鑑賞用の植物であれば、その目的を達成できればよいため、温度に対する許容範囲は広く、例えば温度が±、10℃程度まで許容しうる。
 しかし、タンパク合成用植物が合成するタンパクの量は、育成条件、すなわち本発明における育成ユニットの生物格納容器周辺の雰囲気によって、大幅に変化しうる。これは、例えば、J.F.Buyel, R. Fischer "Predictive Models for Transient Protein Expression in Tobacco(Nicotiana tabacum L.) Can Optimize Process Time, Yield, and Downstream Costs",  Biotechnology and Bioengineering, Vol. 109, No.10, October, 2012に等により知られている。上記論文によれば、温度が5℃変化しただけで合成するタンパクの量が1/3程度にまで低下する例が示されている。
 従って、タンパク合成用植物は最適温度に対して、通常、±5℃以内、好ましくは±4℃以内、より好ましくは±3℃以内、更に好ましくは±2.5℃以内、特に好ましくは±2℃以内に制御するのが好ましい。上記範囲に制御することにより、所望のタンパクを、生物育成設備全体として効率的に合成することができる。すなわち、本発明の生物育成設備は、適切な空気調和条件を設定しやすくするものであり、厳密な温度制御が必要とされるタンパク合成用植物の育成を行うのに適したものである。なお、タンパク合成用植物に適しているものではあるが、他の生物への適用について、当然妨げられるものではない。
 温度制御を厳密に行うため、具体的には、上記好ましい範囲内での温度制御を行うためには、吹出口から供給された調和空気が生物格納容器に達する際の気流の速度は0.2m/s以上、好ましくは0.3m/s以上、より好ましくは0.5m/s以上であって、通常2.0m/s以下、好ましくは1.8m/s以下、より好ましくは1.5m/s以下である。上記下限以上であることにより、生物格納容器周辺の雰囲気を適切に制御でき、上限以下であると風により栽培が阻害される可能性を低減できる。適切な気流速度により、光合成やタンパク合成を促すことができる。
 吹出口から供給される調和空気の温度は、 室内設計温度に対し通常-20℃以上、好ましくは-18℃以上、より好ましくは-15℃以上であり、通常-5℃以下、好ましくは-8℃以下、より好ましくは-10℃以下である。上記下限以上であることで、温度ムラや結露を防止することができる。また、上記上限以下であることにより、制御性は良くなるが、風量が大きくなりすぎるのを抑制することができる。
 吹出口の大きさは、上記条件を実現できれば限定されないが、吹出口の長径が通常5cm以上、好ましくは10cm以上より好ましくは20cm以上であり、通常10m以下、好ましくは5m以下、より好ましくは3m以下、更に好ましくは2m以下である。
 吹出の形状は、面吹出し、縦方向または/および横方向に羽根を設けた格子板のもの (ユニバーサルタイプ) 、または吹出面に多孔板をとりつけたパネル形のものが好適に用いられ、点吹き出しのもの (ノズルタイプ、空気誘因を利用した円錐状のもの(アネモ型・パン型)) 、線吹き出しのもの (スロット型) なども用いることができる。
 以下、生物育成設備のモデルを用いた室内の温度分布のシミュレーションにより、本発明の生物育成設備の効果を示す。
 シミュレーションは以下の条件を同一に設定し、隔壁の有無による温度分布の違いをシミュレートし、結果を可視化して図8に示す。
<条件>
・外気温: 35℃
・建屋の大きさ:長さ9.4m、幅3.9m、高さ6.1m、
・建屋の断熱:40mm厚ウレタンフォーム断熱パネル
・育成ユニットの大きさ:長さ7.2m、幅2.2m、高さ5.9m
・生物格納容器の段数:9
・隔壁の設置高さ:2.5m(一段目)及び4.15m(二段目)
・隔壁の設置割合:生物育成設備を天井方向から投影した際に、隔壁の投影面積が建屋の床面積の80%
・吹出口
吹出風速:1.0m/s
風量:2600cmh/個
大きさ:縦1200mm、横600mm
個数:一列が4個×3列
高さ:中心が、それぞれ1.8m、3.5m及び5.2m
吹出口間の長さ:600mm
・吸込口
吸込風速:1.0m/s
風量:2600cmh/個
大きさ:縦1200mm、横600mm
個数:一列が4個×3列
高さ:中心が、それぞれ1.8m、3.5m及び5.2m
吸込口間の長さ:600mm
<計算方法>
 シュミレーションソフトFlowDesigner(Advanced Knowledge社)を用いて、上記条件を設定して計算を行った。
なお、例1は、比較例として隔壁を有さない場合の建屋内の温度分布を計算した。例2は実施例として、例1において隔壁を設けた以外は同様の前提で建屋内の温度分布を計算した。
<計算結果>
<例1>
 計算結果を図8に示す。建屋内の温度分布は21~35℃であり、生物格納容器表面の吸込口側の温度は24~27.5℃である。生物格納容器の表面温度は21~27.5℃ (24.25℃±3.25℃) である。
<例2>
 計算結果を図8に示す。建屋内の温度分布は21~32℃である。生物格納容器の吸込口側の温度が24.5~25.5℃と非常に良く制御されている。生物格納容器表面の温度範囲も21~25.5℃ (23.25℃±2.25℃)と、非常に良く制御されている。
 一般に大空間においては上下温度分布が大きいことが知られており、例1の計算結果とも符合するが、隔壁で空間を上下方向に区切り、水平方向の空調気流とすることで、温度制御が可能となっている。
 植物の栽培、特にタンパク合成用植物の栽培においては温度、湿度、気流、CO2濃度など複数の環境条件を特定値内にすることが重要となる。植物種や栽培プロセス (発芽、栽培、医薬品用植物においてはタンパクの発現プロセスなど) により、最適な環境条件は異なるが、本発明によれば、内部の発熱や栽培設備の形状、部屋の高さなどに対し、制気口 (吹出口、吸込口) の寸法、配置、風速、拡散率および吹出し温度差などの代表的なパラメータを調整して設計するだけで、高精度の環境条件(例えば温度幅±2.5℃以下) が可能である。
 本シミュレーションは、生物格納容器周辺の温度制御が困難な状況を想定し、高出力タイプ蛍光灯を栽培ラック平面全体に100mm毎に設置した場合で試算した。通常は蛍光灯を設置するピッチは本計算の前提よりも長く、また植物が蒸散する過程において照明発熱が所定の割合で除去されるため、ラック内部の温度差は本計算結果よりも少なくなると考えられる。そのため照明本数、蛍光灯やLEDなどを問わず、生育に最適な栽培照明と環境制御(例えば温度幅±2.5℃以下)の両立を可能にする
 また例2においては生物格納容器の吸込口側の温度が非常に良く制御されるため、建屋内に複数列の栽培ラック設備を設置できる可能性も大きくなる。
 なお、上記シミュレーションの例1、及び例2の結果から、隔壁の存在により制御温度幅を1℃、即ち温度変動範囲を2℃小さくできる場合があることが理解できる。上記論文Biotechnology and Bioengineeringの記載(温度が5℃変化しただけで合成するタンパクの量が1/3程度にまで低下する例)を考慮すると、隔壁の存在により合成されるタンパク量の低下を、計算上2割以上は抑制でき得ることとなる。隔壁の存在により、このような生産性の低下を防ぐことができ得ることは、驚くべき効果である。
4.搬送装置5
 本発明に係る生物育成設備は、大量の生物格納容器を高密度で収納できる前記育成ユニットを構成要素としているが、その大量の生物格納容器を育成ユニットに搭載したり回収したりする工業的操作を短時間で効率的に実現するため、育成ユニットの近傍に設置して上下方向に移動稼働できる搬送装置を備える。搬送装置は、その高さが2m以上の場合は、手動または自動で走行ないし牽引できる機能を有しているのが好ましい。
 搬送装置は、搬送作業時には育成ユニットの近傍の床面または床面に適宜に置かれた台上に設置される。搬送装置の搬送稼働部は、一度に一つまたは複数の生物格納容器を積載でき、該格納容器を積載したままその稼働部を上下に移動させる機能を有しており、その機能を用いて、生物格納容器を床面付近から育成ユニットの比較的に高い位置、例えば床面の作業者や技術者の手が届かない1.5mないし2m以上の高さの位置に搭載したり、逆に生物格納容器を比較的高い位置から床面付近に回収したりする工業的操作を行う。
 該稼働部は、生物格納容器を積載するための複数の段を有していてもよいし、生物育成容器の取り扱いを容易にする目的から、該稼働部と育成ラックとの高さや水平方向の位置関係を修正する機能を有していてもよい。また、生物格納容器の落下や、生物格納容器積載に要する部品の落下を防止するための安全機能を有していてもよい。
 搬送装置は、生物格納容器の搬送に直接関係しない不要な要素を持たないコンパクトな大きさのものが好ましく、かつその搬送稼働部は、垂直方向に稼働する種類のものが好ましい。また該稼働部は、生物格納容器に加えて、作業者や技術者を積載して育成ユニット上方や足場に移動させる機能を有していてもよい。
 搬送装置は、後述の可動性隔壁を閉状態にする時間を最大にするため、すなわち可動性隔壁の開状態にする時間を最小にするため、その生物格納容器を取り扱うタクト時間が短くできるのが好ましい。具体的には、搬送装置の上下方向の移動速度が大きく、取り扱い作業に直接関係のない操作切り替え時間等を要さないのが好ましい。搬送装置の上下方向の移動速度は、好ましくは5cm毎秒、より好ましくは10cm毎秒、更に好ましくは15cm毎秒、最も好ましくは20cm毎秒である。
 上記のような機能を有する搬送装置を用いることにより、限定された空間を用いるだけで大量の生物格納容器を取り扱うことができるので、その稼働に要する空間、すなわち稼動領域の空間を最小にできるのみならず、育成ユニット周囲に必要な生物格納容器を取り扱うための空間を、作業性を維持しつつ最小にすることができる。
 搬送装置の大きさは、その本体の水平方向の最大幅は通常3m以下、好ましくは2.5m以下、より好ましくは2.3m以下である。またその非稼働時に最も高さを小さくした際の高さは通常3m以下、好ましくは2.5m以下、より好ましくは2.3m以下である。搬送装置が大きすぎると、搬送装置の設置や稼働に要する空間が大きくなりすぎ、建屋内部の空気調和の効率が悪化するので好ましくない。
 搬送装置の稼働時の生物格納容器を持ち上げる最大高さは通常1.5m以上、好ましくは2m以上、より好ましくは4m以上、更に好ましくは5m以上である。
 搬送装置の具体例としては、リフト、フォークリフト、エスカレータ、エレベータ、クレーン、コンベア、ロボット、滑車、スプロケット、ワイヤー、チェーン、で構成される群から選ばれた一つの、または二つ以上を組み合わせた昇降搬送装置または高所作業用建設機器が挙げられる。
 複数の育成ユニットが長辺で隣接するように配置されている場合は、搬送装置を各育成ユニット毎に備えてもよいが、任意の水平方向への移動が可能な搬送装置とすれば、搬送装置が1台のみであってもよい。その場合、各育成ユニットにおいて搬送装置が作業する場所へ導くレールやガイドなどを設けることが好ましい。
5.可動式隔壁7
 本発明に係る生物育成設備は、生物、とりわけ厳密な育成環境の制御を要する生物、例えばタンパク合成用植物の育成環境を合理的に十分実現させるために、可動式隔壁を備える。可動式隔壁は、前記搬送装置を稼働しないときに使用する。可動式隔壁は使用時に、前記搬送装置の稼働領域の空間に設置され、該稼働領域の空間を、高さ方向に2つ以上に分割できる機能を有する。
 稼動領域の空間を分割する方法としては、分割自体に要する膜または板を、搬送装置の稼動時、すなわち可動式隔壁の非稼働時には空間外に収納して開状態とし、搬送装置の非稼動時、すなわち可動式隔壁の稼働時にのみ所期の位置に移動させて閉状態とする方法、前記膜または板を、扉ないしブラインド様に可動できるものとし、可動式隔壁の非稼働時には開状態にしておき、可動式隔壁の稼働時にのみ閉状態にする方法、前記膜または板を柔軟な素材のものとし、可動式隔壁の非稼働時には空間外に巻き取って開状態としておき、可動式隔壁の稼働時にのみ所期の位置に張り出させて閉状態とする方法、等が挙げられる。
 すなわち、本発明に係る可動式隔壁の「可動」とは、移動、開閉、巻き取り/巻き出しを意味している。可動式隔壁の作動は、自動でも手動でもよい。可動式隔壁の位置は、水平方向乃至垂直方向の任意の角度に制御できるのが好ましい。
 可動式隔壁の設置場所は特に限定されないが、安定して操作するためには建屋の壁に設置するのが好ましい。
 可動式隔壁は、搬送装置が隔壁の上下に移動できるように、搬送装置を用いる際には稼働せずに、固定式隔壁に開口が形成する。可動式隔壁の非稼働時に形成される隔壁の開口部は、通常育成ユニットの近傍に設けられるが、育成ユニットの短辺側に設けられることが好ましい。また、このような構成により、育成ユニットの短辺と該育成ユニットの短辺に対向する建屋の壁面との間に形成される空間に、搬送装置が配置されることが好ましい。さらに、隔壁の開口部は、育成ユニットに対して空気調和装置の吸込口側に存在することが好ましい。これにより、生物に影響し得るような気流の乱れを防ぐことができる。
 可動式隔壁は、その機能を発揮する限り、その材質に制限はないが、軽量でその厚みを比較的に薄くできることから、布材、木材板、プラスチックフィルムやシート、金属板、およびそれらの材質の層と発泡材層等の断熱機能を有する層との積層板ないし積層シート等が挙げられる。可動式隔壁は、一枚で一つの場所での機能を発揮してもよいし、複数の枚数が一組となって一つの場所での機能を発揮してもよい。複数の枚数が一組となる例としては、扉様やブラインド様の形態が挙げられる。
 可動式隔壁による空間の分割は、その空間を完全に分割してもよいし、空間の一部を分割してもよい。可動式隔壁の大きさは、閉状態となるその稼働時、すなわち可動式隔壁により前記搬送装置の稼動領域の空間を、高さ方向に2つ以上の空間に分割した際に、前記搬送装置の稼動領域の空間の水平方向の平面の、通常50%以上、好ましくは70%以上、より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上、最も好ましくは100%を占める大きさである。
 本発明に係る生物育成設備の可動式隔壁は、搬送装置が稼働しているときにのみ開状態となって、搬送装置の自由な稼働を可能にさせ、搬送装置が稼働していないときは、特に必要な場合を除いて閉状態となり、空間を分割した状態を保持する。
 搬送装置が稼働していないときに可動式隔壁が閉状態となって空間を分割する際は、その閉状態の可動式隔壁は略水平方向の閉状態になるのが好ましい。このとき、可動式隔壁により搬送装置の稼働空間が垂直方向に複数の空間に分断されるため、建屋内の対流現象に由来する上下方向の好ましくない空気移動を阻止することができる。
 本発明に係る生物育成設備が空気調和設備を備え、かつその吹出口と吸込口が壁に設置され、空気調和の気流が略水平方向とされている場合、その空気調和の気流が乱れたり、対流現象の好ましくない強い影響を受けたりしにくい理由から、前記同様、閉状態の可動式隔壁は略水平方向の閉状態になるのが好ましい。
 可動式隔壁は、その稼働の際の閉状態においては、空気調和装置による気流を妨げない適切な位置で単純な形状となるのが好ましい。具体的には、気流の乱れの原因となる不要な突起や凹凸を有さず、気流を弱めるような角度や位置、好ましくない対流を促進しないような角度や位置に設置されるのが好ましい。
 本発明に係る可動式隔壁は、本発明に係る生物育成設備が後述の固定式隔壁8を有する場合、可動式隔壁により前記搬送装置の稼動領域の空間を高さ方向に2つ以上の空間に分割したとき、可動式隔壁の上面と前記固定式隔壁の上面、および/または、可動式隔壁の下面と前記固定式隔壁の下面が、略同一平面に位置するように設置されるのが好ましい。より好ましくは、可動式隔壁の下面が、固定式隔壁の下面と略同一平面に位置するように設置される。
 更に好ましくは、可動式下面と、固定式隔壁の下面と、生物格納容器の下面ないし育成ユニットの支持構造体の板状材料の下面とが略同一面に設置され、あるいは、可動式上面と、固定式隔壁の上面と、生物格納容器の上面ないし育成ユニットの支持構造体の板状材料の上面とが略同一面に設置され、これらの略同一面と壁と床または天井よりなる一つの分割環境空間が形成される場合、その分割環境空間に専用の空気調和吹出口と吸込口を設置することにより、一つの分割環境制御空間が実現する。これはあたかも、部屋を分けることによるデメリットを全て解消した上で、部屋を分けたのと同じ効果および機能が実現できることを意味する。
 すなわち、空間を隔壁で分割するのみで階を分ける必要がないので、建屋の建築コストを削減でき、育成ユニットを分割する必要がないので、その設備コストや付帯させるユーティリティにかかる費用も削減でき、かつそのメンテナンスや、格納している生物の取り扱いおよび監視が容易になる。生物格納容器を取り扱う搬送装置も、本発明によれば複数空間で共有できるので、その設備コストも削減できる。
 分割されたそれぞれの分割環境制御空間は、独立して空気調和できるので、それぞれ異なる個別の温度、湿度、清浄度、酸素濃度、および二酸化炭素濃度からなる群から選択される1種以上の要素で制御することもできる。これらの結果、本発明に係る生物育成設備は、その生産規模を拡大し、大量の生物を育成する際も、その建屋の生物格納容器を収納する密度を最大にしつつ、良好な生物格納容器取り扱いの作業性を確保でき、かつ厳密な環境管理を空気調和で行う際に消費する動力やエネルギーを経済的合理的に節約することが可能となる。つまり、厳密な環境管理を要する生物を、経済性を維持しつつ、工業的に大量に育成することができる。
 なお、分割された空間の空気調和の容易性の観点から、各分割された空間における、生物格納容器の段数は、通常20段以下であり、好ましくは18段以下であり、より好ましくは15段以下であり、更に好ましくは10段以下である。また、空間効率の向上の観点から通常1段以上、好ましくは2段以上、より好ましくは3段以上である。
6.固定式隔壁8
 固定式隔壁は、前述の可動式隔壁と共に、建物内の空気調和を行うための隔壁である。本発明は、少なくとも搬送装置の稼動領域の空間を高さ方向に2つ以上の空間に分割できる可動式隔壁を有し、高さ方向に2つ以上の空間に分割したい領域全てを可動式隔壁により分割してもよいが、搬送装置が稼動しない領域の空間に固定式隔壁を設けることで、隔壁の設置を効率化できる。特に、前述の可動式隔壁との間で特定の位置関係を持たせることにより、生物育成のための環境制御が極めて有利となる。具体的には、可動式隔壁の少なくとも一方の面が、固定式隔壁の少なくとも一方の面と略同一平面に位置させることにより、対流に由来する高さ方向の気流を有効に阻止できるので好ましい。
 とりわけ可動式隔壁の下面が、固定式隔壁の下面と略同一平面に位置させることにより、対流によって固定式隔壁下面に集まる比較的温度の高い空気が、それ以上上方に移動するのを合理的に有効に阻止することができる。本発明の生物育成設備が空気調和設備を含む場合は、建屋内の空気の温度が人工的に変更されるため、ともすれば非常に大きな対流現象に由来する上下方向の好ましくない空気移動を生じかねないが、前記位置関係を持たせることにより、その好ましくない空気移動を有効に阻止できる。
 固定式隔壁は、空気調和による気流を妨げない単純な形状と有し、かつ適切な位置に設置されるが好ましい。具体的には、気流の乱れの原因となる不要な突起や凹凸を有さず、気流を弱めるような角度や位置、好ましくない対流を促進しないような角度や位置に設置されるのが好ましい。
 前記略同一面とは、境界における面と面の距離が1m以内、好ましくは50cm以内、より好ましくは20cm以内、更に好ましくは10cm以内である。
 固定式隔壁は、育成ユニットへの接続部と床に立てた支柱および/または壁から張り出させた梁によって固定されていてもいいし、複数の育成ユニットのそれぞれに接続させて、複数の育成ユニットを連結する形態で固定されていてもよい。複数の育成ユニットを固定式隔壁を介して連結する形態を採用する場合、育成ユニットまたは育成ユニット群の強度や安定性が増し、かつ場合によって必要となる育成ユニット設置精度を比較的容易に確保することができる。
 固定式隔壁は、足場として使用できるものが好ましい。以下、固定式隔壁が足場である場合の説明をする。
 足場は、作業者や技術者が、生物の育成状態を観察したり管理したり、水が関係する育成装置の管理やメンテナンスを行ったりする目的で、育成されている生物や育成装置の近傍にアクセスするために作業者や技術者が上に乗ることができれば、特に制限されない。
 特に複数の生物格納容器が比較的高い位置に載置される支持構造体を用いる場合、作業者や技術者が所定の作業をする際に作業性を向上させるために、支持構造体が設置された面より高い位置に足場を設置する。
 足場は通常、支持構造体および/または生物格納容器に固定されることによって、育成ユニットの一部を形成する。支持構造体に固定すると、生物格納容器を足場と独立して搬入・搬出することができるため好ましい。固定方法としては、支持構造体に足場を直接もしくは固定部材を介してネジ止め、ボルト止め、溶接、接着等の手法で固定する方法や、支持構造体に前記手法によって嵌合部もしくは凹凸部を付与した梁材を固定し、その上部に、該嵌合部もしくは凹凸部に嵌合して位置が変動しないように載置部材を乗せて足場とする方法等が挙げられる。支持構造体が前述の様に載置部材を有する場合は、足場と載置部材とが一体化されていてもよい。足場は、育成ユニットとは別途設けた支柱および/または壁に設けた梁によって固定する方法を併用してもよい。
 足場は、作業者や技術者が作業を行うために必要な水平方向の広さを有する平板状の形状を有する。特に、作業者や技術者が安全に移動や作業を行うために、表面に不要な突起部や凹凸を有しない形状が好ましい。但し、チェッカープレートのような安全のための小突起物は有してもよい。足場の大きさは、足場が固定された支持構造体および/または生物格納容器側の端から他端との長さの上限が通常2m以下、好ましくは1.5m以下、より好ましくは1m以下、更に好ましくは80cm以下であり、下限は通常20cm以上、好ましくは30cm以上、より好ましくは50cm以上、更に好ましくは70cm以上である。前記上限以下であることにより、足場を設置するための空間が大きくなりすぎず、生物育成設備全体の大きさを小さくすることができる。それに伴い、空気調和や光の利用の効率を上げることができる。また、前記下限以上であることにより、作業者や技術者の作業性を確保することができる。
 支持構造体および/または生物格納容器に沿った方向の長さは、通常100m以下、好ましくは50m以下、より好ましくは20m以下、更に好ましくは15m以下であり、通常50cm以上、好ましくは1m以上、より好ましくは3m以上である。この寸法が大きすぎると設置工事が困難になるため好ましくない。逆に小さすぎると、作業者や技術者の作業性が低下するので好ましくない。
 足場の厚みは、通常20cm以下、好ましくは10cm以下、より好ましくは5cm以下であり、通常5mm以上、好ましくは1cm以上、より好ましくは2cm以上である。前記上限以下であることにより、足場の重量を軽くすることができ、設置工事を効率的に行うことができる。前記下限以上であることにより、作業者や技術者が乗るのに必要な強度を確保しやすい。足場が設置される床からの高さは、必要に応じて任意に設定できるが、通常1m以上、より好ましくは1.5m以上、更に好ましくは2m以上であり、通常3m以下である。この高さが小さすぎる場合は、作業者や技術者が地上または床から手を伸ばせば可能な作業内容を超えた有利な作業が少ないため、その意義が小さい。
 足場を高さ方向に複数設置することも可能で、その場合足場と足場の高さ方向の距離は、通常1m以上、好ましくは1.5m以上、より好ましくは2m以上であり、通常3m以下、好ましくは2m以下である。高さ方向の距離が前記下限以上であることにより、足場を利用した作業者や技術者の作業空間を確保でき、人間工学的に合理的な姿勢で作業することができる。一方、前記上限以下であることにより、作業者や技術者が床または足場の上で踏み台などの補助什器を用いれば、必要な作業をするのに無理なく手が届くので、好ましい。
 足場は、一枚の平板状材料と梁材から構成されていてもよいし、複数の平板状材料と梁材から構成されていてもよいが、作業者や技術者が上に乗って移動や作業を行う際に躓いたり落下したりしないように、大きな穴や隙間を形成しないように設置されることが好ましく、また手すりや格子、壁等を設置することもできる。
 足場の材質に特に制限はないが、通常FRP等の繊維強化プラスチックやエンジニアリングプラスチック等の樹脂材料、炭素鋼、ステンレス鋼、アルミ鋼等の金属材料、木材等が用いられる。中でも、強度が高い点で、金属材料が好ましい。腐食を防止する目的で、該金属材料に適宜コーティングや不動態化処理、メッキ処理等を施したものを用いることもできる。足場の熱伝導率が高いと、生物育成設備の温度調整をしやすくなり、ひいて生物の育成を制御しやすくなる点でも、金属材料が好ましい。
 生物育成設備全体の設置に要する空間を最小限にし、また空気調和を経済的に合理的にするため、足場は必要最小限の大きさに設定するのがよく、また厚みも必要最小限にして、かつ不要な突起や凹凸を有しない単純な形状のものを規則的に配置するのが好ましい。
 複数の育成ユニットが足場を介して連結されているのが好ましい。育成ユニット間を自由に移動できることで作業効率が上がるだけでなく、生物育成設備の設置の際の作業効率を上げることもできる。
 生物の育成には水が必要なことが多く、水を適切に供給及び排出するためには、育成装置に高度な水平精度が要求される。複数段の生物格納容器を有する場合、通常は支持構造体および必要に応じて生物格納容器を仮組みして、一段ずつ水平を調整する。水平出しの際に、複数の育成ユニットが足場を介して連結されていると、個別の育成ユニットが安定するため、作業効率が良くなる。また、通常は高所作業車が必要な高さの育成ユニットであっても、不要になる。
 そして、支持構造体の柱に対する横方向の応力負担が減るため、柱を細くできるうえ、育成ユニットが揺れに対して強くなる。
 更に、本発明に係る生物育成設備が生物格納容器に水を供給する設備を備える場合には、水平度の確保が容易になることにより水の供給水量を安定させやすい。水周りはトラブルが発生しやすいため、監視やメンテナンスの頻度を上げる必要があり、足場を有効に活用することができる。そして、足場の下面に給水および/または排水の配管を通せるため、空間の使用効率を上げることができる。
 可動式隔壁及び固定式隔壁を含む隔壁は、生物育成設備を天井方向から投影した際に、隔壁の投影面積が建屋の床面積(但し、育成ユニットが存在する面積は除く)の通常50%以上であり、70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることが更に好ましく、90%以上が特に好ましく、95%以上が最も好ましい。また、通常99%以下である。上記範囲を満たすことにより、隔壁により分割された各空間における空気調和を達成し易くなる。
 上記隔壁の投影面積について、図9を用いて説明する。
 図9は、生物育成設備を天井方向から投影した、投影図である。建屋1と育成ユニット4との間に、可動式隔壁7および固定式隔壁8が設置されている。可動壁隔壁7や固定式隔壁8は、建屋の壁、柱31や、育成ユニット4との間に空隙を有する。可動式隔壁7と固定式隔壁8との間の空隙30、建屋が柱31を備える場合には、柱31と固定式隔壁8との間の空隙32、配管33と固定式隔壁8との間の空隙34、配線35と固定式隔壁との間の空隙36、育成ユニット4と固定式隔壁8との間の空隙37等が例示される。
 これらの空隙の割合は少ないほど好ましい。しかし、建屋の水平方向の断面の形状は複雑なため、隔壁の施工にあたり、育成ユニット4、建屋の柱31、配管33や配線34との間に空隙を有することになる。空気調和の効率を上げるために、必要に応じてこれらの空隙を埋めても良い。
 上記シミュレーション例2は、隔壁の投影面積が建屋の床面積の80%の条件で行ったが、この数値を上げることでより厳密な温度制御が可能となり、タンパク合成用植物を育成した際のタンパク合成量の低減を更に抑制することができ、隔壁が無い場合と比較して、タンパク合成量を1.5倍以上、好ましくは2倍以上、より好ましくは3倍以上とすることも可能である。
 本発明の生物育成設備は、生物の育成全般に用いることが可能であり、特に植物、とりわけ葉部の多い植物に好適に用いられる。とりわけ、比較的厳格で狭い管理幅内での管理を要求する医薬、創薬、食品、健康用の植物、遺伝子組み換え技術を用いる植物、中でもその実施の実績が蓄積された葉物野菜、シロイヌナズナ、タバコ等の植物の育成に好適に用いられる。特に、タンパク合成用植物に好適に用いられる。この装置を用いることで、上記生物および/またはタンパクを適切に、高品質で安定的に、工業的に安価に大量に生産することが可能となる。
1 建屋
1-1 床
1-2 壁
1-3 天井
2 生物格納容器
3 支持構造体
3-1 柱
3-2 載置部材
3-3 反射板
4 育成ユニット
5 搬送装置
5-1 搬送装置用レール
6 階段
7 可動式隔壁
8 固定式隔壁
9 吹出口
10 吸込口
11 照明設備
12 電気配線
13 電気配線
14 給水配管
15 給水配管
16 給水配管
17 吹出ダクト
18 吹出口
19 吸込口
20 吸込ダクト
21 可変荷重要素
22 空圧シリンダー
23 巻き取り部
24 ワイヤー
25 可動式隔壁用レール
26 ガイド
30 可動式隔壁と固定式隔壁との空隙
31 建屋柱
32 建屋柱と固定式隔壁との空隙
33 配管
34 配管と固定式隔壁との空隙
35 配線
36 配線と固定式隔壁との空隙
37 育成ユニットと固定式隔壁との空隙

Claims (10)

  1. タンパク合成用植物を育成する植物育成設備であって、
     床、壁、及び天井を有する建屋内に、
     植物を格納できる植物格納容器、及び、前記植物格納容器を上下方向に複数の段で支持する支持構造体を備える育成ユニットと、
     前記植物格納容器を前記育成ユニット内に配置するために、前記植物格納容器を前記育成ユニットの上下方向に移動できる搬送装置と、
     前記建屋内の、前記植物育成ユニットを除く空間を、上下方向に2つ以上の空間に分割でき、その少なくとも一部に、前記搬送装置が上下方向に移動するための開口部を形成しうる可動部を有する1以上の隔壁と、
     前記隔壁によって2つ以上の空間に分割された少なくともそれぞれの空間に、空気調和装置の吹出口と吸込口とを有する、
    植物育成設備。
  2.  前記建屋が、前記育成ユニット、前記搬送装置及び前記隔壁を含む空間を閉鎖系にしうる建屋である請求項1に記載の植物育成設備。
  3.  前記空気調和装置の吹出口と吸込口は、前記隔壁によって分割された少なくともそれぞれの空間において対向する壁面に設置されている、請求項1または2のいずれか1項に記載の植物育成設備。
  4.  前記複数の育成ユニットが、その長辺で隣接するように配置されている、請求項1~3のいずれか1項に記載の植物育成設備。
  5.  前記隔壁の可動部により形成される開口部が、前記育成ユニットの短辺側に設けられている請求項1~4のいずれか1項に記載の植物育成設備。
  6.  前記隔壁の可動部により形成される開口部が、前記育成ユニットに対して空気調和装置の吸込口側に設けられている請求項1~5のいずれか1項に記載の植物育成設備。
  7.  前記搬送装置が、前記育成ユニットの短辺と、該育成ユニットの短辺に対向する壁面との間に形成される空間に配置されている請求項1~6のいずれか1項に記載の植物育成設備。
  8.  前記育成ユニットの支持構造体が、植物格納容器を育成ユニットの長辺方向に移動させる搬送手段を備える、請求項1~7のいずれか1項に記載の植物育成設備。
  9.  前記タンパク合成用植物が組換え遺伝子を含む植物である、請求項1~8のいずれか1項に記載の植物育成設備。
  10.  前記隔壁を、植物育成設備を天井方向から投影した際に、隔壁の投影面積が建屋の床面積の70%以上である、請求項1~9のいずれか1項に記載の生物育成設備。
PCT/JP2014/059300 2013-03-28 2014-03-28 植物育成設備 WO2014157671A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2907852A CA2907852A1 (en) 2013-03-28 2014-03-28 Plant cultivation facility
JP2015508790A JP6245256B2 (ja) 2013-03-28 2014-03-28 植物育成設備
CN201480017064.0A CN105163576A (zh) 2013-03-28 2014-03-28 植物培育设备
US14/866,821 US10194596B2 (en) 2013-03-28 2015-09-25 Plant cultivation facility

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013069877 2013-03-28
JP2013-069877 2013-03-28
JP2013-069881 2013-03-28
JP2013069881 2013-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/866,821 Continuation US10194596B2 (en) 2013-03-28 2015-09-25 Plant cultivation facility

Publications (1)

Publication Number Publication Date
WO2014157671A1 true WO2014157671A1 (ja) 2014-10-02

Family

ID=51624628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059300 WO2014157671A1 (ja) 2013-03-28 2014-03-28 植物育成設備

Country Status (6)

Country Link
US (1) US10194596B2 (ja)
JP (1) JP6245256B2 (ja)
CN (1) CN105163576A (ja)
CA (1) CA2907852A1 (ja)
TW (1) TW201442621A (ja)
WO (1) WO2014157671A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706783A (zh) * 2015-03-23 2016-06-29 阜阳市农业科学院 一种定时监控记录的大豆培育装置
JP5994163B1 (ja) * 2015-12-18 2016-09-21 ホリー株式会社 多段式植物栽培棚
JP5994162B1 (ja) * 2015-12-18 2016-09-21 ホリー株式会社 多段式植物栽培棚
JP2016202110A (ja) * 2015-04-27 2016-12-08 株式会社スプレッド 植物栽培装置
WO2017024353A1 (en) * 2015-08-11 2017-02-16 E Agri Pte Ltd High density horticulture growing systems, methods and apparatus
JP2019106952A (ja) * 2017-12-19 2019-07-04 株式会社スプレッド 植物栽培設備
JP2022505558A (ja) * 2018-11-02 2022-01-14 フィースマン リフリッジレーション ソリューションズ ゲーエムベーハー 最適化された気候システムを有する、複数の層における植物栽培のための密閉気候セル

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9986697B1 (en) * 2015-05-20 2018-06-05 Michael H Gurin Highly integrated vertical farm for optimal manufacturing and operations
EP3337310B1 (de) * 2015-08-17 2020-11-11 Thomas Amminger Anlage zum kultivieren von pflanzen
US10448587B2 (en) * 2016-01-20 2019-10-22 Stephen A. Dufresne Multilevel aeroponic terrace growing system for growing indoor vegetation
US10390504B2 (en) * 2016-07-08 2019-08-27 Stephen A. Dufresne Multilevel mobile gutter system for growing indoor vegetation
WO2017185064A1 (en) 2016-04-21 2017-10-26 Eden Works, Inc. (Dba Edenworks) Stacked shallow water culture (sswc) growing systems, apparatus and methods
EP3453252A4 (en) * 2016-05-02 2020-01-01 Elm Inc. FULLY AUTOMATIC MULTI-STAGE SINGLE PLANTING SYSTEM
CN106386231A (zh) * 2016-09-21 2017-02-15 白德辉 立体多层种植装置
US20180125016A1 (en) * 2016-11-08 2018-05-10 Stephen A. Dufresne Multi-level horizontal air flow distribution system
WO2018107176A1 (en) 2016-12-09 2018-06-14 Eden Works, Inc. (Dba Edenworks) Methods systems and apparatus for cultivating densely seeded crops
NL2018324B1 (nl) 2017-02-07 2018-09-03 Priva Holding B V Werkwijze en inrichting voor het telen van een gewas
EP3673727B1 (en) * 2017-08-23 2023-12-13 Young-Chai Cho Plant factory
CN107543080A (zh) * 2017-09-12 2018-01-05 佛山市谷思贝农业科技有限公司 一种室内立体种植架
US10136587B1 (en) * 2017-10-12 2018-11-27 Gary Lind Johnson Agricultural apparatus and method
IT201700118942A1 (it) * 2017-10-20 2019-04-20 Travaglini S P A Metodo e sistema per la climatizzazione di ambienti chiusi, in particolare per vertical farm
TWI655898B (zh) * 2018-02-01 2019-04-11 傅欽福 Circulating plant planting institution
CN108849467A (zh) * 2018-07-27 2018-11-23 江山市星菜农业科技有限公司 植物工厂空气循环系统及空气循环方法
WO2020102830A1 (en) * 2018-11-14 2020-05-22 Bartrom Michael Automated farm with robots working on plants
SG11202108250QA (en) * 2019-01-30 2021-08-30 Invertigro Pty Ltd Modular unit for growing crops, system and grow column thereof
US20230025874A1 (en) * 2019-12-20 2023-01-26 2327100 Alberta Inc. Modular plant growth system
CN111264245B (zh) * 2020-03-01 2022-11-18 京东方后稷科技(北京)有限公司 一种无土栽培大棚
CN111512850B (zh) * 2020-05-21 2021-09-28 苏州瑞裴信息科技有限公司 一种用于农业大棚的蔬菜种植架及其使用方法
USD959327S1 (en) * 2020-06-24 2022-08-02 Samuel Westlind Vertical farm station
US20230397536A1 (en) * 2020-09-21 2023-12-14 Mjnn Llc Robotic harvesting system for vertical plant cultivation
US20220159910A1 (en) * 2020-11-24 2022-05-26 Grobo Inc. Systems and methods for managing plant data and plant growth
WO2023065006A1 (en) * 2021-10-18 2023-04-27 La Ferme À Simba Inc. Air circulation system and method for horticulture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113419A (ja) * 1997-10-15 1999-04-27 Technova:Kk 育苗装置
JP2005021064A (ja) * 2003-07-01 2005-01-27 Cats Inc 植物栽培施設
JP2011200148A (ja) * 2010-03-25 2011-10-13 Sankyo Kucho Kk 立体栽培装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204863B2 (ja) 1994-12-27 2001-09-04 株式会社誠和 多段栽培装置
BR9507025A (pt) 1994-03-11 1997-09-23 Seiwa Co Ltd Método de cultivo de plantas em múltiplos estágios e aparelho para cultivo de plantas em múltiplos estágios para uso no mesmo
JP2000209970A (ja) 1999-01-26 2000-08-02 Shin Meiwa Ind Co Ltd 立体式水耕栽培設備
JP2000287547A (ja) * 1999-04-08 2000-10-17 Yoshisuke Yanase 農作物栽培方法および農作物栽培設備
CN1245586C (zh) * 2000-07-07 2006-03-15 宇宙设备公司 一种发光屏
NL1020012C2 (nl) * 2002-02-20 2003-08-21 Visser S Gravendeel Holding Duwinrichting voor potplanten.
JP2004329130A (ja) * 2003-05-08 2004-11-25 Daito Kogyo Kk 植物栽培システム
CA2719619A1 (en) * 2008-03-26 2009-10-01 Hisakazu Uchiyama Culture apparatus
JP2011020148A (ja) 2009-07-16 2011-02-03 Jfe Techno Research Corp 鋳型充填用中空ボール、およびそれを用いた鋳造方法
JP5700748B2 (ja) 2009-12-14 2015-04-15 国立大学法人東京農工大学 植物栽培システム
JP4651743B1 (ja) 2010-03-12 2011-03-16 株式会社椿本チエイン 植物栽培装置
JP4617395B1 (ja) 2010-03-25 2011-01-26 株式会社椿本チエイン 植物栽培装置
TW201143605A (en) * 2010-06-15 2011-12-16 Tainan Distr Agricultural Res And Extension Station Council Of Agricufture Executive Yuan Method for cultivating stalk attached phalaenopsis seedling with high area efficiency and cultivation device thereof
US8590229B2 (en) * 2010-09-15 2013-11-26 Shurtech Brands, Llc Inflatable attic stairway insulation appliance
JP5441874B2 (ja) 2010-12-06 2014-03-12 株式会社椿本チエイン 植物栽培装置
JP2012120454A (ja) 2010-12-06 2012-06-28 Tsubakimoto Chain Co 植物栽培装置
JP5791337B2 (ja) 2011-04-05 2015-10-07 株式会社椿本チエイン 植物栽培装置
GB2491162B (en) * 2011-05-25 2017-03-22 Manthorpe Building Products Ltd Access closure assembly
CN202617810U (zh) * 2012-05-08 2012-12-26 杭州恒农科技股份有限公司 多层立体式的温室自动化移动苗床式的植物工厂装置
CN102960198A (zh) * 2012-11-29 2013-03-13 邹成丰 植物自动生产设备及其方法
JP2014132847A (ja) * 2013-01-09 2014-07-24 Tsubakimoto Chain Co 植物栽培装置
CA2808647C (en) * 2013-03-08 2014-08-26 Biochambers Incorporated A controlled environment enclosure with built-in sterilization/pasteurization functionality

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113419A (ja) * 1997-10-15 1999-04-27 Technova:Kk 育苗装置
JP2005021064A (ja) * 2003-07-01 2005-01-27 Cats Inc 植物栽培施設
JP2011200148A (ja) * 2010-03-25 2011-10-13 Sankyo Kucho Kk 立体栽培装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706783A (zh) * 2015-03-23 2016-06-29 阜阳市农业科学院 一种定时监控记录的大豆培育装置
CN105706783B (zh) * 2015-03-23 2019-06-25 阜阳市农业科学院 一种定时监控记录的大豆培育装置
JP2016202110A (ja) * 2015-04-27 2016-12-08 株式会社スプレッド 植物栽培装置
WO2017024353A1 (en) * 2015-08-11 2017-02-16 E Agri Pte Ltd High density horticulture growing systems, methods and apparatus
JP5994163B1 (ja) * 2015-12-18 2016-09-21 ホリー株式会社 多段式植物栽培棚
JP5994162B1 (ja) * 2015-12-18 2016-09-21 ホリー株式会社 多段式植物栽培棚
JP2019106952A (ja) * 2017-12-19 2019-07-04 株式会社スプレッド 植物栽培設備
JP2022505558A (ja) * 2018-11-02 2022-01-14 フィースマン リフリッジレーション ソリューションズ ゲーエムベーハー 最適化された気候システムを有する、複数の層における植物栽培のための密閉気候セル

Also Published As

Publication number Publication date
US20160014977A1 (en) 2016-01-21
CA2907852A1 (en) 2014-10-02
CN105163576A (zh) 2015-12-16
JPWO2014157671A1 (ja) 2017-02-16
JP6245256B2 (ja) 2017-12-13
US10194596B2 (en) 2019-02-05
TW201442621A (zh) 2014-11-16

Similar Documents

Publication Publication Date Title
JP6245256B2 (ja) 植物育成設備
JP6741064B2 (ja) 栽培棚および植物栽培設備
US5493808A (en) Controlled atmosphere storage chamber
US20200260673A1 (en) Cultivation method of agricultural products
US7234270B2 (en) Structure of a greenhouse
EP3697199B1 (en) Structure for growing and moving agricultural products
CN101502231A (zh) 作物全过程屏蔽式生长方法及生长站
JP5989413B2 (ja) 植物栽培装置及び植物栽培方法
JP2013051942A (ja) 植物栽培棚装置
KR101639872B1 (ko) 식물생장 조절실을 구비한 식물공장시스템
CN108024510A (zh) 栽培装置以及栽培方法
JP2016140249A (ja) 多段式棚及びこれを備えた多段式栽培装置
JP4858239B2 (ja) 多段式植物栽培装置における空調方法
KR101583456B1 (ko) 정밀 기류형 식물조직 배양대
CN206491034U (zh) 一种人工模拟生态系统的食用菌种植实验柜
CN109561658B (zh) 容纳垂直农场的罐
KR20110006767A (ko) 배양대
CN201332616Y (zh) 作物全过程屏蔽式生长站
US20230301254A1 (en) Vertical farming system and method using the same
WO1996008681A1 (en) Controlled atmosphere storage chamber
JP7287646B2 (ja) 植物栽培装置及び植物製造方法
JPH0551251B2 (ja)
JPH1052166A (ja) キノコ栽培室及びキノコ栽培方法
KR20120074131A (ko) 건물 환기 구조

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017064.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2907852

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015508790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774309

Country of ref document: EP

Kind code of ref document: A1