WO2014154035A1 - 一种填料用片层材料径厚比的测算方法 - Google Patents

一种填料用片层材料径厚比的测算方法 Download PDF

Info

Publication number
WO2014154035A1
WO2014154035A1 PCT/CN2014/070587 CN2014070587W WO2014154035A1 WO 2014154035 A1 WO2014154035 A1 WO 2014154035A1 CN 2014070587 W CN2014070587 W CN 2014070587W WO 2014154035 A1 WO2014154035 A1 WO 2014154035A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
solution
volume
diameter
thickness ratio
Prior art date
Application number
PCT/CN2014/070587
Other languages
English (en)
French (fr)
Inventor
刘钦甫
张志亮
程宏飞
Original Assignee
中国矿业大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学(北京) filed Critical 中国矿业大学(北京)
Publication of WO2014154035A1 publication Critical patent/WO2014154035A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the invention relates to a method for measuring the aspect ratio of a sheet material for a filler, and belongs to the technical field of particle material particle size testing. Background technique
  • the existing particle size distribution test methods at home and abroad mainly include: sieving method, microscopic method, sedimentation method, laser method, electron microscope method, ultrasonic method, gas permeable method and the like. These methods all give the equivalent particle size data, and fail to give the relevant data of the tested sample size ratio.
  • Some tests use large-scale comprehensive scanning electron microscopy, transmission electron microscopy and image method to characterize the aspect ratio, but The results are unreliable, poorly repeatable, and the workload is high and the cost is too high.
  • the measurement of the thickness-to-thickness ratio in foreign countries is generally performed by electron scanning microelectron microscopy, X-ray projection image method or X-ray diffraction structure analysis.
  • the instruments used in these methods are expensive, and the general production unit does not have such conditions, and the application has limitations.
  • the electric resistance method is the only analytical method that can directly provide particle volume data and absolute count through three-dimensional measurement. It is arranged according to the small space in the small micropore at the moment of passing through a small micropore. The principle of measuring the particle size distribution of the conductive liquid in the pores to change the electrical resistance across the small micropores.
  • the electrode applies a constant current through the small micro-hole, which transforms the resistance change of the small micro-pore into a voltage pulse signal that can be processed by a computer, and processes the pulse signal to obtain Corresponding particle size distribution. By analyzing and calculating the pulse signal, the aspect ratio data of the particles can be obtained. Summary of the invention
  • the invention solves the problems that the working mode of the existing sheet material particle size measuring technology is complicated, the measuring cost is high and the precision is low, and the method for measuring the aspect ratio of the sheet material for the filler is provided.
  • the present invention provides the following technical solutions:
  • the mass ratio of the powder sample to water is 1:5 to 20; in the present invention, preferably, in the step (1), the washing liquid must be secondary deionized water;
  • the sodium hydroxide solution is added dropwise to keep the test sample solution alkaline, and the pH thereof is maintained between 8-10.5, preferably 9.5-10;
  • the dispersing agent is selected from the group consisting of sodium hexametaphosphate, sodium pyrophosphate, sodium polyacrylate, polyacrylamide; one or more of amino acid salts, a dispersing agent and
  • the ratio of water is between 0.1 and 1%, preferably
  • the ultrasonic wave is dispersed, the time required is 15-30 minutes, and it is allowed to stand for 2 minutes every 5 minutes, and the control temperature is 25-50 ° C;
  • the instrument used in the step (5), must be an instrument for testing the particle size by an electric resistance method, including a Beckman Coulter, an Eurasia/DP-RC-3000 type resistance particle size analyzer, OMEC. - one or more of -RC-2100 type resistive particle counter, resistivity method instrument of Qingge Geological Instrument Factory, etc., preferably Beckman Coulter;
  • the test sample solution is mixed into the electrolyte, and the mixing ratio is 1:5-10.
  • Measure the particle size range of the sample and select the appropriate microporous tube The model of the small hole tube is identified by its pore size, such as 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, etc.
  • the effective particle size of the small-bore tube is 2%-60% of its pore diameter, such as a 100 ⁇ m small-pore tube, and its analytical particle size is 2.0 ⁇ ⁇ 60.0 ⁇ m. Within this range, the measured results can be Ensure linearity.
  • the appropriate small size can be selected according to the approximate range of the particles of the object to be measured.
  • the concentration of the mixed solution is adjusted, and the measured concentration of the instrument is displayed as 5%-10% for the experiment;
  • calculating a slice diameter-thickness ratio of the sample according to a voltage pulse signal between the electrodes comprises:
  • the method provided by the invention measures the diameter-thickness ratio of the sheet material by adopting the method of placing the electrodes inside and outside the microporous tube, the working mode is simple, the instrument structure is simple, and the operation is simple, the cost is low, and the repeatability is good. , high precision, universal applicability and easy to promote.
  • FIG. 1 is a schematic diagram of the principle of a conventional resistance method related instrument
  • FIG. 2 is a schematic diagram of a voltage variation converted into a voltage pulse according to a specific embodiment of the present invention
  • FIG. 3 is a schematic flow chart showing a method for measuring an aspect ratio of a sheet material for a filler provided by a specific embodiment of the present invention
  • FIG. 4 is a schematic view showing the volume of a sample equivalent to a cylindrical shape provided by a specific embodiment of the present invention.
  • a specific embodiment of the present invention provides a method for measuring the aspect ratio of a sheet material for a filler, the basic principle of which is: measuring the particles in the solution according to the principle of electrical resistance and digital pulse technology.
  • the electric resistance method is that the suspension passes through a cylindrical opening (ie, a small hole in the small-pore tube), and there are separated electrodes on both sides of the small hole, and an electric current passes between them (as shown in FIG. 1).
  • the small holes form their own fixed resistance, and each particle passes through the small hole, and the suspension corresponding to its own volume is discharged, which instantly increases the resistance of the small hole.
  • the change in resistance produces a small but proportional voltage change that, through the amplifier, changes the voltage into a voltage pulse that can be accurately measured (as shown in Figure 2).
  • the resistance method considers the amplitude of the pulse to be
  • the volume of the pulsed particles is directly proportional, and by measuring the height of these pulses, a particle size distribution map can be obtained and displayed. If a known amount of suspension is withdrawn through a small orifice using a quantitative instrument, the statistics of the number of pulses reflect the concentration of particles per unit volume in the suspension. The invention will be specifically described below in conjunction with specific embodiments.
  • the method for measuring the aspect ratio of the sheet material for the filler provided in this embodiment is as shown in FIG. 3, and includes:
  • Step 1 The sample powder to be tested is washed with secondary deionized water, filtered, and the acidity and alkalinity of the solution are adjusted, and the dispersing agent is added to disperse and then ultrasonically dispersed.
  • Step 2 uniformly mixing the sample in the electroconductive liquid, and placing the vacuumed microporous tube (for the particle size range of the sample to be tested, selecting the adapted microporous tube) in the electroconductive liquid, An electrode is placed in each of the electroconductive liquid inside and outside the microporous tube, and a predetermined voltage is applied to both ends of the electrode.
  • the sample is first uniformly dispersed in the electroconductive liquid to pass through a micropore unique to the wall of the microporous tube.
  • a pair of electrodes are immersed in the electroconductive liquid inside and outside the microporous tube, and the circuit is turned on to form an electric induction area around the micropore.
  • the circuit produces an electrical pulse signal corresponding to it. The size of this signal depends on the size of the particle passing through it, regardless of other factors.
  • Step 3 Calculating a slice diameter-thickness ratio of the sample according to a voltage pulse signal between the electrodes.
  • the irregularly shaped sample particles are idealized into the same volume of spherical particles, whereby the particle diameter of the sample particles is approximately calculated.
  • the sample particles passing through the micropores are counted one by one, and the distribution of the sample particles in each stage is distinguished according to the size of the volume signal, and the number of samples, the number of particle size distribution, the volume particle size distribution and the like are displayed and calculated.
  • the calculation method of specific parameters includes:
  • the volume of the sample was measured according to an electric resistance method instrument. Using the spherical standard sample, since the particle size corresponding to the pulse width should be the diameter of the sphere, that is, each pulse width W corresponds to the particle diameter D of a sphere, and the sample after stripping is selected by the resistance method related instrument test.
  • the software can get the volume V and pulse width of the sample tested.
  • the volume of the sample is equivalent to a pie shape, and the length d of the sample is obtained according to the pulse width W of the voltage pulse signal.
  • the measured slice sample is ideally equivalent to a cylinder of volume V, and from the obtained pulse width W, the length of the slice sample measured is the corresponding d.
  • the film thickness to thickness ratio of the sample was calculated according to the volume V of the pattern and the length d of the sample. Round
  • Example 1 Taking the Zhangjiakou kaolin sample as an example, the average pulse width d of the sample can be measured by the instrument to be 33.1 667, and the pulse volume V is 1314.1 6. After calculation, the average diameter-thickness ratio is 21.8. By observing a large number of SEM images of the sample, the particle size of Zhangjiakou samples is mostly distributed between 1 -5um, and the average slice thickness is between 0.05-0.4um. According to sampling statistics, the average diameter of kaolinite slices Take 2.2um (the same as the Malvern particle size measurement results), take the average thickness of 0.1 urn, the diameter-thickness ratio is 22, which is consistent with the instrumental calculation results, so the test results are consistent with the diameter-thickness ratio of the sample.
  • the average pulse width of the sample can be measured by the instrument to be 13.2254, and the pulse volume V is 518.83. After the calculation, the average diameter-to-thickness ratio is 3.5. By observing a large number of SEM images of the sample, the particle size of the Zaozhuang sample is mostly distributed between 0. 5-1. 5um, and the average slice thickness is between 0.05-0.4um.
  • kaolinite tablets The average diameter of the layer is 0.75um (measured by the same Malvern particle size analyzer), and the average thickness is 0.2 um, the ratio of diameter to thickness is 3.7, which is in agreement with the measured results of the instrument, so the test results are consistent with the diameter-thickness ratio of the sample.
  • the average pulse width of the sample can be measured by the instrument to be 83.3378, and the pulse volume V is 6224.05. After the calculation, the average diameter-to-thickness ratio is 75.
  • the particle size of the Zaozhuang sample is mostly distributed between 10-30um, and the average slice thickness is between 0.1 -1 um.
  • the average diameter of the kaolinite layer Take 22um (the same as the Malvern particle size measurement results), take an average thickness of 0.3 urn, the diameter-thickness ratio is 73.3, which is in agreement with the instrumental calculation results, so the test results are consistent with the diameter-thickness ratio of the sample.
  • the average pulse width of the sample can be measured by the instrument to be 43.2256, and the pulse volume V is 1509.53.
  • the average diameter-to-thickness ratio is 42.
  • the particle size of the Zaozhuang sample is mostly distributed between 20-30um, and the average slice thickness is between 0.5-2um.
  • the average diameter of the kaolinite slice is taken. 25um (the same as the Malvern particle size measurement results), taking an average thickness of 0.6 urn, the ratio of diameter to thickness is 41.67, which is in agreement with the instrumental calculation results, so the test results are consistent with the diameter-thickness ratio of the sample.
  • the aspect ratio of the sheet material is measured by using the method of placing the electrodes inside and outside the microporous tube, the working mode is simple, the instrument structure is simple, and the operation is simple and low in cost. , good repeatability, high precision, universal applicability and easy to promote.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种填料用片层材料径厚比的测算方法,包括将样品水洗,放入电导液,调整电导液的酸碱度,通过物理和超声方式将样品均匀分散在电导液中,利用电阻法将微孔管放置在电导液中,在微孔管内外的电导液中各放置一个电极,并在电极的两端加预定的电压;根据所述电极之间的电压脉冲信号计算获得试样的片层径厚比;根据电阻法仪器测得所述试样的体积V;将所述试样的体积等效为圆饼形,并根据所述电压脉冲信号的脉冲宽度W获得所述试样的长度d;根据所述试样的体积V和所述试样的长度d计算获得所述试样的片层径厚比为πd3/4V。该测算方法工作方式较简便,具有操作便捷、成本低、重复性好、精确度高、普遍适用性强以及易推广的特点。

Description

说 明 书
一种填料用片层材料径厚比的测算方法
技术领域
本发明涉及一种填料用片层材料径厚比的测算方法, 属于片层材料粒度测试技术领 域。 背景技术
国内外现有的粒度分布测试方法主要包括: 筛分法、 显微镜法、 沉降法、 激光法、 电 镜法、 超声波法、 透气法等。 这些方法均给出的是等效粒径数据, 未能给出所测试样径厚 比的相关数据, 有些测试通过大规模综合运用扫描电镜、 透射电镜及图像法来对径厚比进 行表征, 但结果不可靠, 重复性差, 且工作量大, 成本过高。
国内已知相关径厚比的研究还比较原始: 1995年,于冰等利用透射电镜测量层状硅酸 盐细粉厚度; 1998年, 任耀依靠偏光显微镜对少量片层矿物径厚比进行测量的, 填补了早 期国内对矿物径厚比测量的空白, 但上述两种方法都相对原始且操作难度大, 不精确且不 易于推广。 2004年, 过永康提出了高径厚比微片对涂料的影响和好处, 并未提出如何获得 此类材料的技术或方法。 2005年, 冯启明、 董发勤等对片层材料石墨的研究中, 用扫描电 镜对石墨进行了径厚比测量, 方式相对原始, 工作量大, 结果比较片面。 2008年, 白翠萍 对云母的径厚比做了较系统的研究, 提出并对比了多种测试方法, 值得借鉴, 但该方法过 于繁琐, 工作量大, 辅助仪器过多, 且仅针对云母等高径厚比片层材料有一定适用性, 推 广性不强。 由此可见, 国内迄今为止尚没有提出专门针对片层材料径厚比测算的普遍适用 的方法。 国外测量径厚比一般采用电子扫描显微电镜法、 X光投射图像法或 X光衍射结构 分析法等。 这些方法测定中所用的仪器价格昂贵, 一般生产单位不具备这样的条件, 且应 用具有局限性。
电阻法是一种唯一能通过三维测量而直接提供颗粒体积数据和绝对计数的分析方法, 它根据颗粒在通过一个小微孔的瞬间, 占据了小微孔中的部分空间而排开了小微孔中的导 电液体, 使小微孔两端的电阻发生变化的原理测试粒度分布的。 由于小孔两端电阻变化的 大小与颗粒的体积成正比, 当不同大小的粒径颗粒连续通过小微孔时, 小微孔的两端将连 续产生不同大小的电阻变化, 小微孔两侧的电极施加了一个恒定的电流流经小微孔, 使小 微孔的电阻变化转变成可以通过计算机处理的电压脉冲信号, 对脉冲信号进行处理从而获 得相应的粒度分布。 通过分析计算脉冲信号, 可获得颗粒的径厚比数据。 发明内容
本发明为解决现有的片层材料粒度测量技术中存在的工作方式较复杂、 测量成本较高 以及精确度较低的问题, 进而提供了一种填料用片层材料径厚比的测算方法。 为此, 本发 明提供了如下的技术方案:
( 1 ) 将待测试样品粉末水洗;
(2) 调整溶液的酸碱性;
(3) 将溶液添加分散剂分散;
(4) 对溶液进行超声波分散;
(5) 采用电阻法仪器进行测试;
( 6) 取适量溶液滴入电阻法仪器并将抽真空状态的微孔管放置在所述电导液中, 在所 述微孔管内外的电导液中各放置一个电极, 并在所述电极的两端加预定的电压;
(7) 根据所述电极之间的电压脉冲信号计算获得所述试样的片层径厚比;
本发明中, 优选的, 所述步骤 (1 ) 中, 所述的粉体样品与水的质量比为 1:5〜20; 本发明中, 优选的, 所述步骤 (1 ) 中, 所述水洗液必须为二次去离子水;
本发明中, 优选的, 所述步骤(2) 中, 滴加氢氧化钠溶液使得测试样品溶液保持碱性, 其 pH值保持在 8-10.5之间, 优选 9.5-10;
本发明中, 优选的, 所述步骤 (3) 中, 所述分散剂选自六偏磷酸钠、 焦磷酸钠、 聚丙 烯酸钠、 聚丙烯酰胺; 氨基酸盐中一种或几种, 分散剂与水的比例为 0.1 -1 %之间, 优选
0.2-0.5%;
本发明中, 优选的, 所述步骤 (4) 中, 超声波分散, 所需时间为 15— 30分钟, 每隔 5 分钟静置 2分钟, 控制温度在 25-50 °C;
本发明中, 优选的, 所述步骤 (5) 中, 所用仪器必须为以电阻法测试粒度的仪器, 包 括贝克曼库尔特仪、 亚欧 /DP-RC-3000型电阻法粒度仪、 OMEC -RC-2100型电阻颗粒计 数仪、 庆地质仪器厂的电阻率法仪器等中的一种或几种, 优选贝克曼库尔特仪;
本发明中,优选的,所述步骤(6)中,将测试样品溶液混入电解液中,混合比例为 1 :5-10; 本发明中, 优选的, 所述步骤(6) 中, 针对所测样品的粒径范围, 选择适配的微孔管: 小孔管的型号用其孔径来标识, 如 20μ m、 30μ m、 50μ m等。 小孔管的有效分析粒径是 其孔径的 2 %-60 %, 如 100μ m的小孔管,其分析粒径为 2.0μ ηι~60.0μ m,在这个范围内, 所测得的结果能够确保线性。 通常可根据了解的被测对象微粒的大致范围来选择合适的小 孔管;
本发明中,优选的,所述步骤(6)中,调整混合液的浓度,仪器测量浓度显示为 5 %-10 % 进行实验;
本发明中, 优选的, 所述步骤 (7) 中, 根据所述电极之间的电压脉冲信号计算获得所 述试样的片层径厚比包括:
根据电阻法仪器测得所述试样的体积 V;
将所述试样的体积等效为圆柱形, 并根据所述电压脉冲信号的脉冲宽度 W获得所述试 样的长度 d; 根据所述式样的体积 V和所述试样的长度 D计算获得所述试样的片层径厚比为^。
4V 本发明提供的方法通过采用微孔管内外放置电极的方法测量片层材料径厚比, 采用的 工作方式较简便, 使用的仪器结构也较简单, 并且具有操作简捷、 成本低、 重复性好、 精 确度高、 普遍适用性强以及较易推广的特点。 附图说明
图 1是现有的电阻法相关仪器的原理示意图;
图 2是本发明的具体实施方式提供的电压变化转变成电压脉冲的示意图;
图 3是本发明的具体实施方式提供的填料用片层材料径厚比的测算方法的流程示意 图;
图 4是本发明的具体实施方式提供的将试样的体积等效为圆柱形的示意图。
具体实肺式
下面将结合本发明实施例, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显 然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的 实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例, 都 属于本发明保护的范围。
本发明的具体实施方式提供了一种填料用片层材料径厚比的测算方法, 其基本原理 是: 根据电阻法原理和数字脉冲技术来测量溶液中的微粒。 电阻法是在悬浮液通过一个圆 柱形的开口 (即小孔管上的小孔) , 小孔两边有分离的电极, 之间有电流通过 (如图 1所 示) 。 小孔形成了自身固定的电阻, 每一个微粒通过小孔时, 排开了相当于自身体积的悬 浮液, 即刻增加了小孔的电阻。 电阻的变化产生了微小但成比例的电压变化, 通过放大器, 电压变化转变成能够精确测量的电压脉冲 (如图 2所示) 。 电阻法认为脉冲的幅度是与产 生脉冲的微粒的体积直接成比例的, 通过衡量这些脉冲的高度, 就能获得和显示粒度分布 图。 如果利用定量仪器通过小孔抽取已知量的悬浮液, 那么脉冲数的统计就反应了悬浮液 中每单位体积微粒的浓度。 下面结合具体的实施例对本发明的作具体说明。
本实施例提供的填料用片层材料径厚比的测算方法如图 3所示, 包括:
步骤 1, 将待测试样品粉末用二次去离子水水洗, 过滤, 调整溶液的酸碱性, 添加分 散剂分散后进行超声波分散。
步骤 2, 将试样均匀混合在电导液中, 并将抽真空状态的微孔管 (针对所测样品的粒 径范围, 选择适配的微孔管) 放置在所述电导液中, 在所述微孔管内外的电导液中各放置 一个电极, 并在所述电极的两端加预定的电压。
具体的, 首先将试样均匀分散在电导液中, 使其通过微孔管管壁上特有的一个微孔。 在微孔管内外的电导液中浸放一对电极, 接通电路, 使微孔周围形成一个电感应区域。 当 每个粒子通过微孔时, 电路便产生与之相应的电脉冲信号。 该信号的大小取决于通过粒子 体积的大小, 而与其它因素无关。
步骤 3, 根据所述电极之间的电压脉冲信号计算获得所述试样的片层径厚比。
具体的, 将不规则形状的试样粒子理想化为相同体积的球状粒子, 由此近似地计算出 试样粒子的粒径。 对通过微孔的试样粒子逐个计数, 同时根据体积信号的大小, 区分出试 样粒子在各级中的分布, 显示和计算出试样的个数、 个数粒度分布、 体积粒度分布及其他 参数。 具体参数的计算方法包括:
根据电阻法仪器测得所述试样的体积 。 利用球形标准样品, 由于脉冲宽度所对应的 球形样的粒度应为球的直径, 也就是每一个脉冲宽度 W对应一个球体的粒径 D, 选取剥片 后的样品利用电阻法相关仪器测试, 由所给软件可以得到所测样品的体积 V和脉冲宽度\^。
如图 4所示, 将所述试样的体积等效为圆饼形, 并根据所述电压脉冲信号的脉冲宽度 W获得所述试样的长度 d。 将所测的片层样品理想化等效为体积为 V的圆柱体, 从所获得的 脉冲宽度 W可知所测的片层样品的长度为对应的 d。 根据所述式样的体积 V和所述试样的长度 d计算获得所述试样的片层径厚比为^ ^。圆
4V 柱体的体积计算公式为: V = X h , 通过公式变换可得 =— , 则试样的片层径
4 h 4V
Figure imgf000006_0001
实施例 1 : 以张家口高岭土样品为例, 通过仪器可测得样品的平均脉冲宽度 d为 33.1 667, 脉冲体 积 V为 1314.1 6, 经推算测试, 平均径厚比为 21 .8。 通过观察大量该样品的扫描电镜照片, 张家口样品颗粒粒径大部分分布在 1 -5um之间, 而平均片层厚度在 0.05-0.4um之间, 据抽 样统计,高岭石片层的平均直径取 2.2um (同马尔文粒度仪测量结果),取平均厚度 0.1 urn, 则径厚比为 22, 与仪器测算结果吻合, 故测试结果符合该样品的径厚比。
实施例 2 :
以枣庄高岭土样品为例, 通过仪器可测得样品的平均脉冲宽度为 13.2254, 脉冲体积 V 为 518.83, 经推算测试, 平均径厚比为 3.5。通过观察大量该样品的扫描电镜照片, 枣庄样 品颗粒粒径大部分分布在 0. 5-1 .5um之间, 而平均片层厚度在 0.05-0.4um之间, 据抽样统 计, 高岭石片层的平均直径取 0.75um (同马尔文粒度仪测量结果) , 取平均厚度 0.2 um, 则径厚比为 3.7, 与仪器测算结果吻合, 故测试结果符合该样品的径厚比。
实施例 3 :
以云母样品为例, 通过仪器可测得样品的平均脉冲宽度为 83.3378, 脉冲体积 V为 6224.05, 经推算测试, 平均径厚比为 75。 通过观察大量该样品的扫描电镜照片, 枣庄样 品颗粒粒径大部分分布在 10-30um之间, 而平均片层厚度在 0.1 -1 um之间, 据抽样统计, 高岭石片层的平均直径取 22um (同马尔文粒度仪测量结果) , 取平均厚度 0.3 urn, 则径 厚比为 73.3, 与仪器测算结果吻合, 故测试结果符合该样品的径厚比。
实施例 4 :
以滑石样品为例, 通过仪器可测得样品的平均脉冲宽度为 43.2256, 脉冲体积 V为 1509.53, 经推算测试, 平均径厚比为 42。 通过观察大量该样品的扫描电镜照片, 枣庄样 品颗粒粒径大部分分布在 20-30um之间, 而平均片层厚度在 0.5-2um之间, 据抽样统计, 高岭石片层的平均直径取 25um (同马尔文粒度仪测量结果) , 取平均厚度 0.6 urn, 则径 厚比为 41 .67, 与仪器测算结果吻合, 故测试结果符合该样品的径厚比。
采用本具体实施方式提供的技术方案, 通过采用微孔管内外放置电极的方法测量片层 材料径厚比, 采用的工作方式较简单, 使用的仪器结构也较简便, 并且具有操作简捷、 成 本低、 重复性好、 精确度高、 普遍适用性强以及较易推广的特点。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任 何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护 范围为准。

Claims

权利 要求 书
1 . 一种填料用片层材料径厚比的测算方法, 其特征在于, 包括以下步骤:
( 1 ) 将待测样品粉末水洗;
(2) 调整溶液的酸碱性;
(3) 将溶液添加分散剂分散;
(4) 对溶液进行超声波分散;
(5) 采用电阻法仪器进行测试;
( 6) 取适量溶液滴入电阻法仪器并将抽真空状态的微孔管放置在所述电导液中,在所述微 孔管内外的电导液中各放置一个电极, 并在所述电极的两端加预定的电压;
(7) 根据所述电极之间的电压脉冲信号计算获得所述试样的片层径厚比。
2. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(1 ) 中, 所述的粉体样品与水的 质量比为 1:5-20; 所述水洗液为二次去离子水。
3. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(2) 中, 滴加氢氧化钠溶液使得 测试样品溶液保持碱性, 其 pH值保持在 8-1 1之间。
4. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(3) 中, 所述分散剂选自六偏磷 酸钠、焦磷酸钠、聚丙烯酸钠、聚丙烯酰胺等中的一种或几种,分散剂与水的比例为 0.1 -2% 之间。
5. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(4) 中, 超声波分散, 所需时间 为 15— 30分钟, 每隔 5分钟静置 2-5分钟, 控制温度在 25-5CTC。
6. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(5) 中, 所用仪器包括贝克曼库 尔特仪、 亚欧 /DP-RC-3000型电阻法粒度仪、 OMEC -RC-2100型电阻颗粒计数仪、 重庆 地质仪器厂的电阻率法仪器中的一种或几种。
7. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(6) 中, 将测试样品溶液混入电 解液中, 混合比例为 1 :5-10。
8. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(6) 中, 针对所测样品的粒径范 围, 选择适配的微孔管, 所述微孔管孔径为 20μ m、 30μ m或 50μ m。
9. 根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(6) 中, 调整混合液的浓度, 仪 器测量浓度显示为 5 % -10 %进行实验。
10.根据权利要求 1所述的测算方法, 其特征在于, 所述步骤(7) 中, 根据所述电极之间的电 压脉冲信号计算获得所述试样的片层径厚比包括: 权利 要求 书
根据电阻法仪器测得所述试样的体积 V;
将所述试样的体积等效为圆饼形, 并根据所述电压脉冲信号的脉冲宽度 w获得所述试样 的长度 d; 根据所述试样的体积 V和所述试样的长度 d计算获得所述试样的片层径厚比为 。
PCT/CN2014/070587 2013-03-27 2014-01-14 一种填料用片层材料径厚比的测算方法 WO2014154035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310102745.4 2013-03-27
CN201310102745.4A CN103196802B (zh) 2013-03-27 2013-03-27 一种填料用片层材料径厚比的测算方法

Publications (1)

Publication Number Publication Date
WO2014154035A1 true WO2014154035A1 (zh) 2014-10-02

Family

ID=48719494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070587 WO2014154035A1 (zh) 2013-03-27 2014-01-14 一种填料用片层材料径厚比的测算方法

Country Status (2)

Country Link
CN (1) CN103196802B (zh)
WO (1) WO2014154035A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235649A (zh) * 2021-12-20 2022-03-25 珠海真理光学仪器有限公司 基于激光粒度仪的颗粒径厚比测量方法、装置及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196802B (zh) * 2013-03-27 2015-08-26 中国矿业大学(北京) 一种填料用片层材料径厚比的测算方法
CN103760074B (zh) * 2014-01-13 2016-08-31 江苏泛华化学科技有限公司 粒子形貌不规则的粉体材料的粒径测定方法
CN103926119B (zh) * 2014-02-19 2016-04-06 中国矿业大学(北京) 一种高径厚比高岭石的制备及其径厚比的测算方法
CN104359803A (zh) * 2014-11-14 2015-02-18 河南理工大学 一种基于扫描电镜的片状粉体径厚比测试方法
CN104777079A (zh) * 2015-01-19 2015-07-15 中国矿业大学(北京) 一种微细片层矿物径厚比的测算方法
CN113311126B (zh) * 2021-07-30 2021-11-02 湖南慧泽生物医药科技有限公司 模拟药物体内溶出的溶出仪系统及检测药物溶出的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043565A (zh) * 1988-12-15 1990-07-04 中国人民解放军空军天津医院 注射液微粒分析仪
BE1004262A6 (nl) * 1990-02-09 1992-10-20 Univ Gent Elektronisch meettoestel voor het bepalen van aantal en grootte-verdeling van deeltjes in vloeistoffen.
CN103196802A (zh) * 2013-03-27 2013-07-10 中国矿业大学(北京) 一种填料用片层材料径厚比的测算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719265B2 (en) * 2004-11-17 2010-05-18 Honda Motor Co., Ltd. Methods for determining particle size of metal nanocatalyst for growing carbon nanotubes
US9714893B2 (en) * 2009-11-13 2017-07-25 Stable Solutions Llc Particle size distribution profiles and use thereof to adjust a dispersion characteristic
CN101762443B (zh) * 2009-12-17 2012-02-08 上海市计量测试技术研究院 一种电阻法粒度分析仪固体颗粒粒径校准系数Kd的测量方法
CN101762442B (zh) * 2009-12-23 2011-11-16 上海市计量测试技术研究院 一种用于电阻法粒度分析中固体颗粒计数有效性的测量方法
CN102323194B (zh) * 2011-08-24 2013-04-24 山东蓝星东大化工有限责任公司 一种聚合物多元醇粒度的检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043565A (zh) * 1988-12-15 1990-07-04 中国人民解放军空军天津医院 注射液微粒分析仪
BE1004262A6 (nl) * 1990-02-09 1992-10-20 Univ Gent Elektronisch meettoestel voor het bepalen van aantal en grootte-verdeling van deeltjes in vloeistoffen.
CN103196802A (zh) * 2013-03-27 2013-07-10 中国矿业大学(北京) 一种填料用片层材料径厚比的测算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAI, CUIPING: "The Research of Determination of diameter-thickness Ratio in Mica powder", CHINESE MASTER'S THESES FULL-TEXT DATABASE (ELECTRONIC JOURNAL) ENGINEERING SCIENCE AND TECHNOLOGY I, B015-36, 29 February 2012 (2012-02-29) *
CHEN, DEGUANG: "The Development Situaton and Prospectives of Techniques Used in Grain Testing the Microgrits of Common Abradant", DIAMOND & ABRASIVES ENGINEERING, 31 January 1999 (1999-01-31), pages 37 - 40 *
TAN, LIXIN: "Research of the Technology on Different Characterization of Particle Size", MATERIALS RESEARCH AND APPLICATION, vol. 5, no. 1, 31 March 2011 (2011-03-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235649A (zh) * 2021-12-20 2022-03-25 珠海真理光学仪器有限公司 基于激光粒度仪的颗粒径厚比测量方法、装置及存储介质

Also Published As

Publication number Publication date
CN103196802A (zh) 2013-07-10
CN103196802B (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2014154035A1 (zh) 一种填料用片层材料径厚比的测算方法
Yang et al. Gold nanoparticals doping graphene sheets nanocomposites sensitized screen-printed carbon electrode as a disposable platform for voltammetric determination of guaiacol in bamboo juice
CN103344548B (zh) 一种拉伸应力作用下埋地钢质管道杂散电流腐蚀试验系统
CN103163069B (zh) 一种固体材料表面粘附力测量方法及系统
JP6995053B2 (ja) インピーダンス分光法を用いたバイオマスセンサを校正するための方法及び当該方法を実施するための懸濁液の使用
CN109142189A (zh) 一种水泥基材料宏细观孔结构识别与评价方法
Szypłowska et al. Soil complex dielectric permittivity spectra determination using electrical signal reflections in probes of various lengths
Sosa Gallardo et al. Electrochemical cell design and impedance spectroscopy of cement hydration
WO2019052419A1 (zh) 用于检测目标离子含量的装置、系统、制备方法和目标物含量测定方法以及试剂盒
JP2010101705A (ja) 粒子物性測定装置
CN102338730B (zh) 激光粒度分布测试用纯水的筛选方法
CN105403488A (zh) 一种片状氧化铝颗粒径厚比的检测方法
CN105021499B (zh) 利用核磁共振评价多孔介质内流体扩散的可视化方法
CN103852642A (zh) 一种检测微量固体导电性的方法
TW562922B (en) Method and apparatus for analyzing a test material of uneven density, and system
CN104777079A (zh) 一种微细片层矿物径厚比的测算方法
Rao et al. pH sensing using in house fabricated polysilicon nanoelectrode based transducer
CN109738473B (zh) 一种测量多孔材料气孔曲折因子的方法
Le Bihan et al. The effect of the salinity level on conductivity sensor calibration
He et al. Influence of finite size probes on the measurement of electrical resistivity using the four-probe technique
RU2618720C1 (ru) Способ определения сплошности покрытия при его деформации
CN113203787B (zh) 一种应用于大浓度范围铜离子检测的电化学传感器
DE102009007060B4 (de) Statistisches Verfahren zur resistiven Bestimmung der Partikeldichte und Partikelgröße in Flüssigkeiten und Vorrichtung zur Durchführung des Verfahrens
CN115950931B (zh) 一种水环境中钇(ⅲ)离子检测用修饰电极及检测方法
CN207020117U (zh) 一种新型电导率水质分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774265

Country of ref document: EP

Kind code of ref document: A1