WO2014148106A1 - 回転検出装置およびパワーステアリング装置 - Google Patents

回転検出装置およびパワーステアリング装置 Download PDF

Info

Publication number
WO2014148106A1
WO2014148106A1 PCT/JP2014/051639 JP2014051639W WO2014148106A1 WO 2014148106 A1 WO2014148106 A1 WO 2014148106A1 JP 2014051639 W JP2014051639 W JP 2014051639W WO 2014148106 A1 WO2014148106 A1 WO 2014148106A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
holding member
detection
holding
rotation axis
Prior art date
Application number
PCT/JP2014/051639
Other languages
English (en)
French (fr)
Inventor
治 吉田
辰義 丸山
白窪 清隆
Original Assignee
日立オートモティブシステムズステアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズステアリング株式会社 filed Critical 日立オートモティブシステムズステアリング株式会社
Priority to DE112014001572.5T priority Critical patent/DE112014001572B4/de
Priority to US14/651,834 priority patent/US9505431B2/en
Priority to KR1020157006982A priority patent/KR101552463B1/ko
Priority to CN201480002451.7A priority patent/CN104641210B/zh
Publication of WO2014148106A1 publication Critical patent/WO2014148106A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/221Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to steering wheels, e.g. for power assisted steering

Definitions

  • the present invention relates to a rotation detection device and a power steering device.
  • a conventional rotation detector includes a permanent magnet and a pair of yokes that rotate relative to each other, a pair of magnetism collecting rings that induce a magnetic flux generated between the pair of yokes by the relative rotation of the permanent magnet and the pair of yokes, And a Hall IC sensor for detecting the magnetic flux between the rings.
  • the pair of yokes and the pair of magnetism collecting rings, which are detection members, are formed of a soft magnetic material such as permalloy, and are provided integrally with a resin holder by insert molding, and are fixed to the input / output shaft or the housing via the holder Has been.
  • An object of the present invention is to provide a rotation detection device and a power steering device that can suppress distortion of a detection member and improve detection accuracy.
  • the first holding member and the second holding member are welded and fixed to each other with the detection member sandwiched between the first holding member and the second holding member.
  • FIG. 1 is an overall configuration diagram of an electric power steering apparatus according to Embodiment 1.
  • FIG. 1 is a longitudinal sectional view of a steering gear box 16 of Embodiment 1.
  • FIG. It is a perspective view of the yoke assembly of Example 1.
  • FIG. It is a top view of the yoke assembly of Example 1.
  • FIG. 3 is an enlarged view of a main part of a yoke holder 23 according to Embodiment 1.
  • FIG. It is a figure which shows the weldable surface of the yoke holder 23 of Example 1.
  • FIG. (a) The perspective view of the welding plate 29 of Example 1, (b) The top view of the welding plate 29 of Example 1.
  • FIG. 5 is an enlarged view of a main part of the AA cross section of FIG. 4. It is a perspective view of the magnetism collection ring assembly of Example 1. FIG. It is a bottom view of the magnetism collection ring assembly of Example 1. FIG. It is a disassembled perspective view of the magnetism collection ring assembly of Example 1.
  • FIG. 2A is a perspective view of a magnetism collecting ring holder 26 according to Embodiment 1
  • FIG. 2B is a plan view of the magnetism collecting ring holder 26 according to Embodiment 1
  • FIGS. It is a figure which shows the weldable surface of the magnetism collection ring holder 26 of Example 1.
  • FIG. FIG. 6 is a diagram illustrating a locus of a welded portion when the welding plate 29 of Example 1 is welded to the x-axis negative direction surface 266a of the arc-shaped wall portion 266. It is a principal part enlarged view of the CC cross section of FIG. (a) Enlarged view of the main part of the yoke assembly before the welding process, (b) Enlarged view of the main part of the yoke assembly after the welding process.
  • FIG. 1 is an overall configuration diagram of an electric power steering apparatus according to a first embodiment.
  • a steering input to the steering wheel 1 by the driver is transmitted to the first pinion 5 through the steering shaft (second member, input shaft) 2, the torsion bar 3, and the pinion shaft (first member, output shaft) 4 as rotational motion.
  • the rack bar 6 having the first rack teeth 6a that are transmitted and mesh with the pinion teeth 5a of the first pinion 5 is converted into a linear motion.
  • the linear motion of the rack bar 6 is transmitted to the steered wheels 8 and 8 through the tie rods 7 and 7.
  • the steering shaft 2, the torsion bar 3, the pinion shaft 4, the first pinion 5, the rack bar 6 and the tie rods 7 and 7 constitute a steering mechanism 9 that transmits the steering operation of the steering wheel 1 to the steered wheels 8.
  • the output of the electric motor 10 is transmitted to the second pinion 12 via the speed reducer 11 composed of the worm shaft 11a and the worm wheel 11b, and the second rack teeth 6b that mesh with the pinion teeth 12a of the second pinion 12. Is converted into a straight movement of the rack bar 6.
  • the second pinion 12 is provided integrally with the worm wheel 11b.
  • the electric motor 10 is, for example, a three-phase brushless motor, and applies a steering assist force to the steering mechanism 9 in accordance with a command signal from the motor control circuit 15.
  • the steering shaft 2 is provided with a torque sensor (rotation detection device) 13 that detects relative rotation between the steering shaft 2 and the pinion shaft 4.
  • the motor control circuit 15 calculates a command signal to the electric motor 10 based on the steering torque generated between the steering shaft 2 and the pinion shaft 4 obtained from the output signal of the torque sensor 13 and the traveling state such as the vehicle speed, A command signal is output to the electric motor 10.
  • FIG. 2 is a longitudinal sectional view of the steering gear box 16 of the first embodiment.
  • the steering gear box 16 includes a gear box housing (housing) 17.
  • the steering shaft 2 and the pinion shaft 4 rotate about the same rotational axis 0 with respect to the gear box housing 17.
  • the x-axis is taken in the direction of the rotation axis O
  • the steering shaft 2 side is the forward direction with respect to the pinion shaft 4.
  • the gear box housing 17 includes a shaft housing portion 17a arranged with the rotation axis direction as a longitudinal direction, a guide housing portion 17b extending from the shaft housing portion 17a toward the vehicle rear side, and orthogonal to the shaft housing portion 17a.
  • a rack accommodating portion (not shown) disposed substantially with the vehicle width direction as the longitudinal direction.
  • the shaft accommodating portion 17a, the guide accommodating portion 17b, and the rack accommodating portion are all cylindrical.
  • a part of the steering shaft 2 and the torsion bar 3, the pinion shaft 4 and the torque sensor 13 are accommodated in the shaft accommodating portion 17a.
  • the torsion bar 3 is inserted through a hollow portion 2a provided at the end of the steering shaft 2 in the negative x-axis direction so as not to be relatively rotatable.
  • the x-axis negative direction end of the torsion bar 3 is spline-fitted with the pinion shaft 4.
  • the steering shaft 2 is rotatably supported with respect to the gear box housing 17 by a bearing 18a.
  • Both ends of the pinion shaft 4 in the x-axis direction are rotatably supported with respect to the gear box housing 17 by bearings 18b and 18c.
  • a rack bar 6 is accommodated in the rack accommodating portion.
  • a rack guide 19a having a substantially cylindrical shape is accommodated in the guide accommodating portion 17b so as to be movable in the axial direction along the guide accommodating portion 17b. Further, a cap 19b is screwed to the open end of the guide housing portion 17b.
  • a seat 19c for preventing wear of the rack guide 19a is attached to the rack bar side of the rack guide 19a.
  • the torque sensor 13 includes a multipolar magnet (magnetic member) 20, a pair of yokes (detection members) 21, 22, a yoke holder (second holding member) 23, and a pair of magnetism collecting rings (detection members) 24, 25.
  • the magnetism collecting ring holder 26 (second holding member) and the Hall IC sensor (magnetic sensor) 27 are provided.
  • the multipolar magnet 20, the pair of yokes 21 and 22, the yoke holder 23, the pair of magnetism collecting rings 24 and 25, and the magnetism collecting ring holder 26 are arranged concentrically with the rotation axis O.
  • the multipolar magnet 20 is a cylindrical permanent magnet in which 16 poles (the same number of poles each of N and S poles) are alternately magnetized at equal intervals in the circumferential direction.
  • the multipolar magnet 20 is fixed to the pinion shaft 4 via a magnet holder 28.
  • the magnet holder 28 is formed in a cylindrical shape having a large diameter portion 28a and a small diameter portion 28b.
  • the large diameter portion 28a is fixed to the outer periphery of the pinion shaft 4 at the end in the x-axis positive direction.
  • the small diameter portion 28b is located on the positive side in the x-axis direction of the large diameter portion 28a, and the inner periphery of the multipolar magnet 20 is fixed.
  • the pair of yokes 21 and 22 are made of permalloy (soft magnetic alloy) and have eight claw portions 211 and 221 and annular portions 212 and 222 as shown in FIG.
  • the claw portions 211 and 221 are alternately arranged with a predetermined gap on the same circumference so as to surround the outer periphery of the multipolar magnet 20 and face the multipolar magnet 20 with a predetermined radial gap.
  • the annular portions 212 and 222 are positioned on the positive side of the claw portions 211 and 221 in the x-axis positive direction and face each other with a predetermined radial gap.
  • the pair of yokes 21 and 22 is such that the tips of the claw portions 211 and 221 indicate the boundary between the north pole and the south pole of the multipolar magnet 20 in a steering neutral state where no torque is applied to the steering shaft 2 and the pinion shaft 4.
  • the yoke holder 23 is formed of a thermoplastic resin in a substantially convex shape, and holds the pair of yokes 21 and 22.
  • the yoke holder 23 is fixed to the steering shaft 2.
  • the pair of magnetism collecting rings 24 and 25 are formed by a permalloy in a C shape, have a predetermined radial air gap with each other, and are positioned at intermediate positions of the radial gaps of the annular portions 212 and 222 of the yokes 21 and 22.
  • the yokes 21 and 22 are arranged in a non-contact state.
  • the magnetism collecting ring holder 26 is formed in a cylindrical shape with a thermoplastic resin, and holds the pair of magnetism collecting rings 24 and 25.
  • the magnetism collecting ring holder 26 is fixed to the gear box housing 17.
  • the Hall IC sensor 27 includes a Hall element 27a and a circuit board 27b, and detects the density of magnetic flux generated in the radial air gap between the pair of magnetism collecting rings 24 and 25.
  • the Hall element 27a is disposed at a position intermediate between the radial air gaps of the pair of magnetic flux collecting rings 24 and 25 in a non-contact state with the magnetic flux collecting rings 24 and 25.
  • the circuit board 27b is connected to the Hall element 27a on the x-axis positive direction side of the magnetism collecting ring holder 26. Electric power from the vehicle battery is supplied to the hall element 27a via the circuit board 27b, and an output of the hall element 27a is output to the motor control circuit 15 via the circuit board 27b.
  • FIG. 3 is a perspective view of the yoke assembly of the first embodiment
  • FIG. 4 is a plan view of the yoke assembly of the first embodiment
  • the yoke assembly includes a pair of yokes 21, 22, a yoke holder 23, and a welding plate (first holding member) 29.
  • the welding plate 29 and the yoke holder 23 constitute a holding member.
  • the first yoke (first detection member, first yoke member) 21 includes eight claw portions (first claw portions) 211, a ring portion (first ring portion) 212, and a connection portion (first connection portion). 213.
  • the claw portion 211 is a plate-like member disposed so as to face the multipolar magnet 20 in the magnetic field of the multipolar magnet 20, and the tip portion is formed in a tapered shape.
  • the connection part 213 is formed in a plate shape so as to extend radially outward from the claw part 211 and connects the claw part 211 and the annular part 212.
  • the second yoke (second detection member, second yoke member) 22 includes eight claw portions (second claw portions) 221, an annular portion (second annular portion) 222, and a connecting portion (second connecting portion). 223.
  • the claw portion 221 is a plate-like member disposed so as to face the multipolar magnet 20 in the magnetic field of the multipolar magnet 20, and the tip portion is formed in a tapered shape.
  • the claw part 221 has the same length in the x-axis direction as the claw part 211.
  • the annular portion 222 is set to have a larger diameter than the annular portion 212 of the first yoke 21.
  • the annular part 222 has the same length in the x-axis direction as the annular part 212.
  • the connection part 223 is formed in a plate shape so as to extend radially inward from the claw part 221, and connects the claw part 221 and the annular part 222.
  • Each claw part 221 is arranged so as to be perpendicular to the radial direction of the rotation axis O, and arranged so that the claw parts 211 and 211 of the first yoke 21 are alternately arranged, and the connection part 223 rotates. Arranged so as to be perpendicular to the axis O.
  • FIG. 6 is an enlarged view of a main part of the yoke holder 23 according to the first embodiment.
  • the yoke holder 23 has a small diameter part 231, a large diameter part 232 and a holder part 233.
  • the inner diameter of the small diameter portion 231 has an outer diameter that substantially matches the outer diameter of the steering shaft 2, and is fixed to the outer periphery of the steering shaft 2.
  • the large diameter portion 232 is set to have a larger diameter than the small diameter portion 231, and the claw portions 211 and 221 of the first yoke 21 and the second yoke 22 are accommodated therein.
  • the holder portion 233 is provided perpendicular to the rotation axis O, and connects the x-axis negative direction end of the small diameter portion 231 and the x-axis positive direction end of the large diameter portion 232.
  • the holder portion 233 is provided with a first yoke mounting portion 233a to which the first yoke 21 is mounted and a second yoke mounting portion 233b to which the second yoke 22 is mounted.
  • the first yoke mounting portion 233a is formed in a substantially external gear shape in plan view corresponding to the shape of the first yoke 21, and includes an annular recess 234 that contacts the annular portion 212, and a recess 235 that accommodates the connection portion 213. And a through-hole 236 through which the claw portion 211 passes.
  • step surfaces (rotation direction restricting portions) 235a for restricting movement in the rotation direction around the rotation axis O of the connecting portion 213 are set.
  • the length of the step surface 235a in the x-axis direction (depth of the recess 235) is set to be shorter than the length of the connection portion 213 in the x-axis direction.
  • concave grooves 235b are formed at both ends of the concave portion 235 in the circumferential direction.
  • the inner peripheral surface (radial position restricting portion) 236a facing the inner peripheral surface of the claw portion 211 is a claw when the first yoke 21 is mounted on the first yoke mounting portion 233a. It is set so as to contact the inner peripheral surface of the portion 211.
  • the inner peripheral surface 236a is provided in the positive x-axis direction with respect to the multipolar magnet 20.
  • the second yoke mounting portion 233b is formed in an internal gear shape in plan view corresponding to the shape of the second yoke 22, and includes an annular recess 237 that contacts the annular portion 222, a recess 238 that accommodates the connection portion 223, And a through hole 239 through which the claw portion 221 passes.
  • the annular recess 237 and the recess 238 are provided at the same position in the x-axis direction as the annular recess 234 and the recess 235.
  • step surfaces (rotation direction restricting portions) 238a that restrict the movement of the connecting portion 223 around the rotation axis O in the rotation direction are set.
  • the length of the step surface 238a in the x-axis direction (depth of the recess 238) is set to be shorter than the length of the connection portion 223 in the x-axis direction.
  • concave grooves 238b are formed at both ends in the circumferential direction of the concave portion 238.
  • the inner peripheral surface (radial position restricting portion) 239a facing the inner peripheral surface of the claw portion 221 has a claw when the second yoke 22 is mounted on the second yoke mounting portion 233b. It is set so as to be in contact with the inner peripheral surface of the portion 221.
  • the inner peripheral surface 239a is provided in the x-axis positive direction with respect to the multipolar magnet 20.
  • the substantially wave-shaped portion (shaded portion in FIG. 5) excluding the first yoke mounting portion 233a and the second yoke mounting portion 233b is weldable to the welding plate 29. It is possible.
  • FIG. 8A is a perspective view of the welding plate 29 according to the first embodiment
  • FIG. 5B is a plan view of the welding plate 29 according to the first embodiment.
  • the welding plate 29 is made of a thermoplastic resin and has an annular shape having an inner peripheral diameter larger than the small diameter portion 231 of the yoke holder 23 and an outer peripheral diameter smaller than the large diameter portion 232.
  • Eight notches 29a are formed at equal intervals in the circumferential direction on the outer peripheral edge of the welding plate 29, and eight notches 29b are formed at equal intervals in the circumferential direction on the inner peripheral edge.
  • the cutouts 29a and the cutouts 29b are alternately arranged at different positions in the circumferential direction.
  • a welding portion 30 is provided on the one surface side of the welding plate 29 and in a range of about 3/4 in the circumferential direction.
  • the welded portion 30 includes a small-diameter portion 301 that passes through the inside of the connecting portion 223, a large-diameter portion 302 that passes through the radially outer side of the connecting portion 213, and a radial-direction connecting portion 303 that connects the small-diameter portion 301 and the large-diameter portion 302. It is formed in a substantially wave shape having The small diameter portion 301 is welded to a weldable surface radially inward of the through hole 239 of the holder portion 233.
  • FIG. 9A is a longitudinal sectional view of the small diameter portion 301, and the small diameter portion 301 is formed in a triangular shape. The same applies to the radial direction connecting portion 303.
  • the large-diameter portion 302 passes over the through-hole 236 of the holder portion 233 on the outer side in the radial direction than the claw portion 211, and includes an engagement protrusion (positioning engagement portion) 302a, a non-engagement portion 302b, and a notch portion 302c.
  • FIG. 9B is a longitudinal sectional view of the engaging protrusion 302a.
  • the engaging protrusion 302a is formed longer in the x-axis direction than the small-diameter portion 301 and the radial connection portion 303, and has a through hole (positioning engagement). Part) 236.
  • the non-engaging portion 302b has the same cross-sectional shape as the small diameter portion 301 shown in FIG.
  • the notches 302c are provided at both ends in the circumferential direction of the engaging protrusions 302a and the non-engaging portions 302b, and have a shape in which the small diameter portion 301 and the radial direction connecting portion 303 are notched to the x-axis positive direction side.
  • FIG. 10 shows the locus of the welded portion when the welding plate 29 of Example 1 is welded to the holder portion 233.
  • FIG. 11 is an enlarged view of a main part of the AA cross section of FIG.
  • the welding plate 29 is welded to the yoke holder 23 by contacting the connecting portion 223 of the second yoke 22 at the radially outer portion (holding portion) of the small diameter portion 301 fixedly welded to the holder portion 233. Hold between plate 29.
  • the first yoke 21 is held between the yoke holder 23 and the welding plate 29 by contacting the connecting portion 213 of the first yoke 21 at the radially outer portion (holding portion) of the large diameter portion 302.
  • the contact surfaces between the connection portions 213 and 223 of the pair of yokes 21 and 22 and the welding plate 29 are located on the positive side in the x-axis direction relative to the weldable surface of the holder portion 233, and the welding plate 29 includes the small diameter portion 301. Since the radial connection portion 303 is sufficiently thin with respect to the thickness in the x-axis direction, the welding plate 29 is welded and fixed to the holder portion 233 in an elastically deformed state.
  • the yoke assembly is obtained by attaching a pair of yokes 21 and 22 to the yoke holder 23, covering the welding plate 29, and ultrasonically welding the yoke holder 23 and the welding plate 29. Since the assembly of the pair of yokes 21 and 22 and the welding plate 29 to the yoke holder 23 can all be performed from one direction, it is advantageous in terms of assembly workability.
  • FIG. 12 is a perspective view of the magnetism collecting ring assembly of the first embodiment
  • FIG. 13 is a bottom view of the magnetism collecting ring assembly of the first embodiment
  • FIG. 14 is an exploded perspective view of the magnetism collecting ring assembly of the first embodiment.
  • the magnetism collecting ring assembly includes a pair of magnetism collecting rings 24 and 25, a magnetism collecting ring holder 26, and a welding plate (first holding member) 29.
  • the welding plate 29 and the magnetism collecting ring holder 26 constitute a holding member.
  • the first magnetism collecting ring (first detection member) 24 is formed so as to surround the rotation axis O, and a notch 241 in which a predetermined portion in the circumferential direction is cut away, and a virtual circle centered on the rotation axis O. And a pair of arcuate portions 242 and 242 that are formed to face each other, and a magnetism collecting portion (first detected portion) 243 that is disposed to face the notch portion 241 and connects the pair of arcuate portions 242 and 242.
  • the virtual circles of the pair of arcuate portions 242 and 242 are set to have a larger diameter than the annular portion 212 of the first yoke 21 and a smaller diameter than the annular portion 222 of the second yoke 22.
  • the magnetic flux collector 243 is formed at a right angle to the rotation axis O.
  • the second magnetism collecting ring (second detection member) 25 is formed so as to surround the rotation axis O, and a notch 251 in which a predetermined portion in the circumferential direction is notched, and a virtual circle centered on the rotation axis O. And a pair of arcuate portions 252 and 252 that are formed to face each other, and a magnetic flux collecting portion (first detected portion and second detection member side engagement) that is disposed to face the notch portion 251 and connects the pair of arcuate portions 252 and 252 Joint portion) 253.
  • the virtual circles of the pair of arcuate portions 252 and 252 are set to have a smaller diameter than the virtual circle of the first magnetic flux collecting ring 24 and a larger diameter than the annular portion 212 of the first yoke 21.
  • the magnetism collecting portion 253 is convex outward in the radial direction and is formed at right angles to the rotation axis O.
  • FIG. 15A is a perspective view of the magnetism collecting ring holder 26 of the first embodiment
  • FIG. 15B is a plan view of the magnetism collecting ring holder 26 of the first embodiment
  • FIG. 15C is a BB cross section of FIG. FIG.
  • the magnetism collecting ring holder 26 includes an annular part 261 having an opening 261c at the center, an outer peripheral part 262 extending from the outer peripheral edge of the annular part 261 to the x-axis negative direction side, and the annular part 261 from the x-axis positive direction. And two cylindrical portions 263 extending to the right.
  • the opening 261 c of the annular portion 261 is set to have a larger diameter than the outer diameter of the yoke holder 23.
  • a first engagement groove (detection member engagement portion) 264 that accommodates the x-axis positive direction end portion of the first magnetism collecting ring 24 is formed on the x-axis negative direction side surface 261a of the annular portion 261, and the second collection.
  • a second engagement groove (detection member engagement portion) 265 that accommodates the x-axis positive direction end portion of the magnetic ring 25 is formed. Between the first engagement groove 264 and the second engagement groove 265, portions corresponding to the magnetic flux collecting portion 243 of the first magnetic flux collecting ring 24 and the magnetic flux collecting portion 253 of the second magnetic flux collecting ring 25 are notched.
  • An arcuate wall portion (second detection member engagement protrusion) 266 having a C-shape in plan view is provided.
  • the arc-shaped portions 242 and 242 of the first magnetism collecting ring 24 are formed on the arc-shaped wall portion 266.
  • the arc-shaped portions 252 and 252 of the second magnetism collecting ring 25 are in contact with the inner peripheral surface of the arc-shaped wall portion 266.
  • the magnetism collecting portion 253 of the second magnetism collecting ring 25 is in contact with the end surfaces 266b and 266b of the cutout portions of the arcuate wall portion 266.
  • the magnetic flux collecting portions 243 and 253 of the pair of magnetic flux collecting rings 24 and 25 face each other at the cutout portion of the arcuate wall portion 266.
  • the x-axis negative direction surface 266a of the arc-shaped wall portion 266 is provided at a right angle to the rotation axis O, and engages with the engagement protrusion portion 302a in the weld portion 30 when the weld plate 29 is welded. Is formed.
  • the length in the x-axis direction from the first engagement groove 264 and the second engagement groove 265 to the x-axis negative direction surface 266a of the arc-shaped wall portion 266 is the x of the first magnetism collecting ring 24 and the second magnetism collecting ring 25.
  • the portion excluding the engagement hole 267 is a weldable surface to which the welding plate 29 can be welded.
  • a cylindrical portion 268 that supports the circuit board 27b of the Hall IC sensor 27 is provided on the x-axis positive direction surface 261b of the annular portion 261.
  • the cylindrical portion 268 is formed with a screw hole 268a for bolting the circuit board 27b.
  • a plurality of concave hollow portions 261d that open to the x-axis positive direction side are formed in the circumferential direction at positions corresponding to the arcuate wall portion 266 in the x-axis positive direction surface 261b.
  • an opening portion 261e through which the Hall IC sensor 27 passes is formed at an axial position corresponding to the radial air gap between the pair of magnetism collecting portions 243 and 253.
  • the sensor part of the Hall IC sensor 27 is disposed at an intermediate position of the radial air gap.
  • the x-axis negative direction side end portion of the outer peripheral portion 262 has an outer diameter that can be fitted into the side wall of the shaft housing portion 17a (see FIG. 2) of the gear box housing 17.
  • the cylindrical portion 263 is formed with a screw hole 263a for bolting the magnetism collecting ring holder 26 to the gear box housing 17.
  • the welding plate 29 is the same as that of the yoke assembly, but unlike the case where the welding plate 29 is welded to the holder portion 233, the non-engaging portion 302b is also a welding portion.
  • FIG. 17 shows the locus of the welded portion when the welding plate 29 of Example 1 is welded to the x-axis negative direction surface 266a of the arc-shaped wall portion 266.
  • FIG. 18 is an enlarged view of a main part of the CC cross section of FIG.
  • the welding plate 29 is brought into contact with the first magnetic flux collecting ring 24 at the radially outer portion (holding portion) of the welded portion 30, so that the first magnetic flux collecting ring 24 is interposed between the magnetic flux collecting ring holder 26 and the welding plate 29. Hold on. Further, the second magnetism collecting ring 25 is held between the magnetism collecting ring holder 26 and the welding plate 29 by contacting the second magnetism collecting ring 25 at the radially inner portion (holding portion) of the welding portion 30. .
  • the contact surface between the pair of magnetism collecting rings 24 and 25 and the welding plate 29 is located on the x-axis positive direction side with respect to the weldable surface of the arc-shaped wall portion 266, and the welding plate 29 includes the small diameter portion 301. Since the radial connection portion 303 is sufficiently thin with respect to the thickness in the x-axis direction, the welding plate 29 is welded and fixed to the arcuate wall portion 266 in an elastically deformed state.
  • the magnetism collecting ring assembly is obtained by attaching the pair of magnetism collecting rings 24 and 25 to the magnetism collecting ring holder 26, covering the welding plate 29, and ultrasonically welding the magnetism collecting ring holder 26 and the welding plate 29.
  • the assembly of the pair of magnetism collecting rings 24 and 25 and the welding plate 29 to the magnetism collecting ring holder 26 can all be performed from one direction, it is advantageous in terms of assembling workability. Further, since the same welding plate 29 as the yoke assembly is used, an increase in the number of parts can be suppressed, which can contribute to cost reduction.
  • the operation of the torque sensor 13 according to the first embodiment will be described.
  • the circumferential center of the claw portions 211, 221 is located on the pole boundary of the multipolar magnet 20, and the permeance of the multipole magnet 20 with respect to the north and south poles as seen from the claw portions 211, 221 is equal. Therefore, the magnetic flux generated from the N pole of the multipolar magnet 20 enters the claw portions 211 and 221 and enters the S pole of the multipolar magnet 20 as it is. Therefore, since the magnetic flux does not flow between the pair of magnetism collecting rings 24 and 25, the Hall IC sensor 27 outputs an intermediate voltage.
  • Example 1 In the rotation detection device, when the detection member is held by the holding member by insert molding, an internal stress is generated in the detection member due to cooling contraction of the holding member, and there is a possibility that the detection accuracy is lowered.
  • the welding plate 29 and the yoke holder 23 are welded and fixed to each other in a state where the pair of yokes 21 and 22 are sandwiched between the welding plate 29 and the yoke holder 23 in the x-axis direction. Therefore, no internal stress is generated in the pair of yokes 21 and 22 due to cooling shrinkage accompanying insert molding.
  • the distortion of the pair of yokes 21 and 22 can be suppressed, and the detection accuracy of the torque sensor 13 can be improved. Further, since the two yokes 21 and 22 can be held by a pair of holding members (welding plate 29 and yoke holder 23), a welding plate is not required for each yoke, and the number of parts can be reduced. Furthermore, by improving the torque detection accuracy, the control accuracy of the steering assist force by the electric power steering device can be improved.
  • the welding plate 29 and the magnetism collecting ring holder 26 are connected to each other with the welding plate 29 and the magnetism collecting ring holder 26 sandwiching the pair of magnetism collecting rings 24 and 25 in the x-axis direction. Fix by welding. Therefore, internal stress due to cooling shrinkage accompanying insert molding does not occur in the pair of magnetism collecting rings 24 and 25. Thereby, the distortion of the pair of magnetism collecting rings 24 and 25 can be suppressed, and the detection accuracy of the torque sensor 13 can be improved.
  • the two magnetism collecting rings 24 and 25 can be held by a pair of holding members (the welding plate 29 and the magnetism collecting ring holder 26), a welding plate is not required for each magnetism collecting ring, and the number of parts can be reduced. Furthermore, by improving the torque detection accuracy, the control accuracy of the steering assist force by the electric power steering device can be improved.
  • connection portions 213 and 223 that connect the claw portions 211 and 221 and the annular portions 212 and 222 are disposed at right angles to the rotation axis O.
  • both the pair of yokes 21 and 22 can be welded and fixed at once by the welding plate 29 and the yoke holder 23.
  • the connecting portions 213 and 223 are arranged on a plane (perpendicular to the rotation axis O)
  • the welding plate 29 and the yoke holder 23 can be welded and fixed in a state where they are close to each other.
  • the size of the welded portion can also be reduced in the height direction (x-axis direction), and the rigidity of the welded portion can be increased.
  • the small diameter portion 301 is welded to a weldable surface radially inward of the through hole 239 of the holder portion 233 of the yoke holder 23, and the radial connection portion 303 is connected to the through hole 236 of the holder portion 233.
  • the weldable surface is welded to the through hole 239. That is, the portion where the welding plate 29 and the yoke holder 23 are welded and fixed to each other is composed of a portion extending in the circumferential direction and a portion extending in the radial direction, so that the melting length can be increased and the welding strength is improved. be able to.
  • An engagement protrusion 302 a that engages with the through hole 236 of the yoke holder 23 is provided on the weld portion 30 of the weld plate 29. Positioning in the rotational direction is important in welding and fixing the welding plate 29 and the yoke holder 23. Therefore, the positioning accuracy of the rotational direction is improved by providing a positioning engagement portion including the engagement protrusion 302a and the through hole 236. it can. As a result, the welding portion 30 of the welding plate 29 can be arranged at a desired position. In the large-diameter portion 302 of the welded portion 30, notched portions 302c are provided at both circumferential ends of the engaging protrusion 302a and the non-engaging portion 302b. FIG.
  • connection portion 303 is a welded portion that is welded to the holder portion 233 of the yoke holder 23, whereas the engaging protrusion 302a and the non-engaging portion 302b are non-welded portions that are not welded to the holder portion 233.
  • the engagement protrusion 302a is adjacent to the welded portion, the fusion heat is deprived to the engagement protrusion 302a, which is a large mass, and the engagement protrusion side end of the melted portion may be poorly welded. is there.
  • the holder part 233 of the yoke holder 23 is provided with recesses 235 and 238 for receiving the connection parts 213 and 223 of the pair of yokes 21 and 22.
  • the recesses 235 and 238 can absorb the plate thickness of the connection portions 213 and 223, so that the welding plate 29 and the yoke holder 23 can be brought close to each other in the x-axis direction.
  • the assembly stability before the welding process can be improved.
  • Step surfaces 235a and 238a that restrict movement of the connecting portions 213 and 223 around the rotation axis O in the rotational direction are provided at both ends of the recesses 235 and 238.
  • Concave grooves 235b and 238b were formed at both circumferential ends of the concave portions 235 and 238, respectively.
  • Both end portions in the circumferential direction of the recesses 235 and 238 are portions corresponding to the end portions of the connection portions 213 and 223, and when the pair of yokes 21 and 22 are press-molded, so-called burrs are generated.
  • the claw portions 211 and 221 can be prevented from being detached and moved in the rotational direction around the rotation axis O. Can improve the assembly stability in the state where The inner peripheral surfaces 236a and 239a of the through holes 236 and 239 come into contact with the inner peripheral surfaces of the claw portions 211 and 221 when the pair of yokes 21 and 22 are attached to the yoke holder 23.
  • the yoke holder 23 is provided with inner peripheral surfaces 236a and 239a that contact the inner peripheral surfaces of the claw portions 211 and 221. , 22 coaxiality with respect to the multipolar magnet 20 can be improved.
  • the inner peripheral surfaces 236a and 239a of the through holes 236 and 239 are provided at positions separated from the multipolar magnet 20 in the x-axis direction. That is, since the inner peripheral surfaces 236a and 239a and the multipolar magnet 20 do not overlap in the x-axis direction, they can overlap each other in the radial direction, and the size in the radial direction can be reduced.
  • the second magnetism collecting ring 25 By engaging the annular portion 261 of the magnetism collecting ring holder 26 with the magnetism collecting portion 253 of the second magnetism collecting ring 25, the second magnetism collecting ring 25 is positioned in the circumferential direction and the first magnetism collecting ring 24.
  • An arcuate wall portion 266 that performs relative positioning in the radial direction is provided. Thereby, the circumferential positioning of the second magnetism collecting ring 25 and the relative positioning accuracy with the first magnetism collecting ring 24 can be improved.
  • the welding portion 30 of the welding plate 29 is in contact with the radially inner portion of the arcuate wall portion 266 in contact with the radially inner portion of the x-axis negative direction surface 266a and the radially outer portion of the x-axis negative direction surface 266a.
  • the large-diameter portion 302 (the non-engaging portion 302b) that contacts and melts and the radial connection portion 303 formed so as to connect the small-diameter portion 301 are formed alternately in the circumferential direction.
  • the melted part is formed in a so-called wave shape, so that the melted length can be increased, the large diameter part 302 of the melted part improves the holding power of the first magnetism collecting ring 24, and the small diameter part 301
  • Each of the magnetic flux collecting rings 25 can contribute to improving the holding power.
  • a plurality of thinned portions 261d are provided on the arc-shaped wall portion 266 on the x-axis positive direction surface 261b side. Thereby, the mass of the arc-shaped wall portion 266 can be reduced by the thinned portion 261d, and the divergence of melting heat can be suppressed. In addition, the formability of the arc-shaped wall portion 266 can be improved.
  • the first engagement groove 264 that accommodates the x-axis positive direction end of the first magnetism collecting ring 24 and the x-axis positive direction end of the second magnetism collecting ring 25 are formed on the x-axis negative direction side surface 261a of the annular portion 261.
  • a second engagement groove 265 is provided for accommodation.
  • the portion of the welding plate 29 excluding the welded portion 30 is formed so that the thickness of the member in the x-axis direction becomes smaller with respect to the welded portion 30, so that it can be flexibly deformed after being fixed by welding.
  • the welding plate 29 is welded and fixed to the holder portion 233 in a state of being elastically deformed. Thereby, the bending deformation, that is, elastic deformation of the welding plate 29 becomes a biasing force to the pair of yokes 21 and 22, and the holding force of the pair of yokes 21 and 22 can be improved.
  • the contact surfaces between the connection portions 213 and 223 of the pair of yokes 21 and 22 and the welding plate 29 are located on the x-axis positive direction side of the weldable surface of the holder portion 233. Therefore, when the welding plate 29 is welded and fixed to the holder portion 233, the melted portion is on the negative side in the x-axis direction with respect to the contact surface. As a result, the welding plate 29 is bent, so that the holding force of the pair of yokes 21 and 22 Can be improved.
  • the portion of the welding plate 29 excluding the welded portion 30 is formed so that the thickness of the member in the x-axis direction becomes smaller with respect to the welded portion 30, so that it can be flexibly deformed after being fixed by welding.
  • the welding plate 29 is welded and fixed to the arcuate wall portion 266 in a state of being elastically deformed. Thereby, the bending deformation, that is, elastic deformation of the welding plate 29 becomes a biasing force to the pair of magnetism collecting rings 24, 25, and the holding force of the pair of magnetism collecting rings 24, 25 can be improved.
  • the contact surface between the pair of magnetism collecting rings 24 and 25 and the welding plate 29 is positioned on the x-axis positive direction side of the arc-shaped wall portion 266 with respect to the weldable surface.
  • the welding plate 29 when the welding plate 29 is welded and fixed to the arc-shaped wall portion 266, the melted portion is on the negative side in the x-axis direction with respect to the contact surface.As a result, the welding plate 29 bends, so that the pair of magnetism collecting rings 24, The holding power of 25 can be improved.
  • Example 1 The pinion shaft 4 and the steering shaft 2 that are provided to be rotatable relative to each other about the rotation axis O, and the multi-pole that is provided on the pinion shaft 4 and in which N poles and S poles are alternately arranged around the rotation axis O
  • the plate 29 and the yoke holder 23 are configured, and the detection member and the steering shaft 2 are not in contact with each other when the welding plate 29 and the yoke holder 23 are welded and fixed to each other with the detection member sandwiched between the welding plate 29 and the yoke holder 23.
  • the holding member that holds the detection member as described above, and the relative rotation of the multipolar magnet 20 and the detection member accompanying the relative rotation of the pinion shaft 4 and the steering shaft 2 change.
  • the pinion shaft 4 and the steering shaft 2 provided so as to be rotatable relative to each other around the rotation axis O, and the multi-poles provided on the pinion shaft 4 and alternately arranged with N and S poles around the rotation axis O
  • a magnet 20 and a detection member (a pair of magnetism collecting rings 24 and 25), which are provided so as to face the multipolar magnet 20 and are formed of a magnetic material, are fixed to the steering shaft 2 and are formed of a thermoplastic resin material.
  • the welding plate 29 and the magnetism collecting ring holder 26, and the welding plate 29 and the magnetism collecting ring holder 26 are welded and fixed to each other with the detection member sandwiched between the welding plate 29 and the magnetism collecting ring holder 26.
  • Holding member for holding the detection member so that the detection member and the steering shaft 2 do not come into contact with each other, and the relative rotation of the multipolar magnet 20 and the detection member due to the relative rotation of the pinion shaft 4 and the steering shaft 2.
  • a Hall IC sensor 27 for detecting the relative rotation of the pinion shaft 4 and the steering shaft 2 a by detecting a change in magnetic field in the detection member changes depending. Therefore, since internal stress due to cooling shrinkage accompanying insert molding does not occur in the pair of magnetism collecting rings 24 and 25, distortion of the pair of magnetism collecting rings 24 and 25 can be suppressed, and the detection accuracy of the torque sensor 13 can be improved.
  • the detection member includes a first yoke 21 and a second yoke 22 formed separately from the first yoke 21, and the holding member includes the first yoke 21 and the second yoke 22.
  • the first yoke 21 and the second yoke 22 are held by sandwiching the first yoke 21 and the second yoke 22 so as not to contact each other. Therefore, since the two yokes 21 and 22 can be held by a pair of holding members (welding plate 29 and yoke holder 23), a welding plate is not required for each yoke, and the number of parts can be reduced.
  • the detection member includes a first magnetism collecting ring 24 and a second magnetism collecting ring 25 formed separately from the first magnetism collecting ring 24, and the holding member is the first magnetism collecting ring.
  • the first magnetism collecting ring 24 and the second magnetism collecting ring 25 are held by sandwiching the first magnetism collecting ring 24 and the second magnetism collecting ring 25 so that the magnet 24 and the second magnetism collecting ring 25 do not contact each other. Therefore, since the two magnetism collecting rings 24 and 25 can be held by a pair of holding members (the welding plate 29 and the magnetism collecting ring holder 26), a welding plate is not required for each magnetism collecting ring, and the number of parts can be reduced.
  • a gear box housing 17 that rotatably holds the first yoke 21 and the second yoke 22 around the rotation axis O is provided, and the pinion shaft 4 and the steering shaft 2 are connected to each other via a torsion bar 3.
  • the detection member includes a claw portion 211 that is a plurality of plate-like members arranged concentrically with the rotation axis O so as to face the multipolar magnet 20, and an annular portion 212 formed concentrically with the rotation axis O.
  • a connecting portion 213 that is formed in a plate shape so as to extend radially outward from each of the claw portions 211 and connects the claw portion 211 and the annular portion 212; and a second magnetism collecting ring 25 connected to the annular portion 212
  • a first yoke 21 disposed so as to be perpendicular to the rotation axis O, and a multipolar magnet 2
  • a claw part 221 that is a plurality of plate-like members arranged concentrically with the rotation axis O so as to face 0, an annular part 222 formed concentrically with the rotation axis O, and a claw part 221.
  • a connecting part 223 that is formed in a plate shape so as to extend radially inward and connects the claw part 221 and the annular part 222; a magnetic collecting part 243 of the first magnetic flux collecting ring 24 that is connected to the annular part 222;
  • Each of the claw parts 221 formed in a plate shape is arranged so as to be perpendicular to the radial direction of the rotation axis O and arranged so as to be alternately arranged between the claw parts of the claw part 211.
  • the claw portion 211 and the claw portion 221 are arranged on the same circle with the rotation axis O as the center, and the annular portion 222 is arranged so as to be separated from the annular portion 212, and is formed in a plate shape.
  • the Hall IC sensor 27 is provided in the gear box housing 17, and the magnetism collecting unit 253 and the magnetism collecting unit according to a change in the relative angle between the multipolar magnet 20 and the claw part 211 and the claw part 221 caused by the torsion bar 3 being twisted.
  • a hall element 27a for detecting torque generated between the pinion shaft 4 and the steering shaft 2 by detecting a change in the magnetic field between the parts 253, and the holding member is connected to the connecting part 213 and the welding plate 29 and the yoke holder 23 by the welding plate 29 and the yoke holder 23.
  • the first yoke 21 and the second yoke 22 are held by the welding plate 29 and the yoke holder 23 being welded and fixed to each other with the connecting portion 223 sandwiched therebetween. Therefore, both the pair of yokes 21 and 22 can be welded and fixed at once by the welding plate 29 and the yoke holder 23.
  • the portion where the welding plate 29 and the yoke holder 23 are welded and fixed to each other is composed of a small-diameter portion that passes through the radially inner side of the connection portion 213 and a radial connection portion that extends radially outward from the small-diameter portion. .
  • the portion where the welding plate 29 and the yoke holder 23 are welded and fixed to each other is composed of a portion extending in the circumferential direction and a portion extending in the radial direction, compared with a case where only the portion extending in the circumferential direction is configured.
  • the melt length can be increased, and the welding strength can be improved.
  • a steering shaft 2 that rotates as the steering wheel 1 rotates, and a pinion shaft 4 that is connected to the steering shaft 2 via the torsion bar 3 are provided, and the steering operation of the steering wheel 1 is performed on the steered wheels 8 and 8.
  • Is provided on the pinion shaft 4 and the N and S poles are alternately arranged around the rotation axis O.
  • the steering mechanism 9 for transmitting to the steering wheel 9 and the gear box housing 17 for rotatably holding the steering shaft 2 and the pinion shaft 4 are provided.
  • the yoke holder 23, and the welding plate 29 and the yoke holder 23 are mutually connected in a state where the detection member is sandwiched between the welding plate 29 and the yoke holder 23.
  • a holding member that holds the pair of yokes 21, 22 and the gear box housing 17 so that the pair of yokes 21, 22 and the steering shaft 2 do not come into contact with each other by welding and fixing, and the steering shaft 2 and the pinion shaft 4 are provided.
  • the relative rotation of the steering shaft 2 and the pinion shaft 4 is detected by detecting the change in the magnetic field in the pair of yokes 21 and 22 that changes due to the relative rotation of the multipolar magnet 20 and the pair of yokes 21 and 22 with the relative rotation of To the electric motor 10 based on the torque generated between the steering shaft 2 and the pinion shaft 4 obtained from the output signal of the Hall IC sensor 27, and the electric motor 10 that applies a steering assist force to the steering mechanism 9. And a motor control circuit 15 for outputting the command signal to the electric motor 10.
  • a steering shaft 2 that rotates as the steering wheel 1 rotates, and a pinion shaft 4 that is connected to the steering shaft 2 via a torsion bar 3 are provided, and the steering operation of the steering wheel 1 is performed on the steered wheels 8, 8 Is provided on the pinion shaft 4 and the N and S poles are alternately arranged around the rotation axis O.
  • the steering mechanism 9 for transmitting to the steering wheel 9 and the gear box housing 17 for rotatably holding the steering shaft 2 and the pinion shaft 4 are provided.
  • the plate 29 and the magnetism collecting ring holder 26, and the welding plate 29 and the magnetism collecting ring with the detection member sandwiched between the welding plate 29 and the magnetism collecting ring holder 26 Provided in the gear box housing 17 and a holding member for holding the pair of magnetism collecting rings 24 and 25 so that the pair of magnetism collecting rings 24 and 25 and the steering shaft 2 do not come into contact with each other by welding and fixing the rudder 26 to each other.
  • the Hall IC sensor 27 for detecting the relative rotation of the steering shaft 2 and the pinion shaft 4, the electric motor 10 for applying a steering assist force to the steering mechanism 9, and the steering shaft 2 and the pinion obtained from the output signal of the Hall IC sensor 27.
  • a motor control circuit 15 that calculates a command signal to the electric motor 10 based on torque generated between the shafts 4, and outputs a command signal to the electric motor 10, Have Therefore, since internal stress due to cooling shrinkage accompanying insert molding does not occur in the pair of magnetism collecting rings 24 and 25, distortion of the pair of magnetism collecting rings 24 and 25 can be suppressed, and the detection accuracy of the torque sensor 13 can be improved. . As a result, the control accuracy of the steering assist force can be improved.
  • the concrete structure of this invention is not limited to the structure shown in the Example, and is the range which does not deviate from the summary of invention. Any design changes are included in the present invention.
  • the present invention is applied to a torque sensor is shown, but the present invention can also be applied to a rotation sensor.
  • the second member is provided in the housing.
  • the number of poles of the magnetic member may be as long as one N pole and one S pole or more.
  • a portion where the welding plate 29 and the yoke holder 23 are welded and fixed to each other includes a small diameter portion passing through the radially inner side of the connecting portion 213, a large diameter portion passing through the radially outer side of the connecting portion 223, a small diameter portion and a large diameter portion. And a radial connection portion for connecting the two.
  • the rotation detecting device according to claim 3 The rotation detecting device according to claim 1, wherein the first holding member and the second holding member have a positioning engagement portion that positions the rotation direction around the rotation axis. In welding and fixing, positioning in the rotational direction is important, and therefore the positioning accuracy in the rotational direction can be improved by providing a positioning engagement portion.
  • the positioning engaging portion is provided on the first holding member and formed on the first holding member so as to extend in the rotation axis direction, and on the side provided on the second holding member and facing the engaging protruding portion.
  • An engagement recess that is open and formed in a concave shape and accommodates the engagement protrusion,
  • the first holding member protrudes on both sides in the circumferential direction of the engaging protrusion and faces the second holding member, and melts in the welding and fixing step.
  • the second holding member provided at a boundary portion between the melting portion and the melting portion and the engaging projection portion so that the first holding member and the second holding member are separated from each other even after being fixed by welding. And a notch formed in a concave shape opening toward the side.
  • the rotation detecting device wherein the first holding member or the second holding member has a concave portion that accommodates the first connection portion and the second connection portion.
  • the concave portion absorbs the plate thickness of the first and second connection portions, the first holding member and the second holding member can be brought close to each other.
  • the axial length of the welded portion can be shortened, and the assembly stability in the state before the welding and fixing can be improved after the first and second yoke members are arranged on the first and second holding members.
  • the rotation detecting device wherein the concave portion includes a rotation direction restricting portion that restricts movement of the first connection portion and the second connection portion around the rotation axis in the rotation direction.
  • the rotational direction positioning accuracy of the first and second yoke members with respect to the holding member can be improved.
  • the rotation detection is characterized in that when the direction around the rotation axis is a circumferential direction, the recess is formed such that the depth in the rotation axis direction is deeper than the other portions at both ends in the circumferential direction. apparatus.
  • Both end portions in the circumferential direction of the concave portion are portions corresponding to the end portions of the first and second connecting portions, and when the first and second yoke members are press-molded, so-called burrs are generated.
  • This burr can be escaped by making the circumferential both ends of the recess deeper than the other parts, so that the assembly accuracy of the first and second connecting portions with respect to the holding member can be improved.
  • the rotation detecting device wherein the first holding member or the second holding member has a plurality of through holes through which the first claw portion and the second claw portion penetrate in the rotation axis direction. Since the first and second claw portions are structured to pierce the through holes of the holding member, it is possible to improve assembly stability in a state where the first and second yoke members are assembled to the holding member.
  • the first holding member or the second holding member is in contact with the inner peripheral surface of the first claw portion and the inner peripheral surface of the second claw portion, so that the first yoke member and the second yoke member
  • a rotation detecting device having a radial position restricting portion for defining a radial position with respect to the rotating shaft. Since the first and second yoke members are coaxial with the magnetic member, it is important to contact the inner peripheral surfaces of the first and second claw portions in order to improve the axial center position accuracy of the first and second yoke members. By providing the holding member with the radial position restricting portion that comes into contact, the coaxiality of the first and second yoke members with respect to the magnetic member can be improved.
  • the first detection member is formed such that a diameter of a virtual circle along the arc-shaped portion of the first detection member is larger than a diameter of a virtual circle along the arc-shaped portion of the second detection member;
  • the second detection member is provided between the pair of arcuate portions and provided on the opposite side of the notch with respect to the rotation shaft, and is formed in a convex shape toward the radially outer side.
  • a member-side engaging portion; The holding member engages with the second detecting member side engaging portion to position the second detecting member in the circumferential direction and perform second relative positioning in the radial direction with respect to the first detecting member.
  • a rotation detecting device having an engaging protrusion for a member.
  • the circumferential positioning of the second detection member and the relative positioning accuracy with the first detection member can be improved.
  • the second holding member includes a wall provided between the first detection member and the second detection member, and formed to protrude toward the first detection member.
  • the first holding member is provided on a melting portion that contacts a surface of the wall portion of the second holding member facing the first holding member and melts in a welding and fixing step, and on both radial sides of the melting portion.
  • the melting portion of the first holding member includes a small diameter portion that contacts and melts a radially inner portion of the wall portion, a large diameter portion that contacts and melts a radially outer portion of the wall portion, and the small diameter portion.
  • the rotation detecting device, wherein the connecting portions formed so as to connect the large diameter portions are alternately arranged in the circumferential direction. Since the melted part is formed in a so-called wave shape, the melted length can be increased, the large diameter part of the melted part improves the holding power of the first detection member, and the small diameter part improves the holding power of the second detection member. Can contribute to each.
  • the rotation detection device wherein the second holding member has a concave hollow portion that is provided on the opposite side of the wall portion from the first detection member and opens in the rotation axis direction.
  • the mass of the wall portion can be reduced by the lightening portion, and the divergence of melting heat can be suppressed.
  • the holding member is formed in a concave shape so as to open in the rotation axis direction, and has a detection member engagement portion that accommodates the rotation axis direction ends of the first detection member and the second detection member.
  • a rotation detection device is formed in a concave shape so as to open in the rotation axis direction, and has a detection member engagement portion that accommodates the rotation axis direction ends of the first detection member and the second detection member.
  • the first holding member is in contact with the second holding member and is melted in the welding and fixing step, and is provided on the radially inner side or the outer side of the melting portion, and is in contact with the rotation axis direction end of the detection member.
  • a holding part, The holding portion of the first holding member is formed so as to be able to bend and deform after welding and fixing by being formed so that the thickness of the member in the rotation axis direction is smaller than the melting portion.
  • Rotation detection device The bending deformation of the holding portion, that is, elastic deformation becomes a biasing force to the detection member, and the holding force of the detection member can be improved.
  • the second holding member includes a second holding member-side contact portion that contacts the melting portion of the first holding member, and a detection member storage portion that stores the detection member.
  • the rotation detecting device wherein the detection member is arranged on the second holding member so as to protrude toward the first member side from the second holding member side contact portion.
  • the second holding member side contact portion is in a state of being recessed with respect to the first holding member rather than the detection member. Therefore, when the first holding member is welded and fixed, the first holding member in the melted part enters the recess of the second holding member, and as a result, the holding part bends and the holding force of the detection member can be improved.
  • Steering wheel 1 Steering wheel 2 Steering shaft (second member, input shaft) 3 Torsion bar 4 Pinion shaft (first member, output shaft) 8 Steering wheel 9 Steering mechanism 10 Electric motor 13 Torque sensor (rotation detector) 15 Motor control circuit 17 Gearbox housing (housing) 20 Multi-pole magnet (magnetic member) 21 First yoke (detection member) 22 Second yoke (detection member) 23 Yoke holder (holding member, second holding member) 24 1st magnetism collecting ring (detection member) 25 Second magnetism collecting ring (detection member) 26 Magnetic flux collection ring holder (holding member, second holding member) 27 Hall IC sensor (magnetic sensor) 29 Welding plate (holding member, first holding member)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Steering Mechanism (AREA)

Abstract

ヨークに生ずる歪を抑制し、検出精度を向上できる回転検出装置およびパワーステアリング装置を提供することを目的とする。本発明では、溶着プレート(29)とヨークホルダ(23)とで一対のヨーク(21、22)を挟み込んだ状態で、溶着プレート(29)とヨークホルダ(23)とを互いに溶着固定する。

Description

回転検出装置およびパワーステアリング装置
 本発明は、回転検出装置およびパワーステアリング装置に関する。
 従来の回転検出装置は、互いに相対回転する永久磁石および一対のヨークと、永久磁石と一対のヨークとの相対回転により一対のヨーク間に生じた磁束を誘導する一対の集磁リングと、集磁リング間の磁束を検出するホールICセンサとを有している。検出部材である一対のヨークおよび一対の集磁リングは、パーマロイ等の軟磁性体で形成され、インサートモールド成形により樹脂製のホルダと一体に設けられ、ホルダを介して入出力軸またはハウジングに固定されている。上記説明の技術に関係する一例は、特許文献1に記載されている。
特開2008-180518号公報
 しかしながら、上記従来技術にあっては、インサート成形に伴う冷却収縮による内部応力が検出部材の内部に発生するため、検出部材が歪むことで磁気損失によりパーマロイの磁気ヒステリシスが増大し、検出精度の低下を招くという問題があった。
 本発明の目的は、検出部材の歪を抑制でき、検出精度を向上できる回転検出装置およびパワーステアリング装置を提供することにある。
 本発明の回転検出装置では、第1保持部材と第2保持部材とで検出部材を挟み込んだ状態で第1保持部材と第2保持部材とを互いに溶着固定する。
 よって、本発明では、検出部材の歪を抑制でき、検出精度を向上できる。
実施例1の電動パワーステアリング装置の全体構成図である。 実施例1のステアリングギアボックス16の縦断面図である。 実施例1のヨークアッシーの斜視図である。 実施例1のヨークアッシーの平面図である。 実施例1のヨークアッシーの分解斜視図である。 実施例1のヨークホルダ23の要部拡大図である。 実施例1のヨークホルダ23の溶接可能面を示す図である。 (a)実施例1の溶着プレート29の斜視図、(b)実施例1の溶着プレート29の平面図である。 (a)実施例1の小径部301の縦断面図、(b)実施例1の係合突起部302aの縦断面図である。 実施例1の溶着プレート29をホルダ部233に溶着したときの溶着部分の軌跡を示す図である。 図4のA-A断面の要部拡大図である。 実施例1の集磁リングアッシーの斜視図である。 実施例1の集磁リングアッシーの底面図である。 実施例1の集磁リングアッシーの分解斜視図である。 (a)実施例1の集磁リングホルダ26の斜視図、(b)実施例1の集磁リングホルダ26の平面図、(c)(b)のB-B断面図である。 実施例1の集磁リングホルダ26の溶接可能面を示す図である。 実施例1の溶着プレート29を円弧状壁部266のx軸負方向面266aに溶着したときの溶着部分の軌跡を示す図である。 図13のC-C断面の要部拡大図である。 (a)溶着工程前のヨークアッシーの要部拡大図、(b)溶着工程後のヨークアッシーの要部拡大図である。
 以下、本発明の回転検出装置およびパワーステアリング装置を実施するための形態を、図面に示す実施例に基づいて説明する。
 〔実施例1〕
 まず、構成を説明する。
 [電動パワーステアリング装置]
 図1は、実施例1の電動パワーステアリング装置の全体構成図である。
 運転者によるステアリングホイール1への操舵入力は、回転運動としてステアリングシャフト(第2部材,入力軸)2、トーションバー3、ピニオンシャフト(第1部材,出力軸)4を介して第1ピニオン5に伝達され、第1ピニオン5のピニオン歯5aと噛み合う第1ラック歯6aを有するラックバー6により直線運動に変換される。ラックバー6の直線運動は、タイロッド7,7を介して転舵輪8,8へと伝達される。ステアリングシャフト2、トーションバー3、ピニオンシャフト4、第1ピニオン5、ラックバー6およびタイロッド7,7により、ステアリングホイール1の操舵操作を転舵輪8に伝達する操舵機構9が構成される。
 一方、電動モータ10の出力は、ウォームシャフト11aとウォームホイール11bとから構成される減速機11を介して第2ピニオン12に伝達され、第2ピニオン12のピニオン歯12aと噛み合う第2ラック歯6bを介してラックバー6の直進運動に変換される。第2ピニオン12はウォームホイール11bと一体に設けられている。電動モータ10は、例えば、三相ブラシレスモータであり、モータ制御回路15からの指令信号に応じて操舵機構9に操舵アシスト力を付与する。
 ステアリングシャフト2には、ステアリングシャフト2とピニオンシャフト4の相対回転を検出するトルクセンサ(回転検出装置)13が設けられている。
 モータ制御回路15は、トルクセンサ13の出力信号から求められるステアリングシャフト2とピニオンシャフト4の間に生じる操舵トルク、および車速等の走行状態に基づき、電動モータ10への指令信号を演算し、当該指令信号を電動モータ10へ出力する。
 図2は、実施例1のステアリングギアボックス16の縦断面図である。
 ステアリングギアボックス16は、ギアボックスハウジング(ハウジング)17を備えている。ステアリングシャフト2およびピニオンシャフト4は、ギアボックスハウジング17に対し、同一の回転軸0を中心に回転する。以下、回転軸Oの方向にx軸をとり、ピニオンシャフト4に対してステアリングシャフト2側を正方向とする。ギアボックスハウジング17は、回転軸方向を長手方向として配置されるシャフト収容部17aと、このシャフト収容部17aから車両後方側へ延出されたガイド収容部17bと、シャフト収容部17aに対して直交して設けられかつ略車両幅方向を長手方向として配置されるラック収容部(図示省略)とを有する。なお、シャフト収容部17a、ガイド収容部17bおよびラック収容部は、いずれも円筒形状である。
 シャフト収容部17aには、ステアリングシャフト2およびトーションバー3の一部、ピニオンシャフト4およびトルクセンサ13が収容されている。トーションバー3は、ステアリングシャフト2のx軸負方向端に設けられた中空部2aに相対回転不能に挿通されている。トーションバー3のx軸負方向端は、ピニオンシャフト4とスプライン嵌合されている。ステアリングシャフト2はベアリング18aによりギアボックスハウジング17に対し回転可能に支持されている。ピニオンシャフト4のx軸方向両端は、ベアリング18b,18cによりギアボックスハウジング17に対し回転可能に支持されている。
 ラック収容部には、ラックバー6が収容されている。
 ガイド収容部17bには略円筒形状のラックガイド19aがガイド収容部17bに沿って軸方向移動可能に収容されている。さらに、ガイド収容部17bの開放側の端部にはキャップ19bが螺合されている。ラックガイド19aのラックバー側には、ラックガイド19aの磨耗防止等のためのシート19cが取り付けられている。
 [トルクセンサ]
 トルクセンサ13は、多極磁石(磁性部材)20と、一対のヨーク(検出部材)21,22と、ヨークホルダ(第2保持部材)23と、一対の集磁リング(検出部材)24,25と、集磁リングホルダ26(第2保持部材)と、ホールICセンサ(磁気センサ)27とを有する。多極磁石20、一対のヨーク21,22、ヨークホルダ23、一対の集磁リング24,25および集磁リングホルダ26は、回転軸Oと同心円上に配置されている。
 多極磁石20は、16個の極(N極,S極それぞれ同じ極数)が周方向に等間隔で交互に着磁された円筒形状の永久磁石である。多極磁石20は、磁石ホルダ28を介してピニオンシャフト4に固定されている。磁石ホルダ28は、大径部28aと小径部28bとを有する円筒形状に形成されている。大径部28aはピニオンシャフト4のx軸正方向端の外周に固定されている。小径部28bは大径部28aのx軸正方向側に位置し、多極磁石20の内周が固定されている。
 一対のヨーク21,22は、パーマロイ(軟質磁性合金)で形成され、図3に示すように、8個の爪部211,221と円環部212,222とを有する。爪部211,221は、多極磁石20の外周を取り囲むように、同一円周上に所定の隙間を持って交互に配置され、多極磁石20と所定の径方向隙間を有して対向する。円環部212,222は、爪部211,221のx軸正方向側に位置し、互いに所定の径方向隙間を有して対向する。なお、一対のヨーク21,22は、ステアリングシャフト2およびピニオンシャフト4にトルクが加えられていない操舵中立状態において、爪部211,221の先端が、多極磁石20のN極およびS極の境界を指すように配置される。
 ヨークホルダ23は、熱可塑性樹脂で略凸字形状に形成され、一対のヨーク21,22を保持する。ヨークホルダ23は、ステアリングシャフト2に固定されている。
 一対の集磁リング24,25は、パーマロイでC字形状に形成され、互いに所定の径方向エアギャップを有して、ヨーク21,22の円環部212,222の径方向隙間の中間位置に、両ヨーク21,22と非接触状態で配置されている。
 集磁リングホルダ26は、熱可塑性樹脂で筒状に形成され、一対の集磁リング24,25を保持する。集磁リングホルダ26は、ギアボックスハウジング17に固定されている。
 ホールICセンサ27は、ホール素子27aと回路基板27bとを有し、一対の集磁リング24,25の径方向エアギャップに生じる磁束の密度を検出する。ホール素子27aは、一対の集磁リング24,25の径方向エアギャップの中間位置に、両集磁リング24,25と非接触状態で配置されている。回路基板27bは、集磁リングホルダ26のx軸正方向側でホール素子27aと接続されている。車両のバッテリからの電力は、回路基板27bを介してホール素子27aに供給され、ホール素子27aの出力は、回路基板27bを介してモータ制御回路15に出力される。
 以下、トルクセンサ13を構成する各部の構造を詳細に説明する。
 [ヨークアッシー]
 図3は実施例1のヨークアッシーの斜視図、図4は実施例1のヨークアッシーの平面図、実施例1のヨークアッシーの分解斜視図である。
 ヨークアッシーは、一対のヨーク21,22とヨークホルダ23と溶着プレート(第1保持部材)29を備える。溶着プレート29とヨークホルダ23とで保持部材が構成される。
 第1ヨーク(第1検出部材,第1ヨーク部材)21は、8個の爪部(第1爪部)211と円環部(第1円環部)212と接続部(第1接続部)213とを有する。爪部211は、多極磁石20の磁界内で多極磁石20と対向するように配置された板状部材であり、先端部は先細り形状に形成されている。接続部213は、爪部211から径方向外側に延びるように板状に形成され爪部211と円環部212とを接続する。各爪部211は、回転軸Oの放射方向に対して直角となるように配置され、接続部213が回転軸Oに対して直角となるように配置されている。
 第2ヨーク(第2検出部材,第2ヨーク部材)22は、8個の爪部(第2爪部)221と円環部(第2円環部)222と接続部(第2接続部)223とを有する。爪部221は、多極磁石20の磁界内で多極磁石20と対向するように配置された板状部材であり、先端部は先細り形状に形成されている。爪部221は爪部211と同じx軸方向長さを有する。円環部222は、第1ヨーク21の円環部212よりも大径に設定されている。円環部222は円環部212と同じx軸方向長さを有する。接続部223は、爪部221から径方向内側に延びるように板状に形成され爪部221と円環部222とを接続する。各爪部221は、回転軸Oの放射方向に対して直角となるように配置され、かつ、第1ヨーク21の爪部211,211間を交互に並ぶように配置されると共に、接続部223が回転軸Oに対して直角となるように配置されている。
 図6は、実施例1のヨークホルダ23の要部拡大図である。
 ヨークホルダ23は、小径部231と大径部232とホルダ部233を有する。小径部231の内径は、ステアリングシャフト2の外径と略一致する外径を有し、ステアリングシャフト2の外周に固定される。大径部232は、小径部231よりも大径に設定され、内部に第1ヨーク21および第2ヨーク22の爪部211,221が収容される。ホルダ部233は、回転軸Oと垂直に設けられ、小径部231のx軸負方向端と大径部232のx軸正方向端とを接続する。ホルダ部233には、第1ヨーク21が装着される第1ヨーク装着部233aと、第2ヨーク22が装着される第2ヨーク装着部233bとが設けられている。第1ヨーク装着部233aに第1ヨーク21を装着し、第2ヨーク装着部233bに第2ヨーク22を装着したとき、第1ヨーク21と第2ヨーク22は、爪部211と爪部221が交互に並ぶように配置される。
 第1ヨーク装着部233aは、第1ヨーク21の形状に対応して平面視略外歯歯車形状に形成され、円環部212と当接する環状凹部234と、接続部213を収容する凹部235と、爪部211が貫通する貫通孔236とを有する。凹部235の周方向両端には、接続部213の回転軸O周りの回転方向の移動を規制する段差面(回転方向規制部)235aが設定されている。段差面235aのx軸方向長さ(凹部235の深さ)は、接続部213のx軸方向長さよりも短く設定されている。また、凹部235の周方向両端には、凹溝235bが形成されている。貫通孔236の内周面のうち、爪部211の内周面と対向する内周面(径方向位置規制部)236aは、第1ヨーク21を第1ヨーク装着部233aに装着したとき、爪部211の内周面と当接するように設定されている。内周面236aは、多極磁石20よりもx軸正方向に設けられている。
 第2ヨーク装着部233bは、第2ヨーク22の形状に対応して平面視内歯歯車形状に形成され、円環部222と当接する環状凹部237と、接続部223を収容する凹部238と、爪部221が貫通する貫通孔239とを有する。環状凹部237および凹部238は環状凹部234および凹部235と同じx軸方向位置に設けられている。凹部238の周方向両端には、接続部223の回転軸O周りの回転方向の移動を規制する段差面(回転方向規制部)238aが設定されている。段差面238aのx軸方向長さ(凹部238の深さ)は、接続部223のx軸方向長さよりも短く設定されている。また、凹部238の周方向両端には、凹溝238bが形成されている。貫通孔239の内周面のうち、爪部221の内周面と対向する内周面(径方向位置規制部)239aは、第2ヨーク22を第2ヨーク装着部233bに装着したとき、爪部221の内周面と当接するように設定されている。内周面239aは、多極磁石20よりもx軸正方向に設けられている。
 図7に示すように、ホルダ部233において、第1ヨーク装着部233aおよび第2ヨーク装着部233bを除く略波型形状部分(図5の網掛け部分)は、溶着プレート29と溶着可能な溶着可能面である。
 図8(a)は実施例1の溶着プレート29の斜視図、図5(b)は実施例1の溶着プレート29の平面図である。
 溶着プレート29は、熱可塑性樹脂でヨークホルダ23の小径部231よりも大きな内周径を有し、大径部232よりも小さな外周径を有する円環形状に形成されている。溶着プレート29の外周縁には8個の切り欠き29aが周方向等間隔に形成され、内周縁には8個の切り欠き29bが周方向等間隔に形成されている。切り欠き29aと切り欠き29bは、周方向で異なる位置に交互に配置されている。溶着プレート29の一面側であって、周方向略3/4の範囲には、溶着部30が設けられている。
 溶着部30は、接続部223の内側を通る小径部301と、接続部213の径方向外側を通る大径部302と、小径部301と大径部302とを接続する放射方向接続部303とを有する略波型形状に形成されている。小径部301は、ホルダ部233の貫通孔239よりも径方向内側の溶着可能面と溶着される。放射方向接続部303は、ホルダ部233の貫通孔236と貫通孔239との間の溶着可能面と溶着される。図9(a)は小径部301の縦断面図であり、小径部301は、三角形状に形成されている。放射方向接続部303も同様である。大径部302は、爪部211よりも径方向外側でホルダ部233の貫通孔236上を通過し、係合突起部(位置決め係合部)302aと非係合部302bと切り欠き部302cとを有する。図9(b)は係合突起部302aの縦断面図であり、係合突起部302aは、小径部301および放射方向接続部303よりもx軸方向に長く形成され、貫通孔(位置決め係合部)236と嵌合される。非係合部302bは、図9(a)に示した小径部301と同じ断面形状を有する。切り欠き部302cは、係合突起部302aおよび非係合部302bの周方向両端に設けられ、小径部301および放射方向接続部303をx軸正方向側に切り欠いた形状を有する。図10に、実施例1の溶着プレート29をホルダ部233に溶着したときの溶着部分の軌跡を示す。
 図11は、図4のA-A断面の要部拡大図である。
 溶着プレート29は、ホルダ部233と溶着固定された小径部301の径方向外側の部分(保持部)で第2ヨーク22の接続部223と当接することにより、第2ヨーク22をヨークホルダ23と溶着プレート29との間に保持する。また、大径部302の径方向外側の部分(保持部)で第1ヨーク21の接続部213と当接することにより、第1ヨーク21をヨークホルダ23と溶着プレート29との間に保持する。ここで、一対のヨーク21,22の接続部213,223と溶着プレート29との当接面は、ホルダ部233の溶着可能面よりもx軸正方向側に位置し、溶着プレート29は、小径部301および放射方向接続部303のx軸方向の厚みに対して十分に薄く形成されているため、溶着プレート29は、弾性変形した状態でホルダ部233と溶着固定される。
 ヨークアッシーは、ヨークホルダ23に一対のヨーク21,22を装着後、溶着プレート29を被せ、ヨークホルダ23と溶着プレート29を超音波溶着することで得られる。ヨークホルダ23に対する一対のヨーク21,22および溶着プレート29の組み付けは、全て一方向から行うことができるため、組み付け作業性の点で有利である。
 [集磁リングアッシー]
 図12は実施例1の集磁リングアッシーの斜視図、図13は実施例1の集磁リングアッシーの底面図、図14は実施例1の集磁リングアッシーの分解斜視図である。
 集磁リングアッシーは、一対の集磁リング24,25と集磁リングホルダ26と溶着プレート(第1保持部材)29を備える。溶着プレート29と集磁リングホルダ26とで保持部材が構成される。
 第1集磁リング(第1検出部材)24は、回転軸Oを包囲するように形成され、周方向の所定部分が切り欠かれた切り欠き部241と、回転軸Oを中心とした仮想円に沿うように形成され互いに対向する一対の円弧状部242,242と、切り欠き部241と対向配置され一対の円弧状部242,242を接続する集磁部(第1被検出部)243とを有する。一対の円弧状部242,242の仮想円は、第1ヨーク21の円環部212よりも大径、かつ、第2ヨーク22の円環部222よりも小径に設定されている。集磁部243は、回転軸Oに対して直角に形成されている。
 第2集磁リング(第2検出部材)25は、回転軸Oを包囲するように形成され、周方向の所定部分が切り欠かれた切り欠き部251と、回転軸Oを中心とした仮想円に沿うように形成され互いに対向する一対の円弧状部252,252と、切り欠き部251と対向配置され一対の円弧状部252,252を接続する集磁部(第1被検出部,第2検出部材側係合部)253とを有する。一対の円弧状部252,252の仮想円は、第1集磁リング24の仮想円よりも小径、かつ、第1ヨーク21の円環部212よりも大径に設定されている。集磁部253は、径方向外側に向かって凸状、かつ、回転軸Oに対して直角に形成されている。
 図15(a)は実施例1の集磁リングホルダ26の斜視図、図15(b)は実施例1の集磁リングホルダ26の平面図、図15(c)は(b)のB-B断面図である。
 集磁リングホルダ26は、中心に開口部261cを有する円環部261と、円環部261の外周縁からx軸負方向側への延びる外周部262と、円環部261からx軸正方向へ延びる2つの円柱部263とを有する。
 円環部261の開口部261cは、ヨークホルダ23の外径よりも大径に設定されている。円環部261のx軸負方向側面261aには、第1集磁リング24のx軸正方向端部を収容する第1係合溝(検出部材係合部)264が形成され、第2集磁リング25のx軸正方向端部を収容する第2係合溝(検出部材係合部)265が形成されている。第1係合溝264と第2係合溝265との間には、第1集磁リング24の集磁部243および第2集磁リング25の集磁部253と対応する部分が切り欠かれた平面視C字形状の円弧状壁部(第2検出部材用係合突起)266が設けられている。第1係合溝264および第2係合溝265に第1集磁リング24および第2集磁リング25を装着したとき、第1集磁リング24の円弧状部242,242は円弧状壁部266の外周面と当接し、第2集磁リング25の円弧状部252,252は円弧状壁部266の内周面と当接する。また、第2集磁リング25の集磁部253は円弧状壁部266の切り欠き部分の端面266b,266bと当接する。一対の集磁リング24,25の集磁部243,253は、円弧状壁部266の切り欠き部分で対面する。円弧状壁部266のx軸負方向面266aは、回転軸Oに対して直角に設けられ、溶着プレート29を溶着したとき、溶着部30における係合突起部302aと係合する係合孔267が形成されている。第1係合溝264および第2係合溝265から円弧状壁部266のx軸負方向面266aまでのx軸方向長さは、第1集磁リング24および第2集磁リング25のx軸方向長さよりも短く設定されている。
 図16に示すように、円弧状壁部266のx軸負方向面266aにおいて、係合孔267を除く部分(図11の網掛け部分)は、溶着プレート29が溶着可能な溶着可能面である。
 円環部261のx軸正方向面261bには、ホールICセンサ27の回路基板27bを支持する円柱部268が設けられている。円柱部268には、回路基板27bをボルト固定するためのネジ穴268aが形成されている。また、x軸正方向面261bのうち、円弧状壁部266と対応する位置には、x軸正方向側に開口する凹状の肉抜き部261dが周方向に複数形成されている。
 円環部261において、一対の集磁部243,253との間の径方向エアギャップと対応する軸方向位置には、ホールICセンサ27が貫通する開口部261eが形成されている。ホールICセンサ27のセンサ部は、径方向エアギャップの中間位置に配置されている。
 外周部262のx軸負方向側端部は、ギアボックスハウジング17のシャフト収容部17a(図2参照)の側壁に嵌挿可能な外径を有する。
 円柱部263は、集磁リングホルダ26をギアボックスハウジング17にボルト固定するためのネジ穴263aが形成されている。
 溶着プレート29は、ヨークアッシーのものと同じであるが、溶着プレート29をホルダ部233と溶着する場合と異なり、非係合部302bも溶着部分となる。図17に、実施例1の溶着プレート29を円弧状壁部266のx軸負方向面266aに溶着したときの溶着部分の軌跡を示す。
 図18は、図13のC-C断面の要部拡大図である。
 溶着プレート29は、溶着部30の径方向外側の部分(保持部)で第1集磁リング24と当接することにより、第1集磁リング24を集磁リングホルダ26と溶着プレート29との間に保持する。また、溶着部30の径方向内側の部分(保持部)で第2集磁リング25と当接することにより、第2集磁リング25を集磁リングホルダ26と溶着プレート29との間に保持する。ここで、一対の集磁リング24,25と溶着プレート29との当接面は、円弧状壁部266の溶着可能面よりもx軸正方向側に位置し、溶着プレート29は、小径部301および放射方向接続部303のx軸方向の厚みに対して十分に薄く形成されているため、溶着プレート29は、弾性変形した状態で円弧状壁部266と溶着固定される。
 集磁リングアッシーは、集磁リングホルダ26に一対の集磁リング24,25を装着後、溶着プレート29を被せ、集磁リングホルダ26と溶着プレート29を超音波溶着することで得られる。集磁リングホルダ26に対する一対の集磁リング24,25および溶着プレート29の組み付けは、全て一方向から行うことができるため、組み付け作業性の点で有利である。また、溶着プレート29はヨークアッシーと同じものを用いるため、部品点数の増加を抑制でき、コスト低減に寄与できる。
 次に、実施例1のトルクセンサ13の動作を説明する。
 トルクの入力が無い状態では、爪部211,221の円周方向中心が多極磁石20の極の境界上に位置し、爪部211,221から見た多極磁石20のN極、S極に対するパーミアンスが等しいので、多極磁石20のN極から発生した磁束は、爪部211,221に入り、そのまま多極磁石20のS極へ入る。よって、一対の集磁リング24,25間には磁束が流れないため、ホールICセンサ27は中間電圧を出力する。
 運転者がステアリングホイール1を回転させると、トーションバー3に捻れが生じ、ステアリングシャフト2とピニオンシャフト4とに相対角度変位が発生する。この相対角度変位は、爪部211,221と多極磁石20との間の相対角度変位として現れる。爪部211,221と多極磁石20との間に相対角度変位が生じると、パーミアンスのバランスが崩れ、ホールICセンサ27を含む磁気回路、すなわち、多極磁石20のN極から発生した磁束が爪部211,221のうちN極と対向する面積が広い方の爪部に流れ、一対の集磁リング24,25を経由してS極と対向する面積が広い方の爪部から多極磁石20のS極へと戻る磁気回路に磁束が流れる。このとき、一対の集磁リング24,25間に流れる磁束をホールICセンサ27で検出することで、相対角度変位を測定でき、トーションバー3に作用するトルクを検出できる。
 次に、実施例1の作用効果を説明する。
 回転検出装置において、検出部材をインサート成形により保持部材に保持させる場合、保持部材の冷却収縮により検出部材内に内部応力が発生し、検出精度が低下するおそれがある。
 これに対し、実施例1のヨークアッシーでは、溶着プレート29とヨークホルダ23とで一対のヨーク21,22をx軸方向に挟み込んだ状態で溶着プレート29とヨークホルダ23とを互いに溶着固定する。よって、一対のヨーク21,22には、インサート成形に伴う冷却収縮による内部応力が発生しない。これにより、一対のヨーク21,22の歪を抑制でき、トルクセンサ13の検出精度を向上できる。また、2つのヨーク21,22を一対の保持部材(溶着プレート29,ヨークホルダ23)で保持できるため、ヨーク毎に溶着プレートを必要とせず、部品点数を削減できる。さらに、トルク検出精度を高めたことで、電動パワーステアリング装置による操舵アシスト力の制御精度を向上できる。
 実施例1の集磁リングアッシーでは、溶着プレート29と集磁リングホルダ26とで一対の集磁リング24,25をx軸方向に挟み込んだ状態で溶着プレート29と集磁リングホルダ26とを互いに溶着固定する。よって、一対の集磁リング24,25には、インサート成形に伴う冷却収縮による内部応力が発生しない。これにより、一対の集磁リング24,25の歪を抑制でき、トルクセンサ13の検出精度を向上できる。また、2つの集磁リング24,25を一対の保持部材(溶着プレート29,集磁リングホルダ26)で保持できるため、集磁リング毎に溶着プレートを必要とせず、部品点数を削減できる。さらに、トルク検出精度を高めたことで、電動パワーステアリング装置による操舵アシスト力の制御精度を向上できる。
 一対のヨーク21,22は、爪部211,221と円環部212,222とを接続する接続部213,223が回転軸Oに対して直角に配置される。これにより、溶着プレート29とヨークホルダ23とで一対のヨーク21,22の両方を一度に溶着固定できる。また、接続部213,223は平面上(回転軸Oに対して直角)に並んでいるため、溶着プレート29とヨークホルダ23とを近接させた状態で溶着固定できる。この結果、溶着部分もその高さ方向(x軸方向)の寸法を小さくでき、溶着部分の剛性を高めることができる。
 溶着プレート29の溶着部30において、小径部301はヨークホルダ23のホルダ部233の貫通孔239よりも径方向内側の溶着可能面と溶着され、放射方向接続部303はホルダ部233の貫通孔236と貫通孔239との間の溶着可能面と溶着される。つまり、溶着プレート29とヨークホルダ23とが互いに溶着固定される部分を、周方向に延びる部分と径方向に延びる部分とから構成したため、溶融長さを大きくとることができ、溶着強度の向上を図ることができる。
 溶着プレート29の溶着部30に、ヨークホルダ23の貫通孔236と係合する係合突起部302aを設けた。溶着プレート29とヨークホルダ23との溶着固定においては、回転方向の位置決めが重要となるため、係合突起部302aと貫通孔236とからなる位置決め係合部を設けることにより、回転方向位置決め精度を向上できる。この結果、溶着プレート29の溶着部30を所望の位置に配置できる。
 溶着部30の大径部302において、係合突起部302aおよび非係合部302bの周方向両端に切り欠き部302cを設けた。図19(a)は溶着工程前のヨークアッシーの要部拡大図、図19(b)は溶着工程後のヨークアッシーの要部拡大図であり、溶着部30のうち、小径部301および放射方向接続部303はヨークホルダ23のホルダ部233と溶着される溶着部分であるのに対し、係合突起部302aおよび非係合部302bはホルダ部233と溶着されない非溶着部分である。ここで、仮に係合突起部302aが溶着部分と隣接する場合、溶融熱が大きなマスである係合突起部302a側に奪われ、溶融部分の係合突起側端部が溶着不良となるおそれがある。この溶着不良は、ヨークホルダ23に対する溶着プレート29の浮きの原因となる。そこで、溶着部分と係合突起部302aとの間に切り欠き部302cを設けることにより、溶融熱が係合突起側に移るのを抑制でき、浮きを抑えることができる。非係合部302bについても同様である。
 ヨークホルダ23のホルダ部233に、一対のヨーク21,22の接続部213,223を収容する凹部235,238を設けた。これにより、ホルダ部233に一対のヨーク21,22を装着したとき、凹部235,238が接続部213,223の板厚を吸収できるため、溶着プレート29とヨークホルダ23とをx軸方向に近接させることができる。この結果、溶着部分のx軸方向長さを短くできるため、溶着工程前の状態における組み付け安定性を向上できる。
 凹部235,238の両端に、接続部213,223の回転軸O周りの回転方向の移動を規制する段差面235a,238aを設けた。これにより、溶着プレート29およびヨークホルダ23に対する一対のヨーク21,22の回転方向位置決め精度を向上できる。
 凹部235,238の周方向両端に、凹溝235b,238bを形成した。凹部235,238の周方向両端部は、接続部213,223の端部と対応する部分であり、一対のヨーク21,22をプレス成形する場合にはいわゆるバリが発生する箇所となる。そこで、凹部235,238の周方向両端部を他の部分よりも深くすることにより、当該部分にバリを逃がすことができる。よって、接続部213,223と凹部235,238の平面部同士を突き当てた状態で一対のヨーク21,22のx軸方向位置決めをできるため、ため、溶着プレート29およびヨークホルダ23に対する接続部213,223の組み付け精度を向上できる。
 ヨークホルダ23のホルダ部233に一対のヨーク21,22の爪部211,221を貫通する貫通孔236,239を設けた。爪部211,221をホルダ部233の貫通孔236,239に突き刺す構造とすることにより、爪部211,221の抜けおよび回転軸O周りの回転方向の移動を規制できるため、ヨークホルダ23に一対のヨーク21,22を組み付けた状態での組み付け安定性を向上できる。
 貫通孔236,239の内周面236a,239aは、一対のヨーク21,22をヨークホルダ23に装着したとき、爪部211,221の内周面と当接する。一対のヨーク21,22は、多極磁石20に対する同軸性が重要となるため、爪部211,221の内周面と当接する内周面236a,239aをヨークホルダ23に設けたことにより、一対のヨーク21,22の多極磁石20に対する同軸性を向上できる。
 貫通孔236,239の内周面236a,239aは、多極磁石20とx軸方向において互いに離間する位置に設けられている。すなわち、内周面236a,239aと多極磁石20とがx軸方向にオーバーラップしないため、両者を互いに径方向にオーバーラップさせることができ、径方向寸法の小型化を図ることができる。
 集磁リングホルダ26の円環部261に、第2集磁リング25の集磁部253と係合することにより第2集磁リング25の周方向の位置決めをすると共に第1集磁リング24との径方向相対位置決めを行う円弧状壁部266を設けた。これにより、第2集磁リング25の周方向位置決めおよび第1集磁リング24との相対位置決め精度を向上できる。
 溶着プレート29の溶着部30は、円弧状壁部266のx軸負方向面266aの径方向内側寄り部分と当接し溶融する小径部301とx軸負方向面266aの径方向外側寄り部分と当接し溶融する大径部302(の非係合部302b)と小径部301とを接続するように形成された放射方向接続部303とが周方向に交互に配置されるように形成される。これにより、溶融部がいわゆる波型に形成されるため、溶融長さを長くとることができると共に、溶融部の大径部302は第1集磁リング24の保持力向上、小径部301は第2集磁リング25の保持力向上にそれぞれ寄与させることができる。
 円弧状壁部266のx軸正方向面261b側に複数の肉抜き部261dを設けた。これにより、円弧状壁部266のマスを肉抜き部261dによって減少させることができ、溶融熱の発散を抑制できる。また、円弧状壁部266の成形性も向上できる。
 円環部261のx軸負方向側面261aに、第1集磁リング24のx軸正方向端部を収容する第1係合溝264と第2集磁リング25のx軸正方向端部を収容する第2係合溝265を設けた。これにより、溶着固定前後における一対の集磁リング24,25の位置決め精度を向上できる。
 溶着プレート29の溶着部30を除く部分は、溶着部30に対してx軸方向の部材厚さが小さくなるように形成されることにより溶着固定後において撓み変形可能に形成されている。そして、溶着プレート29は、弾性変形した状態でホルダ部233と溶着固定される。これにより、溶着プレート29の撓み変形、すなわち弾性変形が一対のヨーク21,22への付勢力となり、一対のヨーク21,22の保持力を向上できる。
 一対のヨーク21,22の接続部213,223と溶着プレート29との当接面は、ホルダ部233の溶着可能面よりもx軸正方向側に位置する。よって、溶着プレート29をホルダ部233に溶着固定する際、溶融部は当接面よりもx軸負方向側となり、この結果、溶着プレート29が撓むため、一対のヨーク21,22の保持力を向上できる。
 溶着プレート29の溶着部30を除く部分は、溶着部30に対してx軸方向の部材厚さが小さくなるように形成されることにより溶着固定後において撓み変形可能に形成されている。そして、溶着プレート29は、弾性変形した状態で円弧状壁部266と溶着固定される。これにより、溶着プレート29の撓み変形、すなわち弾性変形が一対の集磁リング24,25への付勢力となり、一対の集磁リング24,25の保持力を向上できる。
 一対の集磁リング24,25と溶着プレート29との当接面は、円弧状壁部266の溶着可能面よりもx軸正方向側に位置する。よって、溶着プレート29を円弧状壁部266に溶着固定する際、溶融部は当接面よりもx軸負方向側となり、この結果、溶着プレート29が撓むため、一対の集磁リング24,25の保持力を向上できる。
 以下、実施例1の構成とこれに対応する効果とを列挙する。
 (1) 回転軸Oを中心に互いに相対回転可能設けられたピニオンシャフト4およびステアリングシャフト2と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された検出部材(一対のヨーク21,22)と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成された溶着プレート29とヨークホルダ23とから構成され、溶着プレート29とヨークホルダ23とで検出部材を挟み込んだ状態で溶着プレート29とヨークホルダ23とが互いに溶着固定されることにより検出部材とステアリングシャフト2とが接触しないように検出部材を保持する保持部材と、ピニオンシャフト4とステアリングシャフト2の相対回転に伴う多極磁石20と検出部材の相対回転により変化する検出部材内の磁界の変化を検出することによりピニオンシャフト4とステアリングシャフト2の相対回転を検出するホールICセンサ27と、を有する。
 よって、一対のヨーク21,22には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対のヨーク21,22の歪を抑制でき、トルクセンサ13の検出精度を向上できる。
 (2) 回転軸Oを中心に互いに相対回転可能設けられたピニオンシャフト4およびステアリングシャフト2と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された検出部材(一対の集磁リング24,25)と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成された溶着プレート29と集磁リングホルダ26とから構成され、溶着プレート29と集磁リングホルダ26とで検出部材を挟み込んだ状態で溶着プレート29と集磁リングホルダ26とが互いに溶着固定されることにより検出部材とステアリングシャフト2とが接触しないように検出部材を保持する保持部材と、ピニオンシャフト4とステアリングシャフト2の相対回転に伴う多極磁石20と検出部材の相対回転により変化する検出部材内の磁界の変化を検出することによりピニオンシャフト4とステアリングシャフト2の相対回転を検出するホールICセンサ27と、を有する。
 よって、一対の集磁リング24,25には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対の集磁リング24,25の歪を抑制でき、トルクセンサ13の検出精度を向上できる。
 (3) 検出部材は、第1ヨーク21と、第1ヨーク21とは別体に形成される第2ヨーク22と、から構成され、保持部材は、第1ヨーク21と第2ヨーク22とが互いに接触しないように第1ヨーク21と第2ヨーク22とを挟み込むことで第1ヨーク21および第2ヨーク22を保持する。
 よって、2つのヨーク21,22を一対の保持部材(溶着プレート29,ヨークホルダ23)で保持できるため、ヨーク毎に溶着プレートを必要とせず、部品点数を削減できる。
 (4) 検出部材は、第1集磁リング24と、第1集磁リング24とは別体に形成される第2集磁リング25と、から構成され、保持部材は、第1集磁リング24と第2集磁リング25とが互いに接触しないように第1集磁リング24と第2集磁リング25とを挟み込むことで第1集磁リング24および第2集磁リング25を保持する。
 よって、2つの集磁リング24,25を一対の保持部材(溶着プレート29,集磁リングホルダ26)で保持できるため、集磁リング毎に溶着プレートを必要とせず、部品点数を削減できる。
 (5) 回転軸Oを中心に第1ヨーク21および第2ヨーク22を回転自在に保持するギアボックスハウジング17を備え、ピニオンシャフト4およびステアリングシャフト2は、トーションバー3を介して互いに接続され、検出部材は、多極磁石20と対向するように回転軸Oと同心円上に配置された複数の板状部材である爪部211と、回転軸Oと同心円状に形成された円環部212と、爪部211のそれぞれから径方向外側に延びるように板状に形成され爪部211と円環部212とを接続する接続部213と、円環部212と接続された第2集磁リング25の集磁部253と、から構成され、板状に形成された爪部211のそれぞれが回転軸Oの放射方向に対して直角となるように配置され、板状に形成された接続部213のそれぞれが回転軸Oに対して直角となるように配置された第1ヨーク21と、多極磁石20と対向するように回転軸Oと同心円上に配置された複数の板状部材である爪部221と、回転軸Oと同心円状に形成された円環部222と、爪部221のそれぞれから径方向内側に延びるように板状に形成され爪部221と円環部222とを接続する接続部223と、円環部222と接続された第1集磁リング24の集磁部243と、から構成され、板状に形成された爪部221のそれぞれが回転軸Oの放射方向に対して直角となるように配置されかつ爪部211の各爪部の間に交互に並ぶように配置されると共に、爪部211と爪部221が回転軸Oを中心とした同一円上に配置され、円環部222が円環部212と離間するように配置され、板状に形成された接続部223のそれぞれが回転軸Oに対して直角となるように配置されかつ接続部213のそれぞれと交互に並ぶように配置された第2ヨーク22と、から構成され、ホールICセンサ27は、ギアボックスハウジング17に設けられ、トーションバー3の捩れによって生じる多極磁石20と爪部211および爪部221との相対角度の変化に伴う集磁部253と集磁部253の間の磁界の変化を検出することによりピニオンシャフト4とステアリングシャフト2間に生じるトルクを検出するためのホール素子27aを備え、保持部材は、溶着プレート29およびヨークホルダ23により接続部213および接続部223を挟み込んだ状態で溶着プレート29とヨークホルダ23とが互いに溶着固定されることにより第1ヨーク21および第2ヨーク22を保持する。
 よって、溶着プレート29とヨークホルダ23とで一対のヨーク21,22の両方を一度に溶着固定できる。また、溶着プレート29とヨークホルダ23とを近接させた状態で溶着固定できるため、溶着部分のx軸方向の寸法を小さく、溶着部分の剛性を高めることができる。
 (6) 溶着プレート29とヨークホルダ23とが互いに溶着固定される部分は、接続部213の径方向内側を通る小径部と、小径部から径方向外側に延びる放射方向接続部と、から構成される。
 すなわち、溶着プレート29とヨークホルダ23とが互いに溶着固定される部分を、周方向に延びる部分と径方向に延びる部分とから構成することで、周方向に延びる部分のみから構成した場合と比較して、溶融長さを大きくとることができ、溶着強度の向上を図ることができる。
 (7) ステアリングホイール1の回転に伴い回転するステアリングシャフト2と、ステアリングシャフト2とトーションバー3を介して接続されるピニオンシャフト4と、を備え、ステアリングホイール1の操舵操作を転舵輪8,8に伝達する操舵機構9と、ステアリングシャフト2およびピニオンシャフト4を回転自在に保持するギアボックスハウジング17と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された一対のヨーク21,22と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成された溶着プレート29とヨークホルダ23とから構成され、溶着プレート29とヨークホルダ23とで前記検出部材を挟み込んだ状態で溶着プレート29とヨークホルダ23とが互いに溶着固定されることにより一対のヨーク21,22とステアリングシャフト2とが接触しないように一対のヨーク21,22を保持する保持部材と、ギアボックスハウジング17に設けられ、ステアリングシャフト2とピニオンシャフト4の相対回転に伴う多極磁石20と一対のヨーク21,22の相対回転により変化する一対のヨーク21,22内の磁界の変化を検出することによりステアリングシャフト2とピニオンシャフト4の相対回転を検出するホールICセンサ27と、操舵機構9に操舵アシスト力を付与する電動モータ10と、ホールICセンサ27の出力信号から求められるステアリングシャフト2とピニオンシャフト4の間に生じるトルクに基づき電動モータ10への指令信号を演算すると共に、電動モータ10に指令信号を出力するモータ制御回路15と、を有する。
 よって、一対のヨーク21,22には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対のヨーク21,22の歪を抑制でき、トルクセンサ13の検出精度を向上できる。この結果、操舵アシスト力の制御精度を向上できる。
 (8) ステアリングホイール1の回転に伴い回転するステアリングシャフト2と、ステアリングシャフト2とトーションバー3を介して接続されるピニオンシャフト4と、を備え、ステアリングホイール1の操舵操作を転舵輪8,8に伝達する操舵機構9と、ステアリングシャフト2およびピニオンシャフト4を回転自在に保持するギアボックスハウジング17と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された一対の集磁リング24,25と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成された溶着プレート29と集磁リングホルダ26とから構成され、溶着プレート29と集磁リングホルダ26とで前記検出部材を挟み込んだ状態で溶着プレート29と集磁リングホルダ26とが互いに溶着固定されることにより一対の集磁リング24,25とステアリングシャフト2とが接触しないように一対の集磁リング24,25を保持する保持部材と、ギアボックスハウジング17に設けられ、ステアリングシャフト2とピニオンシャフト4の相対回転に伴う多極磁石20と一対の集磁リング24,25の相対回転により変化する一対の集磁リング24,25内の磁界の変化を検出することによりステアリングシャフト2とピニオンシャフト4の相対回転を検出するホールICセンサ27と、操舵機構9に操舵アシスト力を付与する電動モータ10と、ホールICセンサ27の出力信号から求められるステアリングシャフト2とピニオンシャフト4の間に生じるトルクに基づき電動モータ10への指令信号を演算すると共に、電動モータ10に指令信号を出力するモータ制御回路15と、を有する。
 よって、一対の集磁リング24,25には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対の集磁リング24,25の歪を抑制でき、トルクセンサ13の検出精度を向上できる。この結果、操舵アシスト力の制御精度を向上できる。
 〔他の実施例〕
 以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
 例えば、実施例では、トルクセンサに適用した例を示したが、回転センサにも適用できる。この場合、第2部材はハウジングに設けられる。
 また、磁性部材の極数は、N極とS極が1極ずつ以上であれば良い。
 溶着プレート29とヨークホルダ23とが互いに溶着固定される部分を、接続部213の径方向内側を通る小径部と、接続部223の径方向外側を通る大径部と、小径部と大径部とを接続する放射方向接続部と、から構成しても良い。これにより、溶着固定される部分が略波型形状となるため、溶融長さをより大きくとることができる。
 以下に、実施例から把握される特許請求の範囲に記載した発明以外の技術的思想について説明する。
 (a) 請求項3に記載の回転検出装置において、
 前記第1保持部材と前記第2保持部材は、互いに前記回転軸周りの回転方向位置決めを行う位置決め係合部を有することを特徴とする回転検出装置。
 溶着固定においては、回転方向の位置決めが重要となるため、位置決め係合部を設けることにより、回転方向位置決め精度を向上できる。
 (b) (a)に記載の回転検出装置において、
 前記位置決め係合部は、前記第1保持部材に設けられ前記回転軸方向に延びるように形成された係合突起部と、前記第2保持部材に設けられ前記係合突起部と対向する側に開口し凹状に形成され前記係合突起部を収容する係合凹部と、から構成され、
 前記回転軸周りの方向を周方向としたとき、前記第1保持部材は、前記係合突起部の前記周方向両側であって前記第2保持部材と対向する側に突出し溶着固定工程において溶融する溶融部と、前記溶融部と前記係合突起部との境界部に設けられ前記第1保持部材と第2保持部材とが溶着固定後においても互いに離間した状態となるように前記第2保持部材側に向かって開口する凹状に形成された切り欠き部と、を有することを特徴とする回転検出装置。
 溶融部分が係合突起部と隣接する場合、溶融熱が係合突起部側に奪われ溶融部分の係合突起部側端部が溶融不良となるおそれがある。この溶融不良は、第2保持部材に対する第1保持部材の浮きの原因となるため、切り欠き部を設けることにより、溶融熱が係合突起部側に移るのを抑制し、浮きを抑えることができる。
 (c) 請求項3に記載の回転検出装置において、
 前記第1保持部材または前記第2保持部材は、前記第1接続部および前記第2接続部を収容する凹部を有することを特徴とする回転検出装置。
 凹部が第1,第2接続部の板厚を吸収することにより、第1保持部材と第2保持部材とを接近させることができる。その結果、溶着部分の軸方向長さを短くすることができ、第1,第2保持部材に第1,第2ヨーク部材を配置後、溶着固定前の状態における組み付け安定性を向上できる。
 (d) (c)に記載の回転検出装置において、
 前記凹部は、前記第1接続部および前記第2接続部の前記回転軸周りの回転方向の移動を規制する回転方向規制部を有することを特徴とする回転検出装置。
 保持部材に対する第1,第2ヨーク部材の回転方向位置決め精度を向上できる。
 (e) (c)に記載の回転検出装置において、
 前記回転軸周りの方向を周方向としたとき、前記凹部は、前記回転軸方向深さが前記周方向の両端部においてその他の部分よりも深くなるように形成されることを特徴とする回転検出装置。
 凹部の周方向両端部は、第1,第2接続部の端部と対応する部分であり、第1,第2ヨーク部材をプレス成形する場合にはいわゆるバリが発生する箇所となる。凹部の周方向両端部を他の部分より深くすることにより、このバリを逃がすことができるため、保持部材に対する第1,第2接続部の組み付け精度を向上できる。
 (f) 請求項3に記載の回転検出装置において、
 前記第1保持部材または前記第2保持部材は、前記第1爪部および前記第2爪部が前記回転軸方向に貫通する複数の貫通孔を有することを特徴とする回転検出装置。
 第1,第2爪部が保持部材の貫通孔に刺さる構造であるため、保持部材に第1,第2ヨーク部材を組み付けた状態での組み付け安定性を向上できる。
 (g) 請求項3に記載の回転検出装置において、
 前記第1保持部材または前記第2保持部材は、前記第1爪部の内周面および前記第2爪部の内周面と当接することにより、前記第1ヨーク部材および前記第2ヨーク部材の前記回転軸に対する径方向位置を規定する径方向位置規制部を有することを特徴とする回転検出装置。
 第1,第2ヨーク部材は、磁性部材に対する同軸性が重要となるため、第1,第2ヨーク部材の軸心位置精度を向上させるため、第1,第2爪部の内周面と当接する径方向位置規制部を保持部材に設けたことにより、第1,第2ヨーク部材の磁性部材に対する同軸性を向上できる。
 (h) (g)に記載の回転検出装置において、
 前記保持部材の前記径方向位置規制部は、前記磁性部材と前記回転軸方向において互いに離間する位置に設けられることを特徴とする回転検出装置。
 径方向位置規制部と磁性部材とが軸方向にオーバーラップしないので、両部材を径方向に互いにオーバーラップさせることができ、径方向寸法の小型化を図ることができる。
 (i) 請求項2に記載の回転検出装置において、
 前記回転軸周りの方向を周方向としたとき、前記第1検出部材および前記第2検出部材は、前記回転軸を包囲するように形成され、前記周方向の所定部分が切り欠かれた切り欠き部と、前記回転軸を中心とした仮想円に沿うように形成された1対の円弧状部分と、を備え、
 前記第1検出部材は、この第1検出部材の前記円弧状部分に沿う仮想円の直径が、前記第2検出部材の前記円弧状部分に沿う仮想円の直径よりも大きくなるように形成され、
 前記第2検出部材は、前記1対の円弧状部分の間であって前記回転軸に対して前記切り欠き部の反対側に設けられ径方向外側に向かって凸状に形成された第2検出部材側係合部を備え、
 前記保持部材は、前記第2検出部材側係合部と係合することにより前記第2検出部材の前記周方向の位置決めをすると共に前記第1検出部材との径方向相対位置決めを行う第2検出部材用係合突起を有することを特徴とする回転検出装置。
 第2検出部材の周方向位置決めおよび第1検出部材との相対位置決め精度を向上できる。
 (j) (i)に記載の回転検出装置において、
 前記第2保持部材は、前記第1検出部材と前記第2検出部材の間に設けられ、前記第1検出部材側に突出するように形成された壁部を備え、
 前記第1保持部材は、前記第2保持部材の前記壁部の前記第1保持部材側に対向する面と当接し溶着固定工程において溶融する溶融部と、前記溶融部の径方向両側に設けられ前記第1検出部材と前記第2検出部材のそれぞれと当接することにより前記第1検出部材と前記第2検出部材を保持する保持部と、を備え、
 前記第1保持部材の前記溶融部は、前記壁部の径方向内側寄り部分と当接し溶融する小径部と前記壁部の径方向外側寄り部分と当接し溶融する大径部と前記小径部と前記大径部とを接続するように形成された接続部とが前記周方向に交互に配置されるように形成されることを特徴とする回転検出装置。
 溶融部がいわゆる波型に形成されるため、溶融長さを長くとることができると共に、溶融部の大径部は第1検出部材の保持力向上、小径部は第2検出部材の保持力向上にそれぞれ寄与させることができる。
 (k) (j)に記載の回転検出装置において、
 前記第2保持部材は、前記壁部の前記第1検出部材とは反対側に設けられ、前記回転軸方向に開口する凹状の肉抜き部を有することを特徴とする回転検出装置。
 壁部のマスを肉抜き部によって減少させることができ、溶融熱の発散を抑制することができる。
 (l) (i)に記載の回転検出装置において、
 前記保持部材は、前記回転軸方向に開口するように凹状に形成され、前記第1検出部材および前記第2検出部材の前記回転軸方向端部を収容する検出部材係合部を有することを特徴とする回転検出装置。
 溶着固定前後における第1,第2検出部材の位置決め精度を向上できる。
 (m) 請求項1に記載の回転検出装置において、
 前記第1保持部材は、前記第2保持部材と当接し溶着固定工程において溶融する溶融部と、前記溶融部の径方向内側または外側に設けられ前記検出部材の前記回転軸方向端部と当接する保持部と、を備え、
 前記第1保持部材の前記保持部は、前記溶融部に対して前記回転軸方向の部材厚さが小さくなるように形成されることにより溶着固定後において撓み変形可能に形成されることを特徴とする回転検出装置。
 保持部の撓み変形、すなわち弾性変形が検出部材への付勢力となり、検出部材の保持力を向上できる。
 (n) (m)に記載の回転検出装置において、
 前記第2保持部材は、前記第1保持部材の前記溶融部と当接する第2保持部材側当接部と、前記検出部材を収容する検出部材収容部と、を備え、
 前記検出部材は、前記第2保持部材側当接部よりも前記第1部材側に向かって突出するように前記第2保持部材に配置されることを特徴とする回転検出装置。
 第2保持部材側当接部は、検出部材よりも第1保持部材に対して凹んだ状態となる。よって、第1保持部材を溶着固定する際、溶融部における第1保持部材は第2保持部材の凹みに入り込むようになり、その結果、保持部が撓み、検出部材の保持力を向上できる。
 (o) (m)に記載の回転検出装置において、
 前記第1保持部材は、前記溶融部が前記保持部よりも前記第2保持部材側に突出するように弾性変形した状態で溶着固定されることを特徴とする回転検出装置。
 上記のように第1保持部材が弾性変形することにより、検出部材の保持力を向上できる。
1 ステアリングホイール
2 ステアリングシャフト(第2部材,入力軸)
3 トーションバー
4 ピニオンシャフト(第1部材,出力軸)
8 転舵輪
9 操舵機構
10 電動モータ
13 トルクセンサ(回転検出装置)
15 モータ制御回路
17 ギアボックスハウジング(ハウジング)
20 多極磁石(磁性部材)
21 第1ヨーク(検出部材)
22 第2ヨーク(検出部材)
23 ヨークホルダ(保持部材,第2保持部材)
24 第1集磁リング(検出部材)
25 第2集磁リング(検出部材)
26 集磁リングホルダ(保持部材,第2保持部材)
27 ホールICセンサ(磁気センサ)
29 溶着プレート(保持部材,第1保持部材)

Claims (20)

  1.  回転軸を中心に互いに相対回転可能設けられた第1部材および第2部材と、
     前記第1部材に設けられ、前記回転軸周りにN極とS極が交互に配置された磁性部材と、
     前記磁性部材と対向するように設けられ、磁性材料で形成された検出部材と、
     前記第2部材に固定され、熱可塑性樹脂材料で形成された第1保持部材と第2保持部材とから構成され、前記第1保持部材と前記第2保持部材とで前記検出部材を挟み込んだ状態で前記第1保持部材と前記第2保持部材とが互いに溶着固定されることにより前記検出部材と前記第2部材とが接触しないように前記検出部材を保持する保持部材と、
     前記第1部材と前記第2部材の相対回転に伴う前記磁性部材と前記検出部材の相対回転により変化する前記検出部材内の磁界の変化を検出することにより前記第1部材と前記第2部材の相対回転を検出する磁気センサと、
     を有することを特徴とする回転検出装置。
  2.  請求項1に記載の回転検出装置において、
     前記検出部材は、第1検出部材と、前記第1検出部材とは別体に形成される第2検出部材と、から構成され、
     前記保持部材は、前記第1検出部材と前記第2検出部材とが互いに接触しないように前記第1検出部材と前記第2検出部材とを挟み込むことで前記第1検出部材および前記第2検出部材を保持することを特徴とする回転検出装置。
  3.  請求項2に記載の回転検出装置において、
     前記回転軸を中心に前記第1部材および前記第2部材を回転自在に保持するハウジングを備え、
     前記第1部材および前記第2部材は、トーションバーを介して互いに接続され、
     前記検出部材は、前記磁性部材と対向するように前記回転軸と同心円上に配置された複数の板状部材である第1爪部と、前記回転軸と同心円状に形成された第1円環部と、前記第1爪部のそれぞれから径方向外側に延びるように板状に形成され前記第1爪部と前記第1円環部とを接続する第1接続部と、前記第1円環部と接続された第1被検出部と、から構成され、板状に形成された前記第1爪部のそれぞれが前記回転軸の放射方向に対して直角となるように配置され、板状に形成された前記第1接続部のそれぞれが前記回転軸に対して直角となるように配置された第1ヨーク部材と、
     前記磁性部材と対向するように前記回転軸と同心円上に配置された複数の板状部材である第2爪部と、前記回転軸と同心円状に形成された第2円環部と、前記第2爪部のそれぞれから径方向内側に延びるように板状に形成され前記第2爪部と前記第2円環部とを接続する第2接続部と、前記第2円環部と接続された第2被検出部と、から構成され、板状に形成された前記第2爪部のそれぞれが前記回転軸の放射方向に対して直角となるように配置されかつ前記第1爪部の各爪部の間に交互に並ぶように配置されると共に、前記第1爪部と前記第2爪部が前記回転軸を中心とした同一円上に配置され、前記第2円環部が前記第1円環部と離間するように配置され、板状に形成された前記第2接続部のそれぞれが前記回転軸に対して直角となるように配置されかつ前記第1接続部のそれぞれと交互に並ぶように配置された第2ヨーク部材と、から構成され、
     前記磁気センサは、前記ハウジングに設けられ、前記トーションバーの捩れによって生じる前記磁性部材と前記第1爪部および前記第2爪部との相対角度の変化に伴う前記第1被検出部と前記第2被検出部の間の磁界の変化を検出することにより前記第1部材と前記第2部材間に生じるトルクを検出するためのホール素子を備え、
     前記保持部材は、前記第1保持部材および前記第2保持部材により前記第1接続部および前記第2接続部を挟み込んだ状態で前記第1保持部材と前記第2保持部材とが互いに溶着固定されることにより前記検出部材を保持することを特徴とする回転検出装置。
  4.  請求項3に記載の回転検出装置において、
     前記第1保持部材と前記第2保持部材とが互いに溶着固定される部分は、前記第1接続部の径方向内側を通る小径部と前記第2接続部の径方向外側を通る大径部と前記小径部と前記大径部とを接続する放射方向接続部と、から構成されることを特徴とする回転検出装置。
  5.  請求項3に記載の回転検出装置において、
     前記第1保持部材と前記第2保持部材は、互いに前記回転軸周りの回転方向位置決めを行う位置決め係合部を有することを特徴とする回転検出装置。
  6.  請求項5に記載の回転検出装置において、
     前記位置決め係合部は、前記第1保持部材に設けられ前記回転軸方向に延びるように形成された係合突起部と、前記第2保持部材に設けられ前記係合突起部と対向する側に開口し凹状に形成され前記係合突起部を収容する係合凹部と、から構成され、
     前記回転軸周りの方向を周方向としたとき、前記第1保持部材は、前記係合突起部の前記周方向両側であって前記第2保持部材と対向する側に突出し溶着固定工程において溶融する溶融部と、前記溶融部と前記係合突起部との境界部に設けられ前記第1保持部材と第2保持部材とが溶着固定後においても互いに離間した状態となるように前記第2保持部材側に向かって開口する凹状に形成された切り欠き部と、を有することを特徴とする回転検出装置。
  7.  請求項3に記載の回転検出装置において、
     前記第1保持部材または前記第2保持部材は、前記第1接続部および前記第2接続部を収容する凹部を有することを特徴とする回転検出装置。
  8.  請求項7に記載の回転検出装置において、
     前記凹部は、前記第1接続部および前記第2接続部の前記回転軸周りの回転方向の移動を規制する回転方向規制部を有することを特徴とする回転検出装置。
  9.  請求項7に記載の回転検出装置において、
     前記回転軸周りの方向を周方向としたとき、前記凹部は、前記回転軸方向深さが前記周方向の両端部においてその他の部分よりも深くなるように形成されることを特徴とする回転検出装置。
  10.  請求項3に記載の回転検出装置において、
     前記第1保持部材または前記第2保持部材は、前記第1爪部および前記第2爪部が前記回転軸方向に貫通する複数の貫通孔を有することを特徴とする回転検出装置。
  11.  請求項3に記載の回転検出装置において、
     前記第1保持部材または前記第2保持部材は、前記第1爪部の内周面および前記第2爪部の内周面と当接することにより、前記第1ヨーク部材および前記第2ヨーク部材の前記回転軸に対する径方向位置を規定する径方向位置規制部を有することを特徴とする回転検出装置。
  12.  請求項11に記載の回転検出装置において、
     前記保持部材の前記径方向位置規制部は、前記磁性部材と前記回転軸方向において互いに離間する位置に設けられることを特徴とする回転検出装置。
  13.  請求項2に記載の回転検出装置において、
     前記回転軸周りの方向を周方向としたとき、前記第1検出部材および前記第2検出部材は、前記回転軸を包囲するように形成され、前記周方向の所定部分が切り欠かれた切り欠き部と、前記回転軸を中心とした仮想円に沿うように形成された1対の円弧状部分と、を備え、
     前記第1検出部材は、この第1検出部材の前記円弧状部分に沿う仮想円の直径が、前記第2検出部材の前記円弧状部分に沿う仮想円の直径よりも大きくなるように形成され、
     前記第2検出部材は、前記1対の円弧状部分の間であって前記回転軸に対して前記切り欠き部の反対側に設けられ径方向外側に向かって凸状に形成された第2検出部材側係合部を備え、
     前記保持部材は、前記第2検出部材側係合部と係合することにより前記第2検出部材の前記周方向の位置決めをすると共に前記第1検出部材との径方向相対位置決めを行う第2検出部材用係合突起を有することを特徴とする回転検出装置。
  14.  請求項13に記載の回転検出装置において、
     前記第2保持部材は、前記第1検出部材と前記第2検出部材の間に設けられ、前記第1検出部材側に突出するように形成された壁部を備え、
     前記第1保持部材は、前記第2保持部材の前記壁部の前記第1保持部材側に対向する面と当接し溶着固定工程において溶融する溶融部と、前記溶融部の径方向両側に設けられ前記第1検出部材と前記第2検出部材のそれぞれと当接することにより前記第1検出部材と前記第2検出部材を保持する保持部と、を備え、
     前記第1保持部材の前記溶融部は、前記壁部の径方向内側寄り部分と当接し溶融する小径部と前記壁部の径方向外側寄り部分と当接し溶融する大径部と前記小径部と前記大径部とを接続するように形成された接続部とが前記周方向に交互に配置されるように形成されることを特徴とする回転検出装置。
  15.  請求項14に記載の回転検出装置において、
     前記第2保持部材は、前記壁部の前記第1検出部材とは反対側に設けられ、前記回転軸方向に開口する凹状の肉抜き部を有することを特徴とする回転検出装置。
  16.  請求項13に記載の回転検出装置において、
     前記保持部材は、前記回転軸方向に開口するように凹状に形成され、前記第1検出部材および前記第2検出部材の前記回転軸方向端部を収容する検出部材係合部を有することを特徴とする回転検出装置。
  17.  請求項1に記載の回転検出装置において、
     前記第1保持部材は、前記第2保持部材と当接し溶着固定工程において溶融する溶融部と、前記溶融部の径方向内側または外側に設けられ前記検出部材の前記回転軸方向端部と当接する保持部と、を備え、
     前記第1保持部材の前記保持部は、前記溶融部に対して前記回転軸方向の部材厚さが小さくなるように形成されることにより溶着固定後において撓み変形可能に形成されることを特徴とする回転検出装置。
  18.  請求項17に記載の回転検出装置において、
     前記第2保持部材は、前記第1保持部材の前記溶融部と当接する第2保持部材側当接部と、前記検出部材を収容する検出部材収容部と、を備え、
     前記検出部材は、前記第2保持部材側当接部よりも前記第1部材側に向かって突出するように前記第2保持部材に配置されることを特徴とする回転検出装置。
  19.  請求項17に記載の回転検出装置において、
     前記第1保持部材は、前記溶融部が前記保持部よりも前記第2保持部材側に突出するように弾性変形した状態で溶着固定されることを特徴とする回転検出装置。
  20.  ステアリングホイールの回転に伴い回転する入力軸と、前記入力軸とトーションバーを介して接続される出力軸と、を備え、ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、
     前記入力軸および前記出力軸を回転自在に保持するハウジングと、
     前記出力軸に設けられ、前記回転軸周りにN極とS極が交互に配置された磁性部材と、
     前記磁性部材と対向するように設けられ、磁性材料で形成された検出部材と、
     前記入力軸に固定され、熱可塑性樹脂材料で形成された第1保持部材と第2保持部材と
    から構成され、前記第1保持部材と前記第2保持部材とで前記検出部材を挟み込んだ状態で前記第1保持部材と前記第2保持部材とが互いに溶着固定されることにより前記検出部材と前記入力軸とが接触しないように前記検出部材を保持する保持部材と、
     前記ハウジングに設けられ、前記入力軸と前記出力軸の相対回転に伴う前記磁性部材と
    前記検出部材の相対回転により変化する前記検出部材内の磁界の変化を検出することにより前記入力軸と前記出力軸の相対回転を検出する磁気センサと、
     前記操舵機構に操舵アシスト力を付与する電動モータと、
     前記磁気センサの出力信号から求められる前記入力軸と前記出力軸の間に生じるトルクに基づき前記電動モータへの指令信号を演算すると共に、前記電動モータに前記指令信号を出力するモータ制御回路と、
     を有することを特徴とするパワーステアリング装置。
PCT/JP2014/051639 2013-03-22 2014-01-27 回転検出装置およびパワーステアリング装置 WO2014148106A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014001572.5T DE112014001572B4 (de) 2013-03-22 2014-01-27 Drehungserfassungsvorrichtung und Servolenkvorrichtung
US14/651,834 US9505431B2 (en) 2013-03-22 2014-01-27 Rotation detection device and power steering device
KR1020157006982A KR101552463B1 (ko) 2013-03-22 2014-01-27 회전 검출 장치 및 파워 스티어링 장치
CN201480002451.7A CN104641210B (zh) 2013-03-22 2014-01-27 旋转检测装置及动力转向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013060844A JP5864466B2 (ja) 2013-03-22 2013-03-22 回転検出装置およびパワーステアリング装置
JP2013-060844 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148106A1 true WO2014148106A1 (ja) 2014-09-25

Family

ID=51579802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051639 WO2014148106A1 (ja) 2013-03-22 2014-01-27 回転検出装置およびパワーステアリング装置

Country Status (6)

Country Link
US (1) US9505431B2 (ja)
JP (1) JP5864466B2 (ja)
KR (1) KR101552463B1 (ja)
CN (1) CN104641210B (ja)
DE (1) DE112014001572B4 (ja)
WO (1) WO2014148106A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349529A (zh) * 2015-11-18 2018-07-31 Kyb株式会社 动力转向装置及具备该动力转向装置的转向装置
US11273866B2 (en) * 2016-09-23 2022-03-15 Hitachi Astemo, Ltd. Torque sensor and electric power steering system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021137A1 (de) * 2012-10-27 2014-04-30 Valeo Schalter Und Sensoren Gmbh Sensoreinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Erstellen einer Sensoreinrichtung
WO2016006461A1 (ja) * 2014-07-09 2016-01-14 日立オートモティブシステムズステアリング株式会社 回転角検出装置およびパワーステアリング装置
JP6295483B2 (ja) * 2014-09-19 2018-03-20 日立オートモティブシステムズ株式会社 パワーステアリング装置およびパワーステアリング装置の組み立て方法
JP6374782B2 (ja) * 2014-12-12 2018-08-15 株式会社ショーワ 車両用転舵装置
JP6268442B2 (ja) * 2015-06-02 2018-01-31 日立オートモティブシステムズ株式会社 トルクセンサおよび電動パワーステアリング装置
JP6515760B2 (ja) * 2015-09-24 2019-05-22 日立オートモティブシステムズ株式会社 回転角検出装置
JP6519452B2 (ja) * 2015-11-11 2019-05-29 日本精工株式会社 ヨークカバー、トルク検出装置及び電動パワーステアリング装置、並びにヨークカバーの製造方法及び電動パワーステアリング装置の製造方法
JP6551178B2 (ja) * 2015-11-11 2019-07-31 日本精工株式会社 ヨークカバー、トルク検出装置及び電動パワーステアリング装置、並びにヨークカバーの製造方法及び電動パワーステアリング装置の製造方法
JP6645199B2 (ja) * 2015-12-03 2020-02-14 株式会社ジェイテクト センサアッセンブリーおよびセンサアッセンブリーの製造方法
DE102016101542A1 (de) * 2016-01-28 2017-08-03 Infineon Technologies Ag Sensoreinhausung
JP6565065B2 (ja) * 2016-06-08 2019-08-28 日立オートモティブシステムズ株式会社 トルクセンサ
DE102016013272A1 (de) * 2016-11-09 2018-05-09 Thyssenkrupp Ag Verfahren zur vereinfachten Montage eines Zahnstangenlenkgetriebes einer Zahnstangenlenkung
DE102017117716A1 (de) * 2017-08-04 2019-02-07 Thyssenkrupp Ag Verfahren zur Montage einer integralen Baueinheit in einer elektromechanischen Kraftfahrzeuglenkung mit einer Drehmomentsensoreinheit und einer Lenkwinkelsensoreinheit mittels Ultraschallschweißen
US11013340B2 (en) 2018-05-23 2021-05-25 L&P Property Management Company Pocketed spring assembly having dimensionally stabilizing substrate
DE102018117565A1 (de) 2018-07-20 2020-01-23 Valeo Schalter Und Sensoren Gmbh Statoranordnung für eine Drehmomentsensorvorrichtung und Drehmomentsensorvorrichtung
DE102018117564A1 (de) 2018-07-20 2020-01-23 Valeo Schalter Und Sensoren Gmbh Verfahren zur Herstellung eines Statorelements, Statorelement, Statoranordnung und Drehmomentsensorvorrichtung
JP7397852B2 (ja) * 2018-08-23 2023-12-13 エルジー イノテック カンパニー リミテッド センシング装置
KR20200134473A (ko) * 2019-05-22 2020-12-02 엘지이노텍 주식회사 센싱 장치
JP2023509080A (ja) * 2020-01-07 2023-03-06 エルジー イノテック カンパニー リミテッド センシング装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956141A (ja) * 1995-08-14 1997-02-25 Sanyo Electric Co Ltd 小形モータ
JP2004093183A (ja) * 2002-08-29 2004-03-25 Unisia Jkc Steering System Co Ltd 電動パワーステアリング用トルクセンサ
JP2009271055A (ja) * 2008-04-10 2009-11-19 Nsk Ltd トルク検出器及び電動パワーステアリング装置並びにトルク検出器の製造方法
JP2010539472A (ja) * 2007-09-10 2010-12-16 エルジー イノテック カンパニー,リミティド ステーターアセンブリー及びトルク測定装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821668B1 (fr) * 2001-03-02 2003-05-02 Moving Magnet Tech Capteur de position, notamment destine a la detection de la torsion d'une colonne de direction
US6701792B2 (en) * 2001-08-27 2004-03-09 Visteon Global Technologies, Inc. Torque sensing apparatus for measuring relative torque between two shafts
DE10316124A1 (de) * 2003-04-04 2004-10-28 Valeo Schalter Und Sensoren Gmbh Vorrichtung zum Bestimmen eines auf eine Welle ausgeübten Drehmoments
DE102004023801A1 (de) * 2004-01-20 2005-08-25 Valeo Schalter Und Sensoren Gmbh Vorrichtung zum Bestimmen eines Lenkwinkels und eines an einer Lenkwelle ausgeübten Drehmoments
JP2006038767A (ja) * 2004-07-29 2006-02-09 Favess Co Ltd トルク検出装置
JP2008180518A (ja) 2007-01-23 2008-08-07 Nsk Ltd トルクセンサ
CN101980915B (zh) * 2008-06-26 2014-04-16 大星电机工业株式会社 用于转向系统的非接触式扭矩传感器
JP2011013133A (ja) * 2009-07-03 2011-01-20 Kyb Co Ltd トルクセンサ
KR101650455B1 (ko) * 2009-11-20 2016-08-23 엘지이노텍 주식회사 차량의 조향토크 및 조향각 검출장치
JP5513902B2 (ja) * 2010-01-12 2014-06-04 カヤバ工業株式会社 トルクセンサ
KR101633127B1 (ko) * 2010-03-30 2016-06-24 엘지이노텍 주식회사 토크 측정장치
KR101913858B1 (ko) * 2011-12-06 2018-10-31 타이코에이엠피 주식회사 스티어링 칼럼의 비틀림을 측정하기 위한 토크센서 및 이를 이용한 측정방법
US9694847B2 (en) * 2013-03-14 2017-07-04 Hitachi Automotive Systems Steering, Ltd. Torque detection structure for power steering device, and power steering device using same
JP6295483B2 (ja) * 2014-09-19 2018-03-20 日立オートモティブシステムズ株式会社 パワーステアリング装置およびパワーステアリング装置の組み立て方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956141A (ja) * 1995-08-14 1997-02-25 Sanyo Electric Co Ltd 小形モータ
JP2004093183A (ja) * 2002-08-29 2004-03-25 Unisia Jkc Steering System Co Ltd 電動パワーステアリング用トルクセンサ
JP2010539472A (ja) * 2007-09-10 2010-12-16 エルジー イノテック カンパニー,リミティド ステーターアセンブリー及びトルク測定装置
JP2009271055A (ja) * 2008-04-10 2009-11-19 Nsk Ltd トルク検出器及び電動パワーステアリング装置並びにトルク検出器の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349529A (zh) * 2015-11-18 2018-07-31 Kyb株式会社 动力转向装置及具备该动力转向装置的转向装置
US11273866B2 (en) * 2016-09-23 2022-03-15 Hitachi Astemo, Ltd. Torque sensor and electric power steering system

Also Published As

Publication number Publication date
DE112014001572T5 (de) 2015-12-03
CN104641210B (zh) 2016-06-29
JP5864466B2 (ja) 2016-02-17
JP2014185933A (ja) 2014-10-02
KR101552463B1 (ko) 2015-09-10
CN104641210A (zh) 2015-05-20
US20160016607A1 (en) 2016-01-21
KR20150036833A (ko) 2015-04-07
DE112014001572B4 (de) 2018-02-15
US9505431B2 (en) 2016-11-29

Similar Documents

Publication Publication Date Title
JP5864466B2 (ja) 回転検出装置およびパワーステアリング装置
JP6291682B2 (ja) 回転角検出装置およびパワーステアリング装置
US9302700B2 (en) Torque sensor and power steering system using the torque sensor
JP6295483B2 (ja) パワーステアリング装置およびパワーステアリング装置の組み立て方法
CA2660301C (en) Torque sensor
US9459165B2 (en) Sensor unit, torque detector, and electric power steering device
US20140174202A1 (en) Torque detector and steering system including the torque detector
JP2017533408A (ja) トルクセンサー装置
US10088377B2 (en) Torque sensor device
JP2013160536A (ja) トルク検出装置およびこれを備える電動パワーステアリング装置
JP6214444B2 (ja) ステータユニット、トルク検出装置、電動パワーステアリング装置及びステータユニットの製造方法
JP2014149180A (ja) トルクセンサ
KR20160121896A (ko) 토크센서모듈 및 이를 포함하는 조향각 센싱장치
JP7021957B2 (ja) トルクセンサ
JP5978876B2 (ja) トルク検出装置、および同装置を備えるステアリング装置
JP6515760B2 (ja) 回転角検出装置
JP2011080870A (ja) トルクセンサ及び電動パワーステアリング装置
JP6560162B2 (ja) 回転角検出装置
JP2013160537A (ja) トルク検出装置およびこれを備える電動パワーステアリング装置
JP7475306B2 (ja) センサ装置、電動パワーステアリング装置
JP5994263B2 (ja) トルク検出装置およびその製造方法
JP2009294018A (ja) トルクセンサの組立方法
JP2021173634A (ja) トルクセンサ
JP2018059740A (ja) トルクセンサ
JP2007139512A (ja) トルク検出装置及び電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006982

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651834

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140015725

Country of ref document: DE

Ref document number: 112014001572

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768171

Country of ref document: EP

Kind code of ref document: A1