WO2014156767A1 - 電気ニッケルめっき液中の希土類不純物の除去方法 - Google Patents

電気ニッケルめっき液中の希土類不純物の除去方法 Download PDF

Info

Publication number
WO2014156767A1
WO2014156767A1 PCT/JP2014/057136 JP2014057136W WO2014156767A1 WO 2014156767 A1 WO2014156767 A1 WO 2014156767A1 JP 2014057136 W JP2014057136 W JP 2014057136W WO 2014156767 A1 WO2014156767 A1 WO 2014156767A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating solution
plating
rare earth
impurities
tank
Prior art date
Application number
PCT/JP2014/057136
Other languages
English (en)
French (fr)
Inventor
政直 蒲池
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201480017674.0A priority Critical patent/CN105051263B/zh
Priority to US14/771,330 priority patent/US9771664B2/en
Priority to JP2015508319A priority patent/JP6281565B2/ja
Publication of WO2014156767A1 publication Critical patent/WO2014156767A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Definitions

  • the present invention relates to a method for efficiently and easily removing rare earth impurities in an electro nickel plating solution.
  • rare earth magnets especially R-Fe-B sintered magnets (R is at least one of rare earth elements including Y and must contain Nd) have high magnetic properties and are widely used.
  • Nd and Fe contained as main components are very rusting. For this reason, a rust preventive film is given to the magnet surface for the purpose of improving corrosion resistance.
  • electronickel plating has high hardness, and the management of the plating process is simpler than electroless plating, and is widely adopted for this magnet.
  • the components of the object to be plated may be dissolved in the plating solution simultaneously with the film formation.
  • the pH of the plating solution is inclined to the acidic side, the object to be plated is easily dissolved in the plating solution, and therefore the object to be plated accumulates as impurities in the plating solution.
  • the main component rare earth elements such as Nd and Fe dissolve in the plating solution and become impurities. Therefore, when the plating process is continued, rare earth impurities such as Nd and Fe, which are main components of the magnet material, and Fe dissolve and accumulate in the plating solution.
  • Nd and Fe which are main components of the magnet material
  • Fe dissolve and accumulate in the plating solution.
  • the amount of rare earth impurities is 700 ppm (mainly Nd impurities). If it exceeds, these defects are likely to occur. Furthermore, in plating by the barrel method, a large current flows locally to the object to be plated, so that double plating is likely to occur. Further, when the pH of the plating solution is increased with a large amount of rare earth impurities, double plating is likely to occur.
  • a nickel compound such as nickel carbonate is added to the plating solution, and the pH of the plating solution is increased (at the same time, activated carbon is added to add organic impurities).
  • impurities were precipitated by further stirring with air, followed by filtration.
  • This method is effective as a method for removing metal impurities such as iron and aluminum or organic impurities dissolved in an electronickel plating solution, but is less effective as a method for removing rare earth impurities.
  • Japanese Patent Laid-Open No. 7-62600 uses a chemical used for the purification and separation of rare earth metals.
  • a method for removing impurities is disclosed. This method is considered to be effective as one of the methods for reducing rare earth impurities in the electronickel plating solution.
  • it is necessary to employ a complicated process, which is not necessarily efficient in the implementation of industrial mass production scale, and is not realistic because a special drug is required.
  • an object of the present invention is to provide a relatively simple and efficient method for removing rare earth impurities in an electronickel plating solution that does not require a complicated process and does not require a special chemical. is there.
  • rare earth impurities are precipitated by holding an electronickel plating solution containing rare earth impurities at a pH of 4.0 to 5.1 for a certain period of time while being heated to 60 ° C. or higher.
  • the inventors have found that it can be easily removed by filtration and have arrived at the present invention.
  • the electro nickel plating solution containing rare earth impurities having a pH of 4.0 to 5.1 is maintained for a certain period of time in a state of being heated to 60 ° C. or higher, and then subjected to the addition.
  • the deposit deposited by temperature is removed from the electro nickel plating solution by sedimentation and / or filtration.
  • the pH of the electro-nickel plating solution before heating is preferably 4.0 to 4.5.
  • the agitation is preferably agitation by air, rotation of a stirring blade, or circulation of liquid by a pump.
  • the rare earth impurities in the electro nickel plating solution can be removed relatively easily and efficiently without employing a complicated process and without using a special agent. Therefore, it is possible to achieve quality stabilization and cost reduction of electro nickel plating on R-Fe-B sintered magnets.
  • the method of the present invention for removing rare earth impurities from an electronickel plating solution is a method in which an electronickel plating solution containing a rare earth impurity having a pH of 4.0 to 5.1 is kept at a temperature of 60 ° C. or higher for a certain period of time and then deposited. The precipitate is precipitated and / or filtered to remove the precipitate from the electronickel plating solution.
  • rare earth impurities are, for example, R-Fe-B sintered magnets (where R is at least one kind of rare earth elements including Y and must contain Nd) when electroplating. It is an R component that dissolves in the plating solution, and most of it exists in an ionic state in the plating solution.
  • the present invention makes it possible to form a solid precipitate that can collect rare earth impurities in an ionic state by a filter, and to separate and remove the precipitate from the plating solution by sedimentation or filtration.
  • the present invention is not limited to the removal of the R component dissolved in the plating solution when electroplating the above R-Fe-B sintered magnet, but also exists in an ionic state in the plating solution. It can be applied in the removal of rare earth impurities.
  • the method for removing rare earth impurities of the present invention is effective in the case of an electronickel plating solution containing rare earth impurities and having a pH of 4.0 to 5.1.
  • the present inventor makes the rare earth impurities present in the ionic state as solid precipitates by holding the electronickel plating solution containing the rare earth impurities in a state of being heated to 60 ° C. or more for a predetermined time or longer.
  • the precipitation rate of this precipitate is within the above pH range, it is almost the same, and it is confirmed that the target efficient method for removing rare earth impurities can be realized. did.
  • Electro-nickel plating solution having a pH of 4.0 to 5.1 is used in a known plating process (for example, when a plating bath having a watt bath composition is used), particularly when an R-Fe-B sintered magnet is electro-nickel plated.
  • the pH of the plating solution used is almost the same, and when the plating solution obtained after removing the rare earth impurities obtained by the present invention is used for electro-nickel plating of an R-Fe-B sintered magnet, it is basically pH. No adjustment is required.
  • a known pH adjusting method such as adding nickel carbonate to increase the pH or adding sulfuric acid to lower the pH can be employed.
  • the addition of nickel carbonate and sulfuric acid increases the cost of the plating process, and also decreases the work efficiency due to pH adjustment (particularly nickel carbonate is difficult to dissolve in the plating solution).
  • the effect inherent in the present invention can be most effectively realized when the electro-nickel plating solution containing rare earth impurities having a pH in the range of 4.0 to 5.1 is heated. Therefore, it is desirable to measure the pH of the plating solution in use at any time and to apply the present invention in a state within the above range.
  • the nickel electroplating solution containing rare earth impurities to be used in the present invention preferably has a pH in the range of 4.0 to 5.1 without adjusting the pH as described above. It is desirable to target those within the same range as the preferred pH range (eg, 4.0 to 4.5).
  • the solution It is necessary to heat the solution to 60 ° C. or higher when removing rare earth impurities from the electronickel plating solution containing rare earth impurities having the above pH. Below 60 ° C, it takes time to remove rare earth impurities, which is not suitable for industrial production. As the liquid temperature is higher, the removal efficiency of rare earth impurities (precipitates) tends to increase, and the upper limit is not particularly limited, but from the viewpoint of workability and safety, and the influence on the composition of the plating solution, etc. It is desirable that the temperature be lower than the boiling point of the plating solution.
  • the boiling point of the plating solution varies depending on the composition.
  • the boiling point of the watt bath is about 102 ° C.
  • the heating in the method of the present invention is desirably in the range of 60 ° C. to 100 ° C., more desirably 70 ° C. to 95 ° C., and most desirably 80 ° C. to 90 ° C.
  • the treatment time varies depending on the temperature conditions, but is preferably 6 hours or more, more preferably 12 hours or more.
  • the upper limit of the time does not need to be set, but is preferably 168 hours or less, more preferably 72 hours or less, and most preferably 24 hours or less from the viewpoint of cost and work efficiency.
  • the relationship between the amount of rare earth impurities (especially Nd impurities) and the occurrence of double plating or peeling of the plating film varies depending on the plating conditions, but when the amount of Nd impurities is about 200 ppm, they are not observed. Therefore, the temperature and time may be set as appropriate so that the amount of Nd impurities can be reduced to 200 ppm or less.
  • the treatment tank used when carrying out the method for removing rare earth impurities of the present invention it is necessary to use one having high heat resistance according to the above-mentioned heating range (temperature of the plating solution by heating). Therefore, the higher the temperature, the higher the cost. Implementation in the above temperature range, particularly a desirable temperature range, contributes to the suppression of cost increase as a result.
  • the concentration of the plating solution when carrying out the method for removing rare earth impurities of the present invention is preferably in the range of 1 to 3 times the concentration when the plating concentration is 1 time. Concentration is preferably by heating. Since the plating solution evaporates water, which is a solvent, by heating, heating and concentration can be performed simultaneously.
  • the concentration of the plating solution is in the range of 1 to 2 times, more preferably. Although it can be processed in the range of 2 to 3 times, it must be carefully controlled so that the deposition of the plating solution component does not start when the concentration approaches 3 times.
  • the present invention is suitable for removing rare earth impurities in a nickel plating solution within a predetermined pH range.
  • the present invention can be applied to nickel plating solutions such as watt baths, high chloride baths, chloride baths, sulfamic acid baths, etc., and is most suitable for watt baths.
  • the Watt bath may be of a very common bath composition.
  • the present invention can be applied to compositions containing brighteners and pit inhibitors as 200 to 320 g / L nickel sulfate, 40 to 50 g / L nickel chloride, 30 to 45 g / L boric acid, and additives.
  • the composition of the plating solution is adjusted by a known analysis method (such as titration analysis). For example, in the case of a watt bath, nickel chloride and total nickel are analyzed by titration to obtain nickel sulfate, and boric acid is analyzed by titration.
  • a known analysis method such as titration analysis. For example, in the case of a watt bath, nickel chloride and total nickel are analyzed by titration to obtain nickel sulfate, and boric acid is analyzed by titration.
  • the composition of the plating solution after removal of rare earth impurities is within the control range, it is not always necessary to add it, but if it is insufficient, an insufficient amount of nickel sulfate, nickel chloride, boric acid is added to the plating solution.
  • Add and adjust the composition of the plating solution When adding these chemicals, it is desirable to warm the plating solution to the temperature during the plating process. When the temperature is low, dissolution of the added drug is slow or does not dissolve. Thereafter, the pH is adjusted with nickel carbonate or sulfuric acid, and a known brightener or pit inhibitor is added to perform plating.
  • the plating conditions using the plating solution to which the present invention is applied may be appropriately changed depending on the equipment used, the plating method, the size of the object to be plated, the number of treatments, and the like.
  • the plating conditions when the plating bath having the Watt bath composition is used are preferably pH 3.8 to 4.5, more preferably 4.0 to 4.5. If the pH is low, the rare earth magnet material is dissolved at the initial stage of electro nickel plating, which is not preferable.
  • a bath temperature of 45 ° C to 55 ° C and a current density of 0.1 to 10 A / dm 2 are desirable.
  • As a plating method there are a rack method and a barrel method, which may be appropriately set depending on the size of the object to be plated and the processing amount.
  • the plating tank is made of FRP or PP having high heat resistance, or an iron plate coated with fluororesin, impurities in the electro nickel plating solution can be removed only by the plating tank without preparing a preliminary tank.
  • the plating tank is made of vinyl chloride (PVC), and by using a container with a high heat resistance material in the spare tank, the plating tank can perform plating treatment while removing impurities in the spare tank. Efficiency and workability can be improved. In addition, safety
  • security can also be improved by using the container of a material with high heat resistance for both a plating tank and a reserve tank.
  • the plating tank 1 has an anode plate (not shown), a cathode (not shown), a heater (not shown), and a stirrer (not shown), builds a plating solution, and performs electro nickel plating. be able to.
  • the material of the plating tank 1 is preferably vinyl chloride (PVC) or heat-resistant vinyl chloride (PVC) depending on the plating solution used.
  • the plating system is composed of the plating layer 1, the valves 2, 5, 6, 7, the pump 3, and the filter 4.
  • the pump 3 is operated with the valve 7 closed and the valves 2, 5, 6 open.
  • the plating solution in the plating tank 1 can be circulated and the plating solution can be filtered through the filter 4. That is, the plating solution circulates through the path of the plating tank 1, the valve 2, the pump 3, the filter 4, the valve 5, the valve 6, and the plating tank 1, and is filtered by the filter 4 in the path.
  • a known filter used in electroplating can be used for the filter, and the filter 4 that is configured integrally with the pump 3 can be used.
  • the material of the piping is preferably vinyl chloride (PVC) or heat resistant vinyl chloride (PVC).
  • the preliminary tank 8 has a stirring blade 9 connected to a motor (not shown) and a heater 10 connected to a power source (not shown).
  • the heater 10 may be a steam heater connected to a steam generator by piping.
  • a method using an air diffuser connected to an air pump may be used as a means for stirring the plating solution in the preliminary tank. It may be. Since the preliminary tank 8 treats a high-temperature plating solution containing rare earth impurities, it is desirable to use PP or FRP made of high heat resistance.
  • the filtration system is composed of the preliminary tank 8, the valves 11, 14, 15, 16, the pump 12, and the filter 13.
  • the filter 13 may be configured integrally with the pump 12.
  • the circulation of the plating solution in the preliminary tank and the method of feeding the liquid between the preliminary tank and the plating tank will be described.
  • the pump 3 By operating the pump 3 with the valve 6 closed and the valves 2, 5, 7 opened, the plating solution in the plating tank 1 can be sent to the preliminary tank 8 via the filter 4. That is, the plating solution is sent through the route of the plating tank 1, the valve 2, the pump 3, the filter 4, the valve 5, the valve 7, and the reserve tank 8.
  • the plating solution in the reserve tank 8 can be circulated and the plating solution can be filtered through the filter 13. That is, the plating solution is a reserve tank 8, a valve 11, and a pump 12. It circulates in the path
  • the plating solution in the spare tank 8 can be sent to the plating tank 1 via the filter 13. That is, the plating solution is sent through the path of the preliminary tank 8, the valve 11, the pump 12, the filter 13, the valve 14, the valve 15, and the plating tank 1.
  • Rare earth impurities are deposited by heating the plating solution in the preliminary tank 8.
  • the precipitated rare earth impurities settle at the bottom of the preliminary tank 8 when the stirring with the stirring blade 9 is stopped.
  • the path of the preliminary tank 8, the valve 11, the pump 12, the filter 13, the valve 14, the valve 15, and the plating tank 1 In this case, the clogging of the filter due to precipitates is suppressed, and the filter disposed in the filter 13 can be used for a long time.
  • the tip of the pipe connected to the pump 12 from the reserve tank 8 via the valve 11 (part that absorbs the plating solution) is not in contact with the bottom of the reserve tank 8, and it is difficult to suck the deposit deposited on the bottom. It has become.
  • the solution may be sent without waiting for the sedimentation.
  • the deposit in the preliminary tank 8 is deposited on the bottom of the preliminary tank 8, and the deposit contained in the plating solution fed from the preliminary tank 8 to the plating tank 1 is extremely reduced. ing. Therefore, after sending the solution to plating tank 1, the plating solution is filtered in the plating tank 1 (plating tank 1, valve 2, pump 3, filter 4, valve 5, valve 6, and plating tank 1 path). The precipitate remaining in the liquid can be removed by filtration.
  • devices having various configurations can be used without being limited to the above devices.
  • a configuration in which the piping for circulating the plating solution in the plating tank 1 and the piping for feeding the plating solution in the plating tank 1 to the spare tank 8 are arranged completely independently can be employed.
  • a specific configuration will be described with a valve, a pump, a filter, and a pipe connected to the plating tank 1.
  • the plating solution is plating tank 1, valve 2, pump 3, filter 4, valve 5, It circulates through the path of the valve 6 and the plating tank 1.
  • the plating solution is plated tank 1, valve 2, pump 3, filter 4, valve 5, valve 7, and spare tank 8. It is sent by the route.
  • circulation in the plating tank 1 and liquid feeding from the plating tank 1 to the preliminary tank 8 are switched by opening and closing the valves 5, 6 and 7.
  • the paths to the valve 2, the pump 3, the filter 4, and the valve 5 are used for both circulation and liquid feeding, and are shared.
  • piping is provided in the path that continues to the plating tank 1 through the valve 2, the pump 3, the filter 4, the valve 5, and the valve 6 for circulation (in this case, the valve 5 and the valve 6 are not necessarily required).
  • piping is provided in a path that passes through the valve 2 ′, the pump 3 ′, the filter 4 ′, the valve 5 ′, and the valve 7 and continues to the auxiliary tank 8 (in this case, the valve 5 ′ and the valve 7 are not necessarily required).
  • FIG. 2 shows a configuration in which another spare tank is added to the configuration of the plating tank and the spare tank described in FIG.
  • FIG. 2 is mainly intended to explain the function of the plating tank and the preliminary tank, that is, the function of each tank. Therefore, the heater and the stirring blade arranged individually in each preliminary tank, and the plating tank The arranged electrodes are not shown. Further, only the piping necessary for liquid feeding between the preliminary tanks and between the preliminary tanks and the plating tank is shown, and the valves and the piping necessary for circulation are not shown.
  • Each spare tank has a heater (and a stirring blade) and can heat the nickel electroplating solution, and can promote precipitation of rare earth impurities by heating. For example, after supplying a plating solution containing rare earth impurities to the first preliminary tank 19, the plating liquid not containing the rare earth impurities stored in the second preliminary tank 21 (or rare earth impurities to a predetermined concentration). By sending the removed plating solution) to the plating tank 17, the time for interrupting the plating operation in the plating tank 17 can be shortened.
  • the first preliminary tank 19 removes rare earth impurities in the plating solution to half of the target removal amount, and then sends the solution to the second preliminary tank 21 to further remove the target rare earth impurity amount.
  • the temperature of the electronickel plating solution is at least It is desirable to cool below the processing temperature of the electro nickel plating solution.
  • the temperature of the moved electro nickel plating solution is higher than the treatment temperature of the electro nickel plating solution, the electro nickel plating treatment at that temperature may change the characteristics of the plating film.
  • a heating device such as a heater is attached to the electric nickel plating tank, so even if the temperature of the moved electro nickel plating solution is below the processing temperature, it can be set to the processing temperature by heating.
  • the temperature of the nickel plating solution is equal to or higher than the processing temperature, it is necessary to provide a separate cooling device.
  • Providing a cooling device in the plating tank increases the cost and requires time for cooling, which lowers the efficiency of the plating process.
  • the plating tank may be deformed by a high temperature plating solution. Cooling of the electro nickel plating solution stops natural heating for precipitation of rare earth impurities and may be natural cooling. When it is desired to cool quickly, a heat exchanger or chiller for cooling may be used.
  • Example 1 It has a composition consisting of 250 g / L nickel sulfate, 50 g / L nickel chloride, and 45 g / L boric acid.
  • the pH 4.5 plating solution is heated to 50 ° C, and R-Fe-B-based firing is performed. Electronickel plating was applied to the surface of the magnet.
  • R-Fe-B sintered magnets are 15-25% by mass Nd, 4-7% by mass Pr, 0-10% by mass Dy, 0.6-1.8% by mass B, depending on the required magnetic properties.
  • Several types of compositions adjusted to a composition range consisting of 0.07 to 1.2 mass% Al and the balance Fe (including 3 mass% or less of Cu and Ga) were used. However, the composition of the magnets used in one batch was the same.
  • the composition and amount of each rare earth impurity dissolved in the plating solution vary depending on the combination of magnets used for plating, the treatment method such as barrel plating and rack plating, and the composition of the plating solution.
  • Nd impurities, Pr impurities, and Dy impurities in the electro nickel plating solution were analyzed with an ICP emission spectrometer.
  • the analysis results of the plating solution after use were Nd: 500 ppm, Pr: 179 ppm, and Dy: 29 ppm.
  • the pH of this plating solution was 4.5.
  • the plating solution containing the rare earth impurities was collected in a fixed amount (3 liters) beaker and kept at 90 ° C. with a heater for a fixed time. During heating, the mixture was stirred with a magnetic stirrer (magnet stirrer). During heating, water was replenished so that the concentration of the plating solution was constant.
  • the ionic state rare earth impurities dissolved in the electrolytic nickel plating solution became precipitates by heating for a predetermined time, and were separated and removed from the plating solution by filtration with filter paper.
  • the rare earth impurities that did not become precipitates even after heating for a predetermined time remained in the plating solution in an ionic state at a rate as shown in the above analysis results.
  • the longer the heating time the greater the amount of rare earth impurities separated and removed as precipitates.
  • the amount of rare earth impurities in the ionic state in the plating solution decreased. . It was found that the amount of impurities of Pr and Dy was reduced simultaneously with the reduction of the amount of rare earth element Nd by the treatment method of Example 1.
  • Example 2 R-Fe-B sintering with a composition consisting of 250 g / L nickel sulfate, 50 g / L nickel chloride, 45 g / L boric acid, and a pH 4.5 plating solution heated to 50 ° C
  • Electronickel plating was applied to the surface of a magnet (using the same composition range as in Example 1). After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 576 ppm.
  • the plating solution after the above treatment is heated under 6 conditions from 50 ° C to 95 ° C (however, from 50 ° C to 90 ° C, 5 conditions in increments of 10 ° C), and each sample is collected and held in a 3-liter beaker. did.
  • the mixture was stirred with a magnetic stirrer (magnet stirrer).
  • water was replenished so that the concentration of the plating solution was constant, and a sufficient amount of plating solution was collected for ICP emission analysis at regular intervals.
  • the collected plating solution was filtered with a filter paper, and then the content (concentration) of Nd impurities in the plating solution was analyzed using an ICP emission spectrometer.
  • the analysis results from 50 ° C. to 90 ° C. are shown in Table 1 and shown in FIG.
  • the Nd impurity concentration became 518 ppm after 168 hours.
  • the Nd impurity concentration decreased after 24 hours and became 177 ppm after 216 hours.
  • the Nd impurity concentration tended to always be lower after 24 hours compared to 60 ° C.
  • the liquid temperature was 80 ° C.
  • the Nd impurity concentration decreased immediately after heating and reached 125 ppm after 96 hours.
  • the liquid temperature was 90 ° C.
  • the Nd impurity concentration was 134 ppm after 24 hours, 84 ppm after 48 hours, and 59 ppm after 96 hours.
  • the liquid temperature was 95 ° C., analysis was conducted after 24 hours and 96 hours, and the Nd impurity concentration was almost the same as when heated at 90 ° C.
  • the heating temperature is about 200ppm in one week (168 hours) at 60 °C. It can be seen that almost the same effect can be obtained in 5 days (120 hours) at 70 ° C, 3 days (72 hours) at 80 ° C, and 24 hours (1 day) at 90 ° C and 95 ° C. Therefore, for example, when 1 week is the unit period of production, the plating solution which is kept at 60 ° C. for 1 week (168 hours) and then filtered can be used for the plating process, and at 70 ° C. for 5 days (120 days). The amount of impurities that can be plated in time) can be reduced.
  • impurities in the plating solution can be reduced in a shorter time. That is, the heating temperature and the holding time can be selected according to the presence or absence of equipment capable of heating the plating solution to the above temperature and the production schedule.
  • Example 3 The plating solution heated in Example 1 and Example 2 was filtered with a filter paper, and the precipitate deposited from the plating solution was collected. The precipitate was dried in a thermostatic bath. The property was powder (solid). When this precipitate was analyzed with an energy dispersive X-ray analyzer (EDX), Nd: 32.532, Pr: 11.967, Dy: 1.581, Al: 0.402, Ni: 7.986, C: 0.319, and O: 45.213 (mass) %). From this result, it was confirmed that the rare earth impurities in the plating solution were precipitated as powder (solid) by the heating treatment.
  • EDX energy dispersive X-ray analyzer
  • Example 4 R-Fe-B sintered magnet with a composition consisting of 250 g / L nickel sulfate, 50 g / L nickel chloride, and 45 g / L boric acid.
  • Electronickel plating was applied to the surface of the same composition range as in Example 1. After plating for several days, the Nd impurity in the electronickel plating solution was analyzed and found to be 544 ppm.
  • the present invention is capable of efficiently removing the rare earth impurities in the electronickel plating solution that dissolves in the plating solution when plating the rare earth magnet and causes so-called plating defects. Has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)

Abstract

 希土類不純物を含むpHが4.0~5.1の電気ニッケルめっき液を、60℃以上に加温した状態で一定時間保持した後、前記加温により析出した析出物を沈降及び/又は濾過により、前記電気ニッケルめっき液から除去することを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。

Description

電気ニッケルめっき液中の希土類不純物の除去方法
 本発明は、電気ニッケルめっき液中の希土類不純物を効率的に簡便に除去する方法に関する。
 希土類系磁石の中で特にR-Fe-B系焼結磁石(RはYを含む希土類元素のうち少なくとも一種以上でありNdを必ず含む)は、磁気特性が高く、広く使用されているが、主たる成分として含有されているNdやFeは非常に錆びやすい。このため耐食性を向上させることを目的として、磁石表面に防錆被膜が施される。中でも電気ニッケルめっきは硬度も高く、めっき工程の管理が無電解めっきに比較して簡便であり、本系磁石にも広く採用されている。
 上記電気ニッケルめっきによるめっき被膜の成長過程のごく初期においては、成膜と同時に被めっき物の成分がめっき液中に溶解することがある。特にめっき液のpHが酸性側に傾いている場合、被めっき物がめっき液に溶解しやすいため、被めっき物が不純物としてめっき液中に蓄積する。
 R-Fe-B系焼結磁石の場合は、主成分であるNd等の希土類元素やFeがめっき液に溶解し不純物となる。よって継続してめっき処理を行うとめっき液中に磁石素材の主成分であるNd等の希土類不純物やFeが溶解し蓄積していく。不純物が無い状態でめっきを行うためにはめっき処理毎に新しいめっき液を建浴することが必要となる。製造工程においてめっき処理毎に新たなめっき液を建浴することはコストアップとなり困難である。実質的には不可能といえる。
 電気ニッケルめっきの場合は、一般的にめっき液中に不純物が含有されていると、光沢の変化や被めっき物との密着不良、やけ(焦げ)などが発生し易い。
 例えば、希土類元素がめっき液中に不純物として蓄積し一定量以上になると、めっき被膜と磁石素材との間で密着性が低下し剥離が発生したり、めっき被膜成膜中の電流断続を起因とする層内剥離である2重めっきが発生したりする。
 密着性が低下し2重めっきのような不良が発生するか否かはめっき液の組成、めっき条件等によるが、本発明者の実験によると希土類不純物量が700 ppm(主にNd不純物)を超えるとこれらの不良が発生しやすくなる。さらにバレル方式によるめっきは、局部的に大きな電流が被めっき物に流れるため、2重めっきが発生しやすい。また希土類不純物量が多い状態でめっき液のpHが上昇すると、2重めっきが発生しやすい。
 工業的量産規模で電気ニッケルめっきを実施する場合に、電気ニッケルめっき液中の希土類不純物が全くない状態を維持することは、製造コストの観点からも非現実的であり、一般的に採用されていない。しかし、品質管理の観点から希土類不純物量が700 ppmを超えない範囲で、低く管理するのが望ましい。
 電気ニッケルめっき液に溶解しているFeなどの不純物を除去する方法としては、従来から、めっき液に炭酸ニッケル等のニッケル化合物を添加し、めっき液のpHを上げ(同時に活性炭を添加し有機不純物を除去する場合もある)、さらにエアー攪拌することで不純物を析出させ、その後、濾過する方法が採用されていた。この方法は電気ニッケルめっき液に溶解した鉄やアルミニウム等の金属不純物あるいは有機物の不純物を除去する方法としては有効だが、希土類不純物を除去する方法としては効果が小さい。
 上記のような状況に鑑み、希土類不純物を効率的、連続的に除去する方法として、特開平7-62600号は、希土類金属の精製や分離に使用される薬剤を用い、電気ニッケルめっき液から希土類不純物を除去する方法を開示している。この方法は、電気ニッケルめっき液中の希土類不純物を低減する方法の一つとして有効と考えられる。しかしながら、この方法の実現のためには、複雑な工程を採用する必要があり、工業量産規模の実施においては必ずしも効率的とは言い難く、しかも特別な薬剤が必要であるため現実的ではない。
 従って本発明の目的は、複雑な工程を採用する必要がなく、かつ特別な薬剤を必要としない、比較的簡便で、効率よく電気ニッケルめっき液中の希土類不純物を除去できる方法を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者は、希土類不純物を含むpHが4.0~5.1の電気ニッケルめっき液を60℃以上に加温した状態で一定時間保持することにより、希土類不純物が析出し、それを濾過によって容易に除去できることを見出し、本発明に想到した。
 電気ニッケルめっき液中の希土類不純物を除去する本発明の方法は、希土類不純物を含むpHが4.0~5.1の電気ニッケルめっき液を、60℃以上に加温した状態で一定時間保持した後、前記加温により析出した析出物を沈降及び/又は濾過により、前記電気ニッケルめっき液から除去することを特徴とする。
 前記加温前の電気ニッケルめっき液のpHは4.0~4.5であるのが好ましい。
 前記電気ニッケルめっき液の加温に際し、電気ニッケルめっき液を攪拌するのが好ましい。
 前記攪拌は、空気、攪拌羽根の回転、又はポンプによる液の循環による攪拌であるのが好ましい。
 本発明によれば、電気ニッケルめっき液中の希土類不純物を、複雑な工程を採用せず、かつ特別の薬剤を使用することなく比較的簡便に効率的に除去することができる。そのため、特にR-Fe-B系焼結磁石への電気ニッケルめっきの品質安定化とコストダウンを実現できる。
本発明の電気ニッケルめっき液中の希土類不純物を除去する方法を実施する電気ニッケルめっき装置の一例を示す模式図である。 本発明の電気ニッケルめっき液中の希土類不純物を除去する方法を実施する電気ニッケルめっき装置の他の例を示す模式図である。 濾過後めっき液中の希土類不純物としてのNd量をICP発光分析装置によって測定し、保温温度ごとに、時間に対してプロットした結果を示すグラフである。 濾過後めっき液中の希土類不純物としてのNd量をICP発光分析装置によって測定し、pHごとに、時間に対してプロットした結果を示すグラフである。
 電気ニッケルめっき液から希土類不純物を除去する本発明の方法は、pHが4.0~5.1の希土類不純物を含む電気ニッケルめっき液を、60℃以上に加温した状態で一定時間保持した後、析出した析出物を沈降及び/又は濾過し、前記電気ニッケルめっき液から前記析出物を除去することを特徴とする。
 本発明において、希土類不純物とは、例えば、R-Fe-B系焼結磁石(Rは、Yを含む希土類元素のうち少なくとも一種以上でありNdを必ず含む)を電気ニッケルめっきする際、めっき液に溶解するR成分であり、めっき液中ではそのほとんどがイオンの状態で存在するため、そのままでは濾過捕集が困難なものを指す。本発明は、イオンの状態で存在する希土類不純物を濾過器で捕集可能な固体の析出物とし、その析出物を沈降や濾過によりめっき液から分離除去することを可能にする。なお、本発明は、上記R-Fe-B系焼結磁石を電気ニッケルめっきする際、めっき液に溶解するR成分の除去に限定されることなく、同様にめっき液中でイオンの状態で存在する希土類不純物の除去において適用できる。
 本発明の希土類不純物の除去方法は、希土類不純物を含むpHが4.0~5.1の電気ニッケルめっき液の場合に有効である。後述するように、本発明者は、希土類不純物を含む電気ニッケルめっき液を60℃以上に加温した状態で一定時間以上保持することで、イオン状態で存在する希土類不純物を固体の析出物とすることが可能であることを確認し、さらに、この析出物の析出速度が上記pHの範囲内にあれば、ほぼ同程度であり、目的とする効率的な希土類不純物の除去方法を実現できることを確認した。
 pHが4.0~5.1の電気ニッケルめっき液は、特にR-Fe-B系焼結磁石を電気ニッケルめっきする際に採用される公知のめっき処理(例えば、ワット浴組成のめっき浴を用いる場合)において使用されるめっき液のpHとほぼ同一であり、本発明よって得られた希土類不純物除去後のめっき液を、R-Fe-B系焼結磁石の電気ニッケルめっきに使用する場合、基本的にpH調整を必要としない。
 上記範囲外のpHを有する希土類不純物を含む電気ニッケルめっき液を、上記範囲内に調整した後に上記加温処理を施すことも可能である。例えば、pHを高くするために炭酸ニッケルを添加したり、pHを低くするために硫酸を添加したりする等、公知のpH調整方法が採用できる。しかし、これら炭酸ニッケルや硫酸の添加は、めっき処理のコストアップ要因となり、また、pH調整による作業効率低下要因ともなる(特に、炭酸ニッケルはめっき液に溶解しにくい)ので、これらpH調整をせずともpHが4.0~5.1の範囲内にある希土類不純物を含む電気ニッケルめっき液に加温処理を施す場合に、本発明の本来有する効果を最も有効に実現できる。従って、使用中のめっき液のpHを随時計測し、上記範囲内にある状態にて、本発明を適用するのが望ましい。
 本発明にて対象とする希土類不純物を含む電気ニッケルめっき液は、上記のようにpH調整をせずともpHが4.0~5.1の範囲内にあるものが望ましく、さらに、実用されているめっき液の好ましいpHの範囲(例えば、4.0~4.5)と同程度の範囲内にあるものを対象とするのが望ましい。
 上記pHを有する希土類不純物を含む電気ニッケルめっき液中から、希土類不純物を除去する際に液を60℃以上に加温する必要がある。60℃未満では希土類不純物除去に時間がかかり、工業生産的には不向きである。液温が高いほど希土類不純物(析出物)の除去効率が上昇する傾向にあり、その上限は特に限定する必要はないが、作業性や安全性の観点、さらにめっき液の組成への影響等からめっき液の沸点未満とするのが望ましい。
 めっき液を沸点以上に加温すると、めっき液から水が急激に蒸発し、めっき液を構成する成分が急激に析出する。ここでめっき液の沸点は組成によって変動し、例えばワット浴の沸点は約102℃となる。このようにめっき液の沸点はモル沸点上昇により上昇するため、水の沸点である100℃を上限として管理すれば、組成の異なるめっき液の不純物除去にも対応可能である。以上のことから、本発明の方法における加温は60℃から100℃の範囲が望ましく、70℃から95℃がより望ましく、80℃から90℃が最も望ましい。
 処理時間は温度条件によって変わってくるが、好ましくは6時間以上、より好ましくは12時間以上である。時間の上限は特に設定する必要はないが、コスト及び作業効率の観点から、168時間以下が好ましく、72時間以下がより好ましく、24時間以下が最も好ましい。
 希土類不純物(特にNd不純物)の量とめっき膜の2重めっきや剥離発生との関係はめっき条件によって変わるが、Nd不純物の量が200 ppm程度では、それらの発生は見られない。従って、Nd不純物の量を200 ppm以下に低減できるように上記温度及び時間を適宜設定すればよい。
 ただし、加温時間(保持時間)が長くなると、それに伴い、めっき液の不純物除去のための予備槽を多く持つ必要がある。従って、めっき液を90℃以上に加温できる設備を有する場合には、後述するように、24~48時間で不純物を100 ppm以下にすることが可能であり望ましい。
 また、本発明の希土類不純物の除去方法を実施する際に使用する処理槽は、上記加温の範囲(加温によるめっき液の温度)に応じて耐熱性の高いものを使用することが必要となることから、この温度が高くなるほど必然的にコストアップを招くことにもなる。上記温度範囲、特に望ましい温度範囲で実施することが結果的にコストアップの抑制にも寄与する。
 本発明の希土類不純物の除去方法を実施する際のめっき液の濃度は、めっきを行う濃度を1倍とすると、濃度1~3倍の範囲であるのが望ましい。濃縮は加温によるのが望ましい。めっき液は加温により溶媒である水が蒸発するため加温と濃縮とを同時に行うことができる。
 加温によりめっき液の濃縮を行う場合には本発明の望ましい加温温度の範囲内で温度が高いほど濃縮に要する時間を短くでき望ましい。加温によりめっき液の濃度が3倍を超えると急激にめっき液成分の析出が始まり望ましくない。濃度は1~2倍の範囲であるがさらに望ましい。2倍~3倍の範囲でも処理可能であるが、濃度が3倍に近づいた場合には、めっき液成分の析出が始まらないように慎重に管理する必要がある。
 加温した際にめっき液の量を一定に保ちたい場合には、水を補給する。例えば、めっき液の濃縮により液面が低下し、加温用のヒーターが露出する場合には、ヒーターが故障する可能性がある。このような場合、水を補給し濃度を一定に保つのが望ましい。また、めっき液の濃度を一定に保った場合、例えば不純物除去後に貯液しておいためっき液をめっき槽にめっき液を戻した際、水を補給することによる濃度調整が短時間でできる。
 本発明は、上述したように、所定pH範囲内にあるニッケルめっき液における希土類不純物除去に好適である。本発明は、ワット浴、高塩化物浴、塩化物浴、スルファミン酸浴等のニッケルめっき液に適用でき、特にワット浴に最も好適である。ワット浴としては、ごく一般的な浴組成のもので良い。例えば、200~320g/Lの硫酸ニッケル、40~50g/Lの塩化ニッケル、30~45g/Lのほう酸、及び添加剤として、光沢剤やピット防止剤を含んだ組成に適用可能である。
 めっき液の組成調整は公知の分析方法(滴定分析等)により行う。例えば、ワット浴の場合、塩化ニッケル及び全ニッケルを滴定により分析し硫酸ニッケルを求め、さらにホウ酸を滴定により分析する。
 本発明において、希土類不純物除去後のめっき液の組成が管理範囲内にある場合は必ずしも添加する必要はないが、不足する場合には不足する量の硫酸ニッケル、塩化ニッケル、ホウ酸をめっき液に添加しめっき液の組成を調整する。これらの薬剤を添加する際には、めっき液をめっき処理時の温度に加温するのが望ましい。温度が低いと添加する薬剤の溶解が遅くなるか、溶解しない。その後、pHを炭酸ニッケルや硫酸で調整し、公知の光沢剤やピット防止剤を添加しめっき処理を行う。
 本発明を適用するめっき液を用いためっき条件については、使用する設備、めっき方法、被めっき物の大きさ、処理個数等々によって適宜変更すれば良い。一例として、上記ワット浴組成のめっき浴を用いた場合のめっき条件は、pH3.8~4.5が望ましく4.0~4.5がさらに望ましい。pHが低いと電気ニッケルめっきの初期において希土類磁石素材を溶解し好ましくない。浴温45℃~55℃、電流密度0.1~10 A/dm2が望ましい。メッキ方法としてはラック方式、バレル方式があるが、被めっき物のサイズ、処理量によって適宜設定すれば良い。
 本発明によれば、めっき槽として耐熱性の高いFRPもしくはPP、又はフッ素樹脂コートした鉄板で作製すれば、特に予備槽を準備しなくてもめっき槽だけで電気ニッケルめっき液中の不純物を除去することが可能である。さらに、めっき槽を塩化ビニル(PVC)で構成し、予備槽に耐熱性の高い材質の容器を用いることにより、予備槽で不純物除去を行いながらめっき槽ではめっき処理を行うことができ、より一層の効率、作業性の向上を可能とすることができる。なお、めっき槽及び予備槽をともに耐熱性の高い材質の容器を用いることで、安全性をも向上させることができる。
 以下に、希土類不純物の除去に際し、めっき槽及び予備槽を用いた構成について図1に基づいて説明する。
 めっき槽1は、陽極板(図示せず)、陰極(図示せず)、ヒーター(図示せず)、及び攪拌機(図示せず)を有し、めっき液を建浴し、電気ニッケルめっきを行うことができる。めっき槽1の材質は、使用するめっき液によるが、塩化ビニル(PVC)又は耐熱塩化ビニル(PVC)が望ましい。
 めっき層1と、バルブ2,5,6,7と、ポンプ3と、濾過器4とから濾過系統が構成され、バルブ7を閉じバルブ2,5,6を開放した状態でポンプ3を稼動することで、めっき槽1内のめっき液を循環させ、濾過器4を介してめっき液を濾過することができる。すなわち、めっき液はめっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ6、及びめっき槽1の経路で循環し、経路中の濾過器4で濾過される。なお、濾過器には電気めっきで用いる公知のフィルターを使用でき、濾過器4は、ポンプ3と一体的に構成されているものが使用可能である。配管の材質は、塩化ビニル(PVC)又は耐熱塩化ビニル(PVC)が望ましい。
 予備槽8は、モータ(図示せず)に接続された攪拌羽9、及び電源(図示せず)に接続されたヒーター10を有する。ヒーター10は蒸気発生装置に配管で接続された蒸気ヒーターでも良い。また、予備槽内のめっき液の攪拌手段としては、撹拌羽9を採用する以外に、エアーポンプに接続した散気管を用いた方法であっても良く、後述するようにポンプ12による循環による方法であっても良い。予備槽8は希土類不純物を含有する高温のめっき液を処理するため、耐熱性の高いPP製又はFRP製が望ましい。
 予備槽8と、バルブ11,14,15,16と、ポンプ12と、濾過器13とから濾過系統が構成される。濾過器13は、ポンプ12と一体的に構成されているものであっても良い。
 以下に、予備槽におけるめっき液の循環及び予備槽とめっき槽との各槽間の送液方法について述べる。バルブ6を閉じ、バルブ2,5,7を開放した状態でポンプ3を稼動することでめっき槽1内にあるめっき液を濾過器4を介して予備槽8に送液することができる。すなわち、めっき液は、めっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ7、及び予備槽8の経路で送液される。
 バルブ15を閉じ、バルブ11、14,16を開放した状態でポンプ12を稼動することで予備槽8内のめっき液を循環させ、濾過器13を介してめっき液を濾過することができる。すなわち、めっき液は、予備槽8、バルブ11、ポンプ12。濾過器13、バルブ14、バルブ16、及び予備槽8の経路で循環し、経路中の濾過器13で濾過される。
 バルブ16を閉じ、バルブ11、14、15を開放した状態でポンプ12を稼動することで予備槽8内にあるめっき液を、濾過器13を介してめっき槽1に送液することができる。すなわち、めっき液は、予備槽8、バルブ11、ポンプ12、濾過器13、バルブ14、バルブ15、及びめっき槽1の経路で送液される。
 予備槽8でめっき液の加温処理を行うことで希土類不純物が析出する。析出した希土類不純物は、撹拌羽9での撹拌を停止すると予備槽8の底部に沈降する。予備槽8からめっき液をめっき槽1へ送液する際は、析出物が沈降したのち、予備槽8、バルブ11、ポンプ12、濾過器13、バルブ14、バルブ15、及びめっき槽1の経路で送液すると、析出物によるフィルターの目詰まりが抑えられ、濾過器13に配置されたフィルターを長く使用するができる。
 予備槽8からバルブ11を介しポンプ12につながる配管の先端(めっき液を吸液する部分)は予備槽8の底部に接しない構成となっており、底部に堆積した析出物を吸い込みにくい構造となっている。
 加温処理により析出物を析出させためっき液を速やかにめっき槽1に送液する場合には沈降を待たずに送液してもよい。
 析出物を沈降させためっき液を予備槽8からめっき槽1に送液する際に濾過器13にフィルターを配置しなくてもよい。析出物を十分に沈降させることにより、予備槽8内の析出物は予備槽8の底部に堆積し、予備槽8からめっき槽1に送液されるめっき液に含まれる析出物は極めて少なくなっている。よってめっき槽1に送液後、めっき槽1内のめっき液の濾過工程(めっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ6、及びめっき槽1の経路)で、めっき液に残った析出物を濾過除去することができる。
 本発明の実施に際しては、上記の装置に限定されることなく、種々の構成からなる装置を用いることができる。例えば、めっき槽1内のめっき液の循環用配管と、めっき槽1内のめっき液を予備槽8内に送液するための送液用配管を全く独立して配置する構成が採用できる。具体的な構成をめっき槽1に接続されたバルブ、ポンプ、濾過器、及び配管で説明する。
 先に説明したように、バルブ7を閉じ、バルブ2,5,6を開放した状態でポンプ3を稼動させると、めっき液はめっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ6,及びめっき槽1の経路で循環する。またバルブ6を閉じバルブ2,5,7を開放した状態でポンプ3を稼動させると、めっき液はめっき槽1、バルブ2、ポンプ3、濾過器4、バルブ5、バルブ7、及び予備槽8の経路で送液される。このようにバルブ5,6,7の開閉の仕方でめっき槽1での循環とめっき槽1から予備槽8への送液を切り替えている。この際、バルブ2、ポンプ3、濾過器4、及びバルブ5までの経路は、循環の際も送液の際も使用しており共用となっている。
 上記共用部分を各々独立して設けてもよい。すなわち、循環用としてバルブ2、ポンプ3、濾過器4、バルブ5、及びバルブ6を経てめっき槽1に続く経路(この場合、バルブ5及びバルブ6は必ずしも必要でない)で配管を設け、それとは別に、バルブ2’、ポンプ3’、濾過器4’、バルブ5’、バルブ7を経て予備槽8に続く経路(この場合、バルブ5’及びバルブ7は必ずしも必要でない)で配管を設ける。このような構成とすることによって、循環及び送液の経路が単純となるためバルブの誤開閉を防ぐ等の効果が得られる。予備槽8の循環用配管及び予備槽8からめっき槽1への送液用配管においても、上記と同様に共用部分を各々独立した配管とすることによって、上記と同様な効果を得ることができる
 図2は、図1で説明しためっき槽と予備槽との構成に、さらに別の予備槽を追加した構成を示す。なお図2は、めっき槽及び予備槽の作用、すなわち各槽の機能を説明することを主体とするものであるため、各予備槽に個別に配置されているヒーター及び攪拌羽、並びにめっき槽に配置される電極等は図示していない。また、各予備槽間及びこれら予備槽とめっき槽と間の、送液に必要な配管のみ図示し、バルブ及び循環に必要な配管については図示していない。
 各予備槽にはヒーター(及び撹拌羽)を有しており電気ニッケルめっき液の加温が可能であり、加温による希土類不純物の析出を促進することができる。例えば、希土類不純物を含有しためっき液を第1の予備槽19に送液した後、第2の予備槽21に保管していた希土類不純物を含有していないめっき液(又は希土類不純物を所定濃度まで除去しためっき液)をめっき槽17に送液することで、めっき槽17でのめっき作業を中断する時間を短くすることができる。
 また、第1の予備槽19でめっき液中の希土類不純物を目標とする除去量の半分まで除去し、その後第2の予備槽21に送液し、さらに目標とする希土類不純物量まで除去する等、多段階での希土類不純物の除去が可能となり、各予備槽19,21の処理能力に合わせた除去量設定が可能となることから工業的規模における実用性がより一層向上する。
 本発明において、希土類不純物が析出した電気ニッケルめっき液から希土類化合物とともに希土類不純物を分離除去した後、あるいは濾過器による分離除去と同時にめっき槽に移動する際には、電気ニッケルめっき液の温度は少なくとも電気ニッケルめっき液の処理温度以下に冷却しておくのが望ましい。移動した電気ニッケルめっき液の温度が電気ニッケルめっき液の処理温度より高い場合、その温度で電気ニッケルめっき処理を行うとめっき膜の特性が変わってしまうおそれがある。通常電気ニッケルめっき槽にはヒーター等の加温装置が付属しているため、たとえ移動した電気ニッケルめっき液の温度が処理温度以下であっても加温することにより処理温度に設定できるが、電気ニッケルめっき液の温度が処理温度以上であった場合、別途冷却装置を設ける必要が生じる。めっき槽に冷却装置までを設けるのはコストアップとなりまた冷却のための時間が必要でありめっき処理の効率が低下する。まためっき槽の材質として耐熱性の低い材質を使用している場合には、温度の高いめっき液によりめっき槽が変形するおそれがある。電気ニッケルめっき液の冷却は希土類不純物の析出のための加温を停止し、自然冷却でよい。早く冷却したい場合には、冷却用の熱交換器やチラーを用いてもよい。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
 250 g/Lの硫酸ニッケル、50 g/Lの塩化ニッケル、及び45g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温し、R-Fe-B系焼結磁石の表面に電気ニッケルめっきを施した。R-Fe-B系焼結磁石は必要な磁気特性に応じて、15~25質量%のNd、4~7質量%のPr、0~10質量%のDy、0.6~1.8質量%のB、0.07~1.2質量%のAl、及び残部Fe(3質量%以下のCu及びGaを含む)からなる組成範囲に調整した数種類のものを用いた。ただし、一回のバッチで用いる磁石の組成は同じものとした。なおメッキ液に溶解する希土類不純物のそれぞれの組成や量はめっきに供した磁石の組み合わせ、バレルめっきやラックめっきといった処理方法、メッキ液の組成によって異なる。
 数日間メッキ処理を行った後、電気ニッケルめっき液のNd不純物、Pr不純物、及びDy不純物をICP発光分析装置にて分析した。この使用後のめっき液の分析結果はNd:500 ppm、Pr:179 ppm、及びDy:29 ppmであった。また、このめっき液のpHは4.5であった。
 上記希土類不純物を含むめっき液を一定量(3リットル)ビーカーに採取し、ヒーターで90℃に加温した状態で一定時間保持した。なお、加温中は磁石式の攪拌機(マグネットスターラー)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給した。
 24時間経過後及び96時間経過後に、それぞれICP発光分析に十分な量のめっき液を採取し、濾紙にて濾過した後のめっき液中に含まれるNd、Pr及びDyの濃度をICP発光分析装置にて測定した。24時間経過後の分析結果はNd:100 ppm、Pr:35 ppm、及びDy:16 ppmであり、96時間経過後の分析結果はNd:50 ppm、Pr:16 ppm、及びDy:2 ppmであった。
 上記のように、電気ニッケルめっき液中に溶解しているイオン状態の希土類不純物は、所定時間の加温により析出物となり、濾紙による濾過にてめっき液と分離・除去された。所定時間の加温によっても析出物にならなかった希土類不純物は、上記分析結果に示すような割合で、イオン状態のままめっき液中に残存した。上記分析結果から明らかなように、加温時間が長いほど、析出物として分離・除去される希土類不純物の量が多くなり、結果として、めっき液中のイオン状態にある希土類不純物の量が低減した。実施例1の処理方法により、希土類元素であるNdの不純物量低減と同時にPrとDyとの不純物量も低減することが分かった。
実施例2
 250 g/Lの硫酸ニッケル、50 g/Lの塩化ニッケル、45 g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温しR-Fe-B系焼結磁石(実施例1と同じ組成範囲のものを用いた)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ576 ppmであった。
 上記処理後のめっき液を50℃から95℃までの6条件(ただし50℃から90℃までは10℃きざみにて5条件)で加温し、各1条件3リットルのビーカーに採取して保持した。加温中は磁石式の攪拌機(マグネットスターラ)にて攪拌した。加温中はめっき液の濃度が一定になるように水を補給し、一定時間毎にICP発光分析に十分な量のめっき液を採取した。採取しためっき液は濾紙で濾過したのち、めっき液中のNd不純物の含有量(濃度)を、ICP発光分析装置を用いて分析した。50℃から90℃までの分析結果を表1に示すとともに図3に示した。
表1
Figure JPOXMLDOC01-appb-I000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
 液温が50℃の場合、168時間経過後にNd不純物濃度は518 ppmとなった。液温が60℃では24時間以降Nd不純物濃度が低下し、216時間経過後に177 ppmとなった。液温が70℃ではNd不純物濃度は60℃に比較して24時間以降常に低い傾向を示した。液温が80℃では、加温直後からNd不純物濃度は低下し、96時間経過後に125 ppmとなった。液温が90℃では、Nd不純物濃度は24時間経過後で134 ppm、48時間経過後で84 ppmとなり、96時間経過後では59 ppmとなった。液温が95℃では、24時間経過後と96時間経過後について分析したところ、Nd不純物濃度は90℃で加温した場合とほぼ同じであった。
 以上の結果から、60℃以上で一定時間加温し、析出物を濾過した後のめっき液ではNd不純物の量が低減しており、また加温温度が高くなるほど低減効果は大きいことが分かった。
 Nd不純物の量を、めっき膜の2重めっきや剥離の発生が見られない200 ppm以下に低減することを目的とした場合、加温温度が60℃では1週間(168時間)で約200 ppmに低減し、70℃では5日間(120時間)、80℃では3日間(72時間)、90℃及び95℃では24時間(1日)で、ほぼ同程度の効果を得られることが分かる。従って、例えば、1週間を生産の単位期間とした場合、60℃で1週間(168時間)保持し、その後濾過しためっき液はめっき処理に十分使用可能であり、また70℃では5日間(120時間)でめっき可能な不純物量に低減できる。同様に80℃、90℃及び95℃ではさらに短い時間でめっき液中の不純物が低減可能である。すなわち、加温温度と保持時間は、めっき液を上記温度に加温できる設備の有無と、生産スケジュールによって選択することが可能である。
実施例3
 実施例1及び実施例2で加温処理しためっき液を、濾紙で濾過し、めっき液から析出した析出物を回収した。上記析出物を恒温槽で乾燥した。性状は紛体(固体)であった。この析出物をエネルギー分散型X線分析装置(EDX)にて分析したところ、Nd:32.532、Pr:11.967、Dy:1.581、Al:0.402、Ni:7.986、C:0.319、及びO:45.213(質量%)の組成を有していた。この結果から、加温処置により、めっき液中の希土類不純物が紛体(固体)として析出していることを確認した。
実施例4
 250g/Lの硫酸ニッケル、50g/Lの塩化ニッケル、45g/Lのほう酸からなる組成を有し、pH4.5のめっき液を50℃に加温しR-Fe-B系焼結磁石(実施例1と同じ組成範囲のものを用いた)の表面に電気ニッケルめっきを施した。数日間めっき処理を行った後、電気ニッケルめっき液中のNd不純物を分析したところ544 ppmとなっていた。
 上記不純物を含むめっき液を3リットルずつ5つのビーカーに分け、硫酸でpHを4.0に調整したものを2サンプル、炭酸ニッケルでpHを5.1に調整したものを2サンプル、pHを4.5のものを1サンプル準備した。
 各サンプルを90℃に加温した状態で一定時間保持した。なお加温中は磁石式の攪拌機(マグネットスターラー)にて撹拌した。加温中はめっき液の濃度が一定になるように水を補給した。24、48、72及び96時間後にそれぞれICP発光分析に必要な量のめっき液を採取し、濾紙にて濾過した後、めっき液中に含まれるNdの量をICP発光分析装置にて測定した。結果を表2及び図4に示す。
表2
Figure JPOXMLDOC01-appb-I000003
 pH5.1のサンプルはNd不純物の析出速度がやや遅いものの、どのサンプルも時間の経過とともにNd不純物量は低下しており、96時間経過した時点ではほぼ同じ不純物量となった。従って、電気ニッケルめっき液中の希土類不純物を加温によって除去する方法において、めっき液のpHが4.0~5.1の範囲では、Nd不純物の析出速度には顕著な違いは見られず、実用的には十分な希土類不純物の析出・除去効果が得られることが分かった。従って、電気ニッケルめっきをpH4.0~5.1の範囲で行っている限り、pH調整を行わないで希土類不純物の除去処理が可能である。すなわち、基本的に従来電気ニッケルめっき液から金属不純物を除去する際に行われることの多かったpHの調整(pHを高くすること)が不要になり、コスト低減及び作業効率の向上が可能となる。
 以上の実施例において、Nd、Pr及びDyの不純物低減効果が確認できたが、Tbや他の希土類不純物、さらには、めっき液中のFe不純物やCu不純物についても低減可能であると考えられる。
 本発明は、希土類磁石をめっきする際にめっき液に溶解し、いわゆるめっき不良の原因となる電気ニッケルめっき液中の希土類不純物を効率よく除去することができるため。産業上の利用可能性を有する。

Claims (4)

  1.  希土類不純物を含むpHが4.0~5.1の電気ニッケルめっき液を、60℃以上に加温した状態で一定時間保持した後、前記加温により析出した析出物を沈降及び/又は濾過により、前記電気ニッケルめっき液から除去することを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。
  2.  請求項1に記載の電気ニッケルめっき液中の希土類不純物の除去方法において、前記加温前の電気ニッケルめっき液のpHが4.0~4.5であることを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。
  3.  請求項1又は2に記載の電気ニッケルめっき液中の希土類不純物の除去方法において、前記電気ニッケルめっき液の加温に際し、電気ニッケルめっき液を攪拌することを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。
  4.  請求項3に記載の電気ニッケルめっき液中の希土類不純物の除去方法において、前記攪拌は、空気、攪拌羽根の回転、又はポンプによる液の循環による攪拌であることを特徴とする電気ニッケルめっき液中の希土類不純物の除去方法。
PCT/JP2014/057136 2013-03-25 2014-03-17 電気ニッケルめっき液中の希土類不純物の除去方法 WO2014156767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480017674.0A CN105051263B (zh) 2013-03-25 2014-03-17 镍电镀液中的稀土类杂质的除去方法
US14/771,330 US9771664B2 (en) 2013-03-25 2014-03-17 Method for removing rare earth impurities from nickel-electroplating solution
JP2015508319A JP6281565B2 (ja) 2013-03-25 2014-03-17 電気ニッケルめっき液中の希土類不純物の除去方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061650 2013-03-25
JP2013061650 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156767A1 true WO2014156767A1 (ja) 2014-10-02

Family

ID=51623748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057136 WO2014156767A1 (ja) 2013-03-25 2014-03-17 電気ニッケルめっき液中の希土類不純物の除去方法

Country Status (4)

Country Link
US (1) US9771664B2 (ja)
JP (1) JP6281565B2 (ja)
CN (1) CN105051263B (ja)
WO (1) WO2014156767A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047340A1 (ja) 2011-09-28 2013-04-04 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法
JP6319297B2 (ja) 2013-03-25 2018-05-09 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61533A (ja) * 1984-06-13 1986-01-06 Nippon Pureeteingu Kk サマリウムの回収方法
JPH02209500A (ja) * 1989-02-08 1990-08-20 Sumitomo Special Metals Co Ltd NiまたはNi合金めっき廃液の再生方法
JP2006077271A (ja) * 2004-09-07 2006-03-23 Tdk Corp めっき方法、めっき装置
WO2013047340A1 (ja) * 2011-09-28 2013-04-04 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法
JP2013173993A (ja) * 2012-02-27 2013-09-05 Hitachi Metals Ltd 電気ニッケルめっき液中の希土類不純物の除去方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653813A (en) * 1970-06-24 1972-04-04 Sylvania Electric Prod Process for preparing rare earth normal tungstates
US5037463A (en) * 1990-04-20 1991-08-06 Chicago Bridge & Iron Technical Services Company Freeze concentration and precipitate removal system
JPH0762600A (ja) * 1993-07-22 1995-03-07 Shin Etsu Chem Co Ltd めっき浴の不純物金属イオンの連続除去方法およびその装置
JP3119545B2 (ja) * 1993-07-22 2000-12-25 信越化学工業株式会社 Nd−Fe−B系永久磁石表面処理用の電気めっき浴中の不純物金属イオンの除去方法およびNd−Fe−B系永久磁石表面処理用の電気めっき浴の再生方法
JP2002194600A (ja) 2000-12-27 2002-07-10 Tdk Corp アゾジスルホン酸の除去方法、めっき膜の形成方法および積層セラミック電子部品の製造方法
US6682644B2 (en) 2002-05-31 2004-01-27 Midamerican Energy Holdings Company Process for producing electrolytic manganese dioxide from geothermal brines
US7887603B2 (en) * 2002-09-05 2011-02-15 Jx Nippon Mining & Metals Corporation High purity copper sulfate and method for production thereof
JP4915174B2 (ja) * 2006-08-21 2012-04-11 Jfeスチール株式会社 めっき液再生装置およびめっき液再生方法
JP4915175B2 (ja) 2006-08-21 2012-04-11 Jfeスチール株式会社 めっき液再生装置およびめっき液再生方法
WO2008023778A1 (fr) 2006-08-21 2008-02-28 Jfe Steel Corporation Appareil de régénération de solution de placage et procédé de régénération de solution de placage
EP2294232A4 (en) 2008-06-25 2013-12-25 Bhp Billiton Ssm Dev Pty Ltd iron precipitation
CA2785411C (en) * 2009-12-25 2018-06-19 Anan Kasei Co., Ltd. Complex oxide, method for producing same, and exhaust gas purifying catalyst
JP6319297B2 (ja) 2013-03-25 2018-05-09 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61533A (ja) * 1984-06-13 1986-01-06 Nippon Pureeteingu Kk サマリウムの回収方法
JPH02209500A (ja) * 1989-02-08 1990-08-20 Sumitomo Special Metals Co Ltd NiまたはNi合金めっき廃液の再生方法
JP2006077271A (ja) * 2004-09-07 2006-03-23 Tdk Corp めっき方法、めっき装置
WO2013047340A1 (ja) * 2011-09-28 2013-04-04 日立金属株式会社 電気ニッケルめっき液中の希土類不純物の除去方法
JP2013173993A (ja) * 2012-02-27 2013-09-05 Hitachi Metals Ltd 電気ニッケルめっき液中の希土類不純物の除去方法

Also Published As

Publication number Publication date
CN105051263B (zh) 2018-05-29
US9771664B2 (en) 2017-09-26
JPWO2014156767A1 (ja) 2017-02-16
CN105051263A (zh) 2015-11-11
JP6281565B2 (ja) 2018-02-21
US20160002815A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5692400B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
JP2008506035A (ja) クロム鍍金方法
JP5835001B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
TWI260353B (en) Copper electroplating method and pure copper anode for copper electroplating
JP6319297B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
JP5830242B2 (ja) めっき液中から不純物を除去する方法
JP6281565B2 (ja) 電気ニッケルめっき液中の希土類不純物の除去方法
US20140061035A1 (en) System and method of plating metal alloys by using galvanic technology
JP6119353B2 (ja) 電気ニッケルめっき装置
KR100934729B1 (ko) 무전해 주석도금액 불순물 제거장치 및 방법
JP5410201B2 (ja) 銅合金板への高電流密度Snめっき用硫酸浴及びSnめっき方法
JP2023507479A (ja) 亜鉛ニッケル合金を基材上に堆積するための方法およびシステム
JP2005105309A (ja) クロムめっき液中の銅不純物除去方法
JP2012057214A (ja) 銅合金板への高電流密度Snめっき用硫酸浴及びSnめっき方法
JP2014214320A (ja) 電気クロムめっき鋼帯の製造装置および電気クロムめっき鋼帯の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017674.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508319

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771330

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774481

Country of ref document: EP

Kind code of ref document: A1