WO2014148623A1 - ダスト洗浄装置及びダスト洗浄方法 - Google Patents

ダスト洗浄装置及びダスト洗浄方法 Download PDF

Info

Publication number
WO2014148623A1
WO2014148623A1 PCT/JP2014/057866 JP2014057866W WO2014148623A1 WO 2014148623 A1 WO2014148623 A1 WO 2014148623A1 JP 2014057866 W JP2014057866 W JP 2014057866W WO 2014148623 A1 WO2014148623 A1 WO 2014148623A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
dust
slurry
cleaning
concentration
Prior art date
Application number
PCT/JP2014/057866
Other languages
English (en)
French (fr)
Inventor
小野 信行
隆二 中尾
久保田 寛
信義 吉水
伊豆 忠浩
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to CN201480016771.8A priority Critical patent/CN105188968B/zh
Priority to KR1020157021615A priority patent/KR101865311B1/ko
Priority to JP2015506863A priority patent/JP6373257B2/ja
Publication of WO2014148623A1 publication Critical patent/WO2014148623A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step

Definitions

  • the present invention relates to a dust cleaning apparatus and a cleaning method used for cleaning dusts necessary for recycling discharged dust or the like as a raw material for zinc refining in a metal smelting process.
  • Dust, scale, sludge, etc. generated when producing ordinary steel and stainless steel are reduced and reused by using metal reduction furnaces such as rotary hearth furnaces and electric resistance furnaces.
  • the dust generated from the metal reduction furnace contains zinc, lead and cadmium as heavy metal components, and further fluorine is concentrated to 2% or more, but halogens such as fluorine and chlorine in the dust are Since it becomes hydrogen fluoride and hydrogen chloride in the furnace and damages the refractories that make up the furnace body, in order to make it possible to recycle dust as a raw material for zinc smelting, these halogens, especially fluorine, are removed. There was a need to do.
  • the present invention relates to a cleaning apparatus and a cleaning method used for a process of cleaning and removing fluorine and the like from dust of a zinc refining raw material.
  • trash discharged from business establishments and general households (referred to as “city trash” or “general waste”) is collected and incinerated at city trash incineration plants and industrial waste incineration plants. Yes.
  • Incineration ash and fly ash (also referred to as primary dust) generated from the incinerator and the like at that time are deposited in the final disposal site after performing chemical treatment or intermediate treatment such as melting furnace and cement kiln treatment.
  • primary dust (for example, converter dust T: about 60% Fe content) generated during iron refining is a rotary hearth furnace (rotary hearth type reducing furnace, for example, Patent Document 1) or a reductive melting rotary kiln. Reduced iron is produced by reduction in a reduction furnace such as a furnace (for example, Patent Document 2).
  • This secondary dust contains a large amount of concentrated heavy metals such as zinc, lead, and cadmium along with chlorine, fluorine, sodium, and potassium. And a processing method was sought.
  • Patent Document 3 discloses that a heavy metal-containing starch is obtained by solid-liquid separation after adjusting the pH to 12 or more using an alkaline agent.
  • the chlorine concentration in the recovered sediment after the alkali leaching treatment can be reduced from 40% to 3% or less when the liquid phase portion in the recovered sediment is washed with water and the liquid phase portion containing chlorine is washed away.
  • the effect of reducing fluorine is not disclosed.
  • Patent Document 4 the crude zinc oxide powder is put into an alkaline solution, stirred while maintaining the pH at 10 or more, and further washed with alkali, washed with water, and dried, so that the halogen element in the crude zinc oxide powder is reduced.
  • fluorine can be reduced from 1.0% to 0.3% or less, treatment of dust containing 2% or more of fluorine is not considered.
  • Patent Document 3 and Patent Document 4 do not describe a processing apparatus and a processing method using secondary dust having such a large difference in leaching rate and large difference in concentration.
  • the present invention provides a dust cleaning apparatus for stably and efficiently reducing fluorine in dust containing zinc, lead and cadmium as metal components and further containing 2% or more of fluorine.
  • An object is to provide a dust cleaning method.
  • a dust cleaning apparatus includes zinc, lead, and cadmium as heavy metal components, and further, dust containing 2% or more of fluorine and a cleaning liquid are mixed to form a slurry, and the dust is converted into fluorine.
  • a fluorine ion concentration meter that measures the fluorine ion concentration of the slurry and a fluorine ion concentration control device that controls the fluorine ion concentration of the slurry measured by the fluorine ion concentration meter are mounted.
  • the pH control device controls the pH of the slurry by adding an alkaline agent such as an aqueous NaOH solution to the slurry so that the pH value of the slurry measured by the pH meter is within a predetermined range.
  • the fluorine concentration control device controls the amount of the fluorine ion concentration of the slurry by controlling the amount of the cleaning liquid added to the slurry so that the fluorine ion concentration of the slurry measured by the fluorine ion concentration meter is within a predetermined range. Take control.
  • the fluorine ion concentration control device may control the fluorine ion concentration of the slurry in the range of 100 to 14000 mg / l.
  • the pH control device may control the pH value of the slurry in the range of 10 to 13.
  • a dust cleaning method includes zinc, lead, and cadmium as heavy metal components, and further, dust containing 2% or more of fluorine and a cleaning liquid are mixed to form a slurry, and the dust is converted into fluorine.
  • a dust cleaning method in which the slurry is leached into the cleaning liquid and controlled so that the pH value of the slurry becomes 10 to 13, and stirring is performed until the fluorine concentration of the slurry is saturated. It has a washing step for collecting dust, and the washing step is carried out once or repeated twice or more until the fluorine concentration of the slurry before the collection becomes 2000 mg / l or less.
  • the dust cleaning method according to one aspect of the present invention is the dust cleaning method according to (4), wherein the cleaning step is performed once until the fluorine concentration of the slurry before recovery is 500 mg / l or less. It may be performed repeatedly more than once. In the cleaning process, cleaning liquids of the same component may be used. Alternatively, in the cleaning process performed until the fluorine concentration of the slurry is saturated and the cleaning process of cleaning the dust until the fluorine concentration of the slurry reaches 2000 mg / l or less, using cleaning liquids adjusted to different components or pH values, respectively. You can go. Moreover, the washing
  • concentration of a slurry 2000 mg / l or less may be repeated not only once but repeatedly.
  • the pH value condition in the cleaning process may be set to a different range so that the pH value is in the range of 10 to 13 for each different cleaning process.
  • the fluorine concentration of the dust after cleaning can be reduced to 1.0% or less by controlling the fluorine concentration of the slurry to be finally 1000 mg / l or less.
  • the fluorine concentration of the dust after cleaning can be reduced to 0.5% or less by controlling the fluorine concentration of the slurry to be finally 500 mg / l or less.
  • the present invention it is possible to stably wash and remove fluorine from dust discharged from the reduced iron production process and dust having a high fluorine content such as municipal waste secondary dust with low environmental impact. It is possible to provide a cleaning apparatus and a cleaning method that can have a low fluorine content and can effectively use the dust as a raw material for zinc smelting.
  • Fig. 1 shows the relationship between pH and various metal ion concentrations in an aqueous solution. It is illustrated that zinc and lead have the lowest solubility near pH 9.2, and cadmium has the lowest solubility near pH 11.2.
  • the metal component concentration and fluorine concentration of the slurry can be controlled.
  • the pH may be increased, while zinc, lead and cadmium to be recovered also leach out.
  • the solubility of zinc is 3 mg / l and the solubility of lead is 700 mg / l. If the amount of cleaning liquid is large, zinc and lead are leached from the dust and the loss increases. Therefore, it is necessary to reduce the amount of the cleaning liquid as much as possible.
  • the reaction proceeds while consuming NaOH which is an alkaline agent. Therefore, the pH of the slurry is lowered.
  • a control device for introducing an alkaline agent such as NaOH is required.
  • the end point of the leaching reaction is a point in time when pH change is eliminated and pH control becomes unnecessary.
  • Dust 50g, 100g, and 150g with a fluorine concentration of 6.6% are dispensed into separate containers, and 400 ml of water is placed in each container as a cleaning solution, stirred to form a slurry, and then 20% water is added to the slurry. A sodium oxide aqueous solution was added to adjust the pH of the slurry to 11.5 while monitoring with a pH meter.
  • FIG. 3 shows the result of measuring and recording the fluorine ion concentration using a fluorine ion electrode. From the figure, the greater the amount of dust, the higher the fluorine concentration, but there is no significant difference between 100 g and 150 g. It is saturated around 12000 mg / l.
  • an efficient fluorine leaching process can be performed in a short time. Thereafter, the slurry is subjected to solid-liquid separation, and the dust leached with fluorine is collected.
  • the solid-liquid separation method is not particularly limited. For example, after a coagulant is added to the slurry and the dust settles, the supernatant liquid can be discarded and the dust can be recovered. A series of processes until the dust from which the fluorine is leached is collected is called “cleaning process” in the present invention.
  • the saturation concentration of fluorine in the slurry was in the range of 9000 to 14000 mg / l, depending on the pH of the slurry and the dust composition.
  • the time to reach the saturation concentration varies depending on the dust composition and the stirring conditions of the apparatus. For example, when the calcium concentration in the dust is high, the time becomes longer. This is considered to be caused by the generation of CaF 2 having a strong bond in the dust.
  • the dust after the washing process recovered from the leached slurry by solid-liquid separation contains a large amount of moisture, and the moisture contains a large amount of fluorine ions together with sodium ions caused by alkali. Will be included.
  • these elements can be washed away.
  • a cleaning solution for example, tap water
  • the pH is lowered while dust is being washed, and metals such as zinc, lead, and cadmium are leached, leading to a decrease in concentration. .
  • the range where leaching of cadmium does not occur is pH 10 to 13.5.
  • the cadmium discharge water standard of 0.1 mg / l or less can be satisfied. That is, leaching of cadmium hardly occurs if the pH of the washing water when washing the dust is adjusted to 10 to 13, preferably 10 to 11.
  • the pH adjuster is preferably an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution that does not cause precipitation of fluorine ions.
  • cadmium ions are mixed in the washing waste liquid. As shown in FIG. 1, cadmium ions do not precipitate in the neutral to acidic region. For example, it is necessary to introduce sulfide ions, precipitate them as cadmium sulfide, and separate them from the washing water, which is very inefficient.
  • dust can be efficiently cleaned by attaching a pH meter and a pH control device to the cleaning device and always maintaining an appropriate pH in the dust cleaning process.
  • FIG. 4 shows the relationship between the fluorine concentration in the dust after cleaning and the fluorine concentration in the slurry.
  • the fluorine concentration in the dust is a value obtained by drying the washed dust and then analyzing it by an absorptiometric method of chemical analysis, and it took one week to obtain an analysis result.
  • the fluorine concentration of the cleaning liquid is an indication value of a fluorine ion concentration meter equipped in the apparatus.
  • the fluorine concentration in the slurry should be 500 mg / l or less. That is, if a fluorine ion concentration meter is attached to the cleaning device and the concentration is monitored, the end point of the dust cleaning process can be grasped.
  • the relationship between the fluorine concentration in the slurry and the fluorine concentration in the dust varies depending on the dilution ratio of the cleaning liquid with respect to the dust amount.
  • the lower limit of the fluorine concentration is not particularly limited, but since a large amount of cleaning liquid is required to reduce the fluorine concentration in dust, it is preferable to set the lower limit to 100 mg / l from an economical viewpoint.
  • the fluorine concentration in the dust can be reduced to a predetermined fluorine concentration or less by repeating the cleaning process twice or more.
  • a predetermined fluorine concentration can be obtained by a single cleaning process.
  • the adjustment of the cleaning liquid is not particularly limited, and a plurality of cleaning liquids adjusted to different pHs may be prepared in advance.
  • a single type of cleaning liquid whose pH value is adjusted to any one of 10 to 13 is prepared in advance, and the pH value of the cleaning liquid is readjusted according to conditions such as the amount of usable cleaning liquid or the temperature of the slurry. Thereafter, the cleaning liquid may be used for the cleaning process.
  • a pH meter and pH control for a cleaning device that contains zinc, lead, and cadmium as heavy metal components and further mixes a dust containing 2% or more of fluorine with an alkaline cleaning solution to leach and clean fluorine from the dust. Equipped with a device, and further equipped with a fluorine ion concentration meter and a fluorine ion concentration control device, it is possible to efficiently control pH for the leaching treatment of fluorine from dust, and to grasp the progress and end point of the leaching treatment. . Furthermore, with regard to the cleaning process following the leaching process, it is possible to efficiently control the pH, judge the progress of the cleaning process, the necessity of additional cleaning process, and achieve the target fluorine concentration in dust. Become.
  • FIG. 5 is a schematic diagram showing an example of the dust cleaning apparatus of the present invention.
  • the example of the present invention is an example of an apparatus that performs all cleaning processes in the same tank.
  • the washing tank is equipped with a stirrer M, a pH meter pH, and a fluorine ion concentration meter F.
  • the pH control is performed by adding the aqueous solution from the NaOH aqueous solution tank to the cleaning tank through the pump p so that the pH value of the dust slurry measured by the pH meter pH is within a predetermined range.
  • the fluorine concentration control is performed by the fluorine concentration control unit S, and the valve V is opened and closed by the control means C so that the fluorine ion concentration of the dust slurry measured by the fluorine ion concentration meter is within a predetermined range.
  • the apparatus includes a water level gauge WL, and can grasp and control the amount of water.
  • Dust containing 2% or more of fluorine whose weight was measured was put into the washing tank from the dust storage tank TD, and 5 times the amount of dust was added and stirred.
  • an aqueous NaOH solution is added to the slurry, and the pH of the slurry is controlled to 11.5.
  • the fluorine concentration of the slurry is monitored by the fluorine ion concentration meter F.
  • the slurry concentration becomes almost constant at 12000 mg / l, that is, when the fluorine concentration of the slurry reaches a saturated state, it is commercially available from the flocculant tank by the pump p. After adding the flocculant, the stirring is stopped and the mixture is left to stand for solid-liquid separation.
  • the fluorine concentration was 0.4%, and the target concentration was achieved. Moreover, when the component balance of the dust before and after cleaning was confirmed, it was confirmed that the yield was 99% zinc, 97% lead, and 100% cadmium.
  • the present invention it is possible to stably wash and remove fluorine from dust discharged from the reduced iron production process and dust having a high fluorine content such as municipal waste secondary dust with low environmental impact.
  • the fluorine content can be reduced, and the dust can be effectively used as a zinc smelting raw material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

 フッ素を2%以上の高濃度に含有するダストから、有用な金属分の浸出を抑制しながら、ダスト中のフッ素を低減できる洗浄装置及び洗浄方法を提供する。 重金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダストと、アルカリ性洗浄液とを混合して、当該ダストからフッ素を浸出させて洗浄する撹拌洗浄装置であって、pH計、およびpH制御装置を装着し、さらにフッ素イオン濃度計、およびフッ素イオン濃度制御装置を装着している撹拌洗浄装置である。フッ素イオン濃度を100~14000mg/lの範囲、pHを10~13の範囲に制御することで、亜鉛、鉛、カドミウムの浸出を極力抑え、フッ素濃度の低減を達成できるようになる。

Description

ダスト洗浄装置及びダスト洗浄方法
 本発明は、金属製錬過程において、排出されるダスト等を亜鉛精錬用原料としてリサイクルするために必要な、ダスト類の洗浄処理に使用するダスト洗浄装置及び洗浄方法に関する。
 普通鋼、ステンレス鋼を製造する際に発生するダスト、スケール、スラッジなどは、回転炉床炉や電気抵抗炉などの金属還元炉を用いて、金属成分を還元再利用している。
 その際に、金属還元炉から発生するダスト中には、重金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素が2%以上に濃縮されるが、ダスト中のフッ素や塩素などのハロゲンは、炉中でフッ化水素や塩化水素となって、炉体を構成する耐火物を損傷するため、ダストを亜鉛製錬用原料としてリサイクルを可能にするためには、これらのハロゲン、特にフッ素を除去する必要があった。
 本発明は、亜鉛精錬用原料のダストからフッ素等を洗浄除去する処理に用いる洗浄装置及び洗浄方法に関する。
 一般に、事業場や一般家庭から排出されるゴミ(「都市ゴミ」又は「一般廃棄物」と称されている。)は、都市ゴミ焼却場や産業廃棄物焼却工場等に集められ焼却処分されている。その際に焼却炉等から発生する焼却灰や飛灰(一次ダストともいう。)は、薬剤処理、又は、溶融炉、セメントキルン処理等の中間処理を施した後に最終処分場に堆積される。
 また、製鉄精錬時に発生する鉄分主体の一次ダスト(例えば、転炉ダストT:Fe分約60%)は、回転炉床炉(回転炉床式還元炉、例えば、特許文献1)や還元溶融ロータリーキルン炉(例えば、特許文献2)等の還元炉で還元されて、還元鉄が製造されている。
 しかしながら、前記の溶融炉やセメントキルン処理等の中間処理や製鉄ダスト用の回転炉床炉等の還元炉では、蒸気圧の高い亜鉛、鉛、カドミウム等の重金属が、炉内で揮発して排ガス中に入り、この排ガスに入った重金属は排ガス処理設備内で凝縮して再び飛灰(以降、二次ダストまたは単にダストという。)となってしまう。
 この二次ダスト中には、塩素、フッ素、ナトリウム、カリウムと共に、亜鉛、鉛、カドミウム等の重金属が濃縮されて多量に含有されており、これらの回収を含めた安定した二次ダストの処理装置および処理方法が求められていた。
 この二次ダスト中の亜鉛を回収する手段として、ダストを亜鉛製錬の原料として、主原料である亜鉛精鉱等と混合し、使用する方法がある。この場合、二次ダスト中のフッ素や塩素がフッ化水素、塩化水素のガスになり、耐火物を劣化させるという問題があり、配合率を抑制せねばならないという課題があった。
 これに対し、従来技術として、アルカリ浸出処理(特許文献3、特許文献4)が開示されている。特許文献3では、アルカリ剤を用いてpH12以上に調整した後、固液分離することにより、重金属含有澱物を得ることが開示されている。該処理では、アルカリ浸出処理後の回収殿物中の塩素濃度は、回収殿物中の液相部分を水洗し、塩素を含んだ液相部を洗い流すと、40%から3%以下に低減できることが示されているが、フッ素の低減効果については開示されていない。
 特許文献4では、粗酸化亜鉛粉末をアルカリ溶液中に投入して、pHを10以上に保持しながら撹拌し、さらにアルカリ洗浄、水洗、乾燥することにより、該粗酸化亜鉛粉末中のハロゲン元素を除去することが示されており、フッ素は1.0%から0.3%以下に低減できることが示されているが、フッ素を2%以上含むダストの処理は考えられていない。
 二次ダスト中のフッ素は、形成している化合物の種類によって、アルカリ溶液への浸出速度は大きく変動する。また、二次ダスト中のフッ素濃度は、二次ダストが発生する炉の操業状態によって大きく変動する。しかしながら、特許文献3および特許文献4では、このような浸出速度の差、濃度の差が大きい二次ダストでの処理装置、処理方法についての記載はない。
 特に、ステンレス鋼および特殊鋼の製造工程では、製鋼工程での蛍石(主成分CaF2)、酸洗工程でのフッ酸の使用により、製鋼ダスト、および酸洗廃液を中和処理した場合のスラッジに多量のフッ素を含む。そのため、これらを回転炉床炉や溶融炉で処理した場合の二次ダストは2%以上のフッ素を含むことになる。
 フッ素を2%以上含むダストは、効率的な洗浄装置、洗浄方法がなければ、長時間の洗浄、および多数回の洗浄を行うことになり、洗浄廃液量が増し、工程数も増えて、処理にかかるコストが非常に高くなるという課題があったが、これまでに、このようなダストの浸出処理を効率的に行う洗浄装置、洗浄方法に関する技術の開示はない。
特開平11-279611号公報 特開2002-286209号公報 特開2000-212654号公報 特開2000-128530号公報
 そこで、本発明は、上記問題に鑑み、金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダスト中のフッ素を安定的、効率的に低減させるためのダスト洗浄装置及びダスト洗浄方法を提供することを目的とする。
 前記の課題を解決するには、以下の点が必要、かつ重要となる。
(I)アルカリ領域でフッ素化合物を溶解し、ダストに含有されるフッ素を洗浄液に浸出させるために必要な条件と装置、併せて有価金属である亜鉛成分を浸出させない条件と検知する装置を明確にする。
(II)洗浄液中のフッ素飽和濃度、および洗浄液へのフッ素浸出の終点の判別方法と必要な装置を明確にする。
(III)アルカリ領域でフッ素をダストから浸出させた場合、廃液の処理上の負荷となるカドミウム成分をダストから浸出させない条件と検知する装置を明確にする。
 本発明は、上記条件及び判別方法を明らかにしたものであり、その要旨とするところは以下の通りである。
 (1)本発明の一態様に係るダスト洗浄装置は、重金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダストと、洗浄液とを混合してスラリーとし、ダストからフッ素を洗浄液中に浸出させて洗浄するダスト洗浄装置であって、スラリーのpH値を測定するpH計、およびpH計で測定したpH値に基づきスラリーのpH値を制御するpH制御装置を備え、さらにスラリーのフッ素イオン濃度を測定するフッ素イオン濃度計、およびフッ素イオン濃度計で測定したスラリーのフッ素イオン濃度を制御するフッ素イオン濃度制御装置を装着していることを特徴としている。
 尚、pH制御装置は、pH計によって測定されたスラリーのpH値が所定の範囲内になるように、NaOH水溶液等のアルカリ剤をスラリーに添加することによって、スラリーのpH制御を行う。また、フッ素濃度制御装置は、フッ素イオン濃度計によって測定されたスラリーのフッ素イオン濃度が所定の範囲内になるように、洗浄液をスラリーに添加する量を制御することにより、スラリーのフッ素イオン濃度の制御を行う。
 (2)(1)に記載のダスト洗浄装置において、フッ素イオン濃度制御装置が、スラリーのフッ素イオン濃度を100~14000mg/lの範囲で制御するものであっても良い。
 (3)(1)又は(2)に記載のダスト洗浄装置において、pH制御装置が、スラリーのpH値を10~13の範囲に制御するものであっても良い。
 (4) 本発明の一態様に係るダスト洗浄方法は、重金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダストと、洗浄液とを混合してスラリーとし、ダストからフッ素を洗浄液中に浸出させて洗浄するダスト洗浄方法であって、スラリーのpH値が10~13になるように制御し、スラリーのフッ素濃度が飽和するまで攪拌し、その後攪拌を停止し、スラリーからダストを回収する洗浄工程を有し、回収する前のスラリーのフッ素濃度が2000mg/l以下になるまで洗浄工程を1回実施または2回以上繰り返して実施することを特徴としている。
 (5) 本発明の一態様に係るダスト洗浄方法は、(4)に記載のダスト洗浄方法において、回収する前のスラリーのフッ素濃度が500mg/l以下になるまで洗浄工程を1回実施または2回以上繰り返して実施するものであっても良い。
 尚、洗浄工程において、同一成分の洗浄液を用いて行われても良い。或いは、スラリーのフッ素濃度が飽和するまで行う洗浄工程と、スラリーのフッ素濃度が2000mg/l以下になるまでダストの洗浄を行う洗浄工程において、それぞれ異なる成分或いはpH値に調整された洗浄液を用いて行っても良い。また、スラリーのフッ素濃度が飽和するまで行う洗浄工程は、1回のみ行っても良く、それぞれ複数回行っても良い。また、スラリーのフッ素濃度を2000mg/l以下にする洗浄工程は1回に限らず、複数回繰り返して行っても良い。
 また、洗浄工程におけるpH値の条件は、異なる洗浄工程毎にpH値が10~13の範囲内になるようにそれぞれ異なる範囲に設定しても良い。
 また、図4に示されるように、スラリーのフッ素濃度が最終的に1000mg/l以下になるように制御することによって、洗浄後のダストのフッ素濃度を1.0%以下にすることができる。或いは、スラリーのフッ素濃度が最終的に500mg/l以下になるように制御することによって、洗浄後のダストのフッ素濃度を0.5%以下にすることができる。
 本発明によれば、還元鉄製造過程から排出されるダストや、都市ゴミ二次ダスト等のフッ素の含有量の高いダストから、環境に対して低負荷で、フッ素を安定して洗浄除去して低フッ素含有量とすることができ、該ダストを亜鉛製錬原料として、有効利用することができる洗浄装置及び洗浄方法を提供することができる。
pHと各種金属イオン濃度の関係を示すグラフである。 ダストスラリーのpHと洗浄後のダスト中のフッ素濃度の関係を示すグラフである。 ダストの洗浄処理時のスラリー中のフッ素濃度の時間変化を示すグラフである。 洗浄後ダストとスラリー中のフッ素濃度の相関関係を示すグラフである。 ダストからフッ素を除去するための洗浄装置の概要図である。
 以下、本発明のダスト洗浄装置及び洗浄方法について詳細に説明する。まず、本発明の洗浄装置及び洗浄方法におけるpH値及びフッ素飽和濃度の要件について説明する。
 図1に水溶液中のpHと各種金属イオン濃度の関係を示す。亜鉛と鉛はpH9.2付近で最も溶解度が小さく、カドミウムはpH11.2付近で最も溶解度が小さいことが図示されている。
 前記(I)の観点から、次の実験を行った。図2にフッ素濃度4.6%のダスト20gに水(洗浄液または浸出液とも言う。)400mlを入れ、撹拌してスラリーにした後に、20%水酸化ナトリウム水溶液で、該スラリーのpHをpH計で監視しながら調整し、30分撹拌を行ったときのスラリーのpHとダスト中フッ素濃度の関係を示す。スラリーのpHが高くなるほど、フッ素濃度は低くなっている。
 これらの関係より、pH計を装備し、スラリーのpH制御を行えば、スラリーの金属成分濃度およびフッ素濃度を制御できることがわかる。ダストからフッ素を浸出させ、除去するには、pHを高くすれば良いが、一方、回収すべき亜鉛、鉛、カドミウムも浸出することになる。例えば、pH12.5では亜鉛の溶解度は3mg/l、鉛の溶解度は700mg/lであり、洗浄液の量が多ければ、ダストから亜鉛、鉛が浸出し、ロスが大きくなる。そのため洗浄液の量をできるだけ、少なくすることが必要になる。
 なお、ダストを、NaOHを加えた高アルカリの洗浄液に入れると、式1および式2に示す脱ハロゲン反応が進行する。
 PbClF+2NaOH ⇒ Pb(OH)2+NaCl+NaF  (式1)
 KZnF3+2NaOH ⇒ Zn(OH)2+KF+2NaF   (式2)
 つまり、アルカリ剤であるNaOHを消費しながら、反応が進む。そのため、スラリーのpHが低下する。前記pHを一定に制御するには、NaOHのようなアルカリ剤を投入する制御装置が必要になる。また、pHの変化がなくなり、pH制御が不要になった時点が浸出反応の終点と考えられる。
 次に、前記(II)の観点から、スラリー中のフッ素濃度の測定に関して述べる。フッ素濃度の測定には、一般的な方法を採用することができ、例えば市販のフッ素イオン電極を用いた方法を用いることが出来る。
 フッ素濃度6.6%のダスト50g、100g、150gをそれぞれ別々の容器に分取して、それぞれの容器内に洗浄液として水400mlを入れ、撹拌してスラリーにした後、該スラリーに20%水酸化ナトリウム水溶液を加えて、該スラリーのpHを11.5に狙い、pH計で監視しながら調整した。図3に、フッ素イオン電極を用いてフッ素イオン濃度を測定、記録した結果を示す。同図より、ダスト量が多いほど、フッ素濃度が高くなるが、100gと150gでは大きな差はない。12000mg/l近傍で飽和している。つまり、例えば、11000mg/lになった時点でこの処理を終了すれば、短時間の効率的なフッ素の浸出処理が行えることになる。
 この後、スラリーを固液分離し、フッ素が浸出したダストを回収する。固液分離方法は特に限定されない。例えばスラリーに凝固剤を投入して、ダストが沈殿した後、上澄み液を廃棄してダストを回収することができる。
 以上のフッ素を浸出させたダストを回収するまでの一連の処理を、本発明において「洗浄処理」とよぶ。
 なお、スラリーのフッ素の飽和濃度は、スラリーのpH、ダストの組成により変化して、9000~14000mg/lの範囲にあることを確認した。また、飽和濃度に達する時間はダストの組成および装置の撹拌条件により変化して、例えば、ダスト中のカルシウム濃度が高い場合は時間が長くなる。これは、ダスト内に強固な結合を持つCaF2が生成していることに起因すると考えられる。
 図3より、浸出処理を行ったスラリーからダストの固液分離を行って回収した洗浄処理後のダストは多くの水分を含み、その水分中にはアルカリ起因であるナトリウムイオンと共に、フッ素イオンを多量に含んでいることになる。この洗浄処理後のダストをさらに洗浄処理することで、これらの元素を洗い流すことが可能である。その際、pH調整を行っていない洗浄液(例えば水道水)を使用すると、ダストを洗浄している間に、pH低下が起こり、亜鉛、鉛、カドミウム等の金属が浸出して、濃度低下を招く。
 図1より、カドミウムの浸出が起こらない範囲はpH10~13.5である。この範囲であれば、カドミウムの排出水基準である0.1mg/l以下を満足できる。つまり、ダストを洗浄する際の洗浄水のpHを10~13、好ましくは10~11に調整すれば、カドミウムの浸出は殆ど起こらない。pH調整剤としては、フッ素イオンの析出を起こさない水酸化ナトリウム水溶液もしくは水酸化カリウム水溶液が好ましい。pH10以下でダストを洗浄した場合には、洗浄廃液中にはカドミウムイオンが混入する。カドミウムイオンは図1より、中性~酸性領域で析出しないため、例えば、硫化物イオンを投入し、硫化カドミウムとして析出させ、洗浄水中より分離することが必要となり、非常に非効率となる。
 以上より、ダストの洗浄処理では洗浄装置に、pH計、およびpH制御装置を装着して、常に適切なpHを保つことで、ダストを効率的に洗浄できる。
 次に、前記(III)の観点から、ダストの洗浄処理の効率的な終点判定方法について検討した。金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダストをpH11.5でフッ素の浸出処理を行い、ダストを分離回収した。次いで、新たにダスト量の重量で10倍量の洗浄液を回収したダストに加え、pH10.5に調整しながら、15分間の撹拌を行った後、さらにこのダストを分離して回収したのち、再度ダスト量の重量で10倍量の洗浄液を回収したダストに加え、pH10.5に調整しながら、15分間の撹拌を行った。図4は、洗浄後のダスト中のフッ素濃度とスラリー中のフッ素濃度の関係を示す。なお、ダスト中のフッ素濃度は洗浄後のダストを乾燥後、化学分析法の吸光光度法により分析した値で、分析結果が出るまで1週間を要した。一方、洗浄液のフッ素濃度は、装置に装備したフッ素イオン濃度計の指示値である。
 図4より多少のばらつきはあるが、両者は一次の相関関係にあり、スラリー中のフッ素濃度からダスト中のフッ素濃度を推定できる。例えば、ダスト中のフッ素濃度を0.5%以下にするには、スラリー中のフッ素濃度を500mg/l以下にすれば良いことがわかる。つまり、洗浄装置にフッ素イオン濃度計を装着し、濃度監視を行っていれば、ダストの洗浄処理の終点を把握できることになる。
 なお、スラリー中のフッ素濃度とダスト中のフッ素濃度の関係は、ダスト量に対する洗浄液の希釈倍率により変化する。ダスト中のフッ素濃度を同程度に低下させるには、希釈倍率が大きい場合は、スラリー中のフッ素濃度を希釈倍率が低い場合よりも下げる必要がある。そのため、前記フッ素濃度の下限は特に限定されないが、ダスト中のフッ素濃度を低減させるために大量の洗浄液が必要になるため、経済的な観点から前記下限を100mg/lに設定することが好ましい。
 以上のように、洗浄処理を2回以上繰り返すことにより、ダスト中のフッ素濃度を所定のフッ素濃度以下にすることができる。もちろん、1回の洗浄処理により所定のフッ素濃度が得ることもできる。また、洗浄液の調整は特に限定されず、異なるpHに調整された洗浄液を予め複数準備しておいても良い。或いはpH値が10~13のうちのいずれかに調整された単一種類の洗浄液を予め準備し、使用可能な洗浄液の量或いはスラリーの温度等の条件に応じて洗浄液のpH値を再調整した後、前記洗浄液を洗浄処理に使用しても良い。
 重金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダストと、アルカリ性洗浄液とを混合して、当該ダストからフッ素を浸出、洗浄する洗浄装置に関して、pH計、およびpH制御装置を装着し、さらにフッ素イオン濃度計、およびフッ素イオン濃度制御装置を装着することにより、ダストからのフッ素の浸出処理に対し、pH制御を効率よく行え、浸出処理の進行状況および終点を把握できる。更に、浸出処理に続く洗浄処理に関し、pH制御を効率よく行え、洗浄処理の進行状況、追加洗浄処理の必要性の有無を判断し、かつ目標のダスト中のフッ素濃度を達成することが可能になる。
 図5に概要図にて本発明のダスト洗浄装置の例を示す。
 本発明例では全ての洗浄処理を同じ槽にて行う装置例である。洗浄槽には、攪拌機M、pH計pH、フッ素イオン濃度計Fが備えられている。pH制御は、前記pH計pHによって測定されたダストスラリーのpH値が所定の範囲内になるように、NaOH水溶液タンクからポンプpを介して同水溶液を前記洗浄槽内に添加することによって行う。また、フッ素濃度制御は、フッ素濃度制御ユニットSによって行われ、前記フッ素イオン濃度計によって測定されたダストスラリーのフッ素イオン濃度が所定の範囲内になるように制御手段CによりバルブVの開閉を行い、水を前記洗浄槽内へ添加する量を制御することによって行う。また、装置は水位計WLを備え、水量の把握、制御が可能である。
 次に具体的な操作方法の例を説明する。重量を測定したフッ素を2%以上含むダスト(ここではフッ素を6.5%含むダストを用いた。)をダスト収納タンクTDから洗浄槽に投入し、ダスト量の5倍の水を加えて撹拌を開始する。攪拌中、スラリーへのNaOH水溶液の添加を行い、スラリーのpHを11.5に制御する。フッ素イオン濃度計Fにより、スラリーのフッ素濃度を監視し、12000mg/lのほぼ一定になった時点、すなわち、スラリーのフッ素濃度が飽和状態に達した時点で、凝集剤タンクからポンプpにより、市販の凝集剤を加えた後、撹拌を止めて静置し、固液分離を行う。
 界面計ILにて固液分離を確認してから、上澄み液を排水ポンプPで排水する。排水完了後、新たにダストの10倍量の水を加えて攪拌してスラリーとし、スラリーのpHを10.5に制御しながら、前記スラリーのフッ素濃度の推移を監視した。15分経過後でフッ素濃度は2500mg/lでほぼ一定になったので、凝集剤を加えた後、撹拌を止めて静置し、固液分離を行う。
 界面計ILにて固液分離を確認してから、上澄み液を排水ポンプPで排水する。排水完了後、新たにダストの5倍量の水を加えて攪拌してスラリーとし、スラリーのpHを10.5に制御しながら、スラリーのフッ素濃度の推移を監視した。10分経過後でフッ素濃度は600mg/lでほぼ一定になったが、まだフッ素の洗浄は不十分と考えられたので、水をさらに、ダスト量の5倍加え(計10倍量)、pHを10.5に制御して、フッ素濃度の推移を監視した。5分経過後でフッ素濃度は400mg/lでほぼ一定となった。
 これでダストのフッ素濃度は目標の0.5%以下を達成したと考えられたので、凝集剤を添加して、固液分離を行い、界面計ILにて監視しながら、上澄み液の排水を行った。排水後、洗浄後ダストの脱水を行い、洗浄を完了した。
 洗浄後ダストの化学分析を行ったところ、フッ素濃度は0.4%であり、目標濃度を達成した。また、洗浄前後のダストの成分バランスを確認したところ、亜鉛99%、鉛97%、カドミウム100%の歩留であることが確認された。
 本発明によれば、還元鉄製造過程から排出されるダストや、都市ゴミ二次ダスト等のフッ素の含有量の高いダストから、環境に対して低負荷で、フッ素を安定して洗浄除去して低フッ素含有量とすることができ、該ダストを亜鉛製錬原料として、有効利用することができる。

Claims (5)

  1.  重金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダストと、洗浄液とを混合してスラリーとし、当該ダストからフッ素を前記洗浄液中に浸出させて洗浄するダスト洗浄装置であって、
     前記スラリーのpH値を測定するpH計、および前記pH計で測定したpH値に基づき前記スラリーのpH値を制御するpH制御装置を備え、さらに前記スラリーのフッ素イオン濃度を測定するフッ素イオン濃度計、および前記フッ素イオン濃度計で測定したフッ素イオン濃度に基づき前記スラリーのフッ素イオン濃度を制御するフッ素イオン濃度制御装置を装着していることを特徴とするダスト洗浄装置。
  2.  前記フッ素イオン濃度制御装置が、前記スラリーのフッ素イオン濃度を100~14000mg/lの範囲で制御することを特徴とする請求項1に記載のダスト洗浄装置。
  3.  前記pH制御装置が、前記スラリーのpH値を10~13の範囲に制御することを特徴とする請求項1又は2に記載のダスト洗浄装置。
  4.  重金属成分として亜鉛、鉛、カドミウムを含み、さらに、フッ素を2%以上含有するダストと、洗浄液とを混合してスラリーとし、当該ダストからフッ素を前記洗浄液中に浸出させて洗浄するダスト洗浄方法であって、
     前記スラリーのpH値を測定し、前記測定したpH値に基づき前記スラリーのpH値を制御する工程を備え、さらに前記スラリーのフッ素イオン濃度を測定し、前記測定したフッ素イオン濃度に基づき前記スラリーのフッ素イオン濃度を制御する工程を備え、
     前記スラリーのpH値が10~13になるように制御し、前記スラリーのフッ素濃度が飽和するまで攪拌し、その後撹拌を停止し、前記スラリーからダストを回収する洗浄工程を有し、回収する前のスラリーのフッ素濃度が2000mg/l以下になるまで前記洗浄工程を1回実施または2回以上繰り返して実施することを特徴とするダスト洗浄方法。
  5.  前記ダスト洗浄方法において、回収する前のスラリーのフッ素濃度が500mg/l以下になるまで前記洗浄工程を1回実施または2回以上繰り返して実施することを特徴とする請求項4に記載のダスト洗浄方法。
PCT/JP2014/057866 2013-03-22 2014-03-20 ダスト洗浄装置及びダスト洗浄方法 WO2014148623A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480016771.8A CN105188968B (zh) 2013-03-22 2014-03-20 粉尘清洗装置以及粉尘清洗方法
KR1020157021615A KR101865311B1 (ko) 2013-03-22 2014-03-20 더스트 세정 장치 및 더스트 세정 방법
JP2015506863A JP6373257B2 (ja) 2013-03-22 2014-03-20 ダスト洗浄方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013060883 2013-03-22
JP2013-060883 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148623A1 true WO2014148623A1 (ja) 2014-09-25

Family

ID=51580293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057866 WO2014148623A1 (ja) 2013-03-22 2014-03-20 ダスト洗浄装置及びダスト洗浄方法

Country Status (4)

Country Link
JP (1) JP6373257B2 (ja)
KR (1) KR101865311B1 (ja)
CN (1) CN105188968B (ja)
WO (1) WO2014148623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415226B2 (ja) 2019-06-21 2024-01-17 住友金属鉱山株式会社 金属カドミウムの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202226A (ja) * 1997-01-21 1998-08-04 Tsukishima Kikai Co Ltd 焼却飛灰処理方法
JPH10511035A (ja) * 1994-12-21 1998-10-27 コンバージョン システムズ,インコーポレイテッド 電気アーク炉塵を含有する炭化鉄危険廃棄組成物の緩衝化
JP2000128530A (ja) * 1998-10-30 2000-05-09 Mitsui Mining & Smelting Co Ltd 粗酸化亜鉛粉末の処理方法
JP2001276773A (ja) * 2000-03-31 2001-10-09 Mitsui Mining & Smelting Co Ltd 残渣の処理方法
JP2001348627A (ja) * 2000-06-07 2001-12-18 Dowa Mining Co Ltd 飛灰からの重金属回収方法
JP2009241010A (ja) * 2008-03-31 2009-10-22 Sumitomo Osaka Cement Co Ltd 水溶性ハロゲン含有粉体の洗浄方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167573A (ja) * 1984-02-10 1985-08-30 Hitachi Ltd 水平出力回路
JP3304872B2 (ja) 1998-03-23 2002-07-22 ミドレックス テクノロジーズ,インコーポレイテッド 回転炉床式加熱炉内における酸化鉄の急速還元方法及び装置
JP2000135480A (ja) * 1998-10-30 2000-05-16 Mitsui Mining & Smelting Co Ltd 残渣の処理方法
JP2000212654A (ja) 1999-01-19 2000-08-02 Dowa Mining Co Ltd 重金属と塩素を含有する物質からの重金属の回収方法
JP3746993B2 (ja) 2001-12-27 2006-02-22 住友重機械工業株式会社 製鉄所発生廃棄物等の処理システム
JP4826089B2 (ja) * 2004-12-28 2011-11-30 王子製紙株式会社 燃焼灰の処理方法
JP4907985B2 (ja) * 2005-12-27 2012-04-04 三井金属鉱業株式会社 フッ素除去方法
JP5005225B2 (ja) * 2006-01-30 2012-08-22 新日鐵住金ステンレス株式会社 弗素含有廃液の処理方法
CN102108445A (zh) * 2009-12-23 2011-06-29 株洲冶炼集团股份有限公司 氧化锌烟灰中氟氯的脱除方法
JP2011156473A (ja) * 2010-01-29 2011-08-18 Nippon Steel Corp ダストの処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511035A (ja) * 1994-12-21 1998-10-27 コンバージョン システムズ,インコーポレイテッド 電気アーク炉塵を含有する炭化鉄危険廃棄組成物の緩衝化
JPH10202226A (ja) * 1997-01-21 1998-08-04 Tsukishima Kikai Co Ltd 焼却飛灰処理方法
JP2000128530A (ja) * 1998-10-30 2000-05-09 Mitsui Mining & Smelting Co Ltd 粗酸化亜鉛粉末の処理方法
JP2001276773A (ja) * 2000-03-31 2001-10-09 Mitsui Mining & Smelting Co Ltd 残渣の処理方法
JP2001348627A (ja) * 2000-06-07 2001-12-18 Dowa Mining Co Ltd 飛灰からの重金属回収方法
JP2009241010A (ja) * 2008-03-31 2009-10-22 Sumitomo Osaka Cement Co Ltd 水溶性ハロゲン含有粉体の洗浄方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415226B2 (ja) 2019-06-21 2024-01-17 住友金属鉱山株式会社 金属カドミウムの製造方法

Also Published As

Publication number Publication date
CN105188968B (zh) 2017-05-10
KR101865311B1 (ko) 2018-06-07
JP6373257B2 (ja) 2018-08-15
CN105188968A (zh) 2015-12-23
JPWO2014148623A1 (ja) 2017-02-16
KR20150105982A (ko) 2015-09-18

Similar Documents

Publication Publication Date Title
Chairaksa-Fujimoto et al. The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide
Ju et al. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy
CN109355514B (zh) 钒渣低钙焙烧-逆流酸浸提钒的方法
CN105884156A (zh) 一种金属表面处理污泥的资源化利用方法
JP2009161803A (ja) 非鉄製錬煙灰処理方法
JP2001348627A (ja) 飛灰からの重金属回収方法
CN105154681B (zh) 从炼钢烟灰中回收氟、锌的工艺
JP6373257B2 (ja) ダスト洗浄方法
KR20160124160A (ko) 철(Fe)을 포함하는 물질의 아연(Zn) 및 납(Pb)의 양을 줄이기 위한 프로세스
JP6724433B2 (ja) 排水の処理方法
JP2013237920A (ja) 銅製錬煙灰の処理方法
KR102011208B1 (ko) 철-함유 슬러지의 처리 방법
CN105219970A (zh) 一种焙尘中回收多金属及氯化钙的方法
Nakamura et al. Basic consideration on EAF dust treatment using hydrometallurgical processes
JP6743858B2 (ja) 亜鉛の分離方法、亜鉛材料の製造方法および鉄材料の製造方法
WO2005012582A1 (en) Improved hydrometallurgical processing of manganese containing materials
JP4717018B2 (ja) 土壌浄化剤、及び、土壌浄化剤の製造方法
JP4271196B2 (ja) 有価金属及びセメント原料に適する品質のスラグの回収方法
JP3896442B2 (ja) 重金属を含有する飛灰の処理方法
CN106145180A (zh) 一种对高氟氯氧化锌烟灰和高氟氯污酸进行综合回收处理的工艺
JP2009240952A (ja) 廃棄物の処理方法
CN108624755A (zh) 一种锌湿法冶炼系统中杂质Mg、Cl开路的方法
JP3944556B2 (ja) 重金属を含有する飛灰の処理方法
JP6743859B2 (ja) 亜鉛の分離方法、亜鉛材料の製造方法および鉄材料の製造方法
RU72975U1 (ru) Технологическая линия для переработки титанового сырья

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016771.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506863

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157021615

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770075

Country of ref document: EP

Kind code of ref document: A1