WO2014148088A1 - シートベルト用スルーアンカおよびシートベルト装置 - Google Patents

シートベルト用スルーアンカおよびシートベルト装置 Download PDF

Info

Publication number
WO2014148088A1
WO2014148088A1 PCT/JP2014/051050 JP2014051050W WO2014148088A1 WO 2014148088 A1 WO2014148088 A1 WO 2014148088A1 JP 2014051050 W JP2014051050 W JP 2014051050W WO 2014148088 A1 WO2014148088 A1 WO 2014148088A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
webbing
bump
vehicle
seat belt
Prior art date
Application number
PCT/JP2014/051050
Other languages
English (en)
French (fr)
Inventor
新一 若林
洋介 神野
敏仁 名取
Original Assignee
オートリブ ディベロップメント エービー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オートリブ ディベロップメント エービー filed Critical オートリブ ディベロップメント エービー
Priority to JP2015506628A priority Critical patent/JP6009650B2/ja
Priority to CN201480017150.1A priority patent/CN105073513B/zh
Priority to US14/777,992 priority patent/US9457764B2/en
Publication of WO2014148088A1 publication Critical patent/WO2014148088A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/18Anchoring devices
    • B60R22/24Anchoring devices secured to the side, door, or roof of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/18Anchoring devices
    • B60R2022/1818Belt guides

Definitions

  • the present invention relates to a through anchor for a seat belt through which a webbing for restraining an occupant is inserted, and a seat belt apparatus including the same.
  • the seat belt device is installed in the vehicle seat.
  • the seat belt device is a safety device that restrains an occupant using webbing, and suppresses the occupant from jumping forward due to inertial force when a large deceleration acts on the vehicle due to a sudden stop or a collision.
  • the webbing is pulled out from the retractor winding the webbing upward in the vehicle, passed through the through anchor fixed to the vehicle body, and folded back downward in the vehicle.
  • An anchor plate that is fixed to the lower part of the passenger compartment is attached to the front end of the folded webbing.
  • a tongue plate that is slidable on the webbing through the webbing is disposed between the through anchor and the anchor plate.
  • a buckle is provided on a side portion (vehicle center side) of the vehicle seat.
  • the occupant grips the tongue plate, pulls out the webbing from the retractor, and inserts the tongue plate into the buckle, and the occupant is restrained by the webbing.
  • Patent Document 1 describes a through anchor in which a protrusion is provided on the vehicle exterior side of the through anchor, that is, on the wall side in the vehicle interior. In this through anchor, jamming is prevented by hooking webbing onto the protrusion of the through anchor.
  • Patent Document 2 describes a through anchor in which a protrusion (rectifier plate) is provided on the inside of the through anchor so that the webbing is not twisted when the webbing is wound after the occupant removes the webbing.
  • a protrusion rectifier plate
  • the webbing is inserted into the through-hole of the through anchor so that the webbing is located on the vehicle inner side along the direction in which the webbing is drawn across the insertion hole, and the webbing is located on the retractor side (wall side) following the webbing. Divided into webbing. Therefore, in the through anchor described in Patent Document 1, the webbing on the wall side may be caught by the protrusion.
  • the pretensioner is activated and the webbing on the wall side is once retracted, and then the occupant moves forward and puts weight on the inner webbing. It is. Since the webbing inside the vehicle restrains the vicinity of the occupant's shoulder, the webbing is pulled forward while maintaining the height of the shoulder as the occupant moves. For this reason, the webbing inside the vehicle shows a behavior approaching a more horizontal state.
  • the through anchor described in Patent Document 2 is provided with a rectifying plate on the inside of the through anchor, it is only assumed to operate when the webbing is stored, and assumes a situation in which a large force is applied in the event of an emergency of the vehicle. It is not a thing.
  • the baffle plate is provided in the position away from the insertion hole. Therefore, in a situation where the webbing is pulled out horizontally in the event of an emergency of the vehicle, the rectifying plate cannot act on the force with which the webbing itself tries to offset in the insertion hole. That is, in principle, the current plate has no function to prevent jamming.
  • the through anchor receives a large load that causes the torsion bar inside the retractor to be twisted and deformed.
  • the current plate described in Patent Document 2 is only a plate material provided at a position away from the insertion hole, and cannot withstand a large load accompanying an emergency of the vehicle.
  • the through anchor described in Patent Document 2 the current plate itself may be deformed in the event of an emergency of the vehicle, and it can be said that jamming may not be prevented from this aspect.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a seat belt through anchor and a seat belt device capable of preventing jamming of a vehicle in an emergency.
  • a typical structure of a through anchor for a seatbelt is a seatbelt that is rotatably attached to a wall of a vehicle interior and is folded by inserting a belt-shaped webbing coming from a retractor. It is a through-anchor and is an insertion hole through which the webbing is inserted. It extends in a curved manner from the end of the lower edge and a substantially straight lower edge that contacts the webbing surface and slides the webbing across the webbing.
  • An insertion hole including a lateral edge, a lower part provided on the lower side of the lower edge, and on the surface of the through anchor, provided from the vicinity of the end of the lower part toward the lateral direction of the through anchor, And a bump part that protrudes from the surface of the lower part toward the direction corresponding to the vehicle interior side when the through anchor is installed, and the bump part most protrudes on the way away from the lateral edge.
  • a bump part that protrudes from the surface of the lower part toward the direction corresponding to the vehicle interior side when the through anchor is installed, and the bump part most protrudes on the way away from the lateral edge.
  • webbing opening angle the angle formed between the webbing located on the wall side with respect to the insertion hole and the webbing located on the vehicle inner side
  • the webbing opening angle increases and the webbing approaches a horizontal state, the webbing is not simply along the wall.
  • the angle between the webbing and the wall also increases. That is, in an emergency, the webbing moves to the end of the lower edge (the vehicle front side) while leaving the lower edge of the insertion hole that has been in contact. Further, the webbing moves so as to cover (climb) the lateral edge while contacting the lateral edge extending from the end of the lower edge.
  • “horizontal” or “lateral direction” means that the center of the bolt hole and the center of the insertion hole in the horizontal direction when viewed from the front when the through anchor is installed in the vehicle.
  • the direction that spreads to the left or right with respect to the central line connecting the two is called the horizontal or horizontal direction.
  • the ceiling direction of the vehicle is “up” and the floor direction is “down”.
  • the terms representing these positions are based on the positional relationship when the through anchor is installed on the vehicle.
  • the lower side portion is provided below the lower edge of the insertion hole, and further, the bump portion protruding from the surface of the lower side portion is provided.
  • the bump portion has a first sliding surface formed between the ridge and the lateral edge that is most raised on the way away from the lateral edge, and the first sliding surface is at least outside the through anchor. It is configured to include a convex curved surface. For this reason, when the webbing climbs the lateral edge, it moves away from the lower edge and reduces the contact area. On the other hand, the webbing slides against the bump part while maintaining contact with the bump part over a wide area. It is possible to smoothly climb the sliding surface and reach the peak.
  • the webbing is separated from the lower edge of the insertion hole in the event of a vehicle emergency, it ensures a wide surface contact with the bump part while smoothly climbing the first sliding surface of the bump part.
  • the webbing that smoothly climbs the first sliding surface while ensuring a wide surface contact with the bump portion is restrained from moving with respect to the through anchor due to the frictional force generated thereby.
  • the webbing can give a force (hereinafter referred to as a rotational force) that causes the through anchor to rotate through the first sliding surface of the bump portion in surface contact.
  • the webbing does not excessively climb the first sliding surface of the bump portion due to the action of the rotational force. As a result, since the through anchor rotates, it is possible to prevent jamming in which the webbing is shifted to one side of the through anchor insertion hole.
  • the through anchor is easily given a rotational force by the bump portion, it becomes easy to rotate when pulling out the webbing during normal use other than in an emergency of the vehicle. For this reason, the through anchor rotates each time the webbing is pulled out, and the webbing pulling angle tends to be an optimum angle with respect to the through anchor.
  • the optimum angle refers to an angle in a range where the webbing can slide in contact with the lower edge of the through-hole of the through anchor when the webbing is pulled out during normal use.
  • the through anchor rotates insufficiently when the webbing is pulled out, and the through anchor itself becomes a resistance to the pulled out webbing.
  • the conventional through anchor it is difficult for the webbing to slide in contact with the lower edge of the insertion hole when the webbing is pulled out. As a result, the webbing pulling force cannot be reduced sufficiently.
  • the through anchor of the present invention can be rotated following the webbing withdrawal during normal use by being given a rotational force by the bump portion. Therefore, the through anchor hardly resists the webbing that is pulled out, and the webbing can always slide in contact with the lower edge of the insertion hole, thereby reducing the webbing pull-out force. Therefore, according to the through anchor of the present invention, not only jamming can be prevented in an emergency of the vehicle, but also the pulling force of the webbing can be reduced during normal use.
  • the flange part of the bump part When the portion protruding from the lower part of the bump part is viewed in a cross section including the lower part, the flange part of the bump part has a concave shape outward from the through anchor, and the vicinity of the peak part is a through anchor. It is good to include the 2nd sliding surface comprised so that it may become convex shape outward from the concave shape and convex shape, and it may connect smoothly.
  • the webbing smoothly climbs the second sliding surface in the emergency of the vehicle, and the bump portion from the lower side portion. To. For this reason, the webbing can give a rotational force to the through anchor via the second sliding surface before the first sliding surface when climbing the bump portion. Accordingly, the through anchor rotates at an early stage, thereby preventing jamming more reliably.
  • the plane from the ridge portion to the ridge portion of the bump portion includes a plane, and the plane is preferably configured so as to be smoothly connected to the concave shape of the ridge portion and the convex shape of the ridge portion.
  • first sliding surface and the second sliding surface are connected by a smoothly continuous surface.
  • the webbing smoothly climbs the first sliding surface from the second sliding surface through this continuous surface, and applies a rotational force to the through anchor in the process of reaching the peak portion of the bump portion. Assuredly, jamming is prevented as a result.
  • the above-described bump portion may have a first sliding surface between a ridgeline formed by connecting the ridges and a lateral edge. For this reason, although the webbing is separated from the lower edge of the insertion hole in an emergency of the vehicle, it can ensure a wide surface contact with the bump part while smoothly climbing the first sliding surface of the bump part extending from the lateral edge to the ridge line. . Such webbing that smoothly climbs the first sliding surface gives a rotational force to the through anchor via the first sliding surface, and as a result, jamming can be prevented.
  • the above ridgeline may be formed along the shape of the lateral edge.
  • the webbing can reliably ensure a wide area surface contact with the bump part while smoothly climbing the first sliding surface of the bump part extending from the lateral edge to the ridge line in an emergency of the vehicle. Therefore, the webbing can reliably apply a rotational force to the through anchor via the first sliding surface.
  • a typical structure of a seat belt through anchor is a seat that is rotatably attached to a wall in a vehicle compartment and is turned by inserting a belt-like webbing coming from a retractor.
  • a through-anchor for a belt including a substantially straight lower edge that contacts the webbing surface and slides the webbing so as to cross the webbing, and a lateral edge that curves and extends from the end of the lower edge;
  • a lower portion provided on the lower side of the lower edge, and on the surface of the through anchor, provided in the lateral direction of the through anchor from near the end of the lower portion, and when the through anchor is installed.
  • a bump portion that protrudes from the surface of the lower portion toward the direction corresponding to the vehicle interior side, and a portion that protrudes from the lower portion of the bump portion is seen in a cross section including the lower portion.
  • the flange part of the bump part has a concave shape outward from the through anchor, and the vicinity of the bump part of the bump part has a convex shape outward from the through anchor so that the concave shape and the convex shape are smoothly connected. It has the 2nd sliding surface comprised by these.
  • the webbing smoothly climbs the second sliding surface from the lower side portion in the event of a vehicle emergency. It reaches the bump part. For this reason, the webbing can give a rotational force to the through anchor via the second sliding surface when climbing the bump portion. Accordingly, the through anchor rotates at an early stage, thereby preventing jamming more reliably.
  • the plane from the ridge portion to the ridge portion of the bump portion includes a plane, and the plane is preferably configured so as to be smoothly connected to the concave shape of the ridge portion and the convex shape of the ridge portion.
  • the bump portion includes a first straight line that extends in the short direction of the insertion hole through the end of the lower edge, and a second straight line that extends in the longitudinal direction of the insertion hole through the outermost end of the lateral edges. It is good to be provided between at least. As a result, even if the impact at the time of the vehicle collision is large and the webbing climbs the first sliding surface of the bump part from the end part of the lower edge to the extreme end part of the lateral edge, the webbing is the bump part. Can still be ensured. Therefore, according to the above configuration, jamming can be prevented in various emergency situations such as a side collision as well as a frontal collision of the vehicle.
  • a typical configuration of the seat belt device according to the present invention is characterized by including the above-described seat belt through anchor.
  • the through anchor By providing the through anchor, jamming of the vehicle in an emergency can be prevented, so that the performance of the seat belt device is not impaired.
  • the present invention it is possible to provide a seat belt through anchor and a seat belt device that can prevent jamming of the vehicle in an emergency. Also, the webbing pull-out force is reduced during normal use.
  • FIG. 3 (a). It is a figure which shows the change of the webbing opening angle at the time of emergency of a vehicle. It is a figure which shows the state in emergency of the vehicle of the through anchor of FIG. It is a figure which expands and shows a part of through anchor of FIG. It is a figure which expands and shows the through anchor of a comparative example.
  • FIG. 1 is a diagram showing a part of a vehicle 110 to which a seat belt device 100 according to an embodiment of the present invention is applied.
  • the seat belt device 100 is shown together with a vehicle seat 120 which is a right front seat in the vehicle 110.
  • the vehicle 110 includes, for example, a seat belt device 100, a vehicle seat 120, a side door 130 positioned on the vehicle exterior side of the vehicle seat 120, and a center pillar 140.
  • the center pillar 140 is a part of a wall portion in the vehicle interior and is located on the vehicle rear side of the side door 130.
  • the seat belt device 100 is a safety device installed on the vehicle seat 120 and restrains the occupant to the vehicle seat 120 using a belt-like webbing 150 for restraining the occupant.
  • the webbing 150 is wound up or pulled out by a retractor 160 located below the vehicle interior, passes through the seat belt through anchor (through anchor 170), and passes from the center pillar 140 side (wall side) to the vehicle interior side (vehicle interior side). ).
  • the through anchor 170 is rotatably fixed to the upper portion of the center pillar 140 by, for example, a bolt 172.
  • the seat belt device 100 includes a pretensioner that rapidly winds up the webbing 150 and an energy absorption mechanism that is used when the webbing 150 is rapidly pulled out in a vehicle emergency.
  • the webbing 150 is folded back by the through anchor 170, as shown in the figure, the webbing 150 is divided into a first webbing 150A and a second webbing 150B with the through anchor 170 interposed therebetween.
  • the first webbing 150A is located on the inner side of the through anchor 170 along the direction in which the webbing 150 is pulled out.
  • the second webbing 150B is continuous with the first webbing 150A and is located on the retractor 160 side, that is, on the wall side.
  • An anchor plate 180 is stitched to the end of the first webbing 150A. Although the anchor plate 180 is not fixed in the drawing, it is actually attached to the lower side of the vehicle body between the side door 130 and the vehicle seat 120 with a bolt or the like. Further, between the through anchor 170 and the anchor plate 180, there is provided a tongue plate 190 through which the first webbing 150A is inserted and slidable on the first webbing 150A.
  • the occupant grips the tongue plate 190, and the tongue plate 190 is inserted into the buckle 192 attached to the center of the vehicle, and the occupant is restrained by the webbing 150.
  • FIG. 2 is an enlarged view of the through anchor 170 applied to the seat belt device 100 of FIG.
  • the through anchor 170 is viewed from the inside of the vehicle.
  • Arrows X and Y indicate the vehicle front side and the vehicle upper side, respectively.
  • the arrow XX ′ direction is shown as the front-rear direction (X direction is front, X ′ direction is rear) direction of the vehicle, the lateral direction of the through anchor 170 or the left and right (X direction is left, X ′ direction is right) direction.
  • the arrow Y-Y ′ direction is shown as the vertical direction or the vertical direction of the through anchor 170 (the Y direction is up and the Y ′ direction is down).
  • the center line 174 is a line connecting the center of the bolt hole 204 and the horizontal center of the insertion hole 206, and is parallel to the direction of the arrow Y-Y '.
  • the through anchor 170 includes an insert fitting 200 and a coating resin 202 as shown in the figure.
  • the coating resin 202 is molded and integrated with the insert fitting 200, for example.
  • the insert fitting 200 is a metal plate formed by punching, for example, and a bolt hole 204 is formed in the upper part.
  • the through anchor 170 is rotatably fixed to the wall in the vehicle interior by inserting the bolt 172 into the bolt hole 204.
  • the insertion hole 206 through which the webbing 150 is inserted is formed in the lower portion of the insert fitting 200.
  • the insertion hole 206 includes a lower edge 208 and lateral edges 210 and 212.
  • the lower edge 208 is a substantially linear edge that contacts the surface of the webbing 150 so as to cross the webbing 150 and slides the webbing 150.
  • the lateral edges 210 and 212 are continuous from the vicinity of the end portions 214 and 216 of the lower edge 208, respectively, and extend curvedly upward, for example.
  • the through anchor 170 includes a lower side portion 218 and bump portions 220 and 222.
  • the lower side portion 218 is a part of the main body of the through anchor 170 provided on the lower side of the lower edge 208.
  • the normal use includes, for example, a case where the occupant pulls out the webbing 150 to restrain himself / herself, or the webbing 150 is pulled out or taken up at a normal speed by the retractor 160 during operation. It is done.
  • a low friction member 208a is disposed at a portion where the webbing 150 slides as shown in the figure.
  • the low friction member 208a comes into contact with the webbing 150 during normal use, and reduces the frictional force accompanying this contact, thereby reducing the force (drawing force) associated with the webbing 150 being pulled out.
  • the bump portions 220 and 222 are provided along the lateral edges 210 and 212 from the ends 224 and 226 of the lower portion 218, respectively.
  • the insertion hole 206, the lower side portion 218, and the bump portions 220 and 222 of the through anchor 170 of this example have a symmetrical structure in the vehicle front-rear direction as shown in the figure. For this reason, the bump part 222 located on the vehicle rear side has the same shape as the bump part 220 located on the vehicle front side.
  • FIG. 3 is an enlarged view of a part of the through anchor 170 of FIG.
  • FIG. 3A is an enlarged front view of a part of the through anchor 170 in FIG. 2 on the vehicle front side.
  • FIG. 3B is a diagram showing a state in which a part of the through anchor 170 in FIG.
  • An arrow E corresponds to a direction in which the bump portion 220 protruding from the lower side portion 218 of the through anchor 170 in FIG. 2 is viewed in a cross section including the lower side portion 218.
  • FIG. 4 is a view showing a cross section of the through anchor 170 of FIG.
  • the bump part 220 has a first sliding surface 228 and a second sliding surface 230 shown by being surrounded by a dotted line in FIG.
  • the first sliding surface 228 is formed between the lateral edge 210 and the ridgeline 232, and includes a smooth curved surface 234 (see FIG. 4).
  • the ridge line 232 is formed by connecting portions that are most raised on the way away from the lateral edge 210, such as ridges 232a, 232b, 232c, and 232d. That is, the ridge line 232 can be said to be a line in which the ridges 232 a, 232 b, 232 c, 232 d, etc., which are individual points on the top of the bump part 220, are continuous.
  • the ridge line 232 is formed along the shape of the horizontal edge 210 as shown in FIG.
  • “smooth” means that, from the viewpoint of surface roughness, for example, the target flat surface or curved surface has a surface roughness finer than the weave of the sliding webbing 150. From the viewpoint of shape, for example, there are no local protrusions or protrusions on the target plane or curved surface, and no corners or corners protrude from the surface when the target part is viewed in cross section. Let the situation be “smooth”. Further, the present invention is not limited to these situations, and as illustrated in FIG.
  • the target surface 233 may be regarded as “smooth” in the present invention.
  • the bump portion 220 protrudes by a dimension L from the surface portion of the lower side portion 218 in the direction in which the webbing 150 is pulled out, for example, toward the vehicle inner side (Z direction).
  • the dimension L may be appropriately set according to the size of the through anchor 170.
  • the ridge 232a which is one point of the gathering at the top of the bump part 220, is located on the AA line shown in FIG.
  • the line AA is a straight line (first straight line) that extends in the short direction of the insertion hole 206 through the end 214 of the lower edge 208.
  • the bump part 220 has a first sliding surface 228 between the end part 214 of the lower edge 208 and the peak part 232a in the AA cross section of FIG.
  • the first sliding surface 228 includes a smooth curved surface 234 that protrudes outward from the through anchor 170. As shown in FIG. 4A, the first sliding surface 228 has the steepest portion near the end 214 of the lower edge 208.
  • the direction “outward from the through anchor 170” refers to a direction in which the thickness of the coating resin 202 is increased as viewed from the insert fitting 200. Therefore, there is a direction “outward from the through anchor 170” not only in the vertical and horizontal directions with respect to the through anchor 170 but also in any direction including the direction toward the vehicle interior and the direction toward the vehicle exterior. To do.
  • the peak portions 232b and 232c which are one point of the gathering at the top of the bump portion 220, are located on the BB line and the CC line, respectively, in FIG.
  • the line BB is, for example, a straight line that passes through the end 214 of the lower edge 208 and extends in a direction different from the line AA.
  • the CC line is a straight line that passes through the point 236 on the lateral edge 210 and is translated upward along the BB line.
  • the bump part 220 has a point 236 on the lateral edge 210 between the end part 214 of the lower edge 208 and the peak part 232b in the BB cross section and the CC cross section of FIGS. 4B and 4C. And a peak portion 232c, a first sliding surface 228 configured to include a smooth curved surface 234 that protrudes outward from the through anchor 170 is provided. As shown in FIGS. 4B and 4C, the first sliding surface 228 has the steepest points 236 near the end 214 of the lower edge 208 and on the lateral edge 210, respectively.
  • the ridge 232d which is one point of the gathering at the top of the bump part 220, is located on the DD line shown in FIG.
  • the DD line is a straight line (second straight line) that extends in the longitudinal direction of the insertion hole 206 through the point (the endmost part 238) located on the most front side, that is, outside of the lateral edge 210.
  • the bump part 220 includes a smooth curved surface 234 that protrudes outward from the through anchor 170 between the extreme end part 238 and the peak part 232d of the lateral edge 210 in the DD cross section of FIG. It has the 1st sliding surface 228 comprised by these.
  • the bump portion 220 is provided at least across the AA line as the first straight line and the DD line as the second straight line. Further, the end 214 of the lower edge 208, the point 236 of the lateral edge 210, and the end 238 correspond to the skirt of the bump part 220 in the insertion hole 206 as shown in FIG.
  • the first sliding surface 228 includes the convex smooth curved surface 234 as shown in FIGS. 4A to 4D.
  • the first sliding surface 228 is not limited to this, and may include a smooth flat surface. Good.
  • the curved surface 234 has a convex shape as a whole, a part 235 of the curved surface 234 is slightly recessed, for example, as shown in the cross-sectional shape of FIG. 4 (e) corresponding to FIG. 4 (b). Even shape is acceptable.
  • convex portions 237 a and 237 b are provided around the recessed portion 235.
  • the second sliding surface 230 is continuous from the vicinity of the end 224 of the lower side portion 218 to the peak portion 232a at the end of the ridge line 232 as illustrated in FIG.
  • the second sliding surface 230 is near the end 224 of the lower side portion 218, that is, the lower side portion 218 of the bump portion 220, as illustrated in FIG. 3B.
  • the flange portion 219 on the surface has a shape recessed outward from the through anchor 170. Further, the vicinity of the peak portion 232a is convex outward from the through anchor 170. And this concave shape and convex shape are comprised so that it may connect smoothly.
  • the second sliding surface 230 includes a curved surface 240 that smoothly connects the end portion 224 of the surface of the lower side portion 218 and the bump portion 220.
  • the second sliding surface 230 is not limited to the curved surface 240, and may include a convex surface, a concave surface, or a flat surface as long as the lower side portion 218 and the bump portion 220 are smoothly connected.
  • the first sliding surface 228 and the second sliding surface 230 are connected by a smoothly continuous surface 221 as shown in FIG.
  • FIG. 5 is a diagram showing a change in the webbing opening angle during an emergency of the vehicle.
  • the webbing opening angle refers to an angle formed between the first webbing 150A and the second webbing 150B when the through anchor 170 is viewed from the vehicle inner side or the vehicle side surface side.
  • FIG. 5 schematically shows a state in which an occupant is seated on the vehicle seat 120 and the vicinity of the shoulder is restrained by the first webbing 150A.
  • the vehicle seat 120 is slidable in the vehicle front-rear direction, and in the drawing, the vehicle seat 120 is in a state (R / M; Rear Most) slid most toward the vehicle rear side.
  • the vicinity of the passenger's shoulder is near the center pillar 140, and the webbing opening angle ⁇ o shown in FIG. 5A is about 30 °, for example.
  • a pretensioner (not shown) is actuated in the direction indicated by the arrow F in FIG. 5A, and the second webbing 150B is temporarily retracted, and sagging is achieved.
  • the occupant moves forward, and in accordance with this, the first webbing 150A is suddenly pulled out with the energy absorption by the energy absorption mechanism. Is called.
  • the webbing opening angle ⁇ A shown in FIG. 5B is about 60 °, for example, which is larger than the webbing opening angle ⁇ o.
  • the first webbing 150A that restrains the vicinity of the shoulder of the occupant moves toward a more horizontal state while being pulled out rapidly by the occupant moving to the front side of the vehicle due to inertia. . For this reason, it changes so that a webbing opening angle may become large.
  • the first webbing 150A is not simply along the wall of the vehicle interior such as the center pillar 140.
  • the angle formed by the first webbing 150A and a wall may increase. The behavior of the through anchor 170 in such a case will be described with reference to FIG.
  • FIG. 6 is a diagram showing a state of the vehicle of the through anchor 170 of FIG. 2 in an emergency.
  • FIGS. 6A and 6C show states corresponding to FIGS. 5A and 5B, respectively, and are indicated by webbing opening angles ⁇ o and ⁇ A.
  • FIG. 6B shows a state in the middle from the state of FIG. 6A to the state of FIG. 6C, and is indicated by a webbing opening angle ⁇ .
  • FIG. 7 is an enlarged view showing a part of the through anchor 170 of FIG.
  • FIG. 7A shows a state in which the first webbing 150A and the through anchor 170 in the state shown in FIG. 6B are viewed along the first webbing 150A from the direction in which the first webbing 150A is pulled out.
  • FIG. 7B is a diagram showing the state of the first webbing 150A and the through anchor 170 following FIG. 7A together with the AA cross section shown in FIG. 4A.
  • the slack of the second webbing 150B is taken, and the webbing opening angle ⁇ o is achieved.
  • the first webbing 150A slides in contact with the lower edge 208 of the insertion hole 206 of the through anchor 170.
  • the first webbing 150A has a larger webbing opening angle while approaching a more horizontal state as described above.
  • the behavior is such that the angle formed becomes large.
  • the first webbing 150A first smoothly connects the lower side portion 218 and the bump portion 220 while leaving the lower edge 208 of the insertion hole 206 that has been in contact.
  • the second sliding surface 230 extending from the end 224 of the lower side portion 218 to the peak portion 232a begins to smoothly climb from the heel portion 219 as indicated by an arrow H.
  • the side end 242 before the movement of the first webbing 150A is indicated by a dotted line, and the side end 244 after the movement is indicated by a solid line.
  • the first webbing 150 ⁇ / b> A reaches the bump part 220 from the surface of the lower part 218 by climbing the second sliding surface 230.
  • the first webbing 150 ⁇ / b> A not only makes surface contact with the bump part 220 but also slides with respect to the bump part 220 and can smoothly climb the second sliding surface 230.
  • the first webbing 150A climbs the bump part 220, the first webbing 150A moves away from the lower edge 208 and shows a behavior of reducing the contact area with the lower edge 208, while the second sliding surface 230 of the bump part 220 is shown in FIG. As illustrated in a), it behaves to increase its contact area.
  • the first webbing 150 can maintain surface contact with the second sliding surface 230 in a wide area even in the event of a vehicle emergency.
  • the first webbing 150 ⁇ / b> A that smoothly climbs the second sliding surface 230 while ensuring a wide range of surface contact with the bump portion 220 is formed by the through anchor 170 due to a frictional force (direction opposite to H) generated thereby. Appropriately regulate movement (rotation).
  • the first webbing 150A moves to the end 214 of the lower edge 208 and contacts the lateral edge 210 extending from the end 214 of the lower edge 208, as shown in FIG. An attempt is made to move so as to cover (climb) the provided bump portion 220.
  • the bump portion 220 is raised in the direction shown by the arrow I from which the first webbing 150A is pulled out. Further, the bump part 220 has a first sliding surface 228 formed between the end part 214 of the lower edge 208 and the ridge part 232 a of the ridge line 232.
  • the first sliding surface 228 includes the convexly smooth curved surface 234 as described above.
  • the first webbing 150 ⁇ / b> A not only makes surface contact with the bump part 220 but also slides with respect to the bump part 220 and can smoothly climb the first sliding surface 228. Therefore, the first webbing 150A moves away from the lower edge 208 when climbing the bump part 220, and exhibits a behavior of reducing the contact area with the lower edge 208 (see FIG. 7A), while the first webbing 150A is the first webbing 150A.
  • the sliding surface 228 tends to behave so as to increase its contact area. As a result, the first webbing 150 can maintain surface contact with the first sliding surface 228 in a wide area even in the event of a vehicle emergency.
  • the first webbing 150A that smoothly climbs the first sliding surface 228 while ensuring a wide range of surface contact with the bump part 220 causes the through-anchor 170 to move (rotate) due to the frictional force J generated thereby. Regulate appropriately.
  • the first webbing 150A In a situation where the occupant is moving forward, such as in the case of an emergency of the vehicle, the first webbing 150A itself is still pulled forward to approach a horizontal state. For this reason, the first webbing 150 ⁇ / b> A is a force that causes the through anchor 170 to rotate via the first sliding surface 228 and the second sliding surface 230 of the bump portion 220 that is in surface contact (hereinafter referred to as rotational force). Can be given.
  • the first webbing 150 ⁇ / b> A does not climb the first sliding surface 228 of the bump part 220 excessively due to the action of the rotational force or the like.
  • the through anchor 170 rotates as indicated by an arrow K in FIG.
  • the first webbing 150A comes into contact with the lower edge 208 of the insertion hole 206 of the through anchor 170 in a state where the webbing opening angle ⁇ A is reached, and one side of the insertion hole 206 Don't go away. Therefore, according to the through anchor 170, jamming can be prevented.
  • FIG. 8 is an enlarged view of the through anchor 10 of the comparative example.
  • FIG. 8A is a front view of the through anchor 10 as viewed from the inside of the vehicle.
  • FIG. 8B is a view showing a state in which a part of the through anchor 10 of FIG.
  • the through anchor 10 is different from the through anchor 170 of the present embodiment in that the bump part 220 is not formed.
  • the insertion hole 12 of the through anchor 10 is continuous from the substantially straight lower edge 14 and the end 16 of the lower edge 14, and extends in a curved manner toward the upper side. Edge 18.
  • the through anchor 10 includes a lower side portion 20 provided on the lower side of the lower edge 14 and a flat portion 22 formed along the lateral edge 20.
  • the flat surface portion 22 has substantially the same height as the surface of the lower side portion 20, and does not protrude toward the vehicle interior like the bump portion 220.
  • FIG. 9 is a diagram illustrating a state of the through anchor 10 of FIG. 8 in an emergency of the vehicle.
  • a pretensioner (not shown) is operated, and the second webbing 30B is temporarily pulled in and a state in which sagging is removed.
  • the webbing opening angle is ⁇ o as in FIG.
  • the webbing opening angle is ⁇ , which is larger than the webbing opening angle ⁇ o.
  • the first webbing 30 ⁇ / b> A exhibits a behavior of approaching a more horizontal state while being pulled out rapidly, and is separated from the lower edge 14 of the insertion hole 12 that has been in contact as described above, while the end portion 16 of the lower edge 14. Move to.
  • the first webbing 30A moves so as to climb the lateral edge 18 while contacting the lateral edge 18 continuous with the end 16 of the lower edge 14.
  • the flat portion 22 formed along the lateral edge 18 is not raised on the vehicle inner side.
  • the first webbing 30 ⁇ / b> A cannot ensure a wide range of surface contact with the planar portion 22, and excessively climbs the planar portion 22.
  • first webbing 30A cannot ensure surface contact with the flat surface portion 22, it is assumed that point contact or line contact can be ensured. For this reason, it is also conceivable that the first webbing 30A gives a rotational force to the through anchor 10 due to a small frictional force accompanying this point contact or line contact.
  • the first webbing 30A itself is still pulled forward to approach the horizontal state, the first webbing 30A continues to climb the flat surface portion 22 more rapidly than the through anchor 10 rotates. In other words, the through anchor 10 does not rotate in time for the movement of the first webbing 30A.
  • the bump portion 220 that protrudes from the lower side portion 218 includes a first sliding surface 228 including a convex smooth curved surface 234 and a first sliding surface. It has the 2nd sliding surface 230 connected with the surface 228 and the surface 221 (refer Fig.3 (a)) which continues smoothly. Therefore, according to the through anchor 170, the first webbing 150A is separated from the lower edge 208 of the insertion hole 206 in the event of an emergency of the vehicle, but the first sliding surface 228 and the second sliding surface 230 of the bump portion 220 are smoothly smoothed. Wide range surface contact with the bump part 220 can be ensured while climbing.
  • the first webbing 150A Since the first webbing 150A is still pulled forward and approaches the horizontal state, the first webbing 150A is in contact with the first sliding surface 228 and the second sliding surface 230 of the bump portion 220 that are in surface contact. A sufficient rotational force can be applied to the through anchor 170. As a result, the through anchor 170 rotates reliably, so that jamming can be prevented.
  • the bump part 220 is formed so as to protrude on the inner side of the vehicle, and a fragile part does not occur. For this reason, even if the bump part 220 receives a load large enough to twist and deform the torsion bar inside the retractor 160 in an emergency of the vehicle, it does not deform. Further, since the through anchor 170 rotates, the load itself is not locally applied to the bump part 220.
  • the bump portion 220 includes an AA line that is a first straight line passing through the end portion 214 of the lower edge 208 and a second straight line that passes through the outermost end portion 238 of the lateral edge 210. Is provided at least across the line DD. For this reason, the impact at the time of the vehicle collision is great, and the first webbing 150A can climb the first sliding surface 228 of the bump part 220 from the end part 214 of the lower edge 208 to the outermost part 238 of the lateral edge 210. Even in an unexpected situation, the first webbing 150 ⁇ / b> A can ensure surface contact with the bump part 220. Therefore, jamming can be prevented in various emergency situations such as a side collision as well as a frontal collision of the vehicle.
  • the first webbing 150A smoothly climbs the second sliding surface 230 and lowers it in the event of a vehicle emergency. From the side part 218 to the bump part 220. For this reason, the first webbing 150 ⁇ / b> A can apply a rotational force to the through anchor 170 via the second sliding surface 230 before the first sliding surface 228 when climbing the bump portion 220. Therefore, the through anchor 170 rotates early, and jamming can be prevented more reliably.
  • the bump portion 220 raised on the inner side of the vehicle secures surface contact with the first webbing 150A in the event of a vehicle emergency. For this reason, as the shape of the bump part 220, even if it is raised on the inner side of the vehicle, if the first webbing 150A does not climb in the event of a vehicle emergency, or if it climbs, the shape that cannot ensure surface contact is jammed. This cannot be prevented and is not included in this embodiment.
  • the bump part 220 raised on the inner side of the vehicle can ensure surface contact with the first webbing 150A in an emergency of the vehicle
  • the bump part 220 includes a smooth surface including at least one of a convex surface, a concave surface, and a flat surface. It may be configured in various aspects.
  • the first webbing 150A can smoothly apply the rotational force to the through anchor 170 via the bump part 220 by the frictional force generated by climbing the bump part 220 smoothly during an emergency of the vehicle. As a result, jamming can be prevented.
  • the ridge line 232 is formed so as to follow the shape of the lateral edge 210.
  • the first webbing 150A reliably climbs the first sliding surface 228 of the bump part 220 extending from the lateral edge 210 to the ridge line 232 in an emergency of the vehicle, and makes a wide area contact with the bump part 220. It can be secured. Therefore, the first webbing 150 ⁇ / b> A can reliably apply a rotational force to the through anchor 170 via the first sliding surface 228.
  • the ridge line 232 does not necessarily follow the shape of the lateral edge 210. It is not necessary to be formed as such.
  • FIG. 10 is an enlarged view showing a part of a through anchor 170A of a modified example.
  • the through anchor 170A differs from the through anchor 170 shown in FIG. 3A in that the ridge line 232A is not formed along the shape of the lateral edge 210. That is, the ridge line 232A is curved so as to approach the lateral edge 210 from the ridge 232e toward the ridge 232f and further away from the lateral edge 210 from the ridge 232f toward the ridge 232g.
  • the first sliding surface 228A is formed between the lateral edge 210 and the ridgeline 232A, and the second 225a from the end 224 of the lower side portion 218 to the peak portion 232e.
  • a sliding surface 230A is formed.
  • the first webbing 150A climbs the first sliding surface 228A and the second sliding surface 230A during the emergency of the vehicle, and passes through the first sliding surface 228A and the second sliding surface 230A.
  • the through anchor 170A it is possible to reliably apply a rotational force to the through anchor 170 and prevent jamming.
  • the bump part 220 when the webbing opening angle is increased in the event of a vehicle emergency, the bump part 220 has the first webbing 150A as the first sliding part of the bump part 220 as shown in FIGS. As long as the surface contact with the bump part 220 can be ensured while climbing the moving surface 228 or the second sliding surface 230, it is necessarily provided between the AA line and the DD line in FIG. There is no need.
  • the flange portion 219 of the bump portion 220 has a concave shape outward from the through anchor 170, and The vicinity of the peak portion 232a of the bump portion 220 has a convex shape outward from the through anchor 170, and the concave shape and the convex shape may be smoothly connected.
  • the bump portion 220 is raised only near the end portion 214 of the lower edge 208 shown in the AA cross section of FIG. 4A, and is shown in FIGS. 4B to 4D. In the cross section, it does not have to be raised on the vehicle inner side.
  • FIG. 11 is a view showing a through anchor 170B according to another embodiment of the present invention.
  • FIG. 11A is an enlarged view showing a part of the through anchor 170B.
  • FIG. 11B and FIG. 11C are views showing a PP ′ section and a QQ ′ section in FIG. 11A, respectively.
  • the through anchor 170B includes a bump part 250 having only one peak part 250a like a single mountain. For this reason, the ridge line 232 is not formed on the bump portion 250.
  • the bump portion 250 is formed in a concave shape outward from the through anchor 170B that smoothly continues from the lower side portion 218 to the peak portion 250a. Parts 252a ', 252b', 252c ', 252d' and curved surfaces 252a, 252b, 252c, 252d.
  • the first webbing 150A smoothly climbs any one of the curved surfaces 252a, 252b, 252c, and 252d forming at least a part of the bump portion 250, and the frictional force generated thereby.
  • a rotational force is applied through the bump portion 250. Therefore, according to the through anchor 170B, jamming can be prevented.
  • FIG. 12 is a view showing a modification of the through anchor 170B in FIG.
  • FIG. 12A is an enlarged view showing a part of the through anchor 170C.
  • FIGS. 12B and 12C are views showing the PP ′ and QQ ′ cross sections of FIG. 12A, respectively.
  • the through anchor 170C includes a bump portion 260 formed like a single hill portion as shown in the figure.
  • the bump portion 260 having the hill portion is not as clear as the ridge portion 250a, and there is no obvious ridgeline 232.
  • the bump portion 260 has a hill-like shape that includes a portion 260a that can be regarded as a generally flat peak portion or ridgeline, and is entirely raised. Therefore, as shown in the cross-sectional shapes of FIG. 12B and FIG. 12C, the bump portion 260 has a flange portion that is concave outward from the through anchor 170C that smoothly continues from the lower side portion 218 to the portion 260a. 262a ', 262b', 262c ', 262d' and curved surfaces 262a, 262b, 262c, 262d.
  • any one of the curved surfaces 262a, 262b, 262c, and 262d reaching the portion 260a of the bump portion 260 is caused by the frictional force generated by the first webbing 150A smoothly climbing in an emergency of the vehicle.
  • a rotational force is applied through the bump part 260. Therefore, according to the through anchor 170C, jamming can be prevented.
  • FIG. 13 is a view showing a through anchor 170D of still another modified example.
  • the through anchor 170D includes the smooth surface 233 including the grooves 233a formed so as to be regularly arranged in the webbing sliding direction and the surface portion 233b excluding the grooves 233a.
  • the smooth surface 233 constitutes a bump portion 270 that is raised on the vehicle inner side than the surface portion of the lower side portion 218.
  • the through anchor 170D even if a plurality of grooves 233a are formed in the bump portion 270, the first webbing 150A smoothly climbs the surface 233 in the event of an emergency of the vehicle because it includes the smooth surface 233. However, a rotational force is given through the bump part 270 by the frictional force generated thereby. Therefore, according to the through anchor 170D, jamming can be prevented.
  • the second sliding surfaces 230 and 230A are provided in addition to the first sliding surfaces 228 and 228A, but the present invention is not limited to this.
  • the first webbing 150A can ensure surface contact with the bump part 220 while climbing the second sliding surface 230, 230A and prevent jamming in an emergency of the vehicle, the first sliding surface 228, 228A may not be formed.
  • the second sliding surfaces 230 and 230A can be prevented. May not be formed.
  • jamming is performed along with the behavior of the through anchor 170 when the vehicle seat 120 is in a so-called R / M state and the change in the webbing opening angle becomes large to some extent.
  • R / M the change in the webbing opening angle
  • the first webbing 150A is the bump part 220 in the event of a vehicle emergency. Jamming can be prevented if the surface contact with the bump part 220 can be ensured while climbing.
  • the through anchor 170 according to the present invention when used in normal use, for example, the pulling force of the webbing 150 is reduced as compared with the case of using the conventional through anchor.
  • the through anchor 170 is easy to be rotated when the webbing 150 is pulled out during normal use because the rotational force is easily given by the bump portion 220. Therefore, the through anchor 170 rotates each time the webbing 150 is pulled out, and the pulling angle of the webbing 150 tends to be an optimum angle with respect to the through anchor 170.
  • the optimum angle refers to an angle in a range in which the webbing 150 can slide in contact with the lower edge 208 of the insertion hole 206 of the through anchor 170 when the webbing 150 is pulled out during normal use.
  • the through anchor 170 of the present invention can be rotated following the pull-out of the webbing 150 during normal use by being given a rotational force by the bump part 220. Therefore, the through anchor 170 is unlikely to become a resistance to the webbing 150 that is pulled out. Furthermore, the webbing 150 can always slide on the low friction member 208a, and thereby the drawing force of the webbing 150 can be reduced. Therefore, according to the through anchor 170 of the present invention, not only can jamming be prevented in the event of a vehicle emergency, but also the pulling force of the webbing 150 can be reduced during normal use.
  • the pulling force of the webbing inserted through the through anchor 170 and the conventional through anchor was measured with a so-called push-pull measuring instrument.
  • the measurement method will be described with reference to FIG. 5A, for example.
  • the first webbing 150A is located in front of the second webbing 150B.
  • the second webbing 150B is about 55 °
  • Each angle of the second webbing 150B viewed from the front or the top of the vehicle was about 35 °.
  • the first webbing 150A inserted through the through anchor 170 and the conventional through anchor was pulled out by 300 mm using a push-pull measuring device, and each pulling force was measured.
  • the pull-out force in the case of using the conventional through anchor is 9.5 N
  • the pull-out force in the through anchor 170 according to the present invention is 7.8 N. That is, it became clear that by using the through anchor 170, the drawing force can be reduced by about 17% compared to the conventional through anchor.
  • the webbing pull-out force can be reduced in this way during normal use, jamming and the like can be eliminated as described above in the event of a vehicle emergency. This can be improved compared to the prior art.
  • the present invention can be used for a seat belt through anchor through which a passenger restraining webbing is inserted and a seat belt apparatus including the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automotive Seat Belt Assembly (AREA)

Abstract

【課題】車両の緊急時でのジャミングを防止できるシートベルト用スルーアンカおよびシートベルト装置を提供することを目的とする。 【解決手段】シートベルト用スルーアンカ170は、車室内の壁に回転自在に取り付けられ、リトラクタ160から到来する帯状のウエビング150を挿通させて折り返すスルーアンカであって、ウエビングを横切りウエビングを摺動させるほぼ直線状の下縁208と、下縁の端部214から湾曲して延びる横縁210とを含む挿通孔206と、下縁の下側に設けられている下側部218と、下側部の端からスルーアンカの横方向に向けて設けられ、スルーアンカの設置時に車室内側に相当する方向に向けて下側部の表面よりも隆起しているバンプ部220とを備え、バンプ部は、横縁から離れる途上で最も隆起している峰部232a~dを有し、峰部と横縁との間にスルーアンカから外向きに凸状の曲面234で構成される第1摺動面228を有する。

Description

シートベルト用スルーアンカおよびシートベルト装置
 本発明は、乗員拘束用のウエビングを挿通するシートベルト用スルーアンカおよびこれを備えたシートベルト装置に関するものである。
 車両の座席には、シートベルト装置が設置されている。シートベルト装置は、ウエビングを用いて乗員を拘束する安全装置であって、急停止や衝突などにより車両に大きな減速度が作用したときに、乗員が慣性力によって前方に飛び出すことを抑止する。
 ウエビングは、ウエビングを巻き取っているリトラクタから車内上方に引き出され、車体に固定されたスルーアンカを通って、車内下方に折り返される。折り返されたウエビングの先端部には、車室下方に固定されるアンカプレートが取り付けられている。
 また、スルーアンカとアンカプレートとの間には、ウエビングを挿通してウエビング上を摺動可能なタングプレートが配置されている。さらに、車両用シートの側部(車両中央側)には、バックルが設けられている。
 シートベルト装置では、乗員がタングプレートを把持し、リトラクタからウエビングを引き出して、バックルにタングプレートを挿し込むことで装着状態となり、乗員をウエビングにて拘束する。
 このようなシートベルト装置では、車両衝突など緊急時において、リトラクタにより急激に巻き取られまたは引き出されるウエビングが、スルーアンカの挿通孔の片側に片寄る、いわゆるジャミング(jamming)が生じるという問題があった。ジャミングが生じると、ウエビングの引き出しや巻き取りがスムーズに行われなくなってしまう。
 特許文献1には、スルーアンカの車外側すなわち車室内の壁側に突起を設けたスルーアンカが記載されている。このスルーアンカでは、スルーアンカの突起にウエビングを引っ掛けることでジャミングを防止するとしている。
 特許文献2には、スルーアンカの車内側に突起(整流板)を設け、乗員がウエビングを取り外した後のウエビングの巻き取り時に、ウエビングが捻じれないようにしたスルーアンカが記載されている。
特開2002-208043号公報 特開2000-142317号公報
 ウエビングは、スルーアンカの挿通孔に挿通されることで、挿通孔を挟んで、ウエビングが引き出される方向に沿う車内側に位置するウエビングと、このウエビングに連続しリトラクタ側(壁側)に位置するウエビングとに分けられる。よって、特許文献1に記載のスルーアンカでは、壁側のウエビングが突起に引っ掛かるおそれがある。
 車両衝突時など車両の緊急時では、プリテンショナが作動し壁側のウエビングが一旦引き込まれた後、乗員が前方に移動し車内側のウエビングに体重をかけるため、車内側のウエビングも急激に引き出される。車内側のウエビングは、乗員の肩部近傍を拘束しているので、乗員の移動に伴い肩部の高さを維持しながら前方に引き出される。このため、車内側のウエビングは、より水平な状態に近付く挙動を示す。
 車両の緊急時に、ジャミングを防止するためには、前方に引き出される車内側のウエビングと壁側のウエビングとが成す角度の変化に合わせて、スルーアンカが回転する必要がある。しかし、特許文献1に記載の技術では、スルーアンカの壁側に突起があるため、壁側のウエビングによって、スルーアンカの回転が阻害される。一方、車内側のウエビング自体は、依然として前方に引っ張られて水平な状態に近付こうとして、スルーアンカを回転させようとする。このため、特許文献1に記載のスルーアンカでは、この回転を阻害する力と回転させようとする力のバランスが崩れた瞬間にウエビングが挿通孔の一部分に偏って、ジャミングを起こしてしまうおそれが払拭できない。
 特許文献2に記載のスルーアンカは、スルーアンカの車内側に整流板を設けているものの、ウエビングの収納時の動作を想定したものに過ぎず、車両の緊急時に大きな力が加わる状況を想定したものではない。また、整流板は、挿通孔から離れた位置に設けられている。したがって、車両の緊急時にウエビングが前方に水平に引き出される状況では、ウエビング自身が挿通孔内で片寄ろうとする力に整流板は作用を及ぼすことが出来ない。つまり原理的に整流板はジャミングを防止する機能はない。
 一方、車両の緊急時に乗員が前方に移動し、ウエビングが前方にほぼ水平に引き出されるような状況になると、スルーアンカは、リトラクタ内部のトーションバーが捻じれ変形するほどの大きな荷重を受ける。これに対して、特許文献2に記載の整流板は、挿通孔から離れた位置に設けられた板材に過ぎず、車両の緊急時に伴う大きな荷重に対して強度的に耐えられない。その結果、特許文献2に記載のスルーアンカでは、車両の緊急時に整流板自体が変形する可能性もあり、その面からも、ジャミングを防止することができないおそれがあると云える。
 本発明は、このような課題に鑑み、車両の緊急時でのジャミングを防止できるシートベルト用スルーアンカおよびシートベルト装置を提供することを目的としている。
 上記課題を解決するために、本発明にかかるシートベルト用スルーアンカの代表的な構成は、車室内の壁に回転自在に取り付けられ、リトラクタから到来する帯状のウエビングを挿通させて折り返すシートベルト用スルーアンカであって、ウエビングを挿通させる挿通孔であり、ウエビングを横切るようにウエビング表面に接触しウエビングを摺動させるほぼ直線状の下縁と、下縁の端部から湾曲して延びている横縁とを含む挿通孔と、下縁の下側に設けられている下側部と、スルーアンカの表面上であり、下側部の端付近からスルーアンカの横方向に向けて設けられ、且つ、スルーアンカの設置時に車室内側に相当する方向に向かって下側部の表面よりも隆起しているバンプ部と、を備え、バンプ部は、横縁から離れる途上で最も隆起している峰部を有し、峰部と横縁との間に、少なくともスルーアンカから外向きに凸状の曲面を含んで構成される第1摺動面を有することを特徴とする。
 車両の緊急時以外では、ウエビングは、挿通孔の下縁に接触して摺動する。衝突などの緊急時には、乗員が慣性によって車両前側に移動し、乗員の肩部近傍を拘束していたウエビングも、急激に引き出されながら、より水平な状態に近付く挙動を示す。このため、挿通孔を挟んで壁側に位置するウエビングと車内側に位置するウエビングとで成す角度(以下、ウエビング開き角)が変化する。
 ウエビング開き角が大きくなってウエビングが水平な状態に近付くとき、ウエビングは、単に壁沿いになっているのではない。上方から見ると、ウエビングと壁との成す角度も大きくなる。すなわち、ウエビングは、緊急時に、接触していた挿通孔の下縁から離れつつ、下縁の端部(車両前側)に移動する。さらに、ウエビングは、下縁の端部から延びている横縁に接触しながら横縁を覆う(登る)ように移動する。なお本願で「横」または「横方向」とは、このスルーアンカの車両への設置時に車内側から見たものを正面視として、その正面視でボルト孔の中心と挿通孔の水平方向の中心を結んだ中央の線に対して左または右へ広がる方向を横または横方向という。上下は、車両の天井方向を「上」、床方向を「下」としている。これらの位置を表す用語は、スルーアンカの車両に対する設置時の位置関係にもとづいている。
 上記構成によれば、挿通孔の下縁の下側には下側部が設けられ、さらに、下側部の表面よりも隆起しているバンプ部が設けられている。しかも、バンプ部は、横縁から離れる途上で最も隆起している峰部と横縁との間に形成された第1摺動面を有し、この第1摺動面は少なくともスルーアンカから外向きに凸状の曲面を含んで構成されている。このため、ウエビングは横縁を登るとき、下縁からは離れ、接触面積を減じる挙動をしている一方、バンプ部と広い面積での接触を保ちながら、バンプ部に対して摺動し第1摺動面を滑らかに登り、峰部に至ることが可能となる。
 このように、ウエビングは、車両の緊急時、挿通孔の下縁から離れるものの、バンプ部の第1摺動面を滑らかに登りつつ、バンプ部と広範囲の面接触を確保する。かかるバンプ部との広範囲の面接触を確保しながら、第1摺動面を滑らかに登るウエビングは、それによって生じる摩擦力によってスルーアンカに対する動きを抑制される。車両の緊急時など乗員が前方に移動している状況では、ウエビング自体は、依然として前方に引っ張られて水平な状態に近付こうとする。よって、ウエビングは、面接触しているバンプ部の第1摺動面を介して、スルーアンカに回転を生じさせる力(以下、回転力)を与えることができる。この回転力の作用などによって、ウエビングは、バンプ部の第1摺動面を過度に登ることはない。その結果、スルーアンカが回転するため、ウエビングがスルーアンカの挿通孔の片側に片寄るジャミングを防止できる。
 さらに、スルーアンカは、バンプ部によって回転力が与えられやすいので、車両の緊急時以外である通常の使用時にウエビングを引き出す際に回転しやすくなる。このため、スルーアンカは、ウエビングの引き出し時に、その都度回転し、ウエビングの引き出し角度がスルーアンカに対して最適な角度となりやすい。ここで、最適な角度とは、通常の使用時にウエビングが引き出された際、ウエビングがスルーアンカの挿通孔の下縁に接触して摺動できるような範囲の角度をいう。
 バンプ部が設けられていない従来のスルーアンカでは、ウエビングの引き出し時にスルーアンカの回転が不足し、引き出されるウエビングに対してスルーアンカ自体が抵抗となっていた。従来のスルーアンカでは、ウエビングの引き出し時に、ウエビングが挿通孔の下縁に接触して摺動することが困難となり、その結果、ウエビングの引き出し力を十分に低減できなかった。
 これに対して、本発明のスルーアンカは、バンプ部によって回転力が与えられることで、通常の使用時におけるウエビングの引き出しに追従して回転できる。よって、スルーアンカは、引き出されるウエビングに対して抵抗となり難く、これによりウエビングが挿通孔の下縁に常に接触して摺動できるので、ウエビングの引き出し力を低減できる。したがって、本発明のスルーアンカによれば、車両の緊急時にジャミングを防止できるだけでなく、通常の使用時ではウエビングの引き出し力を低減することもできる。
 上記のバンプ部の下側部から隆起する部分を、下側部を含む断面で見た場合に、バンプ部の麓部分はスルーアンカから外向きに凹形状となり、且つ、峰部付近はスルーアンカから外向きに凸形状となっており、凹形状と凸形状とは滑らかにつながるように構成される第2摺動面を含むとよい。このように、バンプ部の麓部分と峰部とが第2摺動面によって滑らかにつながれているので、車両の緊急時、ウエビングは第2摺動面を滑らかに登り、下側部からバンプ部に至る。このため、ウエビングは、バンプ部を登るとき第1摺動面よりも先に第2摺動面を介して、スルーアンカに回転力を与えることができる。したがって、スルーアンカが早期に回転し、これによって、より確実にジャミングが防止される。
 上記のバンプ部の麓部分から峰部分に至る面に平面を含み、平面は、麓部分の凹形状と峰部分の凸形状とに滑らかにつながるように構成されるとよい。これにより、車両の緊急時、ウエビングは、この平面を介してバンプ部の麓部分から峰部分を滑らかに登り、バンプ部の峰部分に至る過程で、スルーアンカに回転力を確実に与え、その結果、ジャミングが防止される。
 上記の第1摺動面と第2摺動面とは滑らかに連続する面でつながっているとよい。これにより、車両の緊急時、ウエビングは、この連続する面を介して第2摺動面から第1摺動面を滑らかに登り、バンプ部の峰部分に至る過程で、スルーアンカに回転力を確実に与え、その結果、ジャミングが防止される。
 上記のバンプ部は、峰部をつないで形成された稜線と横縁との間に、第1摺動面を有するとよい。このため、ウエビングは、車両の緊急時、挿通孔の下縁から離れるものの、横縁から稜線に至るバンプ部の第1摺動面を滑らかに登りつつ、バンプ部と広範囲の面接触を確保できる。このような第1摺動面を滑らかに登るウエビングは、第1摺動面を介して、スルーアンカに回転力を与えることになり、結果的にジャミングを防止できる。
 上記の稜線は、横縁の形状に沿うように形成されているとよい。これにより、ウエビングは、車両の緊急時、横縁から稜線に至るバンプ部の第1摺動面をより滑らかに登りつつ、バンプ部と広範囲の面接触を確実に確保できる。よって、ウエビングは、第1摺動面を介して、スルーアンカに回転力を確実に与えることができる。
 上記課題を解決するために、本発明にかかるシートベルト用スルーアンカの他の代表的な構成は、車室内の壁に回転自在に取り付けられ、リトラクタから到来する帯状のウエビングを挿通させて折り返すシートベルト用スルーアンカであり、ウエビングを横切るようにウエビング表面に接触しウエビングを摺動させるほぼ直線状の下縁と、下縁の端部から湾曲して延びている横縁とを含む挿通孔と、下縁の下側に設けられている下側部と、スルーアンカの表面上であり、前記下側部の端付近からスルーアンカの横方向に向けて設けられ、且つ、スルーアンカの設置時に車室内側に相当する方向に向かって下側部の表面よりも隆起しているバンプ部と、を備え、バンプ部の下側部から隆起する部分を、この下側部を含む断面で見た場合に、バンプ部の麓部分はスルーアンカから外向きに凹形状となり、且つ、バンプ部の峰部付近はスルーアンカから外向きに凸形状となっており、当該凹形状と凸形状とは滑らかにつながるように構成される第2摺動面を有することを特徴とする。
 上記構成によれば、バンプ部の麓部分と峰部とが第2摺動面によって滑らかにつながれているので、車両の緊急時、ウエビングは第2摺動面を滑らかに登り、下側部からバンプ部に至る。このため、ウエビングは、バンプ部を登るとき第2摺動面を介して、スルーアンカに回転力を与えることができる。したがって、スルーアンカが早期に回転し、これによって、より確実にジャミングが防止される。
 上記のバンプ部の麓部分から峰部分に至る面に平面を含み、平面は、麓部分の凹形状と峰部分の凸形状とに滑らかにつながるように構成されるとよい。これにより、車両の緊急時、ウエビングは、この平面を介してバンプ部の麓部分から峰部分を滑らかに登り、バンプ部の峰部分に至る過程で、スルーアンカに回転力を確実に与え、その結果、ジャミングが防止される。
 上記のバンプ部は、下縁の端部を通り挿通孔の短手方向に延びる第1直線と、横縁のうち最も外側に位置する最端部を通り挿通孔の長手方向に延びる第2直線との間に少なくともわたって設けられるとよい。これにより、車両衝突時の衝撃が大きく、ウエビングが、下縁の端部から横縁の最端部に至るバンプ部の第1摺動面を登るような事態となっても、ウエビングはバンプ部との面接触を依然として確保できる。したがって、上記構成によれば、車両の正面衝突だけでなく側面衝突など、車両の各種緊急時にジャミングを防止できる。
 上記課題を解決するために、本発明にかかるシートベルト装置の代表的な構成は、上述のシートベルト用スルーアンカを備えたことを特徴とする。上記スルーアンカを備えたことで、車両の緊急時でのジャミングを防止できるため、シートベルト装置の性能が損なわれることがない。
 本発明によれば、車両の緊急時でのジャミングを防止できるシートベルト用スルーアンカおよびシートベルト装置を提供することができる。また、通常の使用時においてウエビングの引き出し力が低減する。
本発明の実施形態におけるシートベルト装置が適用される車両の一部を示す図である。 図1のシートベルト装置に適用されるスルーアンカを示す図である。 図2のスルーアンカの一部を拡大して示す図である。 図3(a)のスルーアンカの断面を示す図である。 車両の緊急時におけるウエビング開き角の変化を示す図である。 図2のスルーアンカの車両の緊急時における状態を示す図である。 図6のスルーアンカの一部を拡大して示す図である。 比較例のスルーアンカを拡大して示す図である。 図8のスルーアンカの車両の緊急時における状態を示す図である。 変形例のスルーアンカの一部を拡大して示す図である。 本発明の他の実施形態におけるスルーアンカを示す図である。 図11のスルーアンカの変形例を示す図である。 さらに他の変形例のスルーアンカを示す図である。
100…シートベルト装置、110…車両、120…車両用シート、130…サイドドア、140…センターピラー、150…ウエビング、150A…第1ウエビング、150B…第2ウエビング、160…リトラクタ、170、170A、170B、170C、170D…スルーアンカ、172…ボルト、180…アンカプレート、190…タングプレート、192…バックル、200…インサート金具、202…被覆樹脂、204…ボルト孔、206…挿通孔、208…下縁、210、212…横縁、218…下側部、219…麓部分、220、222、250、260、270…バンプ部、228、228A…第1摺動面、230、230A…第2摺動面、232、232A…稜線、232a、232b、232c、232d、232e、232f、232g…峰部、234、240…曲面
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
 図1は、本発明の実施形態におけるシートベルト装置100が適用される車両110の一部を示す図である。図中では、車両110内の右側前部座席となる車両用シート120とともにシートベルト装置100を示している。
 車両110は、例えば、シートベルト装置100と、車両用シート120と、車両用シート120の車外側に位置するサイドドア130と、センターピラー140とを備えている。なお、センターピラー140は、車室内の壁部の一部であり、サイドドア130の車両後方側に位置している。シートベルト装置100は、車両用シート120に設置された安全装置であり、乗員拘束用の帯状のウエビング150を用いて、乗員を車両用シート120に拘束する。
 ウエビング150は、車内下方に位置するリトラクタ160により巻き取られまたは引き出されていて、シートベルト用スルーアンカ(スルーアンカ170)を通って、センターピラー140側(壁側)から車室内側(車内側)に折り返されている。スルーアンカ170は、例えばボルト172によって、センターピラー140の上部に回転自在に固定されている。なおシートベルト装置100は、図示を省略するが車両緊急時に、ウエビング150を急激に巻き取るプリテンショナと、ウエビング150を急激に引き出す際に用いられるエネルギー吸収機構とを含む。
 ウエビング150は、スルーアンカ170で折り返されることから、図示のように、スルーアンカ170を挟んで、第1ウエビング150Aと第2ウエビング150Bとに区分される。第1ウエビング150Aは、ウエビング150が引き出される方向に沿っていてスルーアンカ170の車内側に位置している。第2ウエビング150Bは、第1ウエビング150Aに連続しリトラクタ160側すなわち壁側に位置している。
 第1ウエビング150Aの端部にはアンカプレート180が縫合されている。なお図中では、アンカプレート180は固定されていないが、実際にはボルトなどによりサイドドア130と車両用シート120との間の車体下方に取り付けられる。また、スルーアンカ170とアンカプレート180との間には、第1ウエビング150Aが挿通され第1ウエビング150A上を摺動可能なタングプレート190が設けられている。
 シートベルト装置100では、タングプレート190を乗員が把持し、車両中央部に取り付けられたバックル192にタングプレート190を挿し込むことで装着状態となり、乗員をウエビング150にて拘束する。
 図2は、図1のシートベルト装置100に適用されるスルーアンカ170を拡大して示す図である。図中では、スルーアンカ170を車内側から見た状態を示している。なお、矢印X、Yはそれぞれ車両前側、車両上側を示している。また、矢印X-X’方向を車両の前後(X方向が前、X’方向が後)方向、スルーアンカ170の横方向または左右(X方向が左、X’方向が右)方向として示している。さらに、矢印Y-Y’方向をスルーアンカ170の縦方向または上下(Y方向が上、Y’方向が下)方向として示している。中心線174は、ボルト孔204の中心と挿通孔206の水平方向中心とを結んだ線であり、矢印Y-Y’の方向と平行である。
 スルーアンカ170は、図示のように、インサート金具200と被覆樹脂202とを含む。被覆樹脂202は、例えばインサート金具200にモールド成形され一体化している。インサート金具200は、例えば打ち抜き加工により形成された金属板であり、上部にはボルト孔204が形成されている。スルーアンカ170は、ボルト孔204に上記ボルト172が挿通されることで、車室内の壁に対して回動自在に固定される。
 インサート金具200の下部には、上記ウエビング150を挿通させる挿通孔206が形成されている。挿通孔206は、下縁208と横縁210、212とを含んでいる。下縁208は、ウエビング150を横切るようにウエビング150の表面に接触し、このウエビング150を摺動させるほぼ直線状の縁である。横縁210、212は、下縁208の端部214、216付近からそれぞれ連続し、例えば上方に向かって湾曲して延びている。
 さらにスルーアンカ170は、下側部218と、バンプ部220、222とを備える。下側部218は、下縁208の下側に設けられるスルーアンカ170の本体の一部である。通常使用時、下縁208および下側部218には、リトラクタ160から到来する上記ウエビング150が接触して摺動する。なお通常使用時とは、例えば、乗員が自身を拘束するためにウエビング150を引き出したり、あるいは運転中などにリトラクタ160によりウエビング150が通常の速度で引き出されたり巻き取られたりする場合などが挙げられる。
 なお通常使用時、ウエビング150が摺動する部分には、図示のように低摩擦部材208aが配置されている。低摩擦部材208aは、通常使用時にウエビング150と接触し、この接触に伴う摩擦力を低減することで、ウエビング150の引き出しに伴う力(引き出し力)を低減する。
 バンプ部220、222は、下側部218の端224、226から横縁210、212に沿ってそれぞれ設けられている。なお本例のスルーアンカ170の挿通孔206、下側部218およびバンプ部220、222は、図示のように車両前後方向に対称な構造を有している。このため、車両後側に位置するバンプ部222も車両前側に位置するバンプ部220と同様の形状を有している。
 以下本発明の実施形態として、図3および図4を参照して、バンプ部220およびその周辺について説明する。図3は、図2のスルーアンカ170の一部を拡大して示す図である。図3(a)は、図2のスルーアンカ170の車両前側の一部を拡大して示す正面図である。図3(b)は、図3(a)のスルーアンカ170の一部を矢印Eの方向から見た状態を示す図である。矢印Eは、図2のスルーアンカ170の下側部218から隆起するバンプ部220を、この下側部218を含む断面でみる方向に相当する。言い換えると矢印Eは、図6に示される状態の第1ウエビング150Aが引き出される方向から、第1ウエビングに沿ってスルーアンカ170を見る方向に相当するとも云える。なお矢印Zは、車両の室内側に向かう方向を示している。図4は、図3(a)のスルーアンカ170の断面を示す図である。
 バンプ部220は、図3(a)に点線で囲んで示す第1摺動面228と第2摺動面230とを有する。第1摺動面228は、横縁210と稜線232との間に形成されていて、滑らかな曲面234(図4参照)を含んでいる。
 稜線232は、横縁210から離れる途上で最も隆起している箇所、ここでは峰部232a、232b、232c、232dなどをつないで形成される。すなわち稜線232は、バンプ部220の頂上の一つ一つの点である峰部232a、232b、232c、232dなどが連続した線であると云える。また稜線232は、図3(a)に示すように、横縁210の形状に沿うように形成されている。
 本発明で「滑らかである」とは、表面粗さの観点から見ると、例えば対象としている平面または曲面が、摺動するウエビング150の織り目よりも細かい表面粗さを有することをいう。また、形状の観点から見ると、例えば対象としている平面または曲面に局所的な出っ張りや突起などが無いことであるほか、対象部分を断面で見たときにその表面にコーナーや角が突き出ていない状況を、「滑らかである」とする。またこれらの状況に限られず、図13に例示するように、対象としている面233に、ウエビング摺動方向に規則的に並ぶ溝233aが複数形成されていても、それらの溝233aを除く表面部分233bが滑らかであれば、その対象としている面233は、本発明で云う「滑らかである」とみなしてよい。
 バンプ部220は、図3(b)に示すように、ウエビング150が引き出される方向、例えば車内側(Z方向)に向かって下側部218の表面部分よりも寸法Lだけ隆起している。なお寸法Lは、スルーアンカ170のサイズに応じて適宜設定してよい。
 バンプ部220の頂上の集まりの一つの点である峰部232aは、図3(a)に示すA-A線上に位置している。A-A線は、下縁208の端部214を通り挿通孔206の短手方向に延びる直線(第1直線)である。バンプ部220は、図4(a)のA-A断面において、下縁208の端部214と峰部232aとの間に第1摺動面228を有する。第1摺動面228は、スルーアンカ170から外向きに凸状の滑らかな曲面234を含んで構成されている。なお第1摺動面228は、図4(a)に示すように、下縁208の端部214付近が最も急峻となっている。
 本発明で「スルーアンカ170から外向き」という方向は、インサート金具200から見て被覆樹脂202の厚みを増加させる方向を云う。したがって、スルーアンカ170に対する上下・左右方向だけでなく、車両の車内側に向かう方向や車外側に向かう方向も含むいずれの方向に対しても、「スルーアンカ170から外向き」となる方向は存在する。
 バンプ部220の頂上の集まりの一つの点である峰部232b、232cは、図3(a)B-B線、C-C線上にそれぞれ位置している。B-B線は、例えば下縁208の端部214を通り、A-A線とは異なる方向に延びる直線である。C-C線は、横縁210上の点236を通り、B-B線を上方に平行移動した直線である。
 バンプ部220は、図4(b)および図4(c)のB-B断面、C-C断面において、下縁208の端部214と峰部232bとの間、横縁210上の点236と峰部232cとの間で、スルーアンカ170から外向きに凸状の滑らかな曲面234を含んで構成される第1摺動面228を有する。なお第1摺動面228は、図4(b)および図4(c)に示すように、下縁208の端部214付近、横縁210上の点236がそれぞれ最も急峻となっている。
 バンプ部220の頂上の集まりの一つの点である峰部232dは、図3(a)に示すD-D線上に位置している。D-D線は、横縁210のうち最も車両前側すなわち外側に位置する点(最端部238)を通り、挿通孔206の長手方向に延びる直線(第2直線)である。バンプ部220は、図4(d)のD-D断面において、横縁210の最端部238と峰部232dとの間で、スルーアンカ170から外向きに凸状の滑らかな曲面234を含んで構成される第1摺動面228を有する。
 このように、バンプ部220は、図3(a)に示すように、第1直線であるA-A線と第2直線であるD-D線との間に少なくともわたって設けられている。また、上記下縁208の端部214、横縁210の点236および最端部238は、図4に示すように、挿通孔206におけるバンプ部220の裾野に相当する。
 第1摺動面228は、図4(a)~図4(d)に示したように、凸状の滑らかな曲面234を含むようにしたが、これに限らず、滑らかな平面を含んでもよい。また、曲面234が全体として凸形状が保たれているのであれば、例えば図4(b)に対応させて示す図4(e)の断面形状のように、曲面234の一部分235が少し凹んだ形状であっても許容される。この場合、凹んだ部分235の周辺に凸形状の部分237a、237bが設けられている。
 第2摺動面230は、図3(a)に例示するように下側部218の端224付近から稜線232の端の峰部232aまで連続している。第2摺動面230は、図3(a)の矢印Eからみた場合、図3(b)に例示するように、下側部218の端224付近、すなわちバンプ部220の下側部218の表面上の麓部分219は、スルーアンカ170から外向きに凹んだ形状となっている。また、峰部232a付近は、スルーアンカ170から外向きに凸形状となっている。そしてこの凹形状と凸形状とは、滑らかにつながるように構成されている。
 第2摺動面230は、図3(b)に示すように、下側部218の表面の端部224とバンプ部220とを滑らかにつなぐ、曲面240を含んでいる。ただし、第2摺動面230は、曲面240に限らず、下側部218とバンプ部220とを滑らかにつなぐのであれば、凸面、凹面、若しくは平面を含んでもよい。更に、第1摺動面228と第2摺動面230は、図3(a)に示すように、滑らかに連続する面221でつながっている。
 つぎに、図5~図7を参照して、車両衝突などの緊急時でのウエビング150およびスルーアンカ170の挙動について説明する。図5は、車両の緊急時におけるウエビング開き角の変化を示す図である。ウエビング開き角とは、スルーアンカ170を車内側または車両側面側から見たときの、第1ウエビング150Aと第2ウエビング150Bとの成す角度をいう。
 図5には、乗員が車両用シート120に着座していて、肩部付近を第1ウエビング150Aにより拘束されている様子が模式的に示されている。車両用シート120は、車両前後方向にスライド可能であり、図中では車両用シート120を最も車両後側にスライドさせた状態(R/M;Rear Most)としている。この状態では、例えば乗員の肩部付近がセンターピラー140に近い位置にあり、図5(a)に示すウエビング開き角θoは例えば30°程度となっている。
 車両の緊急時には、まず、図5(a)に矢印Fで示す方向に、不図示のプリテンショナが作動し第2ウエビング150Bが一旦引き込まれ、たるみが取られた状態となる。続いて、図5(b)に示すように、乗員が前方に移動し、これに伴って矢印Gで示す方向に、エネルギー吸収機構によるエネルギー吸収を伴って第1ウエビング150Aの急激な引き出しが行われる。ここで図5(b)に示すウエビング開き角θAは例えば60°程度となり、上記ウエビング開き角θoと比べて大きくなっている。
 つまり、車両の緊急時には、乗員が慣性によって車両前側に移動することで、乗員の肩部近傍を拘束していた第1ウエビング150Aは、急激に引き出されながら、より水平な状態に近付く挙動を示す。このため、ウエビング開き角が大きくなるように変化する。
 ただし、ウエビング開き角が大きくなって第1ウエビング150Aが水平な状態に近付くとき、第1ウエビング150Aは、単にセンターピラー140などの車室内の壁に沿っているのではない。例えば、車両の緊急時での第1ウエビング150Aを上方から見ると、第1ウエビング150Aと壁(センターピラーやドアなど)との成す角度も大きくなる場合がある。このような場合でのスルーアンカ170の挙動について、図6を参照して説明する。
 図6は、図2のスルーアンカ170の車両の緊急時における状態を示す図である。図6(a)および図6(c)は、それぞれ図5(a)および図5(b)に対応した状態を示していて、ウエビング開き角θo、θAで示される。図6(b)は、図6(a)の状態から図6(c)の状態に至る途中の状態を示していて、ウエビング開き角θで示される。
 図7は、図6のスルーアンカ170の一部を拡大して示す図である。図7(a)は、図6(b)に示す状態の第1ウエビング150Aおよびスルーアンカ170を、第1ウエビング150Aが引き出される方向から第1ウエビング150Aに沿って見た状態を示している。図7(b)は、図7(a)に続く第1ウエビング150Aおよびスルーアンカ170の状態を、図4(a)に示したA-A断面とともに示す図である。
 車両の緊急時では、まず、図6(a)の矢印Fに示すように第2ウエビング150Bのたるみが取られ、ウエビング開き角θoを成した状態となっている。このとき、第1ウエビング150Aは、スルーアンカ170の挿通孔206の上記下縁208に接触して摺動する。
 その後、乗員が慣性によって車両前側に移動し、これに伴い第1ウエビング150Aは、上記したように、より水平な状態に近付きながらウエビング開き角が大きくなり、さらに、センターピラー140を含む壁との成す角度も大きくなるような挙動を示す。
 このとき、第1ウエビング150Aは、図7(a)に示すように、接触していた挿通孔206の下縁208から離れつつ、まず、下側部218とバンプ部220とを滑らかにつなぐ、下側部218の端224から峰部232aに至る上記第2摺動面230を矢印Hで示すように麓部分219から滑らかに登りはじめる。なお図7(a)では、第1ウエビング150Aの移動前の側端部242を点線で示し、移動後の側端部244を実線した。
 第1ウエビング150Aは、第2摺動面230を登ることで、下側部218の表面からバンプ部220に至る。第1ウエビング150Aは、バンプ部220と単に面接触するだけでなく、バンプ部220に対して摺動し第2摺動面230を滑らかに登ることが可能となる。第1ウエビング150Aは、バンプ部220を登るとき、下縁208からは離れ、下縁208との接触面積を減じる挙動を示す一方、バンプ部220の第2摺動面230とは、図7(a)に例示するように、その接触面積を増やすような挙動をする。結果として第1ウエビング150は、車両緊急時であっても第2摺動面230と広い面積での面接触を保つことが可能となる。
 このようなバンプ部220との広範囲の面接触を確保しながら、第2摺動面230を滑らかに登る第1ウエビング150Aは、それによって生じる摩擦力(Hと反対方向)などによって、スルーアンカ170の動き(回転)を適切に規制する。
 第1ウエビング150Aは、図7(b)に示すように、下縁208の端部214に移動し、下縁208の端部214から延びる横縁210に接触しながら、横縁210に沿って設けられたバンプ部220を覆う(登る)ように移動しようとする。
 ここで、バンプ部220は、図7(b)に示すように第1ウエビング150Aが引き出される矢印Iに示す方向に向かって隆起している。さらに、バンプ部220は、下縁208の端部214と稜線232の峰部232aとの間に形成された第1摺動面228を有する。
 第1摺動面228は、上記したように凸状に滑らかな曲面234を含んでいる。このため、第1ウエビング150Aは、バンプ部220と単に面接触するだけでなく、バンプ部220に対して摺動し第1摺動面228を滑らかに登ることが可能となる。したがって、第1ウエビング150Aは、バンプ部220を登るとき、下縁208からは離れ、下縁208との接触面積を減じる挙動を示す一方(図7(a)参照)、バンプ部220の第1摺動面228とは、図7(b)に例示するように、その接触面積を増やすような挙動をしやすくなっている。結果として第1ウエビング150は、車両緊急時であっても第1摺動面228との広い面積での面接触を保つことが可能となる。
 このようなバンプ部220との広範囲の面接触を確保しながら、第1摺動面228を滑らかに登る第1ウエビング150Aは、それによって生じる摩擦力J等によってスルーアンカ170の動き(回転)を適切に規制する。
 車両の緊急時など乗員が前方に移動している状況では、第1ウエビング150A自体は、依然として前方に引っ張られて水平な状態に近付こうとしている。このため、第1ウエビング150Aは、面接触しているバンプ部220の第1摺動面228や第2摺動面230を介して、スルーアンカ170に回転を生じさせる力(以下、回転力)を与えることができる。この回転力の作用などによって、第1ウエビング150Aは、バンプ部220の第1摺動面228を過度に登ることはない。
 その結果、図6(b)の矢印Kに示すように、スルーアンカ170が回転する。このため、図6(c)に示すように第1ウエビング150Aは、ウエビング開き角θAとなった状態で、スルーアンカ170の挿通孔206の下縁208に接触した状態となり、挿通孔206の片側に片寄らない。したがって、スルーアンカ170によれば、ジャミングを防止できる。
 図8は、比較例のスルーアンカ10を拡大して示す図である。図8(a)は、スルーアンカ10を車内側から見た正面図である。図8(b)は、図8(a)のスルーアンカ10の一部を矢印Eで示す方向から見た状態を示す図である。
 スルーアンカ10は、上記バンプ部220を形成していない点で、本実施形態のスルーアンカ170と異なる。スルーアンカ10の挿通孔12は、図8(a)に示すように、ほぼ直線状の下縁14と、下縁14の端部16から連続し、上方に向かって湾曲して延びている横縁18とを含んでいる。さらに、スルーアンカ10は、下縁14の下側に設けられている下側部20と、横縁20に沿って形成された平面部22とを備えている。平面部22は、図8(b)の点線Mで示すように、下側部20の表面とほぼ同じ高さとなっていて、上記バンプ部220のように車内側に隆起していない。
 以下、図9を参照して、車両の緊急時でのスルーアンカ10およびウエビング30の挙動を説明する。図9は、図8のスルーアンカ10の車両の緊急時における状態を示す図である。
 車両の緊急時には、まず、図9(a)に矢印Fで示すように、不図示のプリテンショナが作動し第2ウエビング30Bが一旦引き込まれ、たるみが取られた状態となる。なお、ウエビング開き角は図6(a)と同様にθoである。
 続いて、乗員が前方に移動することから、図9(b)の矢印Gに示すように、エネルギー吸収機構による第1ウエビング30Aの急激な引き出しが行われる。ここでウエビング開き角はθとなり、上記ウエビング開き角θoと比べて大きくなる。
 そして、第1ウエビング30Aは、急激に引き出されながら、より水平な状態に近付く挙動を示し、上記したように接触していた挿通孔12の下縁14から離れつつ、下縁14の端部16に移動する。
 さらに、第1ウエビング30Aは、図9(b)に示すように、下縁14の端部16に連続する横縁18に接触しながら横縁18を登るように移動する。ところが、スルーアンカ10では、横縁18に沿って形成された平面部22が車内側に隆起していない。このため、第1ウエビング30Aは、平面部22と広範囲な面接触を確保できず、平面部22を過度に登っていく。
 なお第1ウエビング30Aは、平面部22との面接触を確保できないものの、点接触あるいは線接触を確保することは可能と想定される。このため、第1ウエビング30Aは、この点接触あるいは線接触に伴う小さな摩擦力に起因してスルーアンカ10に回転力を与えることも考えられる。
 しかし、第1ウエビング30A自体は、依然として前方に引っ張られて水平な状態に近付こうとしているため、スルーアンカ10の回転よりも迅速に、第1ウエビング30Aが平面部22を登り続けてしまう。言い換えると、スルーアンカ10の回転が、第1ウエビング30Aの移動に間に合わない事態となる。
 その結果、比較例によるスルーアンカ10では、図9(c)に示すように、ウエビング開き角θAとなった状態で、スルーアンカ10を回転させようとする力に対して第1ウエビングの移動の力の方が強くなりそれらの力のバランスが崩れた瞬間に、第1ウエビング30Aが挿通孔12の片側に片寄ってしまい、ジャミングが発生する。
 これに対して、本実施形態におけるスルーアンカ170では、下側部218よりも隆起しているバンプ部220が、凸状の滑らかな曲面234を含む第1摺動面228と、第1摺動面228と滑らかに連続する面221(図3(a)参照)でつながる第2摺動面230とを有している。このため、スルーアンカ170によれば、車両の緊急時に第1ウエビング150Aが挿通孔206の下縁208から離れるものの、バンプ部220の第1摺動面228と第2摺動面230を滑らかに登りつつ、バンプ部220と広範囲の面接触を確保できる。そして、第1ウエビング150Aは、依然として前方に引っ張られて水平な状態に近付こうとしているため、面接触しているバンプ部220の第1摺動面228と第2摺動面230を介して、スルーアンカ170に十分な回転力を与えることができる。その結果、スルーアンカ170が確実に回転するため、ジャミングを防止できる。
 また、バンプ部220は、車内側に隆起して形成されていて、脆弱な部分が生じない。このため、バンプ部220は、車両の緊急時に、リトラクタ160内部のトーションバーが捻じれ変形するほどの大きな荷重を受けたとしても、変形することがない。さらに、スルーアンカ170が回転することから、上記荷重自体がバンプ部220に局所的に加わることもない。
 さらに、バンプ部220は、図3(a)に示すように、下縁208の端部214を通る第1直線であるA-A線と、横縁210の最端部238を通る第2直線であるD-D線との間に少なくともわたって設けられている。このため、車両衝突時の衝撃が大きく、第1ウエビング150Aが、下縁208の端部214から横縁210の最端部238に至るバンプ部220の第1摺動面228を登りきるような想定外の事態となっても、第1ウエビング150Aはバンプ部220との面接触を確保できる。したがって、車両の正面衝突だけでなく側面衝突など、車両の各種緊急時にジャミングを防止できる。
 また、上記下側部218とバンプ部220とが第2摺動面230によって滑らかにつながれているので、車両の緊急時、第1ウエビング150Aは、第2摺動面230を滑らかに登り、下側部218からバンプ部220に至る。このため、第1ウエビング150Aは、バンプ部220を登るとき第1摺動面228よりも先に第2摺動面230を介して、スルーアンカ170に回転力を与えることができる。したがって、スルーアンカ170が早期に回転し、これによって、より確実にジャミングが防止される。
 また、上記実施形態では、車内側に隆起したバンプ部220が、車両の緊急時に第1ウエビング150Aとの面接触を確保することが必要である。このため、バンプ部220の形状としては、たとえ車内側に隆起していても、車両の緊急時に第1ウエビング150Aが登らない場合や、登ったとしても面接触を確保できないような形状はジャミングを防止できず、本実施形態には含まれない。
 なお車内側に隆起したバンプ部220が、車両の緊急時に第1ウエビング150Aとの面接触を確保することが可能であれば、バンプ部220は、凸面、凹面または平面の少なくとも1つを含む滑らかな面で構成されていてもよい。この場合には、第1ウエビング150Aは、車両の緊急時に、バンプ部220を滑らかに登りつつ、それによって生じる摩擦力によってバンプ部220を介して、スルーアンカ170に回転力を与えることができ、その結果、ジャミングを防止できる。
 また、バンプ部220では、上記の稜線232が横縁210の形状に沿うように形成されている。このため、第1ウエビング150Aは、車両の緊急時、横縁210から稜線232に至るバンプ部220の第1摺動面228をより滑らかに登りつつ、バンプ部220と広範囲の面接触を確実に確保できる。よって、第1ウエビング150Aは、第1摺動面228を介して、スルーアンカ170に回転力を確実に与えることができる。
 バンプ部220は、車両の緊急時に第1ウエビング150Aが第1摺動面228を登りつつ、バンプ部220との面接触を確保できるのであれば、稜線232は、必ずしも横縁210の形状に沿うように形成されている必要はない。
 図10は、変形例のスルーアンカ170Aの一部を拡大して示す図である。スルーアンカ170Aは、稜線232Aが横縁210の形状に沿って形成されていない点で、図3(a)に示すスルーアンカ170と異なる。すなわち、稜線232Aは、峰部232eから峰部232fに向けて横縁210により近付き、峰部232fから峰部232gに向けて横縁210からより離れるように湾曲している。このようなスルーアンカ170Aであっても、横縁210と稜線232Aとの間には第1摺動面228Aが形成されていて、また下側部218の端224から峰部232eに至る第2摺動面230Aが形成されている。
 したがって、スルーアンカ170Aによれば、車両の緊急時に第1ウエビング150Aが第1摺動面228Aおよび第2摺動面230Aを登りつつ、第1摺動面228Aおよび第2摺動面230Aを介して、スルーアンカ170に回転力を確実に与え、ジャミングを防止できる。
 本発明の他の実施形態では、バンプ部220は、車両の緊急時に上記ウエビング開き角が増加した際、図3および図4に示したような、第1ウエビング150Aがバンプ部220の第1摺動面228若しくは第2摺動面230を登りつつ、バンプ部220との面接触を確保できる範囲であれば、必ずしも、図3のA-A線からD-D線の間にわたって設けられている必要はない。たとえば、バンプ部220の下側部218から隆起する部分を、下側部218を含む断面で見た場合に、バンプ部220の麓部分219は、スルーアンカ170から外向きに凹形状となり、且つ、バンプ部220の峰部232a付近はスルーアンカ170から外向きに凸形状となっており、これらの凹形状と凸形状とは滑らかにつながるように構成されてもよい。その一例として、バンプ部220は、図4(a)のA-A断面に示されている下縁208の端部214付近でのみ隆起し、図4(b)~図4(d)に示す断面においては車内側に隆起していなくてもよい。加えて別の例を図11および図12に示す。
 図11は、本発明の他の実施形態におけるスルーアンカ170Bを示す図である。図11(a)は、スルーアンカ170Bの一部を拡大して示す図である。図11(b)、図11(c)は、図11(a)のP-P´断面、Q-Q´断面をそれぞれ示す図である。
 スルーアンカ170Bは、図示のように、単独の山のように一つの峰部250aしか有していないバンプ部250を備えている。このため、バンプ部250には、上記稜線232は形成されていない。しかし、バンプ部250は、図11(b)、図11(c)の断面形状に示すように、下側部218から峰部250aまで滑らかに連続するスルーアンカ170Bから外向きに凹形状の麓部252a´、252b´、252c´、252d´、および曲面252a、252b、252c、252dを含んでいる。
 このため、スルーアンカ170Bでは、バンプ部250の少なくとも一部を形成する曲面252a、252b、252c、252dのいずれかを、第1ウエビング150Aが車両の緊急時に滑らかに登りつつ、それによって生じる摩擦力によってバンプ部250を介して回転力が与えられる。したがって、スルーアンカ170Bによれば、ジャミングを防止できる。
 図12は、図11のスルーアンカ170Bの変形例を示す図である。図12(a)は、スルーアンカ170Cの一部を拡大して示す図である。図12(b)、図12(c)は、図12(a)のP-P´断面、Q-Q´断面をそれぞれ示す図である。
 スルーアンカ170Cは、図示のように、単独の丘陵部分のように形成されたバンプ部260を備えている。この丘陵部分を有するバンプ部260は、上記峰部250aのようなはっきりした頂きが無く、また明らかな上記稜線232も無い。しかし、バンプ部260は、概ね平らな峰部や稜線と看做せるような部分260aを含んでいて全体が隆起したような丘のような形状である。よって、バンプ部260は、図12(b)、図12(c)の断面形状に示すように、下側部218から部分260aまで滑らかに連続するスルーアンカ170Cから外向きに凹形状の麓部262a´、262b´、262c´、262d´、および曲面262a、262b、262c、262dを含んでいる。
 このため、スルーアンカ170Cでは、バンプ部260の上記部分260aに至る曲面262a、262b、262c、262dのいずれかを、第1ウエビング150Aが車両の緊急時に滑らかに登りつつ、それによって生じる摩擦力によってバンプ部260を介して回転力が与えられる。したがって、スルーアンカ170Cによれば、ジャミングを防止できる。
 図13は、さらに他の変形例のスルーアンカ170Dを示す図である。スルーアンカ170Dは、上記したように、ウエビング摺動方向に規則的に並ぶように形成された溝233aと、それらの溝233aを除く表面部分233bとからなる、滑らかな面233を備えている。この滑らかな面233は、下側部218の表面部分よりも車内側に隆起したバンプ部270を構成している。
 このように、スルーアンカ170Dでは、バンプ部270に溝233aが複数形成されていたとしても、滑らかな面233を含んでいることから、第1ウエビング150Aが車両の緊急時に面233を滑らかに登りつつ、それによって生じる摩擦力によってバンプ部270を介して回転力が与えられる。したがって、スルーアンカ170Dによれば、ジャミングを防止できる。
 上記実施形態では、第1摺動面228、228Aに加え、第2摺動面230、230Aを備えるとしたが、これに限定されない。一例として、車両の緊急時に第1ウエビング150Aが、第2摺動面230、230Aを登りつつバンプ部220との面接触を確保し、ジャミングを防止できるのであれば、第1摺動面228、228Aを形成せずともよい。同様に、車両の緊急時に第1ウエビング150Aが第1摺動面228、228Aを登りつつ、バンプ部220との面接触を確保しジャミングを防止できるのであれば、第2摺動面230、230Aを形成せずともよい。
 さらに、上記実施形態では、図5で示したように車両用シート120がいわゆるR/M状態にあり、ウエビング開き角の変化がある程度大きくなる場合でのスルーアンカ170の挙動に伴って、ジャミングを防止できることを説明したが、これに限定されない。すなわち、車両用シート120を最も車両前側にスライドさせた状態(F/M;Front Most)で、ウエビング開き角の変化が小さい場合であっても、車両の緊急時に第1ウエビング150Aがバンプ部220を登りつつ、バンプ部220との面接触を確保できるのであれば、ジャミングを防止することは可能である。
 一方、通常の使用時において、本発明に基づく例えばスルーアンカ170を使用すると、従来のスルーアンカを使用する場合に比べて、ウエビング150の引き出し力が低減することが判明した。スルーアンカ170は、バンプ部220によって回転力が与えられやすいので、通常の使用時にウエビング150を引き出す際に回転しやすくなる。このため、スルーアンカ170は、ウエビング150の引き出し時に、その都度回転し、ウエビング150の引き出し角度がスルーアンカ170に対して最適な角度となりやすい。なお、最適な角度とは、通常の使用時にウエビング150が引き出された際、ウエビング150がスルーアンカ170の挿通孔206の下縁208に接触して摺動できるような範囲の角度をいう。
 バンプ部220が設けられていない従来のスルーアンカは、ウエビングの引き出し時にスルーアンカの回転が不足して、引き出されるウエビングに対して、スルーアンカ自体が抵抗となっていた。従来のスルーアンカは、ウエビングの引き出し角度に追従して回転することが困難であった。したがって、従来のスルーアンカでは、ウエビングの摺動部分に上記のような低摩擦部材208a(図2参照)を設けたとしても、ウエビングが低摩擦部材208aの上を常に摺動するとは限らず、引き出し力の低減が不十分であった。
 これに対して、本発明のスルーアンカ170は、バンプ部220によって回転力が与えられることで、通常の使用時におけるウエビング150の引き出しに追従して回転できる。よって、スルーアンカ170は、引き出されるウエビング150に対して抵抗となり難い。さらに、低摩擦部材208aの上を常にウエビング150が摺動可能となり、これによりウエビング150の引き出し力を低減できる。したがって、本発明のスルーアンカ170によれば、車両の緊急時にジャミングを防止できるだけでなく、通常の使用時ではウエビング150の引き出し力を低減することもできる。
 スルーアンカ170と従来のスルーアンカとにそれぞれ挿通させたウエビングの引き出し力を、いわゆるプッシュプル測定器で計測した。その測定方法は、例えば図5(a)を参照して説明すると、まず、ウエビングの引き出し方向を、車両側面側から見たとき、第2ウエビング150Bに対して車両前方に位置する第1ウエビング150Aの、第2ウエビング150Bに対する角度を55°程度とし、さらに、車両前方あるいは車両上方から見たとき、車両の壁側に位置する第2ウエビング150Bに対して、車内側に位置する第1ウエビング150Aの、第2ウエビング150Bに対する車両前方または上方から見たそれぞれの角度を35°程度とした。
 このような引き出し方向で、スルーアンカ170と従来のスルーアンカとにそれぞれ挿通させた第1ウエビング150Aを、プッシュプル測定器を用いて300mm引き出して、それぞれの引き出し力を測定した。測定結果によれば、従来のスルーアンカを用いた場合での引き出し力は9.5Nであるのに対して、本願発明に基づくスルーアンカ170では、引き出し力は7.8Nであった。つまり、スルーアンカ170を用いることで、従来のスルーアンカに比べて、引き出し力を約17%も低減できることが明らかとなった。
 したがって、スルーアンカ170によれば、通常の使用時にこのようにウエビングの引き出し力を低くできたにもかかわらず、車両緊急時には、上記したようにジャミング等を無くすことができるので、乗員拘束性能は従来よりも向上させることができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 また、上記実施形態においては本発明にかかるシートベルト装置を自動車に適用した例を説明したが、自動車以外にも航空機や船舶などに適用することも可能であり、同様の作用効果を得ることができる。
 本発明は、乗員拘束用のウエビングを挿通するシートベルト用スルーアンカおよびこれを備えたシートベルト装置に利用することができる。

Claims (10)

  1.  車室内の壁に回転自在に取り付けられ、リトラクタから到来する帯状のウエビングを挿通させて折り返すシートベルト用スルーアンカであって、
     前記ウエビングを挿通させる挿通孔であり、該ウエビングを横切るように該ウエビング表面に接触し該ウエビングを摺動させるほぼ直線状の下縁と、該下縁の端部から湾曲して延びている横縁とを含む挿通孔と、
     前記下縁の下側に設けられている下側部と、
     前記スルーアンカの表面上であり、前記下側部の端付近から当該スルーアンカの横方向に向けて設けられ、且つ、当該スルーアンカの設置時に車室内側に相当する方向に向かって前記下側部の表面よりも隆起しているバンプ部と、を備え、
     前記バンプ部は、該横縁から離れる途上で最も隆起している峰部を有し、
     前記峰部と前記横縁との間に、少なくとも当該スルーアンカから外向きに凸状の曲面を含んで構成される第1摺動面を有することを特徴とするシートベルト用スルーアンカ。
  2.  前記バンプ部の前記下側部から隆起する部分を、該下側部を含む断面で見た場合に、前記バンプ部の麓部分はスルーアンカから外向きに凹形状となり、且つ、前記峰部付近はスルーアンカから外向きに凸形状となっており、当該凹形状と凸形状とは滑らかにつながるように構成される第2摺動面を含むことを特徴とする請求項1に記載のシートベルト用スルーアンカ。
  3.  前記バンプ部の前記麓部分から前記峰部分に至る面に平面を含み、当該平面は、前記麓部分の凹形状と前記峰部分の凸形状とに滑らかにつながるように構成されることを特徴とする請求項2に記載のシートベルト用スルーアンカ。
  4.  前記第1摺動面と前記第2摺動面とは滑らかに連続する面でつながっていることを特徴とする請求項2または3に記載のシートベルト用スルーアンカ。
  5.  前記バンプ部は、前記峰部をつないで形成された稜線と前記横縁との間に、前記第1摺動面を有することを特徴とする請求項1から4のいずれかに記載のシートベルト用スルーアンカ。
  6.  前記稜線は、前記横縁の形状に沿うように形成されていることを特徴とする請求項5に記載のシートベルト用スルーアンカ。
  7.  車室内の壁に回転自在に取り付けられ、リトラクタから到来する帯状のウエビングを挿通させて折り返すシートベルト用スルーアンカであって、
     前記ウエビングを挿通させる挿通孔であり、該ウエビングを横切るように該ウエビング表面に接触し該ウエビングを摺動させるほぼ直線状の下縁と、該下縁の端部から湾曲して延びている横縁とを含む挿通孔と、
     前記下縁の下側に設けられている下側部と、
     前記スルーアンカの表面上であり、前記下側部の端付近から当該スルーアンカの横方向に向けて設けられ、且つ、当該スルーアンカの設置時に車室内側に相当する方向に向かって前記下側部の表面よりも隆起しているバンプ部と、を備え、
     前記バンプ部の前記下側部から隆起する部分を、該下側部を含む断面で見た場合に、前記バンプ部の麓部分はスルーアンカから外向きに凹形状となり、且つ、前記バンプ部の峰部付近はスルーアンカから外向きに凸形状となっており、当該凹形状と凸形状とは滑らかにつながるように構成される第2摺動面を有することを特徴とするシートベルト用スルーアンカ。
  8.  前記バンプ部の前記麓部分から前記峰部に至る面に平面を含み、当該平面は、前記麓部分の凹形状と前記峰部分の凸形状とに滑らかにつながるように構成されることを特徴とする請求項7に記載のシートベルト用スルーアンカ。
  9.  前記バンプ部は、前記下縁の端部を通り前記挿通孔の短手方向に延びる第1直線と、前記横縁のうち最も外側に位置する最端部を通り前記挿通孔の長手方向に延びる第2直線との間に少なくともわたって設けられることを特徴とする請求項1から8のいずれか1項に記載のシートベルト用スルーアンカ。
  10.  請求項1~9のいずれか1項に記載のシートベルト用スルーアンカを備えたことを特徴とするシートベルト装置。
PCT/JP2014/051050 2013-03-21 2014-01-21 シートベルト用スルーアンカおよびシートベルト装置 WO2014148088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015506628A JP6009650B2 (ja) 2013-03-21 2014-01-21 シートベルト用スルーアンカおよびシートベルト装置
CN201480017150.1A CN105073513B (zh) 2013-03-21 2014-01-21 安全带用贯穿锚定器和安全带装置
US14/777,992 US9457764B2 (en) 2013-03-21 2014-01-21 Seatbelt through-anchor and seatbelt device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013057975 2013-03-21
JP2013-057975 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148088A1 true WO2014148088A1 (ja) 2014-09-25

Family

ID=51579784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051050 WO2014148088A1 (ja) 2013-03-21 2014-01-21 シートベルト用スルーアンカおよびシートベルト装置

Country Status (4)

Country Link
US (1) US9457764B2 (ja)
JP (1) JP6009650B2 (ja)
CN (1) CN105073513B (ja)
WO (1) WO2014148088A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6272253B2 (ja) * 2015-02-12 2018-01-31 株式会社東海理化電機製作所 シートベルト装置用アンカ
JP6325040B2 (ja) * 2016-08-29 2018-05-16 株式会社東海理化電機製作所 移動装置
KR101788193B1 (ko) * 2016-09-07 2017-10-20 현대자동차주식회사 벨트가이드장치 및 이를 갖춘 안전벨트장치
US10434977B2 (en) * 2017-08-31 2019-10-08 Ford Global Technologies, Llc Seatbelt anchor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200964A (ja) * 2000-10-23 2002-07-16 Nsk Autoliv Co Ltd シートベルト装置
JP2008260415A (ja) * 2007-04-12 2008-10-30 Takata Corp ベルトガイドアンカーおよびこれを備えたシートベルト装置
JP2011079339A (ja) * 2009-10-02 2011-04-21 Autoliv Development Ab シートベルト装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929566B2 (ja) * 1997-10-09 2007-06-13 エヌエスケー・オートリブ株式会社 ショルダーベルトアンカー調節装置
JP2000006757A (ja) * 1998-06-24 2000-01-11 Nippon Seiko Kk シートベルト支持装置
JP4033379B2 (ja) * 2001-07-11 2008-01-16 タカタ株式会社 シートベルト用ガイドアンカー
JP4110037B2 (ja) * 2003-05-14 2008-07-02 株式会社東海理化電機製作所 スルーアンカ
JP5839793B2 (ja) * 2010-11-09 2016-01-06 株式会社遠州 スルーアンカ
CN202641610U (zh) * 2012-07-17 2013-01-02 浙江赛凯车业有限公司 汽车顶棚安全带锁止装置
CN202783077U (zh) * 2012-08-30 2013-03-13 浙江吉利汽车研究院有限公司杭州分公司 一种汽车安全带的连接装置
JP5823440B2 (ja) * 2013-04-12 2015-11-25 株式会社東海理化電機製作所 スルーアンカ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200964A (ja) * 2000-10-23 2002-07-16 Nsk Autoliv Co Ltd シートベルト装置
JP2008260415A (ja) * 2007-04-12 2008-10-30 Takata Corp ベルトガイドアンカーおよびこれを備えたシートベルト装置
JP2011079339A (ja) * 2009-10-02 2011-04-21 Autoliv Development Ab シートベルト装置

Also Published As

Publication number Publication date
CN105073513B (zh) 2017-09-29
US9457764B2 (en) 2016-10-04
CN105073513A (zh) 2015-11-18
JP6009650B2 (ja) 2016-10-19
JPWO2014148088A1 (ja) 2017-02-16
US20160137161A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6009650B2 (ja) シートベルト用スルーアンカおよびシートベルト装置
GB2548699A (en) Load limiting seat belt buckle assemblies
US8312604B2 (en) Lock deflection device
JP4925445B2 (ja) ベルトガイドアンカーおよびこれを備えたシートベルト装置
EP2045149B1 (en) Seat belt through anchor, seat belt apparatus and vehicle
US8720949B2 (en) Tongue and seat belt device using the same
US20110133439A1 (en) Restraint system load limiter
JP5224827B2 (ja) タングおよびこれを用いたシートベルト装置
US7866702B2 (en) Energy absorbing seat anchor restraint system for child safety seats
US9090225B2 (en) Shoulder belt latch load-limiting system
EP1275569B1 (en) Seat-belt guide anchor
JP2013091446A (ja) スルーアンカ及びシートベルト装置
JP2013173504A (ja) ベルト装置
EP2818368B1 (en) Tongue and seatbelt device using same
JP5797836B2 (ja) シートベルト装置
JP4488618B2 (ja) シートベルト装置
JP2003019944A (ja) シートベルト装置
EP3479719B1 (en) Seat-belt tongue
US10336293B2 (en) Motor vehicle comprising improved deflection member of a safety belt device and method
JP4565957B2 (ja) ウエビング挿通部材
KR20150034869A (ko) 리어시트의 안전벨트
JP5829756B2 (ja) シートベルト装置
JP2955261B2 (ja) シートベルト吊持具
JP6138472B2 (ja) シートベルト装置
JP5746728B2 (ja) シートベルト装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017150.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506628

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14777992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767312

Country of ref document: EP

Kind code of ref document: A1