WO2014157657A1 - 素子製造方法および素子製造装置 - Google Patents

素子製造方法および素子製造装置 Download PDF

Info

Publication number
WO2014157657A1
WO2014157657A1 PCT/JP2014/059264 JP2014059264W WO2014157657A1 WO 2014157657 A1 WO2014157657 A1 WO 2014157657A1 JP 2014059264 W JP2014059264 W JP 2014059264W WO 2014157657 A1 WO2014157657 A1 WO 2014157657A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
intermediate product
auxiliary electrode
organic semiconductor
protrusion
Prior art date
Application number
PCT/JP2014/059264
Other languages
English (en)
French (fr)
Inventor
隆佳 二連木
武田 利彦
宏佳 中島
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201480011841.0A priority Critical patent/CN105027676B/zh
Priority to KR1020157026531A priority patent/KR101587775B1/ko
Priority to US14/777,782 priority patent/US9680098B2/en
Priority to KR1020167000992A priority patent/KR20160010654A/ko
Publication of WO2014157657A1 publication Critical patent/WO2014157657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques

Definitions

  • the present invention relates to an element manufacturing method and an element manufacturing apparatus for forming an element on a continuously extending substrate.
  • a process for manufacturing an element such as an organic semiconductor element or an inorganic semiconductor element is mainly performed in a vacuum environment in order to prevent impurities from entering the element.
  • a method for forming a cathode electrode, an anode electrode, or a semiconductor layer on a substrate a film forming technique that is performed in a vacuum environment such as a sputtering method or a vapor deposition method is used.
  • the vacuum environment is realized by degassing the inside of the element manufacturing apparatus over a predetermined time using a vacuum pump or the like.
  • the element manufacturing process includes a process performed under atmospheric pressure in addition to a film forming process performed under a vacuum environment, the element manufacturing process is performed in order to take the element out of the element manufacturing apparatus.
  • the time required to replace the environment inside the apparatus with the atmosphere or to deaerate the inside of the element manufacturing apparatus is increased.
  • it is desirable that as many processes as possible among the element manufacturing processes are performed inside the element manufacturing apparatus. As a result, the time and cost required to obtain one element can be reduced.
  • Examples of processes other than the film formation process include a removal process for removing the organic semiconductor layer located on the auxiliary electrode as described in Patent Document 1, for example.
  • An auxiliary electrode is provided in order to suppress that the voltage drop which generate
  • the organic semiconductor layer is generally provided over the entire area of the base material, in order to connect the common electrode to the auxiliary electrode, it is necessary to perform the above-described removal step of removing the organic semiconductor layer on the auxiliary electrode.
  • a method of irradiating the organic semiconductor layer with light such as laser light is known.
  • the base material is covered and sealed with some member so as to prevent contamination by the scattered organic semiconductor material.
  • Patent Document 1 first, an opposing base material is superposed on a base material in a vacuum environment to form an overlapping base material, and then the space between the opposing base material and the base material is maintained in a vacuum atmosphere.
  • a method has been proposed in which the superposed substrate is taken out into the atmosphere, and then the organic semiconductor layer is irradiated with laser light.
  • the opposing base material can be firmly adhered to the base material, thereby reliably preventing contamination by the scattered organic semiconductor material. it can.
  • the present invention has been made in consideration of such points, and an element manufacturing method for efficiently manufacturing elements such as organic semiconductor elements by sealing a substrate using a differential pressure inside an element manufacturing apparatus. And it aims at providing an element manufacturing apparatus.
  • the present invention is an element manufacturing method for forming an element on a continuously extending substrate, and provides an intermediate product including the substrate and a protrusion extending in a normal direction of the substrate.
  • a stacking step in which a lid is continuously stacked on the intermediate product from the side of the protrusion in the stacking chamber adjusted to a vacuum environment, and the stack is stacked in the stacking chamber.
  • a separation step of separating the laminate into the intermediate product and the lid member in the separation chamber, and the laminate is conveyed.
  • the laminate is virtually cut by a plane perpendicular to the direction In the cross section of the laminate in the case of the space between the intermediate product and the lid member is sealed from the surroundings, a device manufacturing method.
  • the present invention is an element manufacturing apparatus for forming an element on a continuously extending base material, wherein the protrusion is formed on an intermediate product including the base material and a protrusion extending in a normal direction of the base material.
  • a pressure applying mechanism including a first pressure chamber that receives the stacked body; and a separation chamber that is connected to the first pressure chamber, is adjusted to a vacuum environment, and receives the stacked body conveyed from the first pressure chamber.
  • a separation mechanism that separates the laminate into the intermediate product and the lid, and in a cross section of the laminate when the laminate is virtually cut by a plane orthogonal to the direction in which the laminate is conveyed,
  • the intermediate product and the The space between the wood are sealed from ambient, a device manufacturing apparatus.
  • the laminate may further include a support material continuously laminated on the intermediate product from the side opposite to the protrusion.
  • the lid member and the support member may be bonded to each other in a cross section of the laminate when the laminate is virtually cut by a plane orthogonal to the direction in which the laminate is conveyed.
  • the element includes the base material, a plurality of first electrodes provided on the base material, an auxiliary electrode and the protrusion provided between the first electrodes, and the first electrode.
  • An organic semiconductor layer provided on the organic semiconductor layer, and a second electrode provided on the auxiliary electrode, and the intermediate product includes the base material and a plurality of base materials provided on the base material.
  • the element manufacturing method according to the present invention may include a removing step of removing the organic semiconductor layer provided on the auxiliary electrode in the first pressure chamber.
  • the element manufacturing apparatus according to the present invention may include a removal mechanism for removing the organic semiconductor layer provided on the auxiliary electrode in the first pressure chamber.
  • the auxiliary electrode may be partially covered by the protrusion.
  • the removing step of the element manufacturing method according to the present invention may include a step of irradiating the organic semiconductor layer on the auxiliary electrode disposed adjacent to the protrusion.
  • the removal mechanism of the element manufacturing apparatus according to the present invention may include a light irradiation unit that irradiates the organic semiconductor layer on the auxiliary electrode disposed adjacent to the protrusion.
  • the protrusion may be at least partially covered by the auxiliary electrode.
  • the organic semiconductor layer on the auxiliary electrode located on the protrusion may be removed.
  • the removal mechanism of the element manufacturing apparatus according to the present invention may be configured to remove the organic semiconductor layer on the auxiliary electrode located on the protrusion.
  • the intermediate product may include the base material, the protrusions provided on the base material, and the exposed layer.
  • the element manufacturing method according to the present invention may include an exposure step of irradiating the exposed layer with exposure light in the first pressure chamber.
  • the element manufacturing apparatus according to the present invention may further include an exposure mechanism that irradiates the exposed layer with exposure light in the first pressure chamber.
  • a vapor deposition material may be provided on a surface of the lid material facing the intermediate product.
  • the element manufacturing method according to the present invention may include a step of irradiating the vapor deposition material with light in the first pressure chamber to deposit the vapor deposition material on the substrate.
  • the element manufacturing apparatus according to the present invention may include a vapor deposition mechanism that irradiates light toward the vapor deposition material and deposits the vapor deposition material on the substrate in the first pressure chamber.
  • an element such as an organic semiconductor element can be efficiently manufactured by sealing a base material with a lid member using a differential pressure inside the element manufacturing apparatus.
  • FIG. 1 is a longitudinal sectional view showing an organic semiconductor element in an embodiment of the present invention.
  • FIG. 2A is a plan view showing an example of a layout of auxiliary electrodes, protrusions, and organic semiconductor layers of the organic semiconductor element shown in FIG.
  • FIG. 2B is a plan view showing another example of the layout of the auxiliary electrode, the protrusion, and the organic semiconductor layer of the organic semiconductor element shown in FIG. 1.
  • FIG. 3 is a diagram showing an element manufacturing apparatus according to the embodiment of the present invention.
  • 4 (a) to 4 (g) are diagrams showing a device manufacturing method according to an embodiment of the present invention.
  • FIG. 5 is a view showing an intermediate product processing apparatus of the element manufacturing apparatus shown in FIG. 3.
  • 6 is a cross-sectional view showing the laminate shown in FIG.
  • FIG. 7 is a view showing a modification of the intermediate product processing apparatus of the element manufacturing apparatus shown in FIG. 3.
  • FIG. 8 is a cross-sectional view showing the laminate shown in FIG.
  • FIGS. 9A to 9G are views showing a method for removing an organic semiconductor layer on an auxiliary electrode in a modification of the embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example in which the intermediate product processing apparatus is configured as an exposure apparatus that exposes a layer to be exposed.
  • 11 is a view showing an exposure process performed by the exposure apparatus shown in FIG.
  • FIG. 12 is a diagram illustrating an example in which the intermediate product processing apparatus is configured as a vapor deposition apparatus that deposits a vapor deposition material on a substrate.
  • FIG. 13 is a diagram illustrating a vapor deposition process performed by the vapor deposition apparatus illustrated in FIG. 12.
  • FIG. 14 is a diagram illustrating an example of a gate valve.
  • FIGS. 1 to 6 First, the layer structure of the organic semiconductor element 40 in the present embodiment will be described with reference to FIG.
  • a top emission type organic EL element will be described as an example of the organic semiconductor element 40.
  • the organic semiconductor element 40 includes a base material 41, a plurality of first electrodes 42 provided on the base material 41, auxiliary electrodes 43 and protrusions provided between the first electrodes 42. A portion 44, an organic semiconductor layer 45 provided on the first electrode 42, and a second electrode 46 provided on the organic semiconductor layer 45 and the auxiliary electrode 43.
  • the organic semiconductor layer 45 includes at least a light emitting layer that emits light by recombination of electrons and holes in the organic compound.
  • the organic semiconductor layer 45 may further include various layers generally provided in the organic EL element, such as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer.
  • a hole injection layer such as a hole injection layer, a hole transport layer, an electron transport layer, or an electron injection layer.
  • the first electrode 42 is provided corresponding to each of the organic semiconductor layers 45.
  • the first electrode 42 also functions as a reflective electrode that reflects light generated in the organic semiconductor layer 45.
  • Examples of the material constituting the first electrode 42 include simple elements of metal elements such as aluminum, chromium, titanium, iron, cobalt, nickel, molybdenum, copper, tantalum, tungsten, platinum, gold, silver, or alloys thereof. it can.
  • the second electrode 46 functions as a common electrode for the plurality of organic semiconductor layers 45.
  • the second electrode 46 is configured to transmit light generated in the organic semiconductor layer 45.
  • a material constituting the second electrode 46 a metal film thinned to such an extent that light can be transmitted, or an oxide conductive material such as ITO can be used.
  • the auxiliary electrode 43 prevents a variation in voltage drop due to a difference in distance from a power source (not shown) to each organic semiconductor layer, thereby reducing the luminance of a display device using an organic EL element. This is to suppress variation.
  • each auxiliary electrode 43 is connected to the second electrode 46.
  • the material constituting the auxiliary electrode 43 include a single element or alloy of the same metal element as that of the first electrode 42.
  • the auxiliary electrode 43 may be made of the same material as the first electrode 42, or may be made of a material different from the first electrode 42.
  • the protrusion 44 is made of an insulating material.
  • the protrusion 44 is provided between the first electrode 42 and the auxiliary electrode 43.
  • the shape of the organic semiconductor layer 45 provided between the protrusions 44 can be appropriately determined.
  • a material constituting the protruding portion 44 an organic material such as polyimide or an inorganic insulating material such as silicon oxide can be used.
  • the protruding portion 44 is configured to extend along the normal direction of the base material 41. Therefore, when the lid material described later is brought into close contact with the base material 41, a space is provided between the lid material and the base material 41. It can also function as a spacer for ensuring the above.
  • the organic semiconductor layer 45 and the second electrode 46 may be continuously provided not only on the first electrode 42 but also on the protrusion 44.
  • the organic semiconductor layer 45 emits light when current flows between the first electrode 42 and the second electrode 46.
  • the organic semiconductor layer 45 located on the protrusion 44 the organic semiconductor layer 45 is positioned between the first electrode 42 and the second electrode 46. No light emission occurs. 2A and 2B to be described later, only the portion of the organic semiconductor layer 45 that emits light is shown.
  • FIG. 2A is a plan view illustrating an example of the layout of the auxiliary electrode 43, the protrusion 44, and the organic semiconductor layer 45.
  • the organic semiconductor layer 45 may include a red organic semiconductor layer 45R, a green organic semiconductor layer 45G, and a blue organic semiconductor layer 45B that are arranged in order in a matrix and each have a rectangular shape. In this case, a combination of adjacent organic semiconductor layers 45R, 45G, and 45B constitutes one pixel.
  • the auxiliary electrodes 43 are arranged in a grid so as to extend between the organic semiconductor layers 45 arranged in a matrix.
  • the protrusion 44 is provided between the organic semiconductor layer 45 and the auxiliary electrode 43 so as to surround the organic semiconductor layer 45 from the side. That is, the protrusions 44 are continuously provided along the four sides of the organic semiconductor layer 45.
  • the auxiliary electrode 43 does not need to be connected to the second electrode 46 over the entire area. That is, it is not necessary to remove all of the organic semiconductor layer 45 on the auxiliary electrode 43 in the removing step described later. Therefore, as shown in FIG. 2B, the protrusions 44 may be provided discontinuously along any of the four sides of the organic semiconductor layer 45. Also in the example shown in FIG. 2B, in the step of removing the organic semiconductor layer 45 on the auxiliary electrode 43 located between the protrusions 44, the scattered organic semiconductor material is applied to the organic semiconductor layer 45 on the first electrode 42. Can be prevented from reaching. Further, by connecting the auxiliary electrode 43 located between the protrusions 44 to the second electrode 46, the voltage drop can be appropriately suppressed.
  • the environment in which the element manufacturing method is implemented is not particularly limited.
  • the element manufacturing method is partially under a vacuum environment.
  • the specific pressure in the vacuum environment is not particularly limited as long as the pressure is lower than the atmospheric pressure.
  • the internal pressure of the element manufacturing apparatus 10 is 1.0 ⁇ 10 4 Pa or less. It has become.
  • FIG. 3 is a diagram schematically showing the element manufacturing apparatus 10.
  • the element manufacturing apparatus 10 includes a first electrode forming apparatus 11 that forms a plurality of first electrodes 42 on a base material 41, and an auxiliary electrode formation that forms an auxiliary electrode 43 between the first electrodes 42.
  • the device 12, the protrusion forming device 13 that forms the protrusion 44 between the first electrode 42 and the auxiliary electrode 43, and the organic semiconductor layer 45 is formed on the first electrode 42, the auxiliary electrode 43, and the protrusion 44.
  • an organic semiconductor layer forming apparatus 14 In the following description, what is obtained by a process using each device 11, 12, 13, 14 may be referred to as an intermediate product 50.
  • the intermediate product 50 after passing through the first electrode forming device 11 includes a base material 41 and a plurality of first electrodes 42 formed on the base material 41.
  • the intermediate product 50 after passing through the auxiliary electrode forming apparatus 12 further includes an auxiliary electrode 43 formed between the first electrodes 42.
  • the intermediate product 50 after passing through the protrusion forming device 13 further includes a protrusion 44 formed between the first electrode 42 and the auxiliary electrode 43.
  • the intermediate product 50 after passing through the organic semiconductor layer forming apparatus 14 further includes an organic semiconductor layer 45 formed on the auxiliary electrode 43 and the protrusion 44. Further, in the intermediate product 50 after passing through the intermediate product processing apparatus 15 described later, the organic semiconductor layer 45 provided on the auxiliary electrode 43 is removed.
  • the element manufacturing apparatus 10 further includes an intermediate product processing apparatus 15 that performs a predetermined process while a lid member 25 described later is laminated on the base material 41.
  • the intermediate product processing apparatus 15 is configured as a removing apparatus that removes the organic semiconductor layer 45 provided on the auxiliary electrode 43 will be described.
  • the intermediate product processing apparatus 15 includes a stacking mechanism 20, a pressure application mechanism 21, a separation mechanism 22, and a removal mechanism 30. Details of each mechanism 20, 21, 22, 30 will be described later.
  • the element manufacturing apparatus 10 further includes a second electrode type device 16 that forms the second electrode 46 on the auxiliary electrode 43 and the organic semiconductor layer 45 after the organic semiconductor layer 45 on the auxiliary electrode 43 is removed. .
  • the element manufacturing apparatus 10 may further include a transport device 17 connected to each of the devices 11 to 16 for transporting the base material 41 and the intermediate product 50 between the devices 11 to 16. Good.
  • FIG. 3 classifies each device from a functional viewpoint, and the physical form is not limited to the example shown in FIG.
  • a plurality of devices among the devices 11 to 16 shown in FIG. 3 may be physically constituted by one device.
  • any of the devices 11 to 16 shown in FIG. 3 may be physically configured by a plurality of devices.
  • the first electrode 42 and the auxiliary electrode 43 may be formed simultaneously in one process.
  • the first electrode forming device 11 and the auxiliary electrode forming device 12 may be configured as one device.
  • a method for manufacturing the organic semiconductor element 40 using the element manufacturing apparatus 10 will be described.
  • a method of forming the organic semiconductor element 40 on the elongated base material 41 that extends continuously will be described.
  • a metal material layer constituting the first electrode 42 and the auxiliary electrode 43 is formed on the substrate 41 by, for example, a sputtering method, and then the metal material layer is formed by etching.
  • the first electrode 42 and the auxiliary electrode 43 described above can be simultaneously formed on the base material 41.
  • the step of forming the first electrode 42 and the step of forming the auxiliary electrode 43 may be performed separately.
  • the normal line of the base material 41 is interposed between the first electrode 42 and the auxiliary electrode 43 and above the first electrode 42 and the auxiliary electrode 43 by, for example, photolithography.
  • a plurality of protrusions 44 extending in the direction are formed.
  • a general film forming method such as a vapor deposition method, a CVD method, a printing method, an ink jet method, or a transfer method, the first electrode 42, the auxiliary electrode 43, and the protrusion 44 are formed.
  • An organic semiconductor layer 45 is formed thereon.
  • An intermediate product 50 including the organic semiconductor layer 45 provided on the electrode 43 and the protrusion 44 can be obtained.
  • the first electrode 42 and the auxiliary electrode 43 are formed on the base material 41 before the protrusion 44. For this reason, the first electrode 42 and the auxiliary electrode 43 are partially covered by the protrusion 44.
  • the lid member 25 is prepared, and then the lid member 25 is brought into close contact with the intermediate product 50 using the stacking mechanism 20 of the intermediate product processing apparatus 15 as shown in FIG.
  • the organic material provided on the auxiliary electrode 43 is removed using the removal mechanism 30 of the intermediate product processing apparatus 15 as shown in FIG.
  • the semiconductor layer 45 is irradiated with light L1 such as laser light. Thereby, the energy of the light L1 is absorbed by the organic semiconductor layer 45, and as a result, the organic semiconductor material constituting the organic semiconductor layer 45 on the auxiliary electrode 43 is scattered. In this manner, a removal process for removing the organic semiconductor layer 45 on the auxiliary electrode 43 can be performed.
  • the organic semiconductor material scattered from the auxiliary electrode 43 adheres to the lid member 25 as shown in FIG. 4E, for example.
  • the second electrode 46 is formed on the organic semiconductor layer 45 on the first electrode 42 and on the auxiliary electrode 43.
  • FIG. 5 the method of removing the organic semiconductor layer 45 on the auxiliary electrode 43 while the lid member 25 is laminated and adhered to the intermediate product 50 described with reference to FIGS. 4D and 4E described above. This will be described in more detail with reference to FIGS. 5 and 6.
  • FIG. 5 the method of removing the organic semiconductor layer 45 on the auxiliary electrode 43 while the lid member 25 is laminated and adhered to the intermediate product 50 described with reference to FIGS. 4D and 4E described above. This will be described in more detail with reference to FIGS. 5 and 6.
  • a stacking process is performed in which the cover material 25 is stacked on the intermediate product 50 to form the stacked body 51 using the stacking mechanism 20 of the intermediate product processing apparatus 15.
  • the stacking mechanism 20 is configured to continuously stack the lid member 25 on the intermediate product 50 from the protruding portion 44 side in the stacking chamber 20a adjusted to a vacuum environment. As shown in FIG.
  • the stacking chamber 20 a includes a degassing means 20 b for degassing the stacking chamber 20 a to realize a vacuum environment, an unwinding unit 50 a for unwinding the long intermediate product 50, and a long And a pair of laminating rollers 20e and 20e for sandwiching the cover member 25 on the intermediate product 50 by sandwiching the intermediate product 50 and the cover member 25.
  • the long support material 26 unwound from the support material unwinding portion 20 d is continuously further laminated on the intermediate product 50 from the side opposite to the protruding portion 44. Also good.
  • FIG. 6 is a diagram showing a cross section of the stacked body 51 when the stacked body 51 is virtually cut along a plane orthogonal to the direction in which the stacked body 51 is conveyed, that is, along the line VI-VI in FIG. .
  • an adhesive seal layer 27 is provided on the surface of the support material 26 facing the intermediate product 50, and the intermediate product 50 adheres to the support material 26 by the seal layer 27.
  • the lid member 25 covers the intermediate product 50 and is bonded to the support member 26 via the seal layer 27 at both ends of the lid member 25 extending along the transport direction of the laminated body 51. ing. Thereby, a sealed space 28 sealed from the surroundings can be formed between the intermediate product 50 and the lid member 25.
  • the sealing layer 27 does not need to be provided.
  • the pressure application mechanism 21 includes a first pressure chamber 21a that is connected to the stacked chamber 20a and adjusted to the first pressure.
  • the first pressure chamber 21a is provided with first pressure adjusting means 21b for adjusting the pressure of the first pressure chamber 21a to the first pressure by introducing, for example, an inert gas into the first pressure chamber 21a.
  • the first pressure chamber 21a is connected to the stacked chamber 20a via a second pressure chamber 23a that is adjusted to a second pressure that is higher than the pressure in the vacuum environment and lower than the first pressure. May be.
  • the second pressure chamber 23a is provided with second pressure adjusting means 23b for adjusting the pressure of the second pressure chamber 23a to the second pressure.
  • a gate valve 29 is provided between the lamination chamber 20a and the second pressure chamber 23a to shield the internal atmosphere of the lamination chamber 20a from the internal atmosphere of the second pressure chamber 23a. It may be done.
  • a gate valve 29 is provided between the second pressure chamber 23a and the first pressure chamber 21a to shield the internal atmosphere of the second pressure chamber 23a from the internal atmosphere of the first pressure chamber 21a. It may be.
  • the gate valve 29 is appropriately configured so that the internal atmosphere is shielded from each other between adjacent chambers.
  • the gate valve 29 provided between the lamination chamber 20a and the second pressure chamber 23a has a pair of rollers 29a arranged so as to straddle both the lamination chamber 20a and the second pressure chamber 23a. have.
  • the stacked body 51 is conveyed from the stacked chamber 20a to the second pressure chamber 23a through the gap between the pair of rollers 29a.
  • a gap 20s and a gap 23s may be formed between the roller 29a and the outer wall of the stacking chamber 20a and the outer wall of the second pressure chamber 23a to enable rotation of the roller 29a.
  • the gate valve 29 may further include an exhaust unit connected to the gaps 20s and 23s.
  • the stacked body 51 is transferred from the stacked chamber 20a to the second pressure chamber 23a.
  • a second pressure is applied to the stacked body 51.
  • the stacked body 51 is sealed in a direction orthogonal to the transport direction.
  • the separation chamber 22a in which the separation of the stacked body 51 is performed is adjusted to a vacuum environment in the same manner as the stacked chamber 20a. In this case, the pressure inside the laminated body 51, for example, the pressure between the intermediate product 50 and the lid member 25 is equal to the pressure in the vacuum environment.
  • the lid member 25 is pressed against and in close contact with the intermediate product 50 based on the difference between the vacuum environment and the second pressure, that is, the differential pressure.
  • the stacked body 51 is transferred from the second pressure chamber 23a to the first pressure chamber 21a.
  • a first pressure is applied to the stacked body 51.
  • the first pressure is higher than the second pressure.
  • the lid member 25 is firmly adhered to the intermediate product 50 based on a pressure difference larger than the pressure difference generated in the second pressure chamber 23a.
  • the removal process of removing the organic semiconductor layer 45 provided on the auxiliary electrode 43 of the intermediate product 50 is performed in the first pressure chamber 21 a using the removal mechanism 30 of the intermediate product processing apparatus 15.
  • the removal mechanism 30 removes the organic semiconductor layer 45 on the auxiliary electrode 43 by irradiating the organic semiconductor layer 45 on the auxiliary electrode 43 with light L1 such as a laser beam through the lid member 25.
  • the removal mechanism 30 includes, for example, a light irradiation unit 31 that generates laser light.
  • a light-transmitting material such as PET, COP, PP, PE, PC, glass film, or the like is used so that the light L1 such as laser light can be transmitted.
  • the oxygen permeability of the lid member 25 is preferably 100 cc / m 2 ⁇ day or less, more preferably 30 cc / m 2 ⁇ day or less, and even more preferably 15 cc / m 2 ⁇ day or less. It has become.
  • the laminated body 51 is guided to the support roller 32a disposed so as to face the light irradiation unit 31 using a guide roller 32b or the like.
  • the light L1 is irradiated to the laminated body 51 supported by the support roller 32a.
  • the light L ⁇ b> 1 is applied to the organic semiconductor layer 45 on the auxiliary electrode 43 disposed adjacent to the protrusion 44.
  • the organic semiconductor layer 45 on the auxiliary electrode 43 can be removed inside the element manufacturing apparatus 10 as shown in FIG.
  • the separation mechanism 22 is connected to the first pressure chamber 21a and configured to separate the laminate 51 into the intermediate product 50, the lid member 25, and the support member 26 in the separation chamber 22a adjusted to a vacuum environment.
  • the separation chamber 22a includes a deaeration means 22b for degassing the separation chamber 22a to realize a vacuum environment, a pair of separation rollers 22e and 22e for separating the lid 25 and the support material 26 from the intermediate product 50, and an intermediate product.
  • the separation chamber 22a is connected to the first pressure chamber 21a via a third pressure chamber 24a that is adjusted to a third pressure that is higher than the pressure in the vacuum environment and lower than the first pressure. May be.
  • the third pressure chamber 24a is provided with third pressure adjusting means 23b for adjusting the pressure of the third pressure chamber 24a to the third pressure.
  • a gate valve 29 is provided between the separation chamber 22a and the third pressure chamber 24a to shield the internal atmosphere of the separation chamber 22a from the internal atmosphere of the third pressure chamber 24a. It may be done.
  • a gate valve 29 for shielding the internal atmosphere of the third pressure chamber 24a from the internal atmosphere of the first pressure chamber 21a is provided between the third pressure chamber 24a and the first pressure chamber 21a. It may be. By providing the gate valve 29, the pressures in the separation chamber 22a, the first pressure chamber 21a, and the third pressure chamber 24a can be stably controlled to the vacuum environment, the first pressure, and the third pressure, respectively.
  • the stacked body 51 is transported from the first pressure chamber 21a to the third pressure chamber 24a.
  • a third pressure is applied to the stacked body 51.
  • the third pressure is lower than the first pressure.
  • the degree of adhesion of the lid member 25 to the intermediate product 50 is relaxed compared to the case of the first pressure chamber 21a.
  • the stacked body 51 is transferred from the third pressure chamber 24a to the separation chamber 22a.
  • the pressure inside the laminated body 51 for example, the pressure between the intermediate product 50 and the lid member 25 is equal to the pressure at the place where the laminated body 51 is formed, that is, the pressure in the vacuum environment of the laminated chamber 20a.
  • FIG. 4F illustrates the intermediate product 50 after the lid member 25 and the support member 26 are separated.
  • the second electrode 46 is formed on the organic semiconductor layer 45 on the first electrode 42 and on the auxiliary electrode 43.
  • the organic semiconductor element 40 including the auxiliary electrode 43 connected to the second electrode 46 can be obtained.
  • the first pressure chamber 21a that is adjusted to a pressure higher than the pressure in the vacuum environment and continuously receives the stacked body 51 conveyed from the stacked chamber 20a in the element manufacturing apparatus 10.
  • the lid member 25 can be firmly adhered to the intermediate product 50 using the differential pressure.
  • various treatments for the intermediate product 50 such as the above-described removal step can be performed in a state where the lid member 25 is firmly adhered to the intermediate product 50.
  • the organic-semiconductor element 40 can be continuously formed on the base material 41 supplied with a roll-to-roll. For this reason, the organic semiconductor element 40 can be manufactured efficiently.
  • the second pressure chamber 23a adjusted to a second pressure that is higher than the pressure in the vacuum environment and lower than the first pressure between the stacked chamber 20a and the first pressure chamber 21a. Is provided. For this reason, the pressure applied to the laminated body 51 can be raised in steps from the pressure in the vacuum environment of the laminated chamber 20a to the first pressure of the first pressure chamber 21a. As a result, the lid member 25 can be adhered more uniformly to the intermediate product 50. Moreover, it can suppress that the gas in the 1st pressure chamber 21a leaks out in the lamination
  • the third pressure chamber adjusted to a third pressure higher than the pressure in the vacuum environment and lower than the first pressure between the first pressure chamber 21a and the separation chamber 22a. 24a is provided. Thereby, it is possible to suppress the gas in the first pressure chamber 21a from leaking into the separation chamber 22a.
  • FIG. 5 shows an example in which one pressure chamber is provided between the stacked chamber 20a and the first pressure chamber 21a.
  • the present invention is not limited to this, and a plurality of pressure chambers whose pressures are increased stepwise may be provided between the stacked chamber 20a and the first pressure chamber 21a.
  • the pressure applied to the stacked body 51 can be increased in a finer stage from the pressure in the vacuum environment of the stacked chamber 20a to the first pressure of the first pressure chamber 21a.
  • the difference between the pressure in the vacuum environment and the first pressure is small, or when the gas leakage between the stacking chamber 20a and the separation chamber 22a and the first pressure chamber 21a is sufficiently prevented.
  • the second pressure chamber 23a and the third pressure chamber 24a described above may not be provided.
  • the laminated body 51 includes the intermediate product 50, the lid member 25, and the support member 26, and an example in which the sealed space 28 is formed by bonding the lid member 25 and the support member 26 is shown. It was. However, as long as the sealed space 28 sealed from the periphery can be formed between the intermediate product 50 and the lid member 25, the specific layer configuration of the laminate 51 is not limited.
  • the lid member 25 and the intermediate product 50 are bonded to each other in a cross section of the laminated body 51 when the laminated body 51 is virtually cut by a surface orthogonal to the direction in which the laminated body 51 is conveyed. It may be.
  • the lid member 25 is a portion corresponding to the intermediate product 50, for example, an intermediate portion via the seal layer 27 at both ends of the lid member 25 extending along the transport direction of the laminated body 51. Bonded to both ends of the product 50. Thereby, a sealed space 28 sealed from the surroundings can be formed between the intermediate product 50 and the lid member 25.
  • the sealing layer 27 does not need to be provided.
  • FIG. 7 shows an intermediate structure having a stacking mechanism 20 used to form the stacked body 51 shown in FIG. 8 and a separating mechanism 22 that separates the stacked body 51 shown in FIG. 8 into an intermediate product 50 and a lid member 25. It is a figure which shows the product processing apparatus.
  • the intermediate product processing apparatus 15 shown in FIG. 7 is the same as the intermediate product processing apparatus 15 shown in FIG. 5 except that the support material 26, the support material unwinding portion 20d, and the support material winding portion 22d are not provided. Therefore, detailed description is omitted.
  • the seal layer 27 is provided in the intermediate product 50 in the subsequent process.
  • the portion that has been formed may be removed by cutting.
  • a plurality of protrusions 44 are formed on the base material 41.
  • the first electrode 42 is formed between the protrusions 44, and the auxiliary electrode 43 is formed on the protrusions 44.
  • the organic semiconductor layer 45 is formed on the first electrode 42, the auxiliary electrode 43, and the protrusion 44.
  • the protrusion 44 is formed before the first electrode 42 and the auxiliary electrode 43, the protrusion 44 is covered with the auxiliary electrode 43.
  • the protrusion 44 does not need to be covered with the auxiliary electrode 43 over the entire upper surface. That is, the upper surface of the protrusion 44 only needs to be at least partially covered by the auxiliary electrode 43.
  • the example in which the protrusions 44 are provided in two rows between the first electrodes 42 and the auxiliary electrode 43 is provided between the protrusions 44 has been described. Since the electrodes 43 are provided on the protrusions 44, the protrusions 44 provided between the first electrodes 42 may be in only one row as shown in FIG. 9C.
  • a stacking process is performed in which the cover member 25 and the support member 26 are stacked on the intermediate product 50 to form the stack 51.
  • the 1st pressure application process which applies the 1st pressure higher than the pressure in a vacuum environment to the laminated body 51 using the pressure application mechanism 21 is implemented.
  • the lid member 25 is brought into close contact with the intermediate product 50.
  • a removal step of removing the organic semiconductor layer 45 provided on the auxiliary electrode 43 of the intermediate product 50 is performed in the first pressure chamber 21a.
  • the organic semiconductor layer 45 on the auxiliary electrode 43 on the protrusion 44 is formed as shown in FIG.
  • a removal step of removing the organic semiconductor layer 45 on the auxiliary electrode 43 on the protrusion 44 can be performed using the transition.
  • the intermediate product 50 shown in FIG. 9F can be obtained by separating the laminate 51 into the intermediate product 50, the lid member 25, and the support member 26.
  • the organic semiconductor layer 45 on the auxiliary electrode 43 on the protrusion 44 may be irradiated with light as in the case of the above-described embodiment.
  • the second electrode 46 is formed on the organic semiconductor layer 45 on the first electrode 42 and on the auxiliary electrode 43 on the protrusion 44.
  • the organic semiconductor element 40 including the auxiliary electrode 43 connected to the second electrode 46 can be obtained.
  • the present invention is not limited to this, and the organic semiconductor layer to be removed is removed.
  • Other layers such as a conductive layer may be interposed between the auxiliary electrode 43 and the auxiliary electrode 43. That is, in this application, “removing the organic semiconductor layer provided on the auxiliary electrode” means removing the organic semiconductor layer overlapping the auxiliary electrode when viewed along the normal direction of the substrate. is doing.
  • the intermediate product processing apparatus 15 having the stacking mechanism 20, the pressure application mechanism 21, and the separation mechanism 22 is configured as a removal apparatus that removes the organic semiconductor layer 45 on the auxiliary electrode 43.
  • An example was given.
  • application examples of the stacking mechanism 20, the pressure application mechanism 21, and the separation mechanism 22 are not particularly limited.
  • the intermediate product processing apparatus 15 includes a layering mechanism 20, a pressure application mechanism 21, a separation mechanism 22, and a layer 47 to be exposed in the first pressure chamber 21 a of the pressure application mechanism 21.
  • An exposure mechanism 33 that performs an exposure process of irradiating the exposure light L2 may be included. That is, the first pressure application process using the differential pressure in the first pressure chamber 21a may be used for the exposure process.
  • the intermediate product processing apparatus 15 includes a stacking mechanism 20, a pressure application mechanism 21, a separation mechanism 22, and a first pressure chamber of the pressure application mechanism 21.
  • 21a may be provided with a vapor deposition mechanism 35 that irradiates the vapor deposition material 48 with light and deposits the vapor deposition material 48 on the substrate 41. That is, the first pressure application process using the differential pressure in the first pressure chamber 21a may be used for the vapor deposition process.
  • a method of providing a predetermined material on a flexible member such as the lid member 25 and attaching the material on another member by heating and evaporating the material is a field of printing. This is a method called “sublimation transfer”. Accordingly, the terms “evaporation” and “evaporation” in this modification can be read as “sublimation” and “sublimation transfer”.
  • the vapor deposition material 48 is provided on the surface of the lid 25 that faces the intermediate product 50.
  • the intermediate product 50 includes a base material 41, a plurality of protrusions 44 provided on the base material 41, a first electrode 42 provided between the protrusions 44, have.
  • the vapor deposition mechanism 35 is used to irradiate the vapor deposition material 48 with light L3 such as infrared rays, the vapor deposition material 48 evaporates. More specifically, as shown in FIG.
  • the vapor deposition material 48 when the vapor deposition material 48 existing at a position facing the first electrode 42 in the vapor deposition material 48 is irradiated with the light L3, the vapor deposition material 48 evaporates. To adhere to the first electrode 42 on the substrate 41. As a result, a vapor deposition layer 49 can be formed on the first electrode 42 as shown in FIG. Further, the space between the base material 41 and the lid member 25 is appropriately partitioned by the protrusions 44. For this reason, it is prevented that the vapor deposition material 48 is scattered over a wide area in the space between the base material 41 and the lid member 25.
  • the method for heating the vapor deposition material 48 is not limited to the above.
  • a metal thin film that absorbs infrared light may be formed below the vapor deposition material 48, and the vapor deposition material 48 may be vapor deposited by heating the metal thin film. That is, in the present modification, the process of “irradiating the vapor deposition material 48 with the light L3” is not limited to the process of directly irradiating the vapor deposition material 48 with light, but also on a member adjacent to the vapor deposition material 48. It also includes a step of irradiating light toward the deposition material 48 so that the light reaches.
  • the organic semiconductor element 40 is an organic EL
  • the type of the organic semiconductor element manufactured by the above-described element manufacturing apparatus 10 and the element manufacturing method is not particularly limited.
  • organic transistor device known organic semiconductor layers and other components can be used, for example, those described in JP-A-2009-87996.
  • organic solar cell device known photoelectric conversion layers composed of organic semiconductor layers and other components can be used, for example, those described in JP2011-151195A Can do.
  • the element manufacturing apparatus 10 and the element manufacturing method described above may be applied not only to the manufacture of organic semiconductor elements but also to the manufacture of inorganic semiconductor elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[課題]素子を効率良く製造する素子製造方法および素子製造装置を提供する。 [解決手段]はじめに、基材41と、基材41の法線方向に延びる突起部44と、を含む中間製品50を準備する。次に、真空環境に調整された積層室20aにおいて、中間製品50に、突起部44の側から蓋材25を連続的に積層して積層体51を形成する。その後、積層体51を、積層室20aから、真空環境における圧力よりも高い第1圧力に調整された第1圧力室21aへ搬送する。次に、積層体51を、第1圧力室21aから、真空環境に調整された分離室22aへ搬送し、積層体51を中間製品50および蓋材25に分離する。ここで、積層体51が搬送される方向に直交する面によって積層体51を仮想的に切断した場合の積層体51の断面において、中間製品50と蓋材25との間の空間は周囲から密閉されている。

Description

素子製造方法および素子製造装置
 本発明は、連続的に延びる基材上に素子を形成するための素子製造方法および素子製造装置に関する。
 有機半導体素子や無機半導体素子などの素子を製造する工程は、素子中に不純物が混入することを防ぐため、主に真空環境下で実施される。例えば、基材上にカソード電極、アノード電極や半導体層を形成するための方法として、スパッタ法や蒸着法などの、真空環境下で実施される成膜技術が用いられている。真空環境は、真空ポンプなどを用いて、所定の時間をかけて素子製造装置の内部を脱気することによって実現される。
 ところで素子の製造工程においては、成膜工程以外にも様々な工程が実施される。その中には、従来は大気圧下で実施されている工程も存在している。一方、真空環境を実現するためには、上述のように所定の時間を要する。従って、素子の製造工程が、真空環境下で実施される成膜工程に加えて、大気圧下で実施される工程をさらに含む場合、素子を素子製造装置の外部に一旦取り出すために、素子製造装置の内部の環境を大気に置換したり、素子製造装置の内部を脱気したりすることに要する時間がかさむことになる。このような時間が発生することを回避するため、素子の製造工程のうち可能な限り多くの工程が、素子製造装置の内部で実施されることが望ましい。これによって、1つの素子を得るために要する時間やコストを低減することができる。
 成膜工程以外の工程の例としては、例えば特許文献1に記載されているような、補助電極上に位置する有機半導体層を除去する除去工程を挙げることができる。補助電極とは、有機半導体層の上に設けられる電極が薄膜状の共通電極である場合に、共通電極で発生する電圧降下が場所に応じて異なることを抑制するために設けられるものである。すなわち、共通電極を補助電極に様々な場所で接続させることにより、共通電極における電圧降下を低減することができる。一方、有機半導体層は一般に基材の全域にわたって設けられるため、共通電極を補助電極に接続するためには、補助電極上の有機半導体層を除去する上述の除去工程を実施する必要がある。
 補助電極上の有機半導体層を除去する方法として、有機半導体層にレーザ光などの光を照射する方法が知られている。この場合、アブレーションによって、有機半導体層を構成する有機半導体材料が飛散するため、飛散した有機半導体材料による汚染を防ぐよう、基材を何らかの部材で覆って密閉しておくことが好ましい。例えば特許文献1においては、はじめに、真空環境下で対向基材を基材に重ね合わせて重ね合わせ基材を構成し、次に、対向基材と基材との間の空間を真空雰囲気に維持した状態で重ね合わせ基材を大気中に取り出し、その後、有機半導体層にレーザ光を照射する方法が提案されている。この場合、真空雰囲気と大気との間の差圧に基づいて、対向基材を基材に対して強固に密着させることができ、これによって、飛散した有機半導体材料による汚染を確実に防ぐことができる。
特許第4340982号公報
 特許文献1に記載のように素子の製造工程の一部が大気中で実施される場合、すなわち素子製造装置の外部で実施される場合、上述のように、素子製造装置の内部の環境を大気に置換したり、素子製造装置の内部を脱気したりすることに要する時間がかさむことになる。この点を考慮すると、差圧を利用して基材を密閉する工程は、素子製造装置の内部で実施されることが好ましい。しかしながら、従来、素子製造装置の内部で差圧を利用して基材を密閉する方法は提案されてこなかった。
 本発明は、このような点を考慮してなされたものであり、素子製造装置の内部で差圧を利用して基材密閉することによって有機半導体素子などの素子を効率良く製造する素子製造方法および素子製造装置を提供することを目的とする。
 本発明は、連続的に延びる基材上に素子を形成するための素子製造方法であって、前記基材と、前記基材の法線方向に延びる突起部と、を含む中間製品を準備する工程と、真空環境に調整された積層室において、前記中間製品に、前記突起部の側から蓋材を連続的に積層して積層体を形成する積層工程と、前記積層体を、前記積層室から、前記積層室に連結され、真空環境における圧力よりも高い第1圧力に調整された第1圧力室へ搬送する工程と、前記積層体を、前記第1圧力室から、前記第1圧力室に連結され、真空環境に調整された分離室へ搬送する工程と、前記分離室において、前記積層体を前記中間製品および前記蓋材に分離する分離工程と、を備え、前記積層体が搬送される方向に直交する面によって前記積層体を仮想的に切断した場合の積層体の断面において、前記中間製品と前記蓋材との間の空間が周囲から密閉されている、素子製造方法である。
 また本発明は、連続的に延びる基材上に素子を形成するための素子製造装置であって、前記基材および前記基材の法線方向に延びる突起部を含む中間製品に、前記突起部の側から蓋材を連続的に積層して積層体を形成する積層機構と、前記積層室に連結され、真空環境における圧力よりも高い第1圧力に調整され、かつ前記積層室から搬送される前記積層体を受け入れる第1圧力室を含む圧力印加機構と、前記第1圧力室に連結され、真空環境に調整され、かつ第1圧力室から搬送される前記積層体を受け入れる分離室において、前記積層体を前記中間製品および前記蓋材に分離する分離機構と、を備え、前記積層体が搬送される方向に直交する面によって前記積層体を仮想的に切断した場合の積層体の断面において、前記中間製品と前記蓋材との間の空間が周囲から密閉されている、素子製造装置である。
 本発明において、前記積層体は、前記突起部とは反対の側から前記中間製品に対して連続的に積層された支持材をさらに含んでいてもよい。この場合、前記積層体が搬送される方向に直交する面によって前記積層体を仮想的に切断した場合の積層体の断面において、前記蓋材と前記支持材とが接着されていてもよい。
 本発明において、前記素子は、前記基材と、前記基材上に設けられた複数の第1電極と、前記第1電極間に設けられた補助電極および前記突起部と、前記第1電極上に設けられた有機半導体層と、前記有機半導体層上および前記補助電極上に設けられた第2電極と、を含み、前記中間製品は、前記基材と、前記基材上に設けられた複数の前記第1電極と、前記第1電極間に設けられた前記補助電極および前記突起部と、前記第1電極上および前記補助電極上に設けられた前記有機半導体層と、を含んでいてもよい。この場合、本発明による素子製造方法は、前記第1圧力室において、前記補助電極上に設けられた前記有機半導体層を除去する除去工程を備えていてもよい。また、本発明による素子製造装置は、前記第1圧力室において、前記補助電極上に設けられた前記有機半導体層を除去する除去機構を備えていてもよい。
 本発明において、前記補助電極は、前記突起部によって部分的に覆われていてもよい。この場合、本発明による素子製造方法の前記除去工程は、前記突起部に隣接して配置された前記補助電極上の前記有機半導体層に光を照射する工程を含んでいてもよい。また、本発明による素子製造装置の前記除去機構は、前記突起部に隣接して配置された前記補助電極上の前記有機半導体層に光を照射する光照射部を有していてもよい。
 本発明において、前記突起部は、前記補助電極によって少なくとも部分的に覆われていてもよい。この場合、本発明による素子製造方法の前記除去工程において、前記突起部上に位置する前記補助電極上の前記有機半導体層が除去されてもよい。また、本発明による素子製造装置の前記除去機構は、前記突起部上に位置する前記補助電極上の前記有機半導体層を除去するよう構成されていてもよい。
 本発明において、前記中間製品は、前記基材と、前記基材上に設けられた前記突起部および被露光層を含んでいてもよい。この場合、本発明による素子製造方法は、前記第1圧力室において、前記被露光層に露光光を照射する露光工程を備えていてもよい。また、本発明による素子製造装置は、前記第1圧力室において、前記被露光層に露光光を照射する露光機構を備えていてもよい。
 本発明おいて、前記蓋材のうち前記中間製品と向かい合う面には蒸着用材料が設けられていてもよい。この場合、本発明による素子製造方法は、前記第1圧力室において、前記蒸着用材料に光を照射して前記蒸着用材料を前記基材上に蒸着させる工程を備えていてもよい。また、本発明による素子製造装置は、前記第1圧力室において、前記蒸着用材料に向けて光を照射して前記蒸着用材料を前記基材上に蒸着させる蒸着機構を備えていてもよい。
 本発明によれば、素子製造装置の内部で差圧を利用して基材を蓋材で密閉することによって、有機半導体素子などの素子を効率良く製造することができる。
図1は、本発明の実施の形態における有機半導体素子を示す縦断面図。 図2Aは、図1に示す有機半導体素子の補助電極、突起部および有機半導体層のレイアウトの一例を示す平面図。 図2Bは、図1に示す有機半導体素子の補助電極、突起部および有機半導体層のレイアウトのその他の例を示す平面図。 図3は、本発明の実施の形態における素子製造装置を示す図。 図4(a)~(g)は、本発明の実施の形態における素子製造方法を示す図。 図5は、図3に示す素子製造装置の中間製品処理装置を示す図。 図6は、図5に示す積層体を示す断面図。 図7は、図3に示す素子製造装置の中間製品処理装置の変形例を示す図。 図8は、図7に示す積層体を示す断面図。 図9(a)~(g)は、本発明の実施の形態の変形例において、補助電極上の有機半導体層を除去する方法を示す図。 図10は、中間製品処理装置が、被露光層を露光する露光装置として構成される例を示す図。 図11は、図10に示す露光装置によって実施される露光工程を示す図。 図12は、中間製品処理装置が、蒸着用材料を基材上に蒸着させる蒸着装置として構成される例を示す図。 図13は、図12に示す蒸着装置によって実施される蒸着工程を示す図。 図14は、ゲートバルブの一例を示す図。
 以下、図1乃至図6を参照して、本発明の実施の形態について説明する。まず図1により、本実施の形態における有機半導体素子40の層構成について説明する。ここでは有機半導体素子40の一例として、トップエミッションタイプの有機EL素子について説明する。
有機半導体素子
 図1に示すように有機半導体素子40は、基材41と、基材41上に設けられた複数の第1電極42と、第1電極42間に設けられた補助電極43および突起部44と、第1電極42上に設けられた有機半導体層45と、有機半導体層45上および補助電極43上に設けられた第2電極46と、を備えている。
 有機半導体層45は、有機化合物中における電子と正孔の再結合によって発光する発光層を少なくとも含んでいる。また有機半導体層45は、正孔注入層、正孔輸送層、電子輸送層または電子注入層など、有機EL素子において一般に設けられる様々な層をさらに含んでいてもよい。有機半導体層の構成要素としては公知のものを用いることができ、例えば特開2011-9498号公報に記載のものを用いることができる。
 第1電極42は、有機半導体層45の各々に対応して設けられている。第1電極42は、有機半導体層45で発生した光を反射させる反射電極としても機能するものである。第1電極42を構成する材料としては、アルミニウム、クロム、チタン、鉄、コバルト、ニッケル、モリブデン、銅、タンタル、タングステン、白金、金、銀などの金属元素の単体またはこれらの合金を挙げることができる。
 第2電極46は、複数の有機半導体層45に対する共通電極として機能するものである。また第2電極46は、有機半導体層45で発生した光を透過させるよう構成されている。第2電極46を構成する材料としては、光を透過させることができる程度に薄くされた金属膜や、ITOなどの酸化物導電性材料を用いることができる。
 補助電極43は、電源(図示せず)から個々の有機半導体層までの距離の差に起因して電圧降下のばらつきが生じないようにし、これにより、有機EL素子を用いた表示装置の輝度のばらつきを抑制するためのものである。図1に示すように、各補助電極43は第2電極46に接続されている。補助電極43を構成する材料としては、第1電極42と同様の金属元素の単体または合金を挙げることができる。補助電極43は、第1電極42と同一の材料から構成されていてもよく、若しくは、第1電極42とは異なる材料から構成されていてもよい。
 突起部44は、絶縁性を有する材料から構成されるものである。図1に示す例において、突起部44は、第1電極42と補助電極43との間に設けられている。このような突起部44を設けることにより、第1電極42と補助電極43および第2電極46との間の絶縁性を確保することができる。また、突起部44の間に設けられる有機半導体層45の形状を適切に定めることができる。突起部44を構成する材料としては、ポリイミドなどの有機材料や、酸化シリコンなどの無機絶縁性材料を用いることができる。また突起部44は、基材41の法線方向に沿って延びるよう構成されており、このため後述する蓋材を基材41に密着させる際に、蓋材と基材41との間に空間を確保するためのスペーサーとして機能することもできる。
 図1に示すように、有機半導体層45および第2電極46は、第1電極42上だけでなく突起部44上にも連続して設けられていてもよい。なお、有機半導体層45のうち電流が流れて発光するのは、第1電極42と第2電極46とによって上下に挟まれている部分であり、突起部44上に位置する有機半導体層45では発光が生じない。後述する図2Aおよび図2Bにおいては、有機半導体層45のうち発光が生じる部分のみが示されている。
 次に、基材41の法線方向から見た場合の有機半導体素子40の構造について説明する。特に、有機半導体素子40の補助電極43、突起部44および有機半導体層45のレイアウトについて説明する。図2Aは、補助電極43、突起部44および有機半導体層45のレイアウトの一例を示す平面図である。図2Aに示すように、有機半導体層45は、マトリクス状に順に配置され、各々が矩形形状を有する赤色有機半導体層45R、緑色有機半導体層45Gおよび青色有機半導体層45Bを含んでいてもよい。この場合、隣り合う有機半導体層45R,45G,45Bの組み合わせが1つの画素を構成している。
 図2Aに示すように、補助電極43は、マトリクス状に配置された有機半導体層45の間を延びるよう格子状に配置されている。このように補助電極43を配置することにより、各有機半導体層45に接続された第2電極46における電圧降下に、場所に応じた差が生じることを抑制することができる。また図2Aに示すように、突起部44は、有機半導体層45を側方から取り囲むよう、有機半導体層45と補助電極43との間に設けられている。すなわち、突起部44は、有機半導体層45の四辺に沿って連続して設けられている。これによって、補助電極43上の有機半導体層45を除去する工程において、飛散した有機半導体材料が第1電極42上の有機半導体層45に到達することを防ぐことができる。
 なお電圧降下を適切に低減することができる限りにおいて、補助電極43がその全域にわたって第2電極46に接続される必要はない。すなわち、後述する除去工程において、補助電極43上の有機半導体層45の全てが除去される必要はない。従って図2Bに示すように、突起部44は、有機半導体層45の四辺のうちの任意の辺に沿って非連続的に設けられていてもよい。図2Bに示す例においても、突起部44によって挟まれた位置にある補助電極43上の有機半導体層45を除去する工程において、飛散した有機半導体材料が第1電極42上の有機半導体層45に到達することを防ぐことができる。また、突起部44によって挟まれた位置にある補助電極43を第2電極46に接続することにより、電圧降下を適切に抑制することができる。
 次に、本実施の形態による有機半導体素子40を基材41上に形成するための素子製造装置10および素子製造方法について説明する。有機半導体素子40に不純物が混入されることを十分に防ぐことができる限りにおいて、素子製造方法が実施される環境は特には限られないが、例えば素子製造方法は部分的に真空環境の下で実施される。なお少なくとも大気圧よりも低圧の環境である限りにおいて、真空環境における具体的な圧力が特に限定されることはないが、例えば素子製造装置10の内部の圧力は1.0×10Pa以下になっている。
 素子製造装置
 図3は、素子製造装置10を概略的に示す図である。図3に示すように、素子製造装置10は、基材41上に複数の第1電極42を形成する第1電極形成装置11と、第1電極42間に補助電極43を形成する補助電極形成装置12と、第1電極42と補助電極43との間に突起部44を形成する突起部形成装置13と、第1電極42、補助電極43上および突起部44上に有機半導体層45を形成する有機半導体層形成装置14と、を備えている。以下の説明において、各装置11,12,13,14を用いた工程によって得られるものを中間製品50と称することもある。第1電極形成装置11を経た後の中間製品50は、基材41と、基材41上に形成された複数の第1電極42と、を含むものである。補助電極形成装置12を経た後の中間製品50は、第1電極42間に形成された補助電極43をさらに含むものである。突起部形成装置13を経た後の中間製品50は、第1電極42と補助電極43との間に形成された突起部44をさらに含むものである。有機半導体層形成装置14を経た後の中間製品50は、補助電極43上および突起部44上に形成された有機半導体層45をさらに含むものである。また、後述する中間製品処理装置15を経た後の中間製品50においては、補助電極43上に設けられた有機半導体層45が除去されている。
 素子製造装置10は、後述する蓋材25が基材41に対して積層されている間に所定の処理を実施する中間製品処理装置15をさらに備えている。本実施の形態においては、中間製品処理装置15が、補助電極43上に設けられた有機半導体層45を除去する除去装置として構成されている例について説明する。本実施の形態において、中間製品処理装置15は、積層機構20,圧力印加機構21,分離機構22および除去機構30を有している。各機構20,21,22,30の詳細については後述する。また素子製造装置10は、補助電極43上の有機半導体層45が除去された後に補助電極43上および有機半導体層45上に第2電極46を形成する第2電極形装置16をさらに備えている。
 図3に示すように、素子製造装置10は、各装置11~16間で基材41や中間製品50を搬送するために各装置11~16に接続された搬送装置17をさらに備えていてもよい。
 なお図3は、機能的な観点から各装置を分類したものであり、物理的な形態が図3に示す例に限られることはない。例えば、図3に示す各装置11~16のうちの複数の装置が、物理的には1つの装置によって構成されていてもよい。若しくは、図3に示す各装置11~16のいずれかは、物理的には複数の装置によって構成されていてもよい。例えば後述するように、第1電極42および補助電極43は1つの工程において同時に形成されることがある。この場合、第1電極形成装置11および補助電極形成装置12は1つの装置として構成されていてもよい。
 素子製造方法
 以下、図4(a)~(g)を参照して、素子製造装置10を用いて有機半導体素子40を製造する方法について説明する。ここでは、連続的に延びる長尺状の基材41上に有機半導体素子40を形成する方法について説明する。はじめに、例えばスパッタリング法によって、第1電極42および補助電極43を構成する金属材料の層を基材41上に形成し、次に、金属材料の層をエッチングによって成形する。これによって、図4(a)に示すように、上述の第1電極42および補助電極43を同時に基材41上に形成することができる。なお、第1電極42を形成する工程および補助電極43を形成する工程は、別個に実施されてもよい。
 次に、図4(b)に示すように、例えばフォトリソグラフィー法によって、第1電極42と補助電極43との間に、第1電極42および補助電極43よりも上方まで基材41の法線方向に沿って延びる複数の突起部44を形成する。その後、蒸着法,CVD法,印刷法,インクジェット法または転写法などの一般的な成膜方法によって、図4(c)に示すように、第1電極42上,補助電極43上および突起部44上に有機半導体層45を形成する。このようにして、基材41と、基材41に設けられた複数の第1電極42と、第1電極42間に設けられた補助電極43および突起部44と、第1電極42上、補助電極43上および突起部44上に設けられた有機半導体層45と、を含む中間製品50を得ることができる。なお本実施の形態においては、上述のように、第1電極42および補助電極43が突起部44よりも先に基材41上に形成される。このため、第1電極42および補助電極43は、突起部44によって部分的に覆われている。
 次に、蓋材25を準備し、その後、図4(d)に示すように、中間製品処理装置15の積層機構20を用いて蓋材25を中間製品50に密着させる。次に、蓋材25が中間製品50に密着している間に、図4(e)に示すように、中間製品処理装置15の除去機構30を用いて、補助電極43上に設けられた有機半導体層45にレーザ光などの光L1を照射する。これによって、光L1のエネルギーが有機半導体層45によって吸収され、この結果、補助電極43上の有機半導体層45を構成する有機半導体材料が飛散する。このようにして、補助電極43上の有機半導体層45を除去する除去工程を実施することができる。補助電極43上から飛散した有機半導体材料は、例えば図4(e)に示されているように蓋材25に付着する。その後、後述するように、第1電極42上の有機半導体層45上、および補助電極43上に第2電極46を形成する。
 以下、上述の図4(d)(e)を参照して説明した、蓋材25が中間製品50に積層されて密着されている間に補助電極43上の有機半導体層45を除去する方法について、図5および図6を参照してより詳細に説明する。
(積層工程)
 はじめに、中間製品処理装置15の積層機構20を用いて中間製品50に蓋材25を積層して積層体51を形成する積層工程を実施する。積層機構20は、真空環境に調整された積層室20aにおいて、中間製品50に突起部44の側から蓋材25を連続的に積層するよう構成されたものである。図5に示すように、積層室20aには、積層室20aを脱気して真空環境を実現する脱気手段20bと、長尺状の中間製品50を巻き出す巻出部50aと、長尺状の蓋材25を巻き出す蓋材巻出部20cと、中間製品50および蓋材25を挟持して蓋材25を中間製品50に積層する一対の積層ローラー20e,20eと、が設けられている。なお図5に示すように、突起部44とは反対の側から中間製品50に対して、支持材巻出部20dから巻き出された長尺状の支持材26が連続的にさらに積層されてもよい。
 図6は、積層体51が搬送される方向に直交する面によって、すなわち図5の線VI-VIに沿って積層体51を仮想的に切断した場合の積層体51の断面を示す図である。図6に示すように、支持材26のうち中間製品50と向かい合う面には、接着性を有するシール層27が設けられており、このシール層27によって中間製品50が支持材26に対して接着されている。また図6に示すように、蓋材25は、中間製品50を覆うとともに、積層体51の搬送方向に沿って延びる蓋材25の両端部において、シール層27を介して支持材26に接着されている。これによって、中間製品50と蓋材25との間に、周囲から密閉された密閉空間28を形成することができる。なお蓋材25または支持材26自体が粘着性を有する場合、シール層27が設けられていなくてもよい。
(第1圧力印加工程)
 次に、中間製品処理装置15の圧力印加機構21を用いて、真空環境における圧力よりも高い第1圧力を積層体51に印加する第1圧力印加工程を実施する。圧力印加機構21は、積層室20aに連結されるとともに第1圧力に調整された第1圧力室21aを含んでいる。第1圧力室21aには、例えば第1圧力室21a内に不活性ガスを導入することによって第1圧力室21aの圧力を第1圧力に調整する第1圧力調整手段21bが設けられている。
 なお図5に示すように、第1圧力室21aは、真空環境における圧力よりも高く、かつ第1圧力よりも低い第2圧力に調整された第2圧力室23aを介して積層室20aに連結されていてもよい。図5に示すように、第2圧力室23aには、第2圧力室23aの圧力を第2圧力に調整する第2圧力調整手段23bが設けられている。また図5に示すように、積層室20aと第2圧力室23aとの間には、積層室20aの内部雰囲気を第2圧力室23aの内部雰囲気に対して遮蔽するためのゲートバルブ29が設けられていてもよい。同様に、第2圧力室23aと第1圧力室21aとの間には、第2圧力室23aの内部雰囲気を第1圧力室21aの内部雰囲気に対して遮蔽するためのゲートバルブ29が設けられていてもよい。ゲートバルブ29を設けることによって、積層室20a、第1圧力室21aおよび第2圧力室23aの圧力をそれぞれ真空環境、第1圧力および第2圧力に安定に制御することができる。
 ゲートバルブ29は、隣り合う室の間で互いに内部雰囲気が遮蔽されるよう、適切に構成されている。例えば図14に示すように、積層室20aと第2圧力室23aとの間に設けられるゲートバルブ29は、積層室20aおよび第2圧力室23aの両方に跨るように配置された一対のローラー29aを有している。積層体51は、一対のローラー29a間のギャップを通って積層室20aから第2圧力室23aへ搬送される。なおローラー29aと積層室20aの外壁および第2圧力室23aの外壁との間には、ローラー29aの回転を可能にするための隙間20sおよび隙間23sが形成されていてもよい。この場合、ゲートバルブ29は、隙間20s,23sに接続された排気手段をさらに有していてもよい。これによって、外部の気体が隙間20s,23sを介して室20a,23a内に流入してしまうことや、隙間20s,23sを介して室20a,23a間で気体が移動してしまうことを抑制することができる。
 第1圧力印加工程においては、はじめに、積層体51を積層室20aから第2圧力室23aへ搬送する。第2圧力室23aにおいては、積層体51に対して第2圧力が印加される。一方、図6に示すように、積層体51は、搬送方向に直交する方向において密閉されている。また後述するように、積層体51の分離が実施される分離室22aは、積層室20aと同様に真空環境に調整されている。この場合、積層体51の内部の圧力、例えば中間製品50と蓋材25との間の圧力は、真空環境における圧力と同等になっている。このため第2圧力室23aにおいては、真空環境と第2圧力との間の差、すなわち差圧に基づいて、蓋材25が中間製品50に対して押圧されて密着されている。
 次に、積層体51を第2圧力室23aから第1圧力室21aへ搬送する。第1圧力室21aにおいては、積層体51に対して第1圧力が印加される。上述のように、第1圧力は第2圧力よりも高くなっている。このため第1圧力室21aにおいては、第2圧力室23aにおいて生じていた差圧よりもさらに大きな差圧に基づいて、蓋材25が中間製品50に対して強固に密着している。
(除去工程)
 次に、中間製品処理装置15の除去機構30を用いて、第1圧力室21aにおいて、中間製品50の補助電極43上に設けられた有機半導体層45を除去する除去工程を実施する。除去機構30は、蓋材25を通してレーザ光などの光L1を補助電極43上の有機半導体層45に照射することにより、補助電極43上の有機半導体層45を除去するものである。除去機構30は、図6に示すように、例えば、レーザ光を生成する光照射部31を有している。なお蓋材25を構成する材料としては、レーザ光などの光L1を透過させることができるよう、PET、COP,PP,PE,PC,ガラスフィルムなどの透光性を有する材料が用いられる。なお蓋材25は、蓋材25からガスが流入し、中間製品50と蓋材25との間の空間の機密性が低下してしまうことや、中間製品50の構成要素が酸化などによって劣化してしまうことを防ぐため、所定のガスバリア性を備えていることが好ましい。例えば、蓋材25の酸素透過度は、好ましくは100cc/m・day以下になっており、より好ましくは30cc/m・day以下になっており、さらに好ましくは15cc/m・day以下になっている。
 除去工程においては、はじめに、光照射部31と対向するよう配置された支持ローラー32aに向けて、ガイドローラー32bなどを用いて積層体51を導く。次に、支持ローラー32aによって支持されている積層体51に対して光L1を照射する。具体的には、図4(e)および図6に示すように、突起部44に隣接して配置された補助電極43上の有機半導体層45に光L1を照射する。これによって、素子製造装置10の内部において、図4(e)に示すように補助電極43上の有機半導体層45を除去することができる。
(分離工程)
 その後、中間製品処理装置15の分離機構22を用いて積層体51を中間製品50、蓋材25および支持材26に分離する分離工程を実施する。分離機構22は、第1圧力室21aに連結され、真空環境に調整された分離室22aにおいて、積層体51を中間製品50、蓋材25および支持材26に分離するよう構成されたものである。分離室22aには、分離室22aを脱気して真空環境を実現する脱気手段22bと、中間製品50から蓋材25および支持材26を分離する一対の分離ローラー22e,22eと、中間製品50を巻き取る巻取部50bと、中間製品50から分離された蓋材25を巻き取る蓋材巻取部22cと、中間製品50から分離された支持材26を巻き取る支持材巻取部22dと、が設けられている。
 なお図5に示すように、分離室22aは、真空環境における圧力よりも高く、かつ第1圧力よりも低い第3圧力に調整された第3圧力室24aを介して第1圧力室21aに連結されていてもよい。図5に示すように、第3圧力室24aには、第3圧力室24aの圧力を第3圧力に調整する第3圧力調整手段23bが設けられている。また図5に示すように、分離室22aと第3圧力室24aとの間には、分離室22aの内部雰囲気を第3圧力室24aの内部雰囲気に対して遮蔽するためのゲートバルブ29が設けられていてもよい。同様に、第3圧力室24aと第1圧力室21aとの間には、第3圧力室24aの内部雰囲気を第1圧力室21aの内部雰囲気に対して遮蔽するためのゲートバルブ29が設けられていてもよい。ゲートバルブ29を設けることによって、分離室22a、第1圧力室21aおよび第3圧力室24aの圧力をそれぞれ真空環境、第1圧力および第3圧力に安定に制御することができる。
 分離工程においては、はじめに、積層体51を第1圧力室21aから第3圧力室24aへ搬送する。第3圧力室24aにおいては、積層体51に対して第3圧力が印加される。上述のように、第3圧力は第1圧力よりも低くなっている。このため第3圧力室24aにおいては、中間製品50に対する蓋材25の密着の程度が、第1圧力室21aの場合に比べて緩和される。
 次に、積層体51を第3圧力室24aから分離室22aへ搬送する。上述のように、積層体51の内部の圧力、例えば中間製品50と蓋材25との間の圧力は、積層体51が形成される場所の圧力、すなわち積層室20aの真空環境における圧力と同等になっている。また上述のように、分離室22aも真空環境に調整されている。従って、分離室22aにおいては、積層体51の内部と積層体51の周囲との間の差圧はほとんど生じていない。このため、分離室22aにおいて、蓋材25および支持材26を中間製品50から容易に分離することができる。図4(f)は、蓋材25および支持材26が分離された後の中間製品50を示す図である。
 その後、図4(g)に示すように、第1電極42上の有機半導体層45上、および補助電極43上に第2電極46を形成する。このようにして、第2電極46に接続された補助電極43を備える有機半導体素子40を得ることができる。
 本実施の形態によれば、素子製造装置10の内部に、真空環境における圧力よりも高い圧力に調整され、かつ、積層室20aから搬送される積層体51を連続的に受け入れる第1圧力室21aを設けることにより、差圧を利用して蓋材25を中間製品50に対して強固に密着させることができる。このため、上述の除去工程などの、中間製品50に対する様々な処理を、蓋材25が中間製品50に強固に密着した状態で実施することができる。これによって、既に形成されている有機半導体層45や、中間製品50の周囲の環境が汚染されてしまうことを抑制することができる。また本実施の形態によれば、ロール・トゥー・ロールで供給される基材41上に連続的に有機半導体素子40を形成することができる。このため、有機半導体素子40を効率良く製造することができる。
 また本実施の形態によれば、積層室20aと第1圧力室21aとの間に、真空環境における圧力よりも高く、かつ第1圧力よりも低い第2圧力に調整された第2圧力室23aが設けられている。このため、積層体51に印加される圧力を、積層室20aの真空環境における圧力から第1圧力室21aの第1圧力へ段階的に上昇させることができる。このことにより、蓋材25をより均一に中間製品50へ密着させることができる。また、第1圧力室21a内の気体が積層室20a内に漏れ出てしまうことを抑制することができる。同様に本実施の形態によれば、第1圧力室21aと分離室22aとの間に、真空環境における圧力よりも高く、かつ第1圧力よりも低い第3圧力に調整された第3圧力室24aが設けられている。これによって、第1圧力室21a内の気体が分離室22a内に漏れ出てしまうことを抑制することができる。
 なお図5においては、積層室20aと第1圧力室21aとの間に1つの圧力室が設けられる例を示した。しかしながら、これに限られることはなく、積層室20aと第1圧力室21aとの間には、圧力が段階的に高められた複数の圧力室が設けられていてもよい。これによって、積層体51に印加される圧力を、積層室20aの真空環境における圧力から第1圧力室21aの第1圧力へより細かい段階で上昇させることができる。積層室20aと分離室22aとの間の圧力室についても同様である。なお、真空環境における圧力と第1圧力との間の差が小さい場合や、積層室20aおよび分離室22aと第1圧力室21aとの間での気体の漏れが十分に防がれている場合などは、上述の第2圧力室23aおよび第3圧力室24aが設けられていなくてもよい。
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
(積層体の層構成の変形例)
 上述の本実施の形態において、積層体51が、中間製品50、蓋材25および支持材26を含み、蓋材25と支持材26とを接着することによって密閉空間28が形成される例を示した。しかしながら、中間製品50と蓋材25との間に、周囲から密閉された密閉空間28を形成することができる限りにおいて、積層体51の具体的な層構成が限定されることはない。
 例えば図8に示すように、積層体51が搬送される方向に直交する面によって積層体51を仮想的に切断した場合の積層体51の断面において、蓋材25と中間製品50とが接着されていてもよい。この場合、図8に示すように、蓋材25は、積層体51の搬送方向に沿って延びる蓋材25の両端部において、シール層27を介して、中間製品50の対応する部分、例えば中間製品50の両端部に接着されている。これによって、中間製品50と蓋材25との間に、周囲から密閉された密閉空間28を形成することができる。なお蓋材25または中間製品50の基材41自体が粘着性を有する場合、シール層27が設けられていなくてもよい。
 図7は、図8に示す積層体51を形成するために用いられる積層機構20と、図8に示す積層体51を中間製品50と蓋材25とに分離する分離機構22と、を有する中間製品処理装置15を示す図である。図7に示す中間製品処理装置15は、支持材26、支持材巻出部20dおよび支持材巻取部22dが設けられていない点を除いて、図5に示す中間製品処理装置15と同一であるので、詳細な説明を省略する。
 なお図8に示す積層体51を中間製品50と蓋材25とに分離する際に、シール層27が中間製品50側に残る場合、その後の工程において、中間製品50のうちシール層27が設けられている部分を切断して除去してもよい。
(有機半導体素子の層構成の変形例)
 また上述の本実施の形態において、第1電極42および補助電極43が突起部44よりも先に基材41上に形成される例を示した。しかしながら、これに限られることはなく、突起部44を第1電極42および補助電極43よりも先に基材41上に形成してもよい。このような場合であっても、上述した本実施の形態による密着工程や除去工程を利用することができる。以下、このような例について図9(a)~(g)を参照して説明する。
 はじめに図9(a)に示すように、基材41上に複数の突起部44を形成する。次に、図9(b)に示すように、突起部44間に第1電極42を形成するとともに、突起部44上に補助電極43を形成する。その後、図9(c)に示すように、第1電極42,補助電極43および突起部44上に有機半導体層45を形成する。このようにして、基材41と、基材41に設けられた複数の第1電極42と、第1電極42間に設けられた補助電極43および突起部44と、第1電極42上および補助電極43上に設けられた有機半導体層45と、を含む中間製品50を得ることができる。なお本変形例においては、第1電極42および補助電極43よりも先に突起部44が形成されるため、突起部44が補助電極43によって覆われている。なお突起部44は、その上面が全域にわたって補助電極43によって覆われている必要はない。すなわち突起部44は、その上面が少なくとも部分的に補助電極43によって覆われていればよい。また上述の本実施の形態においては、第1電極42間に2列にわたって突起部44が設けられ、突起部44間に補助電極43が設けられる例を示したが、本変形例においては、補助電極43が突起部44上に設けられるため、図9(c)に示すように第1電極42間に設けられる突起部44は1列のみであってもよい。
 次に、積層機構20を用いて、蓋材25および支持材26を中間製品50に積層して積層体51を形成する積層工程を実施する。その後、圧力印加機構21を用いて、真空環境における圧力よりも高い第1圧力を積層体51に印加する第1圧力印加工程を実施する。これによって、図9(d)に示すように、蓋材25が中間製品50に密着される。次に、第1圧力室21aにおいて、中間製品50の補助電極43上に設けられた有機半導体層45を除去する除去工程を実施する。この場合、蓋材25のうち中間製品50に向かい合う面の表面エネルギーを適切に設定することにより、図9(e)に示すように、突起部44上の補助電極43上の有機半導体層45を蓋材25側に転移させることができる。すなわち本変形例においては、転移を利用して、突起部44上の補助電極43上の有機半導体層45を除去する除去工程を実施することができる。その後、積層体51を中間製品50、蓋材25および支持材26に分離することによって、図9(f)に示す中間製品50を得ることができる。なお本変形例においても、転移を促進するため、上述の本実施の形態の場合と同様に、突起部44上の補助電極43上の有機半導体層45に光を照射してもよい。
 その後、図9(g)に示すように、第1電極42上の有機半導体層45上および突起部44上の補助電極43上に第2電極46を形成する。このようにして、第2電極46に接続された補助電極43を備える有機半導体素子40を得ることができる。
 なお上述の本実施の形態および本変形例においては、除去される有機半導体層45が、補助電極43に接している例を示したが、これに限られることはなく、除去される有機半導体層45と補助電極43との間に、図示しないその他の層、例えば導電性を有する層が介在されていてもよい。すなわち本願において、「補助電極上に設けられた有機半導体層を除去する」とは、基材の法線方向に沿って見た場合に補助電極と重なっている有機半導体層を除去することを意味している。
(中間製品処理装置が露光装置として構成される例)
 また上述の本実施の形態および変形例において、積層機構20、圧力印加機構21および分離機構22を有する中間製品処理装置15が、補助電極43上の有機半導体層45を除去する除去装置として構成される例を示した。しかしながら、積層機構20、圧力印加機構21および分離機構22の応用例が特に限られることはない。例えば中間製品処理装置15は、図10および図11に示すように、積層機構20と、圧力印加機構21と、分離機構22と、圧力印加機構21の第1圧力室21aにおいて被露光層47に対して露光光L2を照射する露光工程を実施する露光機構33と、を有していてもよい。すなわち、第1圧力室21aにおける差圧を利用した第1圧力印加工程が、露光工程のために利用されてもよい。
(中間製品処理装置が蒸着装置として構成される例)
 若しくは、中間製品処理装置15は、図12および図13(a)(b)に示すように、積層機構20と、圧力印加機構21と、分離機構22と、圧力印加機構21の第1圧力室21aにおいて蒸着用材料48に光を照射して蒸着用材料48を基材41上に蒸着させる蒸着機構35と、を有していてもよい。すなわち、第1圧力室21aにおける差圧を利用した第1圧力印加工程が、蒸着工程のために利用されてもよい。なお、蓋材25のような柔軟性を有する部材の上に所定の材料を設け、この材料を加熱して蒸発させることにより、別の部材上に材料を付着させる、という方法は、印刷の分野において「昇華転写」と呼ばれる方法である。従って、本変形例における「蒸発」および「蒸着」という用語を、「昇華」および「昇華転写」に読み替えることも可能である。
 本変形例においては、図13(a)に示すように、蒸着用材料48が、蓋材25のうち中間製品50に向かい合う側の面に設けられている。また図13(a)に示すように、中間製品50は、基材41と、基材41上に設けられた複数の突起部44と、突起部44間に設けられた第1電極42と、を有している。この場合、蒸着機構35を用いて赤外線などの光L3を蒸着用材料48に照射すると、蒸着用材料48が蒸発する。より具体的には、図13(a)に示すように蒸着用材料48のうち第1電極42と対向する位置に存在する蒸着用材料48に光L3を照射すると、蒸着用材料48が蒸発して基材41上の第1電極42に付着する。この結果、図13(b)に示すように、第1電極42上に蒸着層49を形成することができる。また基材41と蓋材25との間の空間は、突起部44によって適切に区画されている。このため、基材41と蓋材25との間の空間で蒸着用材料48が広域にわたって飛散してしまうことが防がれている。なお蒸着用材料48を加熱する方法は、上述の限りではない。例えば蒸着用材料48の下部に赤外光を吸収する金属薄膜を形成しておき、金属薄膜を加熱することで蒸着用材料48を蒸着させても良い。すなわち本変形例において、「光L3を蒸着用材料48に照射する」という工程は、蒸着用材料48に直接的に光を照射する工程だけでなく、蒸着用材料48に隣接している部材に光が到達するように蒸着用材料48に向けて光を照射するという工程をも含んでいる。
 (その他の変形例)
 上述の本実施の形態および各変形例において、有機半導体素子40が有機ELである例を示した。しかしながら、上述の素子製造装置10および素子製造方法によって製造される有機半導体素子のタイプが特に限られることはない。例えば上述の素子製造装置10および素子製造方法を用いて、有機トランジスタデバイスや有機太陽電池デバイスなどの様々な有機半導体素子を製造することが可能である。有機トランジスタデバイスにおいて、有機半導体層およびその他の構成要素としては公知のものを用いることができ、例えば特開2009-87996号公報に記載のものを用いることができる。同様に、有機太陽電池デバイスにおいて、有機半導体層から構成される光電変換層およびその他の構成要素としては公知のものを用いることができ、例えば特開2011-151195号公報に記載のものを用いることができる。また、上述の素子製造装置10および素子製造方法は、有機半導体素子の製造だけでなく、無機半導体素子の製造に適用されてもよい。
 なお、上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。
10 素子製造装置
15 中間製品処理装置
20 積層機構
20a 積層室
21 圧力印加機構
21a 第1圧力室
22 分離機構
22a 分離室
22e 分離ローラー
25 蓋材
26 支持材
28 密閉空間
30 除去機構
31 光照射部
40 有機半導体素子
41 基材
42 第1電極
43 補助電極
44 突起部
45 有機半導体層
46 第2電極
50 中間製品
51 積層体

Claims (14)

  1.  連続的に延びる基材上に素子を形成するための素子製造方法であって、
     前記基材と、前記基材の法線方向に延びる突起部と、を含む中間製品を準備する工程と、
     真空環境に調整された積層室において、前記中間製品に、前記突起部の側から蓋材を連続的に積層して積層体を形成する積層工程と、
     前記積層体を、前記積層室から、前記積層室に連結され、真空環境における圧力よりも高い第1圧力に調整された第1圧力室へ搬送する工程と、
     前記積層体を、前記第1圧力室から、前記第1圧力室に連結され、真空環境に調整された分離室へ搬送する工程と、
     前記分離室において、前記積層体を前記中間製品および前記蓋材に分離する分離工程と、を備え、
     前記積層体が搬送される方向に直交する面によって前記積層体を仮想的に切断した場合の積層体の断面において、前記中間製品と前記蓋材との間の空間が周囲から密閉されている、素子製造方法。
  2.  前記積層体は、前記突起部とは反対の側から前記中間製品に対して連続的に積層された支持材をさらに含み、
     前記積層体が搬送される方向に直交する面によって前記積層体を仮想的に切断した場合の積層体の断面において、前記蓋材と前記支持材とが接着されている、請求項1に記載の素子製造方法。
  3.  前記素子は、前記基材と、前記基材上に設けられた複数の第1電極と、前記第1電極間に設けられた補助電極および前記突起部と、前記第1電極上に設けられた有機半導体層と、前記有機半導体層上および前記補助電極上に設けられた第2電極と、を含み、
     前記中間製品は、前記基材と、前記基材上に設けられた複数の前記第1電極と、前記第1電極間に設けられた前記補助電極および前記突起部と、前記第1電極上および前記補助電極上に設けられた前記有機半導体層と、を含み、
     前記素子製造方法は、前記第1圧力室において、前記補助電極上に設けられた前記有機半導体層を除去する除去工程を備える、請求項1または2に記載の素子製造方法。
  4.  前記補助電極は、前記突起部によって部分的に覆われており、
     前記除去工程は、前記突起部に隣接して配置された前記補助電極上の前記有機半導体層に光を照射する工程を含む、請求項3に記載の素子製造方法。
  5.  前記突起部は、前記補助電極によって少なくとも部分的に覆われており、
     前記除去工程において、前記突起部上に位置する前記補助電極上の前記有機半導体層が除去される、請求項3に記載の素子製造方法。
  6.  前記中間製品は、前記基材と、前記基材上に設けられた前記突起部および被露光層を含み、
     前記素子製造方法は、前記第1圧力室において、前記被露光層に露光光を照射する露光工程を備える、請求項1または2に記載の素子製造方法。
  7.  前記蓋材のうち前記中間製品と向かい合う面には蒸着用材料が設けられており、
     前記素子製造方法は、前記第1圧力室において、前記蒸着用材料に向けて光を照射して前記蒸着用材料を前記基材上に蒸着させる工程を備える、請求項1または2に記載の素子製造方法。
  8.  連続的に延びる基材上に素子を形成するための素子製造装置であって、
     前記基材および前記基材の法線方向に延びる突起部を含む中間製品に、前記突起部の側から蓋材を連続的に積層して積層体を形成する積層機構と、
     前記積層室に連結され、真空環境における圧力よりも高い第1圧力に調整され、かつ前記積層室から搬送される前記積層体を受け入れる第1圧力室を含む圧力印加機構と、
     前記第1圧力室に連結され、真空環境に調整され、かつ第1圧力室から搬送される前記積層体を受け入れる分離室において、前記積層体を前記中間製品および前記蓋材に分離する分離機構と、を備え、
     前記積層体が搬送される方向に直交する面によって前記積層体を仮想的に切断した場合の積層体の断面において、前記中間製品と前記蓋材との間の空間が周囲から密閉されている、素子製造装置。
  9.  前記積層体は、前記突起部とは反対の側から前記中間製品に対して連続的に積層された支持材をさらに含み、
     前記積層体が搬送される方向に直交する面によって前記積層体を仮想的に切断した場合の積層体の断面において、前記蓋材と前記支持材とが接着されている、請求項8に記載の素子製造装置。
  10.  前記素子は、前記基材と、前記基材上に設けられた複数の第1電極と、前記第1電極間に設けられた補助電極および前記突起部と、前記第1電極上に設けられた有機半導体層と、前記有機半導体層上および前記補助電極上に設けられた第2電極と、を含み、
     前記中間製品は、前記基材と、前記基材上に設けられた複数の前記第1電極と、前記第1電極間に設けられた前記補助電極および前記突起部と、前記第1電極上および前記補助電極上に設けられた前記有機半導体層と、を含み、
     前記素子製造装置は、前記第1圧力室において、前記補助電極上に設けられた前記有機半導体層を除去する除去機構を備える、請求項8または9に記載の素子製造装置。
  11.  前記補助電極は、前記突起部によって部分的に覆われており、
     前記除去機構は、前記突起部に隣接して配置された前記補助電極上の前記有機半導体層に光を照射する光照射部を有する、請求項10に記載の素子製造装置。
  12.  前記突起部は、前記補助電極によって少なくとも部分的に覆われており、
     前記除去機構は、前記突起部上に位置する前記補助電極上の前記有機半導体層を除去するよう構成されている、請求項10に記載の素子製造装置。
  13.  前記中間製品は、前記基材と、前記基材上に設けられた前記突起部および被露光層を含み、
     前記素子製造装置は、前記第1圧力室において、前記被露光層に露光光を照射する露光機構を備える、請求項8または9に記載の素子製造装置。
  14.  前記蓋材のうち前記中間製品と向かい合う面には蒸着用材料が設けられており、
     前記素子製造装置は、前記第1圧力室において、前記蒸着用材料に向けて光を照射して前記蒸着用材料を前記基材上に蒸着させる蒸着機構を備える、請求項8または9に記載の素子製造装置。
PCT/JP2014/059264 2013-03-29 2014-03-28 素子製造方法および素子製造装置 WO2014157657A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480011841.0A CN105027676B (zh) 2013-03-29 2014-03-28 元件制造方法以及元件制造装置
KR1020157026531A KR101587775B1 (ko) 2013-03-29 2014-03-28 소자 제조 방법 및 소자 제조 장치
US14/777,782 US9680098B2 (en) 2013-03-29 2014-03-28 Element manufacturing method and element manufacturing apparatus
KR1020167000992A KR20160010654A (ko) 2013-03-29 2014-03-28 소자 제조 방법 및 소자 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013071979 2013-03-29
JP2013-071979 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157657A1 true WO2014157657A1 (ja) 2014-10-02

Family

ID=51624613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059264 WO2014157657A1 (ja) 2013-03-29 2014-03-28 素子製造方法および素子製造装置

Country Status (6)

Country Link
US (1) US9680098B2 (ja)
JP (1) JP6164529B2 (ja)
KR (2) KR101587775B1 (ja)
CN (1) CN105027676B (ja)
TW (1) TWI587555B (ja)
WO (1) WO2014157657A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025692A1 (ja) * 2013-08-20 2015-02-26 大日本印刷株式会社 素子製造方法および素子製造装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594474B (zh) * 2013-03-29 2017-08-01 Dainippon Printing Co Ltd Device manufacturing method and device manufacturing device
CN104393188A (zh) * 2014-11-28 2015-03-04 京东方科技集团股份有限公司 一种有机发光二极管显示基板及其制作方法、显示装置
JP2016219214A (ja) * 2015-05-19 2016-12-22 株式会社Joled 機能性素子、表示装置および撮像装置
JP7125104B2 (ja) * 2018-07-02 2022-08-24 株式会社Joled 表示パネル製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142569A (ja) * 1995-11-13 1997-06-03 Dainippon Printing Co Ltd キャリアテープ及びその製造方法
JP2000109173A (ja) * 1998-10-12 2000-04-18 Fujitsu Takamisawa Component Ltd 電子部品用キャリア、その製造方法、電子部品梱包体及び電子部品運搬方法
JP2006309994A (ja) * 2005-04-27 2006-11-09 Sony Corp 転写用基板および転写方法ならびに表示装置の製造方法
JP2007052966A (ja) * 2005-08-17 2007-03-01 Sony Corp 表示装置および表示装置の製造方法
JP2008288074A (ja) * 2007-05-18 2008-11-27 Sony Corp 表示装置の製造方法
WO2010090223A1 (ja) * 2009-02-05 2010-08-12 株式会社日立プラントテクノロジー 基板表面の封止装置と有機elパネルの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340982A (ja) 1991-05-17 1992-11-27 Ricoh Co Ltd 現像装置
TWI307612B (en) * 2005-04-27 2009-03-11 Sony Corp Transfer method and transfer apparatus
JP2007052996A (ja) 2005-08-17 2007-03-01 Auto Network Gijutsu Kenkyusho:Kk フラット配線材及びフラット配線材の接続方法
JP2009087996A (ja) 2007-09-27 2009-04-23 Dainippon Printing Co Ltd 有機半導体素子、有機半導体素子の製造方法、有機トランジスタアレイ、およびディスプレイ
JP2011009498A (ja) 2009-06-26 2011-01-13 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2011151195A (ja) 2010-01-21 2011-08-04 Dainippon Printing Co Ltd 有機薄膜太陽電池およびその製造方法
JP2011233512A (ja) * 2010-04-07 2011-11-17 Sumitomo Chemical Co Ltd 発光装置
JP2012221642A (ja) 2011-04-06 2012-11-12 Canon Inc 気密容器及び画像表示装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142569A (ja) * 1995-11-13 1997-06-03 Dainippon Printing Co Ltd キャリアテープ及びその製造方法
JP2000109173A (ja) * 1998-10-12 2000-04-18 Fujitsu Takamisawa Component Ltd 電子部品用キャリア、その製造方法、電子部品梱包体及び電子部品運搬方法
JP2006309994A (ja) * 2005-04-27 2006-11-09 Sony Corp 転写用基板および転写方法ならびに表示装置の製造方法
JP2007052966A (ja) * 2005-08-17 2007-03-01 Sony Corp 表示装置および表示装置の製造方法
JP2008288074A (ja) * 2007-05-18 2008-11-27 Sony Corp 表示装置の製造方法
WO2010090223A1 (ja) * 2009-02-05 2010-08-12 株式会社日立プラントテクノロジー 基板表面の封止装置と有機elパネルの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025692A1 (ja) * 2013-08-20 2015-02-26 大日本印刷株式会社 素子製造方法および素子製造装置
US9592572B2 (en) 2013-08-20 2017-03-14 Dai Nippon Printing Co., Ltd. Element manufacturing method and element manufacturing apparatus

Also Published As

Publication number Publication date
CN105027676B (zh) 2017-03-08
KR20160010654A (ko) 2016-01-27
JP6164529B2 (ja) 2017-07-19
KR101587775B1 (ko) 2016-02-02
JP2014209481A (ja) 2014-11-06
US9680098B2 (en) 2017-06-13
TWI587555B (zh) 2017-06-11
KR20150119959A (ko) 2015-10-26
TW201508966A (zh) 2015-03-01
US20160172589A1 (en) 2016-06-16
CN105027676A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
JP6164529B2 (ja) 素子製造方法および素子製造装置
TWI645593B (zh) 具有撓性基板之有機發光顯示裝置
TWI266558B (en) Image display apparatus and process for its production
EP2761685B1 (en) Array of optoelectronic device packages and method of fabrication
KR102160813B1 (ko) 유기 발광 표시장치 및 그의 제조방법
WO2015016318A1 (ja) 素子製造方法および素子製造装置
JP5800258B2 (ja) 素子製造方法および素子製造装置
KR102152743B1 (ko) 톱 에미션형 유기 일렉트로루미네센스 표시 장치의 제조 방법, 및 톱 에미션형 유기 일렉트로루미네센스 표시 장치 형성용 덮개재
KR20180066204A (ko) 유기 el 소자 및 그의 제조 방법
JP5880611B2 (ja) 素子製造方法および素子製造装置
JP2010027210A (ja) 有機発光素子の製造方法及び有機発光素子
WO2017130625A1 (ja) 有機el素子の製造方法及び有機el素子
JP2008243664A (ja) 有機el素子の製造方法
JP6221667B2 (ja) 素子製造方法および素子製造装置
JP2015069899A (ja) 素子製造方法および素子製造装置
JP2016062839A (ja) 素子製造方法
JP2014197457A (ja) トップエミッション型有機エレクトロルミネッセンス表示装置の製造方法、およびトップエミッション型有機エレクトロルミネッセンス表示装置
JP2016062036A (ja) 表示素子製造方法および表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011841.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14777782

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157026531

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772931

Country of ref document: EP

Kind code of ref document: A1