WO2014157262A1 - マーク形成方法、マーク検出方法、及びデバイス製造方法 - Google Patents
マーク形成方法、マーク検出方法、及びデバイス製造方法 Download PDFInfo
- Publication number
- WO2014157262A1 WO2014157262A1 PCT/JP2014/058393 JP2014058393W WO2014157262A1 WO 2014157262 A1 WO2014157262 A1 WO 2014157262A1 JP 2014058393 W JP2014058393 W JP 2014058393W WO 2014157262 A1 WO2014157262 A1 WO 2014157262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mark
- wafer
- pattern
- region
- forming
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 70
- 229920001400 block copolymer Polymers 0.000 claims abstract description 66
- 238000001338 self-assembly Methods 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 30
- 238000003384 imaging method Methods 0.000 claims description 25
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 10
- 230000007261 regionalization Effects 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims 1
- 238000004528 spin coating Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 80
- 238000005286 illumination Methods 0.000 description 23
- 230000003287 optical effect Effects 0.000 description 23
- 239000007788 liquid Substances 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 17
- 238000000137 annealing Methods 0.000 description 15
- 239000010408 film Substances 0.000 description 11
- 238000000671 immersion lithography Methods 0.000 description 9
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- 229920000359 diblock copolymer Polymers 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000002408 directed self-assembly Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 239000005871 repellent Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000002940 repellent Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 101100396142 Arabidopsis thaliana IAA14 gene Proteins 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 101100528928 Oryza sativa subsp. japonica RL9 gene Proteins 0.000 description 2
- 101150110992 SLR1 gene Proteins 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000010094 polymer processing Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 229920000428 triblock copolymer Polymers 0.000 description 2
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920005605 branched copolymer Polymers 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- UHKJHMOIRYZSTH-UHFFFAOYSA-N ethyl 2-ethoxypropanoate Chemical compound CCOC(C)C(=O)OCC UHKJHMOIRYZSTH-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920000587 hyperbranched polymer Polymers 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000977 poly(butadiene-b-ethylene oxide) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- 238000000654 solvent vapour annealing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7003—Alignment type or strategy, e.g. leveling, global alignment
- G03F9/7046—Strategy, e.g. mark, sensor or wavelength selection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7073—Alignment marks and their environment
- G03F9/708—Mark formation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3086—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/5442—Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54426—Marks applied to semiconductor devices or parts for alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54453—Marks applied to semiconductor devices or parts for use prior to dicing
- H01L2223/5446—Located in scribe lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a mark formation technique for forming a mark on a substrate, a mark detection technique for detecting a mark formed on the substrate, and a device manufacturing technique using the mark formation technique or mark detection technique.
- a semiconductor device typically includes multiple layers of circuit patterns formed on a substrate, and a predetermined pattern of the substrate is used to accurately align the multiple layers of circuit patterns with each other in the semiconductor device manufacturing process.
- An alignment mark for positioning or alignment is formed in the mark formation region of the layer.
- the substrate is a semiconductor wafer (hereinafter simply referred to as a wafer)
- the alignment mark is also called a wafer mark.
- the conventional finest circuit pattern of a semiconductor device has been formed by using a dry or immersion lithography process using a dry or immersion exposure apparatus having an exposure wavelength of 193 nm, for example. It is expected that it is difficult to form a circuit pattern finer than, for example, a 22 nm node even if conventional optical lithography is combined with a recently developed double patterning process.
- nanoscale microstructures (sub-lithography) using directional self-assembly of block copolymers (BlockAsCo-Polymer) between patterns formed using a lithography process recently. It has been proposed to form a circuit pattern that is finer than the resolution limit of the current lithography technique (see, for example, Japanese Patent Application Laid-Open No. 2010-269304).
- the patterned structure of a block copolymer is also known as a microdomain (microphase separation domain) or simply a domain.
- an aspect of the present invention aims to provide a mark forming technique that can be used when a circuit pattern is formed using self-organization of a block copolymer.
- the mask image is exposed to an area including the mark forming area of the substrate, and the first mark and the second mark having different shapes are formed in the mark forming area based on the first portion of the mask image.
- Forming a mark for positioning is provided.
- the first and second positioning mark detection methods formed in the mark formation region of the substrate by the mark formation method of the first aspect the first and second Generating a detection signal for the positioning mark, evaluating the generated detection signal, and based on a result of the evaluation, the substrate among the first and second positioning marks Selecting a mark to be used for positioning of the mark.
- the mark for interlayer alignment is formed on the substrate by using the mark forming method of the first aspect, the alignment is performed using the alignment mark,
- a device manufacturing method is provided that includes exposing a substrate and processing the exposed substrate.
- the first and second positioning marks are formed using the first mark and the second mark having different shapes, self-organization of the block copolymer occurs. Even in this case, at least one of the alignment marks can be formed in a target shape. For this reason, when forming a circuit pattern using the self-organization of a block copolymer, the alignment mark can be formed together with the circuit pattern.
- FIG. 1 (A) is a block diagram showing a main part of a pattern forming system used in an example of an embodiment, and (B) is a diagram showing a schematic configuration of an exposure apparatus in FIG. 1 (A).
- (A) is a plan view showing a device layer with a wafer in an example of the embodiment,
- (B) is a plurality of wafer marks attached to one shot area of FIG. 2 (A) and one of circuit patterns in the shot area It is an enlarged plan view which shows a part.
- It is a flowchart which shows the pattern formation method of an example of embodiment.
- (A), (B), (C), (D), (E), (F), (G), and (H) each show a part of the wafer pattern that gradually changes during the pattern formation process.
- FIG. 6A is an enlarged plan view showing a part of a mark pattern of a reticle
- FIG. 5B is an enlarged plan view of a portion B in FIG. (A) is an enlarged plan view showing a part of the resist pattern for the first wafer mark
- (B) and (C) are enlarged planes showing patterns at different stages of production in part B in FIG. 6 (A).
- FIG. (A), (B), and (C) are the enlarged plan views which show the pattern of the manufacture stage from which the B section in FIG. 6 (A) differs, respectively. It is an enlarged plan view which shows the structure of the 1st wafer mark formed in an example of embodiment.
- FIG. 10 It is a figure which shows an example of the relationship between the position of the radial direction of a wafer, and the shape of the wafer mark formed in this position.
- (A) is an enlarged plan view showing a part of the formed wafer mark
- (B) is a diagram showing an example of an image pickup signal of the mark image of FIG.
- FIG. 12 (B) is FIG. 12 (B). It is a figure which shows an example of the differential signal of this imaging signal.
- (A), (B), (C), and (D) are enlarged sectional views showing a part of the wafer pattern that gradually changes during the pattern forming process of the modified example. It is a flowchart which shows an example of the manufacturing process of an electronic device.
- FIGS. 1 (A) to 12 (C) An example of a preferred embodiment of the present invention will be described with reference to FIGS. 1 (A) to 12 (C).
- FIG. 1A shows a main part of the pattern forming system of the present embodiment
- FIG. 1B shows a scanning exposure apparatus (projection exposure apparatus) comprising a scanning stepper (scanner) in FIG. ) 100 schematic configuration.
- a pattern forming system includes an exposure apparatus 100 that exposes a wafer (semiconductor wafer) coated with a photosensitive material, and a coater / developer that applies and develops a photoresist (resist) as the photosensitive material on the wafer.
- An apparatus 500, an annealing apparatus 600, a transfer system 700 for transferring a wafer between these apparatuses, a host computer (not shown), and the like are included.
- the block copolymer used in the present invention is a polymer containing a monomer (monomer) present in more than one block unit, or a polymer derived from those monomers. Each block of monomers includes a repeating sequence of monomers. Any polymer such as a diblock copolymer or a triblock copolymer can be used as the block copolymer. Of these, the diblock copolymer has two different monomer blocks.
- the diblock copolymer can be abbreviated as Ab-B, where A is the first block polymer, B is the second block polymer, and -b- is the A and B block.
- PS-b-PMMA represents a diblock copolymer of polystyrene (PS) and polymethyl methacrylate (PMMA).
- a block copolymer having another structure such as a star copolymer, a branched copolymer, a hyperbranched copolymer, or a graft copolymer, is used as the block of the present invention. It can also be used as a copolymer.
- the block copolymer has a tendency that the respective blocks (monomers) constituting the block copolymer gather to form individual microphase separation domains called microdomains or simply domains (phase separation tendency).
- This phase separation is also a kind of self-assembly.
- the spacing and morphology of the different domains depends on the interaction, volume fraction, and number of different blocks within the block copolymer.
- the domain of the block copolymer can be formed, for example, as a result of annealing (annealing). Heating or baking, which is part of annealing, is a common process that raises the temperature of the substrate and the coating layer (thin film layer) above it above ambient temperature.
- Annealing can include thermal annealing, thermal gradient annealing, solvent vapor annealing, or other annealing methods.
- Thermal annealing sometimes referred to as thermosetting, is used to induce phase separation and can also be used as a process to reduce or eliminate defects in layers of lateral microphase separation domains.
- Annealing generally involves heating at a temperature above the glass transition temperature of the block copolymer for a period of time (eg, minutes to days).
- directed self-assembly is applied to a polymer including a block copolymer to form a circuit pattern and / or alignment mark suitable for a semiconductor device.
- DSA directed self-assembly
- a spatial arrangement topographic structure defined by a pre-pattern or guide pattern, for example, using a resist pattern formed by a lithography process as a pre-pattern or guide pattern. It is a technology that controls the placement.
- a directivity self-organization method for example, a grapho-epitaxy method using a three-dimensional pre-pattern or a guide pattern is used, but a planar pre-pattern or guide pattern is provided on the ground.
- a chemo-epitaxy process can also be used.
- an exposure apparatus 100 includes an illumination system 10, a reticle stage RST that holds a reticle R (mask) that is illuminated by exposure illumination light (exposure light) IL from the illumination system 10, and a reticle R.
- a projection unit PU including a projection optical system PL that projects the emitted illumination light IL onto the surface of the wafer W (substrate), a wafer stage WST that holds the wafer W, and a computer that comprehensively controls the operation of the entire apparatus.
- a main control device (not shown) is provided.
- the Z axis is taken in parallel with the optical axis AX of the projection optical system PL, and along the direction in which the reticle R and the wafer W are relatively scanned in a plane (substantially a horizontal plane) perpendicular thereto.
- the Y axis is taken along the X axis along the direction perpendicular to the Z axis and the Y axis, and the rotation (tilt) directions around the X axis, the Y axis, and the Z axis are described as the ⁇ x, ⁇ y, and ⁇ z directions, respectively. I do.
- the illumination system 10 includes a light source that generates illumination light IL and an illumination optical system that illuminates the reticle R with the illumination light IL, as disclosed in, for example, US Patent Application Publication No. 2003/025890.
- the illumination light IL for example, ArF excimer laser light (wavelength 193 nm) is used.
- KrF excimer laser light wavelength 248 nm
- a harmonic of a YAG laser or a solid-state laser such as a semiconductor laser
- the illumination optical system includes a polarization control optical system, a light quantity distribution forming optical system (such as a diffractive optical element or a spatial light modulator), an optical integrator (such as a fly-eye lens or a rod integrator (an internal reflection type integrator)), etc.
- An optical system, a reticle blind (fixed and variable field stop), and the like (both not shown) are included.
- the illumination system 10 illuminates a slit-like illumination area IAR elongated in the X direction on the pattern surface (lower surface) of the reticle R defined by the reticle blind, such as dipole illumination, quadrupole illumination, annular illumination, or normal illumination. Under certain conditions, the illumination light IL having a predetermined polarization state is illuminated with a substantially uniform illuminance distribution.
- a reticle stage RST that holds the reticle R by vacuum suction or the like is movable on the upper surface of the reticle base (not shown) parallel to the XY plane at a constant speed in the Y direction, and in the X and Y positions. And the rotation angle in the ⁇ z direction can be adjusted.
- the position information of the reticle stage RST is obtained with a resolution of, for example, about 0.5 to 0.1 nm via the movable mirror 14 (or the mirror-finished side surface of the stage) by the reticle interferometer 18 including a multi-axis laser interferometer. Always detected.
- the position and speed of reticle stage RST are controlled by controlling a reticle stage drive system (not shown) including a linear motor and the like based on the measurement value of reticle interferometer 18.
- the projection unit PU disposed below the reticle stage RST includes a lens barrel 24 and a projection optical system PL having a plurality of optical elements held in the lens barrel 24 in a predetermined positional relationship.
- the projection optical system PL is, for example, telecentric on both sides and has a predetermined projection magnification ⁇ (for example, a reduction magnification of 1/4 times, 1/5 times, etc.). Due to the illumination light IL that has passed through the reticle R, an image of the circuit pattern in the illumination area IAR of the reticle R passes through the projection optical system PL to form an exposure area IA (conjugation with the illumination area IAR) in one shot area of the wafer W. Region).
- a wafer (semiconductor wafer) W as a substrate of the present embodiment is used for pattern formation on the surface of a disk-shaped base material having a diameter of about 200 to 450 mm made of, for example, silicon (or SOI (silicon on insulator) or the like). In which a thin film (oxide film, metal film, polysilicon film, etc.) is formed. Further, a photoresist is applied to the surface of the wafer W to be exposed with a predetermined thickness (for example, about several tens of nm to 200 nm).
- the exposure apparatus 100 performs exposure using a liquid immersion method, so that the lower end of the lens barrel 24 that holds the tip lens 26 that is the optical element on the most image plane side (wafer W side) constituting the projection optical system PL.
- a nozzle unit 32 that constitutes a part of the local liquid immersion device 30 for supplying the liquid Lq between the tip lens 26 and the wafer W is provided so as to surround the periphery of the part.
- the supply port for the liquid Lq of the nozzle unit 32 is connected to a liquid supply device (not shown) via a supply flow path and a supply pipe 34A.
- the liquid Lq recovery port of the nozzle unit 32 is connected to a liquid recovery device (not shown) via a recovery flow path and a recovery pipe 34B.
- the detailed configuration of the local immersion apparatus 30 is disclosed in, for example, US Patent Application Publication No. 2007/242247.
- Wafer stage WST is mounted on upper surface 12a parallel to the XY plane of base board 12 so as to be movable in the X direction, the Y direction, and the ⁇ z direction.
- Wafer stage WST is provided in stage body 20, wafer table WTB mounted on the upper surface of stage body 20, and stage body 20, and the position (Z) of wafer table WTB (wafer W) with respect to stage body 20 (Z Position) and a Z-leveling mechanism that relatively drives the tilt angles in the ⁇ x direction and the ⁇ y direction.
- Wafer table WTB is provided with a wafer holder (not shown) that holds wafer W on a suction surface substantially parallel to the XY plane by vacuum suction or the like.
- a flat plate (repellent repellent surface) that is substantially flush with the surface of wafer W (wafer surface) and that has been subjected to a liquid repellent treatment with respect to liquid Lq. (Liquid plate) 28 is provided. Further, during exposure, for example, based on the measurement value of an oblique focus type autofocus sensor (not shown), the Z leveling of wafer stage WST is performed so that the wafer surface is focused on the image plane of projection optical system PL. The mechanism is driven.
- a reflecting surface is formed on each of the end surfaces in the Y direction and the X direction of the wafer table WTB by mirror finishing.
- the position information of the wafer stage WST (at least in the X and Y directions) And a rotation angle in the ⁇ z direction) are measured with a resolution of about 0.5 to 0.1 nm, for example.
- the position and speed of wafer stage WST are controlled by controlling a wafer stage drive system (not shown) including a linear motor and the like based on the measured values.
- the position information of wafer stage WST may be measured by an encoder type detection apparatus having a diffraction grating scale and a detection head.
- the exposure apparatus 100 also projects the wafer alignment system ALS composed of an image processing type FIA (Field-Image-Alignment) system for measuring the position of a predetermined wafer mark (alignment mark) on the wafer W, and projection optics for the alignment mark of the reticle R.
- FIA Field-Image-Alignment
- an aerial image measurement system (not shown) built in wafer stage WST is provided. Using these aerial image measurement systems (reticle alignment systems) and wafer alignment systems ALS, alignment between the reticle R and each shot area of the wafer W is performed.
- the wafer stage WST is moved in the X and Y directions (step movement), so that the shot area to be exposed on the wafer W is moved in front of the exposure area IA. Further, the liquid Lq is supplied between the projection optical system PL and the wafer W from the local liquid immersion device 30. Then, while projecting an image of a part of the pattern of the reticle R by the projection optical system PL onto one shot area of the wafer W, the reticle R and the wafer W are synchronized in the Y direction via the reticle stage RST and the wafer stage WST. The pattern image of the reticle R is scanned and exposed to the shot area. By repeating the step movement and scanning exposure, the image of the pattern of the reticle R is exposed to each shot area of the wafer W by the step-and-scan method and the liquid immersion method.
- the device pattern to be manufactured in this embodiment is a circuit pattern for an SRAM (Static RAM) gate cell as a semiconductor element, and this circuit pattern is a polymer pattern including a block copolymer. Formed using directional self-organization (DSA). Further, in the present embodiment, a wafer mark as an alignment mark for positioning or alignment is also formed on the device layer of the wafer W on which the device pattern is formed.
- SRAM Static RAM
- DSA directional self-organization
- FIG. 2A shows the wafer W on which the device pattern and the wafer mark are formed.
- the surface of the wafer W is provided with a number of shot areas SA (device pattern formation areas) with a scribe line area SL (mark formation area) having a predetermined width in the X and Y directions.
- a device pattern DP1 is formed in each shot area SA, and first and second wafer marks WM1 and WM2 having different shapes are formed in a scribe line area SL attached to each shot area SA.
- the diameter of the wafer W is 300 mm
- about 100 shot areas SA are formed on the surface of the wafer W as an example.
- the diameter of the wafer W is not limited to 300 mm, and a large wafer such as 450 mm may be used.
- the device pattern DP1 has a plurality of line patterns 40Xa extending in the Y direction arranged in a substantially period (pitch) px1 in the X direction.
- the line and space pattern (hereinafter referred to as L & S pattern) 40X and the L & S pattern 40Y in which a plurality of line patterns extending in the X direction are arranged with a period py1 in the Y direction are included.
- the line pattern 40Xa and the like are made of, for example, metal, and the line width is about 1 ⁇ 2 or less of the period px1 or the like.
- the periods px1 and py1 are substantially equal, and the period px1 is the finest period (hereinafter referred to as a period pmin) obtained by combining immersion lithography with a wavelength of 193 nm and, for example, a so-called double patterning process. It is about a fraction of that. For example, 1/2 of the period px1 is smaller than about 22 nm.
- a linear domain is formed for each different block when the polymer including the block copolymer is subjected to directional self-assembly.
- the first wafer mark WM1 in the scribe line area SL is an X-axis wafer in which line pattern areas 44Xa and space pattern areas 44Xb that are elongated in the Y direction and have the same width in the X direction are arranged in the X direction with a period p1.
- the mark 44X includes two wafer marks 44YA and 44YB on the Y axis in which line pattern regions 44Ya and space pattern regions 44Yb, which are elongated in the X direction and have the same width in the Y direction, are arranged in the Y direction with a period p2.
- the wafer marks 44YA and 44YB are arranged so as to sandwich the wafer mark 44X in the Y direction.
- the second wafer mark WM2 in the scribe line area SL includes an X-axis wafer mark 44X1 in which a line pattern area 44Xa1 and a space pattern area 44Xb1 elongated in the Y direction are arranged in the X direction at a period p1A, and the X direction.
- a line pattern area 44Xa1 and a space pattern area 44Xb1 elongated in the Y direction are arranged in the X direction at a period p1A, and the X direction.
- the X direction Includes two wafer marks 44YA1 and 44YB1 on the Y axis in which elongated line pattern areas 44Ya1 and space pattern areas 44Yb1 are arranged in the Y direction at a period p2A.
- the period p1 and the period p2 are equal to each other.
- the period p1A and the period p2A are equal to each other.
- the periods p1 and p1A are each several times to several tens of times the resolution limit (period) in immersion lithography with a wavelength of 193 nm.
- the period p1A is set to be somewhat larger than the period p1, for example, about several% to several tens%.
- the period p1A and the period p1 may be the same or similar.
- the line pattern areas 44Xa, 44Ya, 44Xa1, 44Ya1 and the space pattern areas 44Xb, 44Yb, 44Xb1, 44Yb1 of the wafer marks WM1, WM2 are detected light when detected by the wafer alignment system ALS in FIG. Any region may be used as long as the reflectance is different. In this case, if the wavelength ⁇ a of the detection light of the wafer alignment system ALS and the numerical aperture NA of the objective optical system are used, the resolution limit (optically detectable limit) of the wafer alignment system ALS is ⁇ a / (2NA). Further, in order to detect the wafer marks 44X, 44YA, 44X1, 44YA1, etc.
- the periods p1 and p1A may be about 670 nm or more, respectively.
- directional self-organization in which a linear domain is formed when the device pattern DP1 is formed is applied. Therefore, the directional self-assembly of the block copolymer is also performed when forming the wafer marks 44X, 44X1, and the like. It is necessary to consider that a linear domain is formed by organization.
- a pattern forming method for forming the wafer marks WM1 and WM2 shown in FIG. 2B using the pattern forming system of this embodiment will be described with reference to the flowchart of FIG.
- the process of forming the wafer mark 44X of the first wafer mark WM1 will be mainly described.
- the wafer marks 44YA and 44YB of the first wafer mark WM1 and the second wafer mark WM1 are formed.
- WM2 and device pattern DP1 are also formed.
- a surface portion of a substrate 50 such as silicon of the wafer W is defined as a first device layer DL1 on which a wafer mark and a device pattern are formed.
- a hard mask layer 52 such as an oxide film or a nitride film is formed on the surface of the device layer DL1 of the wafer W using the thin film forming apparatus 300.
- a neutral layer (not shown) may be formed on the hard mask layer 52 so that a polymer layer containing a block copolymer described later can be easily formed.
- a positive resist layer 54 is coated using the coater / developer 200 (see FIG. 4A).
- an antireflection film Bottom Anti-Reflection Coating: BARC
- a reticle (reticle R1) on which a pattern for the device layer DL1 is formed is loaded on the reticle stage RST of the exposure apparatus 100 so that the finest pattern in the X direction and the Y direction can be exposed.
- the illumination condition is set to, for example, quadrupole illumination, and the wafer W is loaded onto the wafer stage WST (step 104).
- an image (not shown) of a device pattern on the reticle R1 is exposed to each shot area SA of the wafer W by a liquid immersion method.
- the image 46XP of the pattern for the wafer mark on the reticle R1 is exposed to the scribe line area SL attached to each shot area SA (step 106).
- the exposed wafer is unloaded, the resist is developed by the coater / developer 200, and a resist pattern 54A (see FIG. 4B) is formed. Thereafter, slimming of the resist pattern 54A and a resist curing process are performed (step 108). It should be noted that the exposure amount can be adjusted to be large so that the line width of the resist pattern becomes narrow during exposure of the pattern image of the reticle R1, and in this case, slimming can be omitted.
- X-axis and Y-axis mark patterns 46X and 46YB which are originals of the first wafer mark WM1, are formed in the pattern area corresponding to the scribe line area SL of the reticle R1.
- the mark patterns 46X and 46YB include line regions 46Xa and 46Ya corresponding to the line pattern regions 44Xa and 44Ya in FIG. 2B, and space regions 46Xb and 46Yb made of the light shielding film SHR corresponding to the space pattern regions 44Xa and 44Ya, respectively.
- ⁇ is the projection magnification
- the widths of the line regions 46Xa and 46Ya are substantially the same as the widths of the space regions 46Xb and 46Yb.
- the image of the reticle pattern by the projection optical system PL is an erect image.
- each of the line regions 46Xa and 46Ya a plurality of line patterns 48X made of a light-shielding film elongated in the Y direction with the light transmitting portion as a background are shown in the X direction in the period p3 / ⁇ (an enlarged view of the B portion in FIG. (See FIG. 5B).
- the line width of the line pattern 48X is 1 ⁇ 2 of the corresponding period p3 / ⁇ .
- the period p3 / ⁇ is slightly larger than the resolution limit on the object plane side of the projection optical system PL of the exposure apparatus 100 (resolution limit in immersion lithography with a wavelength of 193 nm). . Therefore, the image 46XP of the mark patterns 46X and 46YB (combination of a plurality of line patterns 48X) on the reticle R1 is exposed to the scribe line area SL of the wafer W with high accuracy by the exposure apparatus 100.
- 6A shows a resist formed on the hard mask layer 52 of the wafer W after exposure of the image of the mark patterns 46X and 46YB of the reticle R1 in FIG. 5A to the resist layer 54, development, and slimming.
- the X-axis and Y-axis registration marks RPX and RPYB made of a pattern are shown.
- registration marks RPX and RPYB are line regions RPXa and RPYa corresponding to the line regions 46Xa and 46Ya of the reticle R1 in FIG. 5A and space regions RPXb corresponding to the space regions 46Xb and 46Yb, respectively.
- RPYb are arranged with periods p1 and p2 in the X and Y directions.
- 6B is an enlarged view of a portion B in FIG. 6A
- FIGS. 6C and 7A to 7C are respectively shown in a portion B in FIG. 6A. It is an enlarged view of a corresponding part.
- Space regions RPXb and RPYb are resist film portions 54S (convex regions), respectively (see FIG. 6B).
- a plurality of line-like patterns (hereinafter referred to as guide patterns) 54B elongated in the Y direction are formed with a period p3 in the X direction.
- the line width of the guide pattern 54B is, for example, a fraction to a tenth of a period p3 (here, slightly larger than the resolution limit in terms of period in immersion lithography with a wavelength of 193 nm) (FIG. 4 (B)).
- 4A to 4H are cross-sectional views of a portion corresponding to the portion along the line DD in FIG. 6B.
- an X-axis and Y-axis mark pattern 46X1 which is the original of the second wafer mark WM2 is located in an area close to the original pattern of the first wafer mark WM1 of the reticle R1.
- 46YB1 are formed.
- the mark patterns 46X1 and 46YB1 respectively include line regions 46Xa1 and 46Ya1 corresponding to the line pattern regions 44Xa1 and 44Ya1 in FIG. Are arranged in the X and Y directions with periods p1A / ⁇ and p2A / ⁇ ( ⁇ is the projection magnification).
- the widths of the line regions 46Xa1 and 46Ya1 are substantially the same as the widths of the space regions 46Xb1 and 46Yb1.
- a line pattern 48X1 of a light-shielding film that is elongated in the Y direction with the light transmitting portion as a background is an enlarged view of a portion p3A / ⁇ (B portion in FIG. 9A) in the X direction. (See (B)).
- the line width of the line pattern 48X1 is 1 ⁇ 2 of the corresponding period p3A / ⁇ .
- the period p3A / ⁇ is substantially the same as the resolution limit on the object plane side of the projection optical system PL of the exposure apparatus 100 (resolution limit in immersion lithography with a wavelength of 193 nm).
- the cycle p3A / ⁇ of the line pattern 48X1 is set smaller than the cycle p3 / ⁇ of the line pattern 48X of FIG. 5B for the first wafer mark WM1.
- Images of mark patterns 46X1 and 46YB1 (a combination of a plurality of line patterns 48X1) on reticle R1 are also exposed to scribe line area SL of wafer W with high accuracy by exposure apparatus 100.
- FIG. 10A shows the X formed on the hard mask layer 52 of the wafer W after the exposure, development, and slimming of the image of the mark patterns 46X1 and 46YB1 of the reticle R1 in FIG. Axis and Y-axis registration marks RPX1, RPYB1 are shown.
- registration marks RPX1 and RPYB1 are line regions RPXa1 and RPYa1 corresponding to the line regions 46Xa1 and 46Ya1 of the reticle R1 in FIG. 9A and space regions RPXb1 corresponding to the space regions 46Xb1 and 46Yb1, respectively.
- RPYb1 are arranged with periods p1A and p2A in the X and Y directions.
- FIGS. 10B and 10C are enlarged views of a portion B of FIG. 10A and a portion corresponding thereto.
- Space regions RPXb1 and RPYb1 are resist film portions 54S (convex regions), respectively (see FIG. 10B).
- a plurality of line-like patterns (hereinafter referred to as guide patterns) 54B1 elongated in the Y direction are formed with a period p3A in the X direction.
- the line width of the guide pattern 54B1 is, for example, about a fraction to a few tenths of a period p3A (here, the same resolution limit as that of period conversion in immersion lithography with a wavelength of 193 nm).
- step 110 the wafer W on which the registration marks RPX, RPYB of FIG. 6A are formed is transferred to the polymer processing apparatus 500, and the registration marks RPX, RPYB, RPX1, RPYB1 on the wafer W are carried out by, for example, spin coating.
- a polymer layer 56 containing a block copolymer (BCP) is formed (applied) so as to cover a resist pattern (not shown) for forming a device pattern and the like.
- a block copolymer for example, a diblock copolymer (PS-b-PMMA) of polystyrene (PS) and polymethyl methacrylate (PMMA) is used as a block copolymer.
- PS-b-PMMA diblock copolymer
- PS polystyrene
- PMMA polymethyl methacrylate
- the polymer layer 56 is a block copolymer itself, but may contain a solvent for improving the coating property and / or an additive for facilitating self-assembly.
- the polymer layer 56 is deposited on the concave portions 70A between the plurality of convex guide patterns 54B, 54B1 constituting the resist marks RPX, RPYB, etc. (FIG. 4B, FIG. 4C) (See FIG. 6C).
- the wafer W on which the polymer layer 56 is formed is transferred to the annealing apparatus 600, and the polymer layer 56 is subjected to annealing (for example, thermal annealing), so that the polymer layer 56 is subjected to two types of directivity self-assembly (DSA). Separate into domains (step 112). Due to the directivity self-organization in this case, the polymer layer 56 between the plurality of guide patterns 54B elongated in the Y direction becomes a linear PMMA elongated in the Y direction, as shown in FIGS. 4 (D) and 7 (A).
- annealing for example, thermal annealing
- a lyophilic first domain 56A made of (polymethylmethacrylate) and a liquid repellent second domain 56B made of line-shaped PS (polystyrene) elongated in the Y direction are arranged at a period p3a in the X direction. Phase separate into states. Since the guide pattern 54B (resist pattern) is lyophilic, a lyophilic domain 56A is formed in a portion adjacent to the guide pattern 54B.
- the period p3a is, for example, about one-tenth to one-tenth of the period p3 of the plurality of guide patterns 54B, and the widths in the X direction of the two types of domains 56A and 56B are substantially the same.
- the polymer layer 56 between the plurality of guide patterns 54B1 for the second wafer mark WM2 is also phase-separated into the first and second domains.
- the polymer layer 56 is separated into two types of elongated domains along the elongated guide patterns 54B and 54B1.
- the annealing of the polymer layer 56 (wafer W) is also performed under conditions that allow easy separation into two types of elongated domains.
- the wafer W is transferred to the etching apparatus 400, and subjected to, for example, oxygen plasma etching, and the parent of the domains 56A and 56B formed on the wafer W as shown in FIGS. 7B and 4E.
- the liquid first domain 56A is selectively removed (step 114).
- the resist marks RPX, RPYB (guide pattern 54B), the resist marks RPX1, RPYB1 (guide pattern 54B1), and the periodically remaining liquid-repellent domains 56B are used as masks to form the hard mask layer 52 of the wafer W.
- Etching is performed to form a plurality of openings 52a in the hard mask layer 52 (see FIG. 4F), and the remaining resist and domain 56B are removed (step 116).
- the first device layer DL1 of the wafer W is etched through the hard mask layer 52 in which the plurality of openings 52a are formed, and as shown in FIG. 4G, the plurality of domains 56A of the device layer DL1.
- a plurality of recesses DL1Xa that are elongated in the Y direction are formed in the regions corresponding to (the first half of step 118).
- the wafer W is transferred to the thin film forming apparatus 300, and a metal (for example, copper) is embedded in the recess DL1Xa of the device layer DL1 of the wafer W, so that a line pattern 58X elongated in the Y direction is formed as shown in FIG. Form (second half of step 118).
- a metal for example, copper
- the cycle in the X direction of the plurality of line patterns 58X is p3a
- the line width of the line pattern 58X is approximately 1 ⁇ 2 of the cycle p3a.
- a pattern 58X1 is formed, and the space pattern region 44Xb1 remains as a base.
- the first wafer mark WM1 composed of the wafer marks 44X, 44YA and 44YB is formed in the scribe line region SL of the first device layer DL1 of the wafer W as shown in FIG. That is, an X-axis wafer mark 44X in which a line pattern region 44Xa in which a plurality of metal line patterns 58X are arranged in the X direction with a period p3a and a space pattern region 44Xb made of a base pattern are arranged in the X direction with a period p1. Is formed.
- Two wafer marks 44YA and 44YB on the Y axis are formed by arranging 44Yb in the Y direction at a period p2 (here, equal to p1).
- the second wafer mark WM2 in FIG. 2B is also formed.
- the directivity self-organization of the polymer layer containing the block copolymer is formed in each shot area SA of the wafer W in the same manner as in the case of the wafer mark.
- the second device layer is formed on the device layer DL1 of the wafer W
- a thin film is formed on the device layer DL1 of the wafer W and coated with a resist (step 120).
- reticle R2 is loaded onto reticle stage RST of exposure apparatus 100, and wafer W is loaded onto wafer stage WST (step 122).
- a plurality of pairs of wafer marks WM1, WM2 attached to a plurality of shot areas selected from all shot areas SA of the wafer W by the wafer alignment system ALS of the exposure apparatus 100 (FIG. 2).
- (B) is detected (step 124).
- the plurality of pairs of wafer marks WM1 and WM2 attached to these alignment shots include a plurality of pairs of wafer marks WM1 and WM2 formed in a plurality of scribe line regions SL at different distances from the center of the wafer W in the radial direction. It is included.
- an arithmetic unit that processes the detection signals of the wafer alignment system ALS determines whether the detected signals of all the measured wafer marks WM1 and WM2 are acceptable (step 126).
- an arithmetic unit that processes the detection signals of the wafer alignment system ALS determines whether the detected signals of all the measured wafer marks WM1 and WM2 are acceptable (step 126).
- an example of a method for determining the quality of the detection signal for the X-axis wafer mark 44X of the first wafer mark WM1 shown in FIG. 12A will be described.
- the pass / fail determination is similarly performed for the X-axis wafer mark 44X1 of the second wafer mark WM2.
- step 110 the polymer layer 56 containing the block copolymer is applied to the wafer W by spin coating.
- spin coating the distance from the center of the wafer W is determined. It is expected that the polymer layer 56 tends to become thinner as the (radial position) increases.
- the inventor forms a wafer mark on the surface of a wafer having a diameter of 300 mm by the above-described mark forming method in a state in which a guide pattern is not formed on the resist pattern for the wafer mark and the thickness of the polymer layer 56 is changed.
- the width of the line pattern region of the formed wafer mark (hereinafter referred to as line width CD (critical dimension)) was measured with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- FIG. 11 shows the measurement result of the line width CD.
- the horizontal axis represents the position r (mm) of the measured wafer mark in the radial direction and the reverse direction from the wafer center.
- the solid line curve B1 is the measurement result of the line width CD when the polymer layer 56 is thin
- the dotted line curve B2 is the measurement result of the line width CD when the polymer layer 56 is thick.
- the maximum value of the curve B1 is Almost the design value. From the curve B2, it can be seen that the thicker the polymer layer 56, the more the fine structure of the pattern is formed by the directional self-organization of the polymer layer 56 in the region where there is no guide pattern, and thus the line width CD changes greatly.
- the phenomenon that the polymer layer 56 tends to become thinner as the distance from the center of the wafer in the radial direction appears also in the pattern forming method of the present embodiment.
- the shape of the plurality of line patterns 58X1 in the line pattern region 44Xa1 of the wafer mark 44X1 of the second wafer mark WM2 changes according to the distance from the center of the wafer W, respectively.
- the imaging signals of the wafer marks WM1 and WM2 change according to the distance from the center of the wafer W, and there is a possibility that a mark with a large deviation from the target value of the position detection result may occur. Therefore, in the present embodiment, for example, the wafer marks WM1 and WM2 whose detection signals have changed beyond the allowable range due to uneven thickness of the polymer layer 56 caused by spin coating are not used for alignment. Then, in order to determine whether or not the detection signal has changed beyond the allowable range, a characteristic portion described below is obtained.
- an image signal DSX shown in FIG. 12B is obtained as a detection signal by capturing an image of the wafer mark 44X.
- the horizontal axis of FIG. 12B indicates the positions of a plurality of pixels arranged in a direction corresponding to the measurement direction (here, the X direction) of the image sensor of the wafer alignment system ALS.
- the arithmetic unit of the wafer alignment system ALS detects the following quantities (a1) to (a11) as an example of the feature quantity of the imaging signal DSX.
- a portion of the cycle p1 (or cycle p1A) formed by the line pattern region 44Xa and the space pattern region 44Xb in the wafer mark 44X (or 44X1) is referred to as a mark unit. It should be noted that feature amounts are similarly detected for the Y-axis wafer marks 44YA and 44YB.
- (A5) The maximum value and the minimum value of the imaging signal in the area where the image such as the wafer mark 44X is formed.
- (A6) An average value ⁇ imax> such as a maximum value (position values indicated by arrows A1 to A4) imax1 of an imaging signal in an image of a plurality of mark units such as the wafer mark 44X.
- (A7) An average value ⁇ imin> such as a minimum value imin1 of an imaging signal in an image of a plurality of mark units such as the wafer mark 44X.
- (A10) A difference between the maximum value and the minimum value of the inclination amount of the imaging signal in the image of a plurality of mark units.
- (A11) An average value of the difference between the absolute value SLL1 and the like of the positive inclination amount and the absolute value SLR1 and the like of the negative inclination amount of the imaging signal in the plurality of mark unit images. Then, for each of the above-described feature values (a1) to (a11) obtained with respect to the plurality of pairs of measured wafer marks WM1, WM2, the calculation unit calculates this feature value and a predetermined target value (for example, block weight).
- a predetermined target value for example, block weight
- the wafer mark detection signal is determined to be defective.
- a difference of a certain ratio for example, a ratio of 50% or more
- the detection signal of the wafer mark may be determined to be defective.
- at least a part of the feature values of (a1) to (a11) may be detected.
- the calculation unit determines whether or not the number of wafer marks WM1 and WM2 that have been determined to have good detection signals is equal to or greater than a predetermined number (here, the number that provides the necessary alignment accuracy). To do. If the detection signal of at least one of the pair of wafer marks WM1, WM2 is good, the detection signal of the pair of wafer marks WM1, WM2 is good.
- step 132 for example, the wavelength of the detection light of the wafer alignment system ALS, the polarization state, and the imaging optics
- the detection conditions such as the numerical aperture of the system are changed, and the process returns to step 124 to repeat the operation after the detection of the wafer mark in the alignment shot.
- the alignment shot (the position of the wafer mark to be measured) may be changed instead of changing the detection condition or together with the change of the detection condition.
- step 130 it is determined that the detection signal is good.
- a mark to be used for alignment is selected from a plurality of pairs of wafer marks WM1 and WM2, and each position of the wafer W is measured by using, for example, an enhanced global alignment (EGA) method using a position measured with respect to the selected mark. The alignment coordinates of the shot area are obtained, and the wafer W is aligned. If both a pair of wafer marks WM1 and WM2 are good, for example, the detection result of the wafer mark WM1 with the smaller period may be used. Alternatively, the detection result of the wafer mark WM1 or WM2 with the smaller sum of squares of deviations from the reference value of the feature amount of the detection signal among those marks may be used.
- each shot area SA of the wafer W is finer than the resolution limit of the immersion lithography using the directional self-organization of the polymer layer including the block copolymer.
- wafer marks WM1 and WM2 having a structure that can be detected by the wafer alignment system ALS can be formed in the scribe line region SL. For this reason, the wafer W can be aligned with high accuracy in the next step. If one of the wafer marks WM1 and WM2 has a poor detection signal, the other wafer mark having a good detection signal can be used to perform alignment with higher accuracy.
- the mark forming method using the pattern forming system includes the step 106 of exposing the image of the mark patterns 46X and 46X1 to the scribe line region SL (mark forming region) of the wafer W, and the image of the mark. Based on step 108, resist marks RPX and RPX1 (first mark and second mark) having different shapes from each other are formed on the scribe line area SL, and the scribe line area SL and shot SA of the wafer W include a block copolymer. Applying a polymer layer 56 by spin coating 110.
- the mark forming method includes a step 112 in which self-organized regions (lyophilic domains 56A and liquid repellent domains 56B) are formed by annealing on at least a part of the applied polymer layer 56, and plasma etching.
- Step 114 for selectively removing a part (domain 56A) of the self-organized region, and the first and second wafer marks WM1 and WM2 in the scribe line region SL of the wafer W using the registration marks RPX and RPX1, respectively.
- wafer marks 44X and 44X1 which have a structure and a limit that can be detected by the wafer alignment system ALS or a structure with a period coarser than this, can be formed.
- the mark detection method of the present embodiment is the first and second wafer marks WM1, WM2 for positioning (or alignment) formed in the scribe line area SL of the wafer W by the mark formation method of the present embodiment.
- the step 124 of generating detection signals (imaging signals) of the first and second wafer marks WM1, WM2, the step 126 of evaluating the generated detection signal, and the result of the evaluation And a step 130 of selecting a mark to be used for positioning the wafer W from the first and second wafer marks WM1, WM2.
- the detection signal of one of the wafer marks WM1 and WM2 is different from a target state depending on the degree of self-organization of the polymer layer 56 including the block copolymer.
- the wafer W can be positioned (aligned) with high accuracy using the detection signal of the other mark.
- a plurality of guide patterns 54B and 54B1 are formed in the line regions RPXa and RPXa1 of the resist marks RPX and RPX1 for the wafer marks WM1 and WM2, and the recesses 70A between these guide patterns 54B and 54B1 etc.
- FIG. 2 directivity self-organization of the polymer layer 56 has been performed.
- the width of the line region (concave portion) for at least one of the wafer marks WM1 and WM2 is increased so that the directivity self-organization of the polymer layer 56 is not substantially performed in the line region. Good.
- FIG. 13A after the wafer mark image 45XP and the device pattern image 45DXP are exposed on the resist layer 54 of the wafer W, the development is performed as shown in FIG. 13B. As shown, a resist pattern 54A indicated by a dotted line is formed. By the slimming, a plurality of guide patterns 54C are formed in the device pattern region, and in the wafer mark region, the width p1 / between the resist patterns 54C1 and 54C2 (convex portions) corresponding to the line pattern region. 2 (or p1A / 2) recesses 45X1a are formed. p1 (or p1A) is the period of the wafer mark.
- a polymer layer 56 is applied between the guide patterns 54C as shown in FIG. 13C.
- a polymer layer 56a is applied so as to be thin at the portion.
- the directional self-organization is caused in the polymer layer 56, the directional self-organization is performed between the guide patterns 54C, and a fine pattern can be formed as in the above embodiment.
- directivity self-organization does not substantially occur in the polymer layer 56a in the wide recess 45X1a for wafer marks, in the subsequent process, the hard mask layer 52 corresponding to the recess 45X1a An opening is formed.
- an L & S pattern 40X in which a plurality of fine line patterns 40Xa are embedded in the recess 41Xa is formed, and the wafer mark 44XA is formed.
- a pattern is formed in which a line pattern region 44Xa in which a metal ME is embedded in a recess 45X3a corresponding to the recess 45X1a and a space pattern region 44Xb made of a base are arranged in the X direction with a period p1 (or p1A). Is done.
- the wafer mark 44XA (or 44X1A) is also a mark that can be detected by the wafer alignment system ALS of the exposure apparatus 100.
- the first and second domains are slightly formed around the periphery of the polymer layer 56a in the wafer mark recess 45X1a in FIG. 13C, and the protrusion corresponding to the second domain is formed.
- a fine line-shaped pattern (unnecessary fine structure due to the block copolymer is formed inside the line pattern region 44Xa such as the wafer mark 44XA to be finally formed. Pattern).
- the waveform of the imaging signal DSX in FIG. 12B changes for each of the plurality of line pattern regions 44Xa.
- the difference between the maximum value and the minimum value of the intervals pm1 to pm3 of the imaging signal DSX is expected to increase.
- the unnecessary fine structure is reduced by an increase from a predetermined target value of the difference (for example, an average value of the difference measured with respect to a wafer mark formed without applying a polymer containing a block copolymer). It is possible to estimate the amount of the pattern that has.
- the self-organized region of the polymer layer 56a is placed in the recess 45X1a for the wafer mark in the scribe line region SL (mark forming region). It is possible to determine that a mark portion formed based on a portion (second domain) from which at least a portion (first domain) is removed remains. The wafer mark 44XA or the like determined to have such a mark portion remaining may be excluded from the measurement target.
- the configuration of the wafer marks WM1 and WM2 is not limited to that shown in FIG. 2B.
- the X-axis wafer mark and the Y-axis wafer mark are formed at different positions in the scribe line region SL. May be.
- two types of marks made up of wafer marks WM1 and WM2 are used.
- three or more types of marks are formed as wafer marks so as to be attached to each shot of the wafer. May be.
- the wafer mark detection method is an image processing method, but the wafer mark detection method is arbitrary.
- an LSA Laser Step A1ignment
- the device pattern is a line pattern, but the device pattern is a hole array composed of a large number of minute holes (vias or through holes) periodically arranged in the X direction and the Y direction.
- the pattern forming method of the above-described embodiment can be applied even when including.
- a semiconductor device electronic device
- the semiconductor device performs function / performance design of the semiconductor device as shown in FIG.
- the substrate processing step 224 includes the pattern forming method of the above-described embodiment, and the pattern forming method includes a step of exposing the reticle pattern to the substrate with an exposure apparatus, a step of developing the exposed substrate, and a developing process. It includes a process of heating (curing) and etching the substrate.
- the device manufacturing method includes a substrate processing step 224, and the substrate processing step 224 uses the pattern forming method of any of the above embodiments to form a device pattern and a wafer mark on the substrate. Forming. According to this device manufacturing method, a semiconductor device including a circuit pattern finer than the resolution limit of the exposure apparatus can be manufactured with high accuracy using the exposure apparatus.
- the device to be manufactured in the above embodiment can be any semiconductor device such as DRAM, CPU, DSP other than SRAM.
- the pattern forming method of the above-described embodiment can also be applied when manufacturing an imaging device other than a semiconductor device, or an electronic device (microdevice) such as MEMS (Microelectromechanical Systems).
- a dry type exposure apparatus that is not an immersion type may be used.
- an EUV exposure apparatus that uses EUV light (Extreme Ultraviolet Light) having a wavelength of several nanometers to several tens of nanometers as exposure light, or an electron beam exposure that uses an electron beam as exposure light.
- An apparatus or the like may be used.
- a diblock copolymer made of (PS-b-PMMA) is used as the block copolymer.
- Other usable block copolymers include, for example, poly (styrene-b-vinylpyridine), poly (styrene-b-butadiene), poly (styrene-b-isoprene), poly (styrene-b- Methyl methacrylate), poly (styrene-b-alkenyl aromatic), poly (isoprene-b-ethylene oxide), poly (styrene-b- (ethylene-propylene)), poly (ethylene oxide-b-caprolactone), poly (butadiene- b-ethylene oxide), poly (styrene-bt-butyl (meth) acrylate), poly (methyl methacrylate-bt-butyl methacrylate), poly (ethylene oxide-b-propylene oxide), poly (styrene-b-tetrahydrofuran)
- the block copolymer has an overall molecular weight and polydispersity that can be further processed.
- the polymer layer containing the block copolymer can be applied by a solvent casting method in which, for example, a solvent is volatilized after applying a liquid obtained by dissolving the polymer layer in a solvent.
- the solvent that can be used in this case varies depending on the components of the block copolymer and, if used temporarily, the solubility conditions of various additives.
- Exemplary casting solvents for these components and additives include propylene glycol monomethyl ether acetate (PGMEA), ethoxyethyl propionate, anisole, ethyl lactate, 2-heptanone, cyclohexanone, amyl acetate, ⁇ -butyrolactone (GBL) , Toluene and the like.
- PGMEA propylene glycol monomethyl ether acetate
- anisole ethoxyethyl propionate
- anisole ethyl lactate
- 2-heptanone 2-heptanone
- cyclohexanone amyl acetate
- GBL ⁇ -butyrolactone
- Additives that can be added to the polymer layer containing the block copolymer include additional polymers (homopolymers, star polymers and copolymers, hyperbranched polymers, block copolymers, graft copolymers, hyperbranched copolymers). Polymers, random copolymers, cross-linked polymers, and inorganic containing polymers), small molecules, nanoparticles, metal compounds, inorganic containing molecules, surfactants, photoacid generators, thermal acid generators, base quenchers, It can be selected from the group consisting of a curing agent, a crosslinking agent, a chain extender, and a combination comprising at least one of the foregoing.
- the one or more additives associate with the block copolymer to form part of one or more self-assembling domains.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
図1(A)は、本実施形態のパターン形成システムの要部を示し、図1(B)は、図1(A)中のスキャニングステッパー(スキャナー)よりなる走査型の露光装置(投影露光装置)100の概略構成を示す。図1(A)において、パターン形成システムは、感光材料が塗布されたウエハ(半導体ウエハ)を露光する露光装置100、ウエハに対する感光材料としてのフォトレジスト(レジスト)の塗布及び現像を行うコータ・デベロッパ200、薄膜形成装置300、ウエハに対するドライ又はウエットのエッチングを行うエッチング装置400、後述のブロック共重合体(Block Co-Polymer:BCP)を含むポリマ(Polymer)(重合体)の処理を行うポリマ処理装置500、アニール装置600、これらの装置間でウエハの搬送を行う搬送系700、及びホストコンピュータ(不図示)等を含んでいる。
一例として、波長λaを600nm、開口数NAを0.9とすると、周期p1,p1Aはそれぞれ670nm程度以上であればよい。本実施形態では、デバイス用パターンDP1の形成時にライン状のドメインが形成される指向性自己組織化が適用されるため、ウエハマーク44X,44X1等の形成に際しても、ブロック共重合体の指向性自己組織化によってライン状のドメインが形成されることを考慮しておく必要がある。
その後、ウエハWのデバイス層DL1上に第2のデバイス層を形成する場合には、ウエハWのデバイス層DL1上に薄膜を形成し、レジストをコーティングする(ステップ120)。そして、露光装置100のレチクルステージRSTにレチクルR2をロードし、ウエハWをウエハステージWSTにロードする(ステップ122)。さらに、露光装置100のウエハアライメント系ALSによって、ウエハWの全部のショット領域SAのうちから選択された複数のショット領域(いわゆるアライメントショット)に付設された複数対のウエハマークWM1,WM2(図2(B)参照)の位置を検出する(ステップ124)。ウエハWに例えば100個程度のショット領域SAが形成されている場合、一例として20個程度のアライメントショットが選択される。これらのアライメントショットに付設された複数対のウエハマークWM1,WM2には、ウエハWの中心から半径方向に互いに異なる距離にある複数のスクライブライン領域SLに形成された複数対のウエハマークWM1,WM2が含まれている。
本発明者は、ウエハマーク用のレジストパターンにガイドパターンを形成しない状態で、かつポリマ層56の厚さを変えて、上記のマーク形成方法で直径300mmのウエハの表面にウエハマークを形成し、形成されたウエハマークのラインパターン領域の幅(以下、線幅CD(critical dimension)という)を走査型電子顕微鏡(SEM)で計測してみた。その線幅CDの設計値はほぼ1μm程度である。
ウエハアライメント系ALSの演算部では、撮像信号DSXの特徴量として、一例として以下の量(a1)~(a11)を検出する。以下の説明において、ウエハマーク44X(又は44X1)のうちのラインパターン領域44Xa及びスペースパターン領域44Xbによって形成される周期p1(又は周期p1A)の部分をマーク単位と呼ぶものとする。なお、Y軸のウエハマーク44YA,44YBに関しても同様に特徴量が検出される。
(a2)その間隔pm1~pm3のうちの最大値<pmmax>及び最小値<pmmin>。
(a4)その間隔pm1~pm3の最大値<pmmax>と最小値<pmmin>との差分δpm2及びウエハマーク44X等の領域内での撮像信号のコントラスト(振幅/平均値)。
(a6)ウエハマーク44X等の複数のマーク単位の像内の撮像信号の最大値(矢印A1~A4で示す位置の値)imax1等の平均値<imax>。
(a7)ウエハマーク44X等の複数のマーク単位の像内の撮像信号の最小値imin1等の平均値<imin>。
(a9)複数のマーク単位の像内の撮像信号の傾斜量(X方向の位置の変化に対する撮像信号の変化量)の最大値の平均値。
この値を求めるためには、図11(C)に示すように、撮像信号DSXの微分信号dDSX/dxを求め、各マーク単位(ラインパターン領域44Xa及びスペースパターン領域44Xb)の像に関して、その微分信号の正の値の最大値の絶対値SLL1、及び負の値の最大値の絶対値SLR1を求め、これらの内の大きい方の値(マーク単位内での最大値)の平均値を計算すればよい。
(a11)複数のマーク単位の像内の撮像信号の正の傾斜量の絶対値SLL1等と、負の傾斜量の絶対値SLR1等との差の平均値。
そして、その演算部では、計測された複数対のウエハマークWM1,WM2に関して求められた上記の(a1)~(a11)の特徴量毎に、この特徴量と所定の目標値(例えばブロック共重合体を含むポリマを塗布しない状態で形成されたウエハマークに関して求められた特徴量の平均値)との差分を求め、これらの差分が特徴量毎に定められている基準値を超えた場合に、当該ウエハマークの検出信号を不良であると判定する。なお、それらの差分のうちのある割合(例えば50%以上の割合)の差分が対応する基準値を超えた場合に、当該ウエハマークの検出信号を不良であると判定してもよい。また、(a1)~(a11)の特徴量のうち、少なくとも一部の特徴量を検出するだけでもよい。
このように本実施形態のパターン形成方法によれば、ブロック共重合体を含むポリマ層の指向性自己組織化を用いて、ウエハWの各ショット領域SAに液浸リソグラフィの解像限界よりも微細な構造を持つL&Sパターン40X,40Yを形成するとともに、スクライブライン領域SLには、ウエハアライメント系ALSで検出できる構造を持つウエハマークWM1,WM2を形成できる。このため、次の工程でウエハWのアライメントを高精度に行うことができる。また、ウエハマークWM1,WM2のうちの一方の検出信号が良好でない場合には、検出信号が良好な他方のウエハマークを使用することによって、より高精度にアライメントを行うことができる。
このマーク検出方法によれば、仮にウエハマークWM1,WM2のうちの一方のマークの検出信号が、ブロック共重合体を含むポリマ層56の自己組織化の程度等に応じて目標とする状態と異なっていても、他方のマークの検出信号を用いて、高精度にウエハWの位置決め(アライメント)を行うことができる。
上記の実施形態では、ウエハマークWM1,WM2用のレジストマークRPX,RPX1のライン領域RPXa,RPXa1には複数のガイドパターン54B,54B1が形成され、これらのガイドパターン54B,54B1の間の凹部70A等において、ポリマ層56の指向性自己組織化が行われていた。しかしながら、ウエハマークWM1,WM2の少なくとも一方のマーク用のライン領域(凹部)の幅を広くして、そのライン領域ではポリマ層56の指向性自己組織化が実質的に行われないようにしてもよい。
また、上記の実施形態においては、ウエハマークWM1,WM2よりなる2種類のマークを用いたが、ウエハマークとして、ウエハの各ショットに付設するように、3種類又はそれ以上の種類のマークを形成してもよい。
また、上記の実施形態において、ウエハマークの検出方法は画像処理方式であるが、ウエハマークの検出方法は任意である。例えばウエハマークに照射されるレーザ光によってウエハマークから発生する回折光を検出して、そのウエハマークの位置を検出するLSA(Laser Step A1ignment)系等も使用可能である。
次に、上記の実施形態のパターン形成方法を用いてSRAM等の半導体デバイス(電子デバイス)を製造する場合、半導体デバイスは、図14に示すように、半導体デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、半導体デバイス用の基板(又はウエハの基材)を製造するステップ223、基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、及び検査ステップ226等を経て製造される。また、その基板処理ステップ224は、上記の実施形態のパターン形成方法を含み、そのパターン形成方法は、露光装置でレチクルのパターンを基板に露光する工程、露光した基板を現像する工程、並びに現像した基板の加熱(キュア)及びエッチングを行う工程などを含んでいる。
このデバイスの製造方法によれば、露光装置の解像限界よりも微細な回路パターンを含む半導体デバイスを、露光装置を用いて高精度に製造できる。
また、上記の実施形態において、露光装置としては、液浸型でないドライ型の露光装置を使用してもよい。また、紫外光を露光光とする露光装置以外に、露光光として波長が数nm~数10nm程度のEUV光(Extreme Ultraviolet Light)を用いるEUV露光装置、又は電子ビームを露光光とする電子ビーム露光装置等を用いてもよい。
また、ブロック共重合体を含むポリマ層の塗布は、このポリマ層を溶媒に溶かした液体を塗布した後で例えば溶媒を揮発させる溶媒キャスティング法で行うことも可能である。この場合に使用できる溶媒は、ブロック共重合体の成分、及び仮に使用する場合には種々の添加物の溶解度条件により変化する。これらの成分及び添加物に対する例示的なキャスティング溶媒には、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、エトキシエチルプロピオナート、アニソール、乳酸エチル、2-ヘプタノン、シクロヘキサノン、酢酸アミル、γ-ブチロラクトン(GBL)、トルエンなどが含まれる。
Claims (16)
- 第1間隔を有する一対の第1パターンと、前記第1間隔と異なる第2間隔を有する一対の第2パターンとを、基板上に形成することと、
前記第1パターン及び前記第2パターンが形成された後、前記基板上にブロック共重合体を塗布することと、
前記塗布された前記ブロック共重合体に自己組織化処理を行うことと、
前記自己組織化処理の後、前記一対の第1パターンの間と前記一対の第2パターンの間の少なくとも1つにマークを形成することと、
を含むマーク形成方法。 - 前記一対の第1パターンの間の前記ブロック共重合体、および前記一対の第2パターンの間の前記ブロック共重合体の少なくとも1つを用いて前記基板上に前記マークが形成される請求項1に記載のマーク形成方法。
- 第1間隔を有する一対の第1パターンと、前記第1間隔と異なる第2間隔を有する一対の第2パターンとを、基板上に形成することと、
前記第1パターン及び前記第2パターンが形成された後、前記基板上にブロック共重合体を塗布することと、
前記塗布された前記ブロック共重合体に自己組織化処理を行うことと、
前記自己組織化処理の後、前記一対の第1パターンの間および前記一対の第2パターンの間にそれぞれマークを形成することと、
を含むマーク形成方法。 - 前記一対の第1パターンの間および前記一対の第2パターンの間の前記ブロック共重合体の一部を除去することをさらに有し、
除去されずに残留した前記ブロック共重合体を用いて前記マークが前記基板上に形成される請求項1~3のいずれか一項に記載のマーク形成方法。 - 前期マークは前記基板のスクライブラインに形成される請求項1~4のいずれか一項に記載のマーク形成方法。
- 基板のマーク形成領域を含む領域にマスク像を露光し、前記マスク像の第1部分に基づいて、前記マーク形成領域に互いに形状が異なる第1マーク及び第2マークを形成することと、
前記マーク形成領域を含む領域にブロック共重合体を含むポリマ層を塗布することと、
塗布された前記ポリマ層の少なくとも一部に自己組織化領域を形成させることと、
形成される前記自己組織化領域の一部を選択的に除去することと、
前記第1マーク及び第2マークを用いて前記基板の前記マーク形成領域にそれぞれ第1の位置決め用のマーク及び第2の位置決め用のマークを形成することと、
を含むマーク形成方法。 - 前記第1マークは、第1の凹部中に第1方向に周期的に形成された複数の第1のラインパターンを含み、
前記第2マークは、第2の凹部中に前記第1方向に周期的に形成された複数の第2のラインパターンを含み、
前記第1のラインパターン及び前記第2のラインパターンの配列周期及び高さの少なくとも一方が異なるとともに、
前記第1マークの複数の前記第1のラインパターンの間の領域、及び前記第2マークの複数の前記第2のラインパターンの間の領域に、それぞれ前記ポリマ層の自己組織化領域が形成され、形成された該自己組織化領域の一部が選択的に除去される請求項6に記載のマーク形成方法。 - 前記第1マーク及び前記第2マークは、それぞれ前記ブロック共重合体を含む前記ポリマ層に自己組織化領域が実質的に形成されない形状を有する請求項6に記載のマーク形成方法。
- 前記第1マークは、前記ブロック共重合体を含む前記ポリマ層に自己組織化領域が実質的に形成されない幅を持つ第1の凹部を有し、
前記第2マークは、前記第1の凹部の幅よりも広い幅を持つ第2の凹部を有する請求項8に記載のマーク形成方法。 - 前記基板の中心から半径方向に互いに異なる距離にある複数のマーク形成領域にそれぞれ前記第1及び第2の位置決め用のマークが形成される請求項6~9のいずれか一項に記載のマーク形成方法。
- 前記基板の前記マーク形成領域を含む領域に前記マスク像を露光することは、前記基板の前記マーク形成領域に隣接するデバイスパターン形成領域に前記マスク像を露光することを含み、
前記基板の前記マーク形成領域に前記第1マーク及び前記第2マークを形成することと並行して、前記マスク像の前記第1部分と異なる第2部分に基づいて、前記デバイスパターン形成領域に、前記ブロック共重合体を含む前記ポリマ層に自己組織化領域が形成される第1パターンを形成し、
前記第1マーク及び前記第2マークを用いて前記基板の前記マーク形成領域に前記第1及び第2の位置決め用のマークを形成することと並行して、一部が選択的に除去された前記自己組織化領域を用いて前記基板の前記デバイスパターン形成領域に第2パターンを形成する請求項6~10のいずれか一項に記載のマーク形成方法。 - 前記第1パターンは、前記ブロック共重合体を含む前記ポリマ層に自己組織化領域が形成可能な幅を持つ凹部を有する請求項11に記載のマーク形成方法。
- 請求項6~12のいずれか一項に記載のマーク形成方法によって基板のマーク形成領域に形成された前記第1及び第2の位置決め用のマークの検出方法であって、
前記第1及び第2の位置決め用のマークの検出信号を生成することと、
前記生成された検出信号を評価することと、
前記評価の結果に基づいて、前記第1及び第2の位置決め用のマークのうちで前記基板の位置決めのために使用するマークを選択することと、
を含むマーク検出方法。 - 前記第1及び第2の位置決め用のマークの前記検出信号は、前記第1及び第2の位置決め用のマークの像のそれぞれの第1及び第2の撮像信号を含み、
前記生成された検出信号を評価することは、
前記第1及び第2の撮像信号のそれぞれの信号特徴量を抽出することと、
抽出された前記第1及び第2の撮像信号のそれぞれの信号特徴量を基準値と比較することと、
を含む請求項13に記載のマーク検出方法。 - 前記抽出される信号特徴量は、画素単位の撮像信号のコントラスト、前記撮像信号のうち周期的な部分間の距離、前記撮像信号の計測領域内での最大値及び最小値、並びに前記撮像信号の傾斜量の大きさのうち少なくとも一つを含む請求項14に記載のマーク検出方法。
- 請求項1~12のいずれか一項に記載のマーク形成方法を用いて基板に位置合わせ用のマークを形成することと、
前記位置合わせ用のマークを用いて位置合わせを行って、前記基板を露光することと、
を含むデバイス製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015508566A JP6269982B2 (ja) | 2013-03-27 | 2014-03-25 | マーク形成方法、マーク検出方法、及びデバイス製造方法 |
KR1020157030275A KR101951989B1 (ko) | 2013-03-27 | 2014-03-25 | 마크 형성 방법, 마크 검출 방법, 및 디바이스 제조 방법 |
EP14774072.4A EP2980832A4 (en) | 2013-03-27 | 2014-03-25 | Mark forming method, mark detecting method, and device manufacturing method |
CN201480027077.6A CN105378892B (zh) | 2013-03-27 | 2014-03-25 | 器件制造方法 |
KR1020197004468A KR20190018560A (ko) | 2013-03-27 | 2014-03-25 | 마크 형성 방법, 마크 검출 방법, 및 디바이스 제조 방법 |
US14/863,938 US9972574B2 (en) | 2013-03-27 | 2015-09-24 | Mark forming method, mark detecting method, and device manufacturing method |
HK16107167.4A HK1219174A1 (zh) | 2013-03-27 | 2016-06-21 | 標記形成方法、標記檢測方法及器件製造方法 |
HK16108419.8A HK1220544A1 (zh) | 2013-03-27 | 2016-07-17 | 標記形成方法、標記檢測方法及器件製造方法 |
US15/903,538 US10354959B2 (en) | 2013-03-27 | 2018-02-23 | Mark forming method, mark detecting method, and device manufacturing method using self-assembled block copolymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-067696 | 2013-03-27 | ||
JP2013067696 | 2013-03-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/863,938 Continuation US9972574B2 (en) | 2013-03-27 | 2015-09-24 | Mark forming method, mark detecting method, and device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157262A1 true WO2014157262A1 (ja) | 2014-10-02 |
Family
ID=51624228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058393 WO2014157262A1 (ja) | 2013-03-27 | 2014-03-25 | マーク形成方法、マーク検出方法、及びデバイス製造方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US9972574B2 (ja) |
EP (1) | EP2980832A4 (ja) |
JP (2) | JP6269982B2 (ja) |
KR (2) | KR20190018560A (ja) |
CN (1) | CN105378892B (ja) |
HK (2) | HK1219174A1 (ja) |
TW (1) | TWI672788B (ja) |
WO (1) | WO2014157262A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015015424A (ja) * | 2013-07-08 | 2015-01-22 | 株式会社東芝 | 位置合わせマーク、フォトマスク、および位置合わせマークの形成方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163438A1 (ja) * | 2016-03-24 | 2017-09-28 | 東京エレクトロン株式会社 | 半導体装置の製造方法 |
WO2018181552A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立研究開発法人産業技術総合研究所 | ウェハ上のアライメントマークを用いる半導体パッケージの製造方法 |
US10103166B1 (en) | 2017-04-10 | 2018-10-16 | Macronix International Co., Ltd. | Semiconductor device and critical dimension defining method thereof |
US10705435B2 (en) * | 2018-01-12 | 2020-07-07 | Globalfoundries Inc. | Self-referencing and self-calibrating interference pattern overlay measurement |
CN108899288B (zh) * | 2018-07-20 | 2020-11-13 | 上海华虹宏力半导体制造有限公司 | 晶圆标记的监控方法和激光刻号机台对准位置的判定方法 |
KR102498631B1 (ko) * | 2018-08-16 | 2023-02-10 | 주식회사 엘지화학 | 패턴화 기판의 제조 방법 |
JP2020041859A (ja) * | 2018-09-07 | 2020-03-19 | キオクシア株式会社 | 位置計測方法、位置計測装置および半導体装置の製造方法 |
KR102629290B1 (ko) | 2018-12-13 | 2024-01-29 | 삼성디스플레이 주식회사 | 표시 장치 제조 방법 |
TW202027189A (zh) * | 2019-01-07 | 2020-07-16 | 力晶積成電子製造股份有限公司 | 晶粒的標記方法、晶圓及晶粒 |
TWI699580B (zh) * | 2019-03-07 | 2020-07-21 | 友達光電股份有限公司 | 陣列基板 |
CN113130340B (zh) * | 2020-02-27 | 2024-02-20 | 台湾积体电路制造股份有限公司 | 叠对误差测量方法及叠对误差测量结构 |
CN111314391B (zh) * | 2020-03-31 | 2022-03-08 | 四川九强通信科技有限公司 | 基于区块链的卫星网络安全路由方法 |
TWI736317B (zh) * | 2020-06-12 | 2021-08-11 | 華邦電子股份有限公司 | 用於黃光製程的辨識方法與半導體元件 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001126981A (ja) * | 1999-08-19 | 2001-05-11 | Nikon Corp | マーク検出方法及びマーク検出装置、露光方法及び露光装置、並びにデバイス |
US20030025890A1 (en) | 2000-02-25 | 2003-02-06 | Nikon Corporation | Exposure apparatus and exposure method capable of controlling illumination distribution |
JP2006114859A (ja) * | 2004-01-21 | 2006-04-27 | Seiko Epson Corp | アライメント方法、薄膜形成基板の製造方法、半導体装置の製造方法、及び電子機器の製造方法 |
JP2006216796A (ja) * | 2005-02-03 | 2006-08-17 | Nikon Corp | 基準パターン情報の作成方法、位置計測方法、位置計測装置、露光方法、及び露光装置 |
US20070242247A1 (en) | 2004-06-09 | 2007-10-18 | Kenichi Shiraishi | Exposure apparatus and device manufacturing method |
US20100297847A1 (en) | 2009-05-22 | 2010-11-25 | International Business Machines Corporation | Method of forming sub-lithographic features using directed self-assembly of polymers |
WO2011128120A1 (en) * | 2010-04-14 | 2011-10-20 | Asml Netherlands B.V. | Method for providing an ordered layer of self-assemblable polymer for use in lithography |
WO2011151109A1 (en) * | 2010-06-04 | 2011-12-08 | Asml Netherlands B.V. | Self-assemblable polymer and method for use in lithography |
JP2012038794A (ja) * | 2010-08-04 | 2012-02-23 | Nikon Corp | 検出条件最適化方法、プログラム作成方法、並びに露光装置及びマーク検出装置 |
JP2014072313A (ja) * | 2012-09-28 | 2014-04-21 | Toshiba Corp | アライメント計測システム、重ね合わせ計測システム及び半導体装置の製造方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950033689A (ko) * | 1994-03-02 | 1995-12-26 | 오노 시게오 | 노광장치 및 이를 이용한 회로패턴 형성방법 |
JP3451603B2 (ja) * | 1994-06-16 | 2003-09-29 | 株式会社ニコン | 露光方法及び該露光方法に使用されるマスク |
JP2638528B2 (ja) * | 1994-12-19 | 1997-08-06 | 株式会社ニコン | 位置合わせ方法 |
JP2004087562A (ja) * | 2002-08-23 | 2004-03-18 | Nikon Corp | 位置検出方法及びその装置、露光方法及びその装置、並びにデバイス製造方法 |
JP2004296921A (ja) * | 2003-03-27 | 2004-10-21 | Canon Inc | 位置検出装置 |
US7235348B2 (en) * | 2003-05-22 | 2007-06-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Water soluble negative tone photoresist |
US7145641B2 (en) * | 2003-12-31 | 2006-12-05 | Asml Netherlands, B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US7579278B2 (en) * | 2006-03-23 | 2009-08-25 | Micron Technology, Inc. | Topography directed patterning |
JP4673266B2 (ja) * | 2006-08-03 | 2011-04-20 | 日本電信電話株式会社 | パターン形成方法及びモールド |
JP2008053618A (ja) | 2006-08-28 | 2008-03-06 | Canon Inc | 露光装置及び方法並びに該露光装置を用いたデバイス製造方法 |
KR101292803B1 (ko) * | 2006-12-06 | 2013-08-02 | 엘아이지에이디피 주식회사 | 기판 합착장치의 간격유지유닛 |
US8083953B2 (en) * | 2007-03-06 | 2011-12-27 | Micron Technology, Inc. | Registered structure formation via the application of directed thermal energy to diblock copolymer films |
KR101291223B1 (ko) * | 2007-08-09 | 2013-07-31 | 한국과학기술원 | 블록 공중합체를 이용한 미세 패턴 형성 방법 |
CN101383268B (zh) * | 2007-09-07 | 2010-09-15 | 中国科学院微电子研究所 | 一种电子束对准标记的制作方法 |
KR101355167B1 (ko) * | 2007-12-14 | 2014-01-28 | 삼성전자주식회사 | 적어도 세 개의 고분자 블록을 구비하는 블록 공중합체를이용한 미세 패턴 형성 방법 |
NL1036351A1 (nl) * | 2007-12-31 | 2009-07-01 | Asml Netherlands Bv | Alignment system and alignment marks for use therewith cross-reference to related applications. |
US20100092599A1 (en) * | 2008-10-10 | 2010-04-15 | Molecular Imprints, Inc. | Complementary Alignment Marks for Imprint Lithography |
JP5507875B2 (ja) * | 2009-04-14 | 2014-05-28 | キヤノン株式会社 | 露光装置、露光方法およびデバイス製造方法 |
US8003482B2 (en) * | 2009-11-19 | 2011-08-23 | Micron Technology, Inc. | Methods of processing semiconductor substrates in forming scribe line alignment marks |
US8329360B2 (en) * | 2009-12-04 | 2012-12-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus of providing overlay |
WO2011104045A1 (en) * | 2010-02-26 | 2011-09-01 | Asml Netherlands B.V. | Method and apparatus for treatment of self-assemblable polymer layers for use in lithography |
US20140127626A1 (en) * | 2010-10-07 | 2014-05-08 | Riken | Resist composition for negative development which is used for formation of guide pattern, guide pattern formation method, and method for forming pattern on layer containing block copolymer |
US20120164389A1 (en) * | 2010-12-28 | 2012-06-28 | Yang Xiaomin | Imprint template fabrication and repair based on directed block copolymer assembly |
CN107219721B (zh) * | 2012-07-10 | 2020-08-21 | 株式会社尼康 | 标记形成方法和器件制造方法 |
US9034197B2 (en) * | 2012-09-13 | 2015-05-19 | HGST Netherlands B.V. | Method for separately processing regions on a patterned medium |
JP5768074B2 (ja) * | 2013-02-28 | 2015-08-26 | 株式会社東芝 | パターン形成方法 |
-
2014
- 2014-03-24 TW TW103110856A patent/TWI672788B/zh active
- 2014-03-25 CN CN201480027077.6A patent/CN105378892B/zh active Active
- 2014-03-25 KR KR1020197004468A patent/KR20190018560A/ko not_active Application Discontinuation
- 2014-03-25 JP JP2015508566A patent/JP6269982B2/ja active Active
- 2014-03-25 KR KR1020157030275A patent/KR101951989B1/ko active IP Right Grant
- 2014-03-25 EP EP14774072.4A patent/EP2980832A4/en not_active Withdrawn
- 2014-03-25 WO PCT/JP2014/058393 patent/WO2014157262A1/ja active Application Filing
-
2015
- 2015-09-24 US US14/863,938 patent/US9972574B2/en active Active
-
2016
- 2016-06-21 HK HK16107167.4A patent/HK1219174A1/zh unknown
- 2016-07-17 HK HK16108419.8A patent/HK1220544A1/zh unknown
-
2017
- 2017-12-27 JP JP2017250969A patent/JP6687910B2/ja active Active
-
2018
- 2018-02-23 US US15/903,538 patent/US10354959B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001126981A (ja) * | 1999-08-19 | 2001-05-11 | Nikon Corp | マーク検出方法及びマーク検出装置、露光方法及び露光装置、並びにデバイス |
US20030025890A1 (en) | 2000-02-25 | 2003-02-06 | Nikon Corporation | Exposure apparatus and exposure method capable of controlling illumination distribution |
JP2006114859A (ja) * | 2004-01-21 | 2006-04-27 | Seiko Epson Corp | アライメント方法、薄膜形成基板の製造方法、半導体装置の製造方法、及び電子機器の製造方法 |
US20070242247A1 (en) | 2004-06-09 | 2007-10-18 | Kenichi Shiraishi | Exposure apparatus and device manufacturing method |
JP2006216796A (ja) * | 2005-02-03 | 2006-08-17 | Nikon Corp | 基準パターン情報の作成方法、位置計測方法、位置計測装置、露光方法、及び露光装置 |
US20100297847A1 (en) | 2009-05-22 | 2010-11-25 | International Business Machines Corporation | Method of forming sub-lithographic features using directed self-assembly of polymers |
JP2010269304A (ja) | 2009-05-22 | 2010-12-02 | Internatl Business Mach Corp <Ibm> | ポリマの指向性自己組織化を利用するサブリソグラフィ構造の形成方法 |
WO2011128120A1 (en) * | 2010-04-14 | 2011-10-20 | Asml Netherlands B.V. | Method for providing an ordered layer of self-assemblable polymer for use in lithography |
WO2011151109A1 (en) * | 2010-06-04 | 2011-12-08 | Asml Netherlands B.V. | Self-assemblable polymer and method for use in lithography |
JP2012038794A (ja) * | 2010-08-04 | 2012-02-23 | Nikon Corp | 検出条件最適化方法、プログラム作成方法、並びに露光装置及びマーク検出装置 |
JP2014072313A (ja) * | 2012-09-28 | 2014-04-21 | Toshiba Corp | アライメント計測システム、重ね合わせ計測システム及び半導体装置の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2980832A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015015424A (ja) * | 2013-07-08 | 2015-01-22 | 株式会社東芝 | 位置合わせマーク、フォトマスク、および位置合わせマークの形成方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI672788B (zh) | 2019-09-21 |
TW201508893A (zh) | 2015-03-01 |
EP2980832A4 (en) | 2017-03-01 |
US10354959B2 (en) | 2019-07-16 |
EP2980832A1 (en) | 2016-02-03 |
JP6269982B2 (ja) | 2018-01-31 |
KR101951989B1 (ko) | 2019-02-25 |
HK1220544A1 (zh) | 2017-05-05 |
CN105378892B (zh) | 2018-05-08 |
HK1219174A1 (zh) | 2017-03-24 |
US20180182713A1 (en) | 2018-06-28 |
JP2018078321A (ja) | 2018-05-17 |
KR20150136503A (ko) | 2015-12-07 |
JP6687910B2 (ja) | 2020-04-28 |
JPWO2014157262A1 (ja) | 2017-02-16 |
US20160079179A1 (en) | 2016-03-17 |
KR20190018560A (ko) | 2019-02-22 |
US9972574B2 (en) | 2018-05-15 |
CN105378892A (zh) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6687910B2 (ja) | デバイス製造方法、並びに露光方法及び装置 | |
JP6551704B2 (ja) | デバイス製造方法 | |
JP6308447B2 (ja) | デバイス製造方法 | |
JP2014192400A (ja) | マーク形成方法、マーク検出方法、及びデバイス製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14774072 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015508566 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157030275 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014774072 Country of ref document: EP |