WO2014148072A1 - 光学素子及び光学素子の製造方法 - Google Patents

光学素子及び光学素子の製造方法 Download PDF

Info

Publication number
WO2014148072A1
WO2014148072A1 PCT/JP2014/050510 JP2014050510W WO2014148072A1 WO 2014148072 A1 WO2014148072 A1 WO 2014148072A1 JP 2014050510 W JP2014050510 W JP 2014050510W WO 2014148072 A1 WO2014148072 A1 WO 2014148072A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical element
region
mold
optical surface
Prior art date
Application number
PCT/JP2014/050510
Other languages
English (en)
French (fr)
Inventor
毅彦 五島
佳弘 奥村
浩志 梅津
清司 湯浅
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP14768385.8A priority Critical patent/EP2977168A1/en
Priority to CN201480017239.8A priority patent/CN105050792B/zh
Priority to JP2015506623A priority patent/JP6299748B2/ja
Priority to US14/776,303 priority patent/US10369728B2/en
Publication of WO2014148072A1 publication Critical patent/WO2014148072A1/ja
Priority to US16/427,835 priority patent/US11358311B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/372Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2756Cold runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present invention relates to an optical element obtained by injection molding a resin in a cavity and a method for manufacturing the optical element.
  • optical elements such as lenses and prisms have been required to have various uses and thickness reductions, and have been required to be able to form unique shapes with high accuracy and uniformity.
  • high uniformity is required with respect to optical surface shape accuracy and internal birefringence.
  • a product group that has conventionally been mainly made of glass is also required to be changed to a plastic optical element (plastic lens, plastic mirror, etc.) in accordance with a request for cost reduction.
  • FIG. 14A shows the interference fringes when there is no surface split.
  • FIG. 14A shows the interference fringes when there is no surface split.
  • surface split is defined as a fine optical surface transfer defect that can be determined by interference fringes.
  • FIG. 14C is a diagram showing a central cross-sectional shape parallel to the length of the photograph obtained by analyzing the interference fringes shown in FIGS.
  • a solid line shows the cross section of FIG. 14A, and it turns out that the gentle concave surface in which the optical surface continued was formed.
  • the dotted line shows the cross section of FIG. 14B, but it can be seen that the optical surface is split at discontinuous portions of the line.
  • the above prior art requires a new step of providing ribs at the boundary between the non-optical surface and the optical surface in order to reduce the influence of the sink area on the surface accuracy of the optical surface in the manufacturing process.
  • the shape of the mold and the optical element is complicated. Particularly in recent years, space saving and downsizing are required for products, and the invention described in Patent Document 1 cannot be used for an optical element having a limited space. Also, even if the rib is made small to meet the space restriction request, if the rib exists adjacent to the optical surface to be obtained, the rib portion cannot be controlled if the sink amount is large. In other words, sink marks and surface splitting appear on the optical surface. In general, since the amount of sink is random with a certain width, an unnecessary rib portion must be enlarged.
  • the present invention provides an optical element that is excellent in shape transfer accuracy of a required optical surface and has a small birefringence while being a simple method that does not require an unnecessary rib portion, a complicated mold configuration or a molding method. It is a problem to obtain.
  • an optical element manufacturing method reflecting one aspect of the present invention emits an optical element having an optical surface and a non-optical surface adjacent to the optical surface via a ridgeline.
  • a method of manufacturing by molding, having a first surface roughness, having a first region for forming a sink region, and a second surface roughness larger than the first surface roughness, Forming a non-optical surface with a mold surface having a first region and a second region located between the optical surface.
  • an optical element reflecting one aspect of the present invention is manufactured by the above-described manufacturing method.
  • the surface accuracy of the optical surface can be improved and the birefringence can be reduced at low cost.
  • FIG. 6 is a schematic diagram for explaining a manufacturing method of the optical element according to Example 1.
  • FIG. 1 is an external perspective view showing an optical element according to Example 1.
  • FIG. It is an external appearance perspective view which shows the optical element which concerns on another Example.
  • 10 is a table for explaining evaluation of birefringence distribution and optical surface accuracy in Examples 1 to 6.
  • 6 is a schematic diagram for explaining a method for manufacturing an optical element according to Example 2.
  • FIG. 6 is a schematic diagram for explaining a method for manufacturing an optical element according to Example 3.
  • FIG. 10 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 1.
  • FIG. 10 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 2.
  • FIG. 10 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 2.
  • FIG. 10 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 3.
  • FIG. 10 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 4.
  • FIG. 10 is a table for explaining evaluation of birefringence distribution and optical surface accuracy in Comparative Examples 1 to 5. It is the table
  • FIG. 17A It is a longitudinal cross-sectional view of FIG. 17A.
  • FIG. 17B is a side view of FIG. 17A. It is the figure which showed the modification of a lens. It is the figure which showed the other modification of the lens.
  • FIG. 20 is a diagram showing optical surface evaluation in each optical element shown in FIGS. 15 to 19;
  • FIG. 1 is a duplex diagram for explaining a method of manufacturing an optical element according to the first embodiment.
  • FIG. 2A is an external perspective view illustrating the optical element according to the first embodiment.
  • FIG. 2B is an external perspective view showing an optical element according to another embodiment.
  • FIG. 3 is a table for explaining the evaluation of the birefringence distribution and the optical surface accuracy in Examples 1 to 6.
  • FIG. 4 is a schematic diagram for explaining the method of manufacturing the optical element according to the second embodiment.
  • FIG. 5 is a schematic diagram for explaining the method of manufacturing the optical element according to the third embodiment.
  • FIG. 6 is a schematic diagram for explaining a method of manufacturing an optical element according to Comparative Example 1.
  • FIG. 7 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 2.
  • FIG. 1 is a duplex diagram for explaining a method of manufacturing an optical element according to the first embodiment.
  • FIG. 2A is an external perspective view illustrating the optical element according to the first embodiment.
  • FIG. 8 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 3.
  • FIG. 9 is a schematic diagram for explaining a method for manufacturing an optical element according to Comparative Example 4.
  • FIG. 10 is a table for explaining the evaluation of the birefringence distribution and the optical surface accuracy in Comparative Examples 1 to 5.
  • FIG. 11 is a table showing the relationship between the high transfer portion distance and the optical surface accuracy within the distance between adjacent optical surfaces.
  • FIG. 12A is a schematic diagram illustrating a so-called mold clamping process in which a cavity is formed by abutting a movable mold and a fixed mold.
  • FIG. 12B is a schematic view showing a so-called protruding step in which the prism is released from the injection molding machine.
  • FIG. 12A is a schematic diagram illustrating a so-called mold clamping process in which a cavity is formed by abutting a movable mold and a fixed mold.
  • FIG. 12B is a schematic view showing
  • FIG. 13A is a diagram illustrating an example for explaining the relationship between the width (one side) of the high transfer region and the optical surface accuracy.
  • FIG. 13B is a diagram showing another example for explaining the relationship between the width (one side) of the high transfer region and the optical surface accuracy.
  • FIG. 14A is a diagram showing interference fringes when there is no surface splitting
  • FIG. 14B is a diagram showing interference fringes when there is a surface splitting
  • FIG. 14C is a non-optical surface with or without splitting. It is the figure which showed the relationship between the width
  • FIG. 15 is a diagram showing a modification of the prism.
  • FIG. 16 is a diagram showing another modification of the prism.
  • FIG. 17A is a perspective view showing still another modified example of the prism, FIG.
  • FIG. 17B is a longitudinal sectional view
  • FIG. 17C is a side view
  • FIG. 18 is a diagram showing a modification of the lens.
  • FIG. 19 is a diagram showing another modification of the lens.
  • FIG. 20 is a diagram showing optical surface evaluation in each optical element shown in FIGS.
  • an optical element 1090A represented by a prism is a dielectric medium made of a resin that is transparent to the light to be used, and its shape is a trapezoidal column, preferably an isosceles trapezoidal column. It is.
  • the prism may have a shape other than the trapezoidal prism, and the prism may be replaced with a shape that is difficult to call a prism.
  • the prism may be a semi-cylindrical body, and the prism may be replaced with a plate shape.
  • the prism used in the present invention is not particularly limited in use, and may be a lens. Lenses relating to other applications will be described later with reference to FIGS.
  • the optical element 1090A includes optical surfaces 1091 and 1092 and a non-optical surface 1093A as shown in FIG. 2A.
  • the surface facing the optical surface 1091 is a non-optical surface 1093A.
  • One optical surface 1092 becomes an entrance surface
  • the other optical surface 1092 becomes an exit surface
  • the optical surface 1091 becomes a reflection surface.
  • an optical element having a shape having a positioning portion 1088 on the side surface as shown in FIG. 2B may be used. Other forms of the optical element will be described later.
  • FIG. 12A is a schematic view showing a so-called mold clamping process in which a cavity is formed by abutting a movable mold and a fixed mold.
  • FIG. 12B is a schematic diagram showing a so-called protruding step in which the optical element is released from the injection molding machine.
  • a movable mold core nesting (hereinafter referred to as “movable mold core nesting”) 1300 is a pair of movable mirror surfaces arranged so as to sandwich the movable back core 1302A and the movable back core 1302A. Cores 1301 and 1301 are included.
  • the surface area of the movable-side back core 1302A is disposed adjacent to both sides of a transfer area (hereinafter referred to as “sink formation area”) 1095 that is an area to be sinked and an area that is not desired to be sinked.
  • high transfer regions 1094 and 1094 Projecting pins 1320 are arranged at the four corners of the surface region.
  • a part of an injection mold (hereinafter sometimes referred to as an “injection mold” for convenience) 1200 has a concave portion (cavity) having the shape of an injection molded product (optical element 1090A).
  • Movable mold core insert 1300 having 1330 formed therein, and a fixed mold core insert (hereinafter referred to as “fixed mold mold insert nested”) having a function of closing recess 1330 by abutting against movable mold core insert 1300
  • the resin material which is composed of 1310, a protruding pin 1320, and an ejector member (not shown) and is a material of an injection molded product, is supplied from the cylinder portion 1260 to the cavity.
  • the injection mold 1250 is abutted against the movable mold core insert 1300 having a concave portion (cavity) 1330 having the shape of an injection molded product, and the movable mold core insert 1300.
  • a fixed mold core insert 1310 having a function of closing the recess 1330, a protruding pin 1320, an ejector member 1325, and a cylinder portion 1260 for supplying a resin material, which is a material of an injection molded product, to the cavity. ing.
  • the injection molding process includes a mold clamping process, an injection process, a pressure holding process, a cooling process, a mold opening process, and a protruding / product taking process, and injection molding is performed in this order.
  • the mold clamping step the movable mold core insert 1300 and the fixed mold core insert 1310 are brought into contact with each other, thereby closing the recess 1330 formed in the movable mold core insert 1300 to form a cavity.
  • the resin material (molten resin) 1305 from the resin material supply furnace 1303 is injected to fill the cavity (injection process).
  • the resin material passes through the sprue 1177 and the gate 1176 to fill the cavity.
  • the resin material is cooled by the mold and contracts.
  • the movable mold core insert 1300 is separated from the fixed mold core insert 1310 as shown in FIG. 12B (mold opening process). At this time, the molded product is attached to the movable mold core insert 1300.
  • the projecting pin 1320 is slid on the fixed mold core insert 1310 to release the optical element 1090A (protruding step).
  • a sensor chip 1026 is obtained by bonding a substrate and a flow path forming component (not shown) to the optical element 1090A.
  • the sink marks generated on the sink surface 1175 of the optical element 1090A are generated in the above-described pressure holding step. Sinking is generated on the sinking surface 1175 at a holding pressure setting of 65 MPa or less. Further, during the ejecting process, the ejection pin mark is generally attached to the injection molded product, but the projecting pin mark 1180 corresponding to the arrangement of the projecting pin 1320 is formed on the sink surface 1175 of the optical element 1090A this time.
  • the short side width of the high transfer region 1094 is amm
  • the short side width of the sink formation region 1095 is bmm
  • the short side width of the movable-side back core 1302A is cmm.
  • Birefringence distribution and optical surface accuracy of optical elements optical surface accuracy of optical surfaces 1091 and 1092 by changing the material, thermal conductivity, and surface roughness of movable-side back core 1302A described later using an injection mold 1200 was evaluated.
  • the distance d obtained by subtracting the high transfer portion distance on one side from the adjacent optical surface distance is referred to as the adjacent optical surface distance, and the evaluation described later was performed with the ratio of the distance a to the distance d being 40%.
  • the high transfer region 1094 and the sink formation region 1095 are originally regions formed on the non-optical surface 1093A of the optical element 1090A, but the back region of the movable-side back core 1302A and the non-optical surface 1093A correspond to each other.
  • the back surface area of the movable-side back core 1302A will be described as having the high transfer area 1094 and the sink formation area 1095.
  • the optical surface 1091 facing the non-optical surface is referred to as a counter-side optical surface (fixed side optical surface), and the optical surface adjacent to the non-optical surface. 1092 is referred to as an adjacent optical surface.
  • Thermal conductivity of the movable side back core (W ⁇ m / K)]
  • the first thermal conductivity in the sink formation region 1095 is 0.6 W ⁇ m / K or more and 20 W ⁇ m / K or less
  • the second thermal conductivity in the high transfer region 1094 is 8 W ⁇ m / K or more.
  • it is desirable that the first thermal conductivity is lower than the second thermal conductivity in the range of 200 W ⁇ m / K or less.
  • the reason why it is desirable that the first thermal conductivity is smaller than the second thermal conductivity is that the thermal conductivity of the portion where the sink of the non-optical surface is to be concentrated is reduced to the point where the sink of the non-optical surface is less likely to be concentrated. This is because by making the ratio smaller than the ratio, the surface accuracy of the optical surface can be improved without causing sink marks on the optical surface adjacent to the non-optical surface.
  • the first thermal conductivity is preferably in the range of 8 W ⁇ m / K or more and 200 W ⁇ m / K or less.
  • Examples of the mold material satisfying the above numerical range include plating and copper alloy.
  • the second thermal conductivity is desirably in the range of 0.6 W ⁇ m / K or more and 20 W ⁇ m / K or less.
  • Mold materials satisfying the above numerical ranges include those in which a heat insulating resin material is bonded or coated to a SUS material, a ceramic layer that is bonded to a SUS material or laminated by thermal spraying, and Ni-P plating on a SUS material.
  • a laminated material and a Starbucks material (STAVAX) can be mentioned.
  • the thickness of the mold material having the first thermal conductivity in the sink formation region is desirably as thin as possible so that the distribution of birefringence is stable and uniform without causing uneven cooling.
  • it is determined by appropriately adjusting according to the specifications required for each optical element.
  • the surface of the sink formation area where the base material is Starbucks material is uniformly plated as a low heat conductive material, the sink formation area is lapped, the end of the sink formation area is blasted, and the surface of the end The condition that the roughness Ra is larger may be used.
  • sink marks can be induced on the back surface, and the influence of the surface splitting on the optical surface can be suppressed because the blasted end region has a higher transfer.
  • the heat insulating resin material refers to a film coated with polyimide having excellent heat resistance and chemical resistance, or a film in which a heat resistant silicon-based adhesive is applied on the basis of polyimide.
  • the Starbucks material is a chrome alloy stainless steel, which is particularly excellent in corrosion resistance and wear resistance.
  • HRC generally recommends 45 to 54, density at room temperature is 7800kg / m3, and specific heat is 460J /.
  • Kg.k) a component means what contains Cr (chromium), V (vanadium), Mn (manganese), Si (silicon), C (carbon), and the like.
  • the second thermal conductivity is desirably larger than the first thermal conductivity.
  • the surface of the high transfer region 1094 is processed by blasting and is also called a textured surface.
  • the surface roughness Ra (centerline average roughness: JIS standard, the same shall apply hereinafter) of the embossed surface is desirably in the range of 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the surface roughness Ra of the sink formation region 1095 is preferably in the range of 0.1 nm or more and less than 0.5 ⁇ m.
  • the surface roughness Ra of the sink formation region 1095 is, for example, 0.1 nm
  • the surface is a so-called mirror surface and is finished by polishing or grinding.
  • a surface having a surface roughness Ra of less than 0.5 ⁇ m can be obtained by blasting a small particle shape, which is also called a Yepco process after grinding.
  • the difference between the surface roughness of the high transfer region 1094 and the surface roughness of the sink formation region 1095 is Ra 0.3 ⁇ m or more and less than 100 ⁇ m.
  • the surface roughness of the sink formation region 1095 is set to a level that does not affect the release process, and the surface roughness of the high transfer region 1094 is set to a roughness that provides an anchor effect during the release process. This is because the surface accuracy of the optical surfaces 1091 and 1092 can be improved without sink marks on the non-optical surface 1093A reaching the optical surface 1092 adjacent thereto.
  • Example 1 the material of the sink formation region 1095 and the high transfer region 1094 in the movable back core 1302A shown in FIG. 1 is both Starbucks material (STAVAX), and their thermal conductivity is 20 W / m ⁇ K. .
  • the sink formation region 1095 is displayed as a symbol A (short side center region) in the non-optical surface region section in the table of FIG. 3, and the high transfer region 1094 is represented by a symbol B (optical surface in the non-optical surface region section in the table.
  • STAVAX Starbucks material
  • B optical surface in the non-optical surface region section in the table.
  • Example 1 was carried out using a mold in which the surface roughness Ra of the sink formation region 1095 is 0.2 ⁇ m and the surface roughness Ra of the high transfer region 1094 is 0.7 ⁇ m.
  • the used mold can injection mold an optical element in which the short side width of the sink formation region 1095 is 3 mm and the short side width of the high transfer region 1094 is 2 mm.
  • the prism long side center is plus or minus 5 mm ( ⁇ 5 mm).
  • P polarization ratio also referred to as P polarization maintenance ratio
  • the optical surface accuracy whether or not there is a surface split in the white interferometer is used as an evaluation criterion, and if there is no surface split, it is determined to be good.
  • the P polarization ratio (P polarization maintenance rate) is defined as the maintenance rate of the P polarization component in the section from the incident surface to the reflection surface of the P polarized light incident on the prism.
  • Example 1 As shown in the table of FIG. 3, at the center of the prism long side plus or minus 5 mm ( ⁇ 5 mm), the P-polarization ratio is 93% or more, and the distribution is less than 4% in PV. It was good. Further, the optical surface adjacent to the sink formation region has no appearance in the appearance, and it has been confirmed that the optical surface accuracy is good because it has been confirmed that there is no surface splitting by interference fringe evaluation with a white interferometer.
  • the second embodiment is different from the first embodiment in that a ceramic layer 1097 is further formed below the sink formation region 1096 in the movable-side back core 1302B shown in FIG.
  • the material of the sink formation region 1096 is Ni—P plating (thickness t20 ⁇ m).
  • the material of the high transfer area 1094 is a Starbucks material (STAVAX).
  • Example 2 the thermal conductivity of Ni—P plating is 8 W / m ⁇ K, the thermal conductivity of the ceramic layer 1097 is 3 W / m ⁇ K, and the thermal conductivity of the Starbucks material is 20 W / m ⁇ K.
  • the surface roughness Ra of the sink formation region 1096 is 0.05 ⁇ m, and the high transfer region 1094 has a surface roughness Ra of 0.7 ⁇ m.
  • the used mold can injection mold an optical element in which the short side width of the sink formation region 1096 is 3 mm and the short side width of the high transfer region 1094 is 2 mm.
  • the P polarization ratio is 93% or more and the distribution is less than 4% in PV at the prism long side center plus or minus 5 mm ( ⁇ 5 mm), and the birefringence distribution is good.
  • Met the optical surface adjacent to the sink formation region has no appearance in the appearance, and it has been confirmed that the optical surface accuracy is good because it has been confirmed that there is no surface splitting by interference fringe evaluation with a white interferometer.
  • Example 3 the material of the sink formation region 1098 in the movable-side back core 1302C shown in FIG. 5 is Ni—P plating (thickness t500 ⁇ m).
  • the material of the high transfer area 1094 is a Starbucks material (STAVAX).
  • Example 3 the thermal conductivity of the Ni—P plating is 8 W / m ⁇ K, the thermal conductivity of the Starbucks material is 20 W / m ⁇ K, and the surface roughness Ra of the sink formation region 1098 is 0.00.
  • the used mold can injection mold an optical element in which the short side width of the sink formation region 1098 is 3 mm and the short side width of the high transfer region 1094 is 2 mm.
  • Example 3 As shown in the table of FIG. 3, the P polarization ratio is 93% or more at the center of the prism long side plus or minus 5 mm ( ⁇ 5 mm), the distribution is less than 4% in PV, and the birefringence distribution is good. Met. Further, the optical surface adjacent to the sink formation region has no appearance in the appearance, and it has been confirmed that the optical surface accuracy is good because it has been confirmed that there is no surface splitting by interference fringe evaluation with a white interferometer.
  • Example 4 differs from Example 1 in that the material of the sink formation region 1095 in the movable-side back core 1302A shown in FIG. 1 is formed of a heat-resistant resin material (polyimide film pasting or polyimide coating (thickness 50 ⁇ m)). .
  • the material of the high transfer area 1094 is a Starbucks material (STAVAX).
  • Example 4 the thermal conductivity of the heat insulating resin material is 0.6 W / m ⁇ K, the thermal conductivity of the Starbucks material is 20 W / m ⁇ K, and the surface roughness Ra of the sink formation region 1095 is 0.07 ⁇ m.
  • the high transfer area 1094 was performed using a mold having a surface roughness Ra of 0.7 ⁇ m.
  • the used mold can injection mold an optical element in which the short side width of the sink formation region 1095 is 3 mm and the short side width of the high transfer region 1094 is 2 mm.
  • Example 4 As shown in the table of FIG. 3, the P polarization ratio is 93% or more at the center of the prism long side plus or minus 5 mm ( ⁇ 5 mm), the distribution is less than 4% in PV, and the birefringence distribution is good. Met. Further, the optical surface adjacent to the sink formation region has no appearance in the appearance, and it has been confirmed that the optical surface accuracy is good because it has been confirmed that there is no surface splitting by interference fringe evaluation with a white interferometer.
  • Example 5 evaluation measurement is performed using a mold in which the sink formation region 1095 of the movable-side back core 1302A shown in FIG. 1 is a Starbucks material (STAVAX) and the high transfer region 1094 is a copper alloy. went.
  • STAVAX Starbucks material
  • the thermal conductivity of Starbucks material is 20 W / m ⁇ K, and the surface roughness Ra of the sink formation region 1095 is 0.2 ⁇ m.
  • the thermal conductivity of the copper alloy is 200 W / m ⁇ K, and the surface roughness Ra of the high transfer region 1094 is 0.7 ⁇ m.
  • the used mold can injection mold an optical element in which the short side width of the sink formation region 1095 is 3 mm and the short side width of the high transfer region 1094 is 2 mm.
  • the results of the evaluation measurement relating to the optical element injection-molded by the mold constituting the part 1200 of the injection-molding mold having the above-described conditions will be described below.
  • the measurement was performed using the birefringence distribution and optical surface accuracy of the optical element injection-molded under the above conditions as evaluation items.
  • Example 5 As shown in the table of FIG. 3, the P-polarization ratio is 93% or more and the distribution is less than 4% in PV at the prism long side center plus or minus 5 mm ( ⁇ 5 mm), and the birefringence distribution is good. Met. Further, the optical surface adjacent to the sink formation region has no appearance in the appearance, and it has been confirmed that the optical surface accuracy is good because it has been confirmed that there is no surface splitting by interference fringe evaluation with a white interferometer.
  • Example 6 For Example 6, evaluation measurement was performed using a mold in which the sink formation region 1095 of the movable-side back core 1302A shown in FIG. 1 is a ceramic bonding layer and the high transfer region 1094 is a copper alloy. .
  • the thermal conductivity of the ceramic bonding layer is 3 W / m ⁇ K, and the surface roughness Ra of the sink formation region 1095 is 0.2 ⁇ m.
  • the thermal conductivity of the copper alloy is 200 W / m ⁇ K, and the surface roughness Ra of the high transfer region 1094 is 0.2 ⁇ m.
  • the used mold can injection mold an optical element in which the short side width of the sink formation region 1095 is 3 mm and the short side width of the high transfer region 1094 is 2 mm.
  • Example 6 As shown in the table of FIG. 3, the P polarization ratio is 93% or more at the center of the prism long side plus or minus 5 mm ( ⁇ 5 mm), the distribution is less than 4% in PV, and the birefringence distribution is good. Met. Further, the optical surface adjacent to the sink formation region has no appearance in the appearance, and it has been confirmed that the optical surface accuracy is good because it has been confirmed that there is no surface splitting by interference fringe evaluation with a white interferometer.
  • Comparative Example 1 In Comparative Example 1, as shown in FIG. 6, a part 1210 of the injection mold has a movable mold core nest 1400 in which a recess 1330 having the shape of an injection molded product (optical element 1100A) is formed. And a fixed mold core insert 1310 having a function of closing the recess 1330 by abutting against the movable mold core insert 1400, a protruding pin 1180, and an ejector member (not shown). The resin material as the material is supplied from the cylinder portion 1260 to the cavity. Note that parts having the same configuration as in the first embodiment are denoted by the same reference numerals.
  • the movable mold core insert 1400 includes a movable back core 1402A and a pair of movable mirror cores 1301 and 1301 arranged so as to sandwich the movable back core 1402A.
  • the back surface of the movable-side back core has a sink formation region and a high transfer region formed on both sides thereof, whereas in Comparative Example 1, the entire back surface of the movable-side back core 1402A is formed.
  • the transfer area is 1110, and they are different in this respect.
  • Projecting pins 1320 are arranged at the four corners of the surface region.
  • the used mold is capable of injection molding the optical element 1100A in which the short side width of the transfer region 1110 is 7 mm.
  • the non-optical surface area section is the same material, thermal conductivity, and surface roughness over the entire area, but in Comparative Example 5, the short-side central area and the optical surface adjacent area
  • the code short side central region A and the optical surface adjacent region B are described in the non-optical surface region section for convenience.
  • the material, thermal conductivity, and surface roughness of the movable side back core are measured using an injection mold having a short side width of 7 mm in the transfer side back core.
  • the measurement was performed by evaluating the birefringence distribution and the optical surface accuracy of the optical element.
  • the transfer area is an area formed on the non-optical surface of the optical element in the first place, but the back surface area of the movable back core and the non-optical surface correspond to each other.
  • the back surface area will be described as having a transfer area.
  • Comparative Example 1 is a mold in which the material of the transfer region 1110 is Starbucks material (STAVAX), its thermal conductivity is 20 W / m ⁇ K, and its surface roughness Ra is 0.2 ⁇ m. It was done using. Note that the transfer area 1110 of the movable-side back core 1402A is subjected to a Epco process after grinding.
  • Starbucks material STAVAX
  • thermal conductivity 20 W / m ⁇ K
  • Ra surface roughness
  • Comparative Example 2 is a mold in which the material of the transfer region 1120 is Starbucks material (STAVAX), its thermal conductivity is 20 W / m ⁇ K, and its surface roughness Ra is 0.7 ⁇ m (see FIG. 7). ). The surface of the movable-side back core 1402B is subjected to a texture treatment.
  • Starbucks material STAVAX
  • thermal conductivity 20 W / m ⁇ K
  • surface roughness Ra is 0.7 ⁇ m (see FIG. 7).
  • Comparative Example 3 is a mold in which the material of the transfer region 1130 is Ni—P plating (thickness t500 ⁇ m), its thermal conductivity is 8 W / m ⁇ K, and its roughness Ra is 0.5 ⁇ m (see FIG. 8). Note that the front surface of the movable-side back core 1402C is subjected to Yepco treatment.
  • the P polarization ratio is 93% or more and the distribution is less than 4% in PV at the prism long side center plus or minus 5 mm ( ⁇ 5 mm), and the birefringence distribution is good. Met. Further, in appearance, the optical surface 1091 was free of sink marks and streaks, and the optical surface accuracy was good, but the optical surface 1092 was sinked. Therefore, it is determined that it is difficult to achieve both good birefringence distribution and optical surface accuracy.
  • Comparative Example 4 uses a mold (see FIG. 9) in which the material of the transfer region 1140 is a ceramic material, its thermal conductivity is 3 W / m ⁇ K, and its surface roughness Ra is 0.6 ⁇ m. It was done. Note that no treatment is performed on the surface of the movable-side back core 1402B.
  • Comparative Example 5 In Comparative Example 5, unlike Comparative Examples 1 to 4, the surface roughness Ra of the short-side central region (A) in the transfer region and the optical surface adjacent regions (B) formed on both sides of the short-side central region (A). ) Is an example in which evaluation measurement is performed using a mold having a surface roughness Ra different from that (not shown).
  • the material of the transfer region is a Starbucks material, and its thermal conductivity is 3 W / m ⁇ K.
  • the surface roughness Ra of the short side central region (A) is 0.05 ⁇ m and subjected to mirror surface treatment
  • the surface roughness Ra of the optical surface adjacent region (B) is 0.2 ⁇ m and subjected to Epco treatment.
  • the used mold has a short side width of 3 mm in the short side center region (A) subjected to the mirror surface treatment, and a short side width of 2 mm in the optical surface adjacent region (B) subjected to the Epco treatment.
  • the optical element can be injection molded.
  • the P polarization ratio is 93% or more and the distribution is less than 4% in PV at the prism long side center plus or minus 5 mm ( ⁇ 5 mm), and the birefringence distribution is good.
  • Met the optical surface (fixed side optical surface) facing the non-optical surface had no sink marks and the optical surface accuracy was good, but in the white interferometer evaluation, the optical surface adjacent to the non-optical surface was a surface. There was a break. Therefore, it is determined that it is difficult to achieve both good birefringence distribution and optical surface accuracy.
  • the adjacent optical surface accuracy refers to the optical surface accuracy of the “adjacent optical surface” described above.
  • the distance between adjacent optical surfaces refers to the distance (width: cmm) of the movable-side back core 1302 located between the adjacent optical surfaces.
  • the ratio (%) of the high transfer portion distance and the one-side width a (mm) of the high transfer region 1094 to the adjacent optical surface distance d (mm) is obtained.
  • the high transfer portion distance refers to the distance between the adjacent optical surface and the sink formation region. From FIG. 1, in the case of obtaining the above-described ratio in order to explain the evaluation for the high transfer portion distance on one side, a value obtained by subtracting the high transfer portion distance on one side from the adjacent optical surface distance (d in the drawing) is used as the denominator. The ratio is determined using the high transfer portion distance (a in the figure) on one side as a molecule.
  • the ratio of the high transfer portion distance a (mm) to the distance d (mm) between adjacent optical surfaces was evaluated as 13%.
  • the width (one side) of the high transfer region 1094 is 0.8 mm and the adjacent optical surface distance is 7 mm
  • the distance between the adjacent optical surfaces is 7 mm (adjacent optical surface distance c) ⁇ 0.8 mm from the above definition.
  • (High transfer portion distance a on one side) 6.2 mm
  • the adjacent optical surface was split, and the adjacent optical surface accuracy was not good.
  • the adjacent optical surface distance d is 7 mm (adjacent optical surface distance c) ⁇ 2.0 mm (by the above definition).
  • the adjacent optical surface was not split, and the adjacent optical surface accuracy was good.
  • the adjacent optical surface was not split, and the adjacent optical surface accuracy was good.
  • the sink formation region becomes relatively large, and the optical The influence of surface splitting on the surface cannot be suppressed.
  • the sink area distance b is smaller than the distance d between the adjacent optical surfaces (for example, the 13B area 1095)
  • the necessary sink size cannot be formed only on the back surface of the movable-side back core. It can be seen that sink marks occur on any surface including the optical surface facing the region.
  • a sink formation region having a first surface roughness and a second surface larger than the first surface roughness are provided on the back surface region of the movable-side back core of the injection mold.
  • An optical element having a good birefringence distribution and optical surface accuracy can be formed by molding the optical element under molding conditions of a low injection pressure using a mold. Therefore, without complicating the structure of the mold itself, it is possible to stably supply an optical element having a good birefringence distribution without causing transfer defects such as sinks and splits on the required optical surface. Can do.
  • the first thermal conductivity in the sink formation region in the back surface region of the movable-side back core and the high temperature provided outside the sink formation region By molding the optical element under molding conditions of a low injection pressure using a mold that satisfies the above-described conditions for the second thermal conductivity in the transfer region, it is possible to obtain a good structure without complicating the structure of the mold itself. An optical element having a birefringence distribution and optical surface accuracy can be formed.
  • FIG. 20 is a diagram showing optical surface evaluation in each lens shown in FIGS. 15 to 19 described later.
  • a sink formation region (sink formation surface) 1595 is formed only at the center of the back surface of the movable-side back core 1502A, and the optical surface is formed so as to surround the sink formation region 1595 around it.
  • adjacent surfaces hereinafter referred to as “optical surface adjacent surfaces”.
  • the surface roughness Ra of the sink formation region 1595 is less than 0.5 ⁇ m, and the surface roughness Ra of the optical surface adjacent surface 1594 is 0.5 ⁇ m or more.
  • the evaluation method includes the presence or absence of sink marks by external appearance observation of optical surface adjacent surfaces (first evaluation), the presence or absence of surface splitting by a white interferometer (second evaluation), and optical surfaces that are not adjacent to the sink formation region 1595.
  • the presence or absence of sink marks by external appearance observation (third evaluation) and whether or not both birefringence and surface accuracy can be achieved (fourth evaluation) were performed. Thereafter, the evaluation method in each example was performed in the same manner as described above. As shown in FIG. 20, in this example, good results were obtained for the first to fourth evaluations.
  • the shape of the optical element is circular
  • a circular sink formation region (sink formation surface) 1595 is formed only at the center of the back surface of the movable-side back core 1502B.
  • a circular optical surface adjacent surface is formed around the periphery.
  • the surface roughness Ra of the sink formation region 1595 is less than 0.5 ⁇ m
  • the surface roughness Ra of the optical surface adjacent surface 1594 is 0.5 ⁇ m or more.
  • good results were obtained for the first to fourth evaluations.
  • the back surface of the movable back core 1502C and the surface facing it are optical surfaces
  • the two surfaces 1693C adjacent to the back surface of the movable back core 1502C are non-optical surfaces.
  • a sink formation region 1695 is formed on the non-optical surface 1693C, and an optical surface adjacent surface 1694 is formed therearound. Note that the surface roughness Ra of the sink formation region 1695 is less than 0.5 ⁇ m, and the surface roughness Ra of the optical surface adjacent surface 1694 is 0.5 ⁇ m or more. As shown in FIG. 20, in this example, good results were obtained for the first to fourth evaluations.
  • ⁇ Example of imaging lens> This example is a case of an imaging lens. As shown in FIG. 18, a broken line portion (region) in the drawing is a high transfer region 1794, and a thick solid line portion (region) is a sink formation region 1795. As a result of the evaluation measurement, there was no surface splitting on the optical surface, the sink marks could be concentrated in the sink formation region, and molding with stable lens outer dimensions became possible. As shown in FIG. 20, in this example, good results were obtained for the first to fourth evaluations.
  • ⁇ Example of light guide plate for head mounted display> This example is an example of a light guide plate for a head-mounted display. As shown in FIG. 19, the optical surfaces 21a and 21b are free from surface splitting, and sink marks can be concentrated in the sink formation region 1895. As shown in FIG. 20, in this example, good results were obtained for the first to fourth evaluations.

Abstract

 低コストで光学面の面精度の向上と複屈折の低減を図ることができる光学素子の製造方法を提供する。光学面1091、1092と光学面1092に稜線を介して隣接する非光学面1093Aとを有する光学素子1090Aを射出成形により製造する方法であって、金型面によって非光学面1093Aを形成する。金型面は、第1の表面粗さを有する、第1の領域としてのヒケ形成領域1095と、第1の表面粗さと異なる第2の表面粗さを有する、第1の領域の外側に設けられた第2の領域としての高転写領域1094を有する。

Description

光学素子及び光学素子の製造方法
 本発明は、キャビティに樹脂を射出成形することで得られる光学素子及び前記光学素子の製造方法に関する。
 近年はレンズやプリズムなどの光学素子に対して、多彩な用途や薄型化が求められ、特異な形状を精度よく均質に成形されることが求められている。特に光学面形状精度と内部の複屈折に関して高い均一性が求められている。また、従来はガラス製のものが主流であった製品群に対してもコストダウンの要求に従って、プラスチック製の光学素子(プラスチックレンズ、プラスチックミラー等)への変化が求められている。
 射出成形によりプラスチック製の光学素子を所望の形状に精度よく成形するためには、金型のキャビティ内の溶融樹脂を充填させる工程において、キャビティ内での樹脂圧力や樹脂温度を均一にし、樹脂を均一に型内に行き渡らせることが望ましい。かつ十分に樹脂が固化するまで樹脂圧力をかけ続ける必要がある。また、複雑な偏肉形状の成形品は、冷却固化の速度が場所によって異なるために内部応力が発生する。プラスチック光学素子を精度よく射出成形にて得る際には上記のような成型方法を取ることがよく知られており、樹脂成型面の形状転写性能は工場するものの、保圧工程や内部歪みによる複屈折を発生させやすいという問題があった。
 一方、複屈折を低減するためには、キャビティ内での樹脂圧力を低く抑えた射出成形(低圧射出成形)を行わなければならない。しかしながら、低圧射出成形においては金型内に充填された樹脂が冷却収縮する分の体積を補うことができない。この為、成形品を含めたあらゆる箇所にヒケが発生しやすくなり、かつ収縮量の増大により、十分に硬化する前に得ようとする光学面が金型転写面より離れてしまい、光学面形状の成形転写性能が悪化するという欠点があった。この前記光学面の微細な転写不良を外観評価可能な一般的なヒケと区別し「面割」として以下に説明し定義する。面割について、レーザー干渉計で得られる干渉縞写真(図14A、図14B参照)に基づいて説明する。面割の有無で干渉縞を比較すると、面割を有する場合(図14B参照)には光学面内での転写状態の差で境界が生じて面が分割していることが明瞭にわかる。図14Aは面割を有しない場合における干渉縞を示している。図14Aに示すように面割を有しない場合には、光学面内での転写状態の差で境界が生じて面が分割していない。ここで、「面割」とは干渉縞で有無を判断できるレベルの微細な光学面転写不良であると定義する。図14Cは図14A、図14Bで示した干渉縞を解析することで得られる写真長手に平行な中央断面形状を示した図である。実線は図14Aの断面を示し光学面が連続した緩やかな凹面を形成していることがわかる。点線は図14Bの断面を示すが線の不連続な部分で光学面に面割が生じていることがわかる。
 射出成形法にて得られる光学素子の複屈折をできるだけ小さくし、かつ必要な光学面の成形転写精度を向上させる方法として、低圧射出成形にて成形を行い、かつ非光学面と光学面の境界にリブ(突起)を設け、このリブを有する面と同一面に金型のキャビティ形状を不完全転写することにより形成した凹形状の不完全転写部を有し、かつ、転写面以外の少なくとも1つの面に凸形状の不完全転写部を有するプラスチック成形品が知られている(特許文献1参照)。上記構成によれば、ヒケ領域が光学面の面精度に与える影響が少ないので、転写面にヒケ及び面割を発生させずに転写面の形状精度の向上を図ることができる。
特開2012-20511号公報
 しかしながら、上記の従来技術では、製造過程においてヒケ領域が光学面の面精度に与える影響を少なくさせるために非光学面と光学面の境界にリブを設ける工程が新たに必要となり、製造工程や金型及び光学素子の形状が複雑化してしまう。特に近年は製品に省スペースや小型化が求められており、スペースに制限がある光学素子に対してはこの特許文献1に述べられている発明を用いることができない。また、仮にリブを小さくしてスペースの制限要求に応えようとしても、リブが得ようとする光学面に隣接して存在している場合、ヒケ量が大きくでてしまうとリブ部で制御しきれずに光学面までヒケ及び面割がでてきてしまう。一般にヒケ量は、ある一定の巾をもってランダムであるため、不要なリブ部を大きくせざるをえなくなってしまう。
 そこで、本発明は、不要なリブ部や複雑な型構成や成形方法を必要としない簡便な方法でありながら、必要とされる光学面の形状転写精度に優れ、かつ複屈折の小さい光学素子を得ることを課題とする。
 上記課題のうち少なくとも一つを解決するために、本発明の一側面を反映した光学素子の製造方法は、光学面と光学面に稜線を介して隣接する非光学面とを有する光学素子を射出成形により製造する方法であって、第1の表面粗さを有し、ヒケ領域を形成するための第1の領域と、第1の表面粗さよりも大きい第2の表面粗さを有し、第1の領域と前記光学面との間に位置する第2の領域とを有する金型面によって、非光学面を形成するステップを有する。
 また、上記課題のうち少なくとも一つを解決するために、本発明の一側面を反映した光学素子は、上述した製造方法により製造される。
 このように、本発明における光学素子の製造方法によれば、低コストで光学面の面精度の向上と複屈折の低減を図ることができる。
実施例1に係る光学素子の製造方法について説明するための模式図である。 実施例1に係る光学素子を示す外観斜視図である。 他の実施例に係る光学素子を示す外観斜視図である。 実施例1~実施例6における複屈折分布及び光学面精度についての評価を説明するための表である。 実施例2に係る光学素子の製造方法について説明するための模式図である。 実施例3に係る光学素子の製造方法について説明するための模式図である。 比較例1に係る光学素子の製造方法について説明するための模式図である。 比較例2に係る光学素子の製造方法について説明するための模式図である。 比較例3に係る光学素子の製造方法について説明するための模式図である。 比較例4に係る光学素子の製造方法について説明するための模式図である。 比較例1~比較例5における複屈折分布及び光学面精度についての評価を説明するための表である。 隣接光学面間距離内での高転写部距離と光学面精度の関係を示した表である。 可動金型と固定金型を突き合わせてキャビティを形成する、いわゆる型締め工程の様子を示した模式図である。 射出成形機からプリズムを離型させる、いわゆる突出し工程の様子を示した模式図である。 高転写領域の幅(片側)と光学面精度との関係を説明するための一例を示した図である。 高転写領域の幅(片側)と光学面精度との関係を説明するための他の例を示した図である。 面割を有しない場合における干渉縞を示した図である。 面割を有する場合における干渉縞を示した図である。 面割の有無における非光学面の幅と高さの関係を示した図である。 プリズムの一変形例を示した図である。 プリズムの他の変形例を示した図である。 プリズムのさらに他の変形例を示した斜視図である。 図17Aの縦断面図である。 図17Aの側面図である。 レンズの一変形例を示した図である。 レンズの他の変形例を示した図である。 図15~図19に示す各光学素子における光学面評価を示した図である。
 以下、本発明の実施形態について、添付した図面を参照しつつ説明する。
 図1は、実施例1に係る光学素子の製造方法について説明するための複式図である。図2Aは、実施例1に係る光学素子を示す外観斜視図である。図2Bは他の実施例に係る光学素子を示す外観斜視図である。図3は、実施例1~実施例6における複屈折分布及び光学面精度についての評価を説明するための表である。図4は、実施例2に係る光学素子の製造方法について説明するための模式図である。図5は、実施例3に係る光学素子の製造方法について説明するための模式図である。図6は、比較例1に係る光学素子の製造方法について説明するための模式図である。図7は、比較例2に係る光学素子の製造方法について説明するための模式図である。図8は、比較例3に係る光学素子の製造方法について説明するための模式図である。図9は、比較例4に係る光学素子の製造方法について説明するための模式図である。図10は、比較例1~比較例5における複屈折分布及び光学面精度についての評価を説明するための表である。図11は、隣接光学面間距離内での高転写部距離と光学面精度の関係を示した表である。図12Aは、可動金型と固定金型を突き合わせてキャビティを形成する、いわゆる型締め工程の様子を示した模式図である。図12Bは、射出成形機からプリズムを離型させる、いわゆる突出し工程の様子を示した模式図である。図13Aは、高転写領域の幅(片側)と光学面精度との関係を説明するための一例を示した図である。図13Bは、高転写領域の幅(片側)と光学面精度との関係を説明するための他の例を示した図である。図14Aは面割を有しない場合における干渉縞を示した図であって、図14Bは面割を有する場合における干渉縞を示した図であって、図14Cは面割の有無における非光学面の幅と高さの関係を示した図である。図15は、プリズムの一変形例を示した図である。図16は、プリズムの他の変形例を示した図である。図17Aは、プリズムのさらに他の変形例を示した斜視図であり、図17Bは縦断面図であり、図17Cは側面図である。図18は、レンズの一変形例を示した図である。図19は、レンズの他の変形例を示した図である。図20は、図15~図19に示す各光学素子における光学面評価を示した図である。
 以下に、金型を用いた射出成形により光学素子を製造する方法について図面を参照して説明する。プリズムに代表される光学素子1090Aは、図2に示すように、使用する光に対して透明な樹脂からなる誘電体媒体であり、その形状は台形柱体であり、望ましくは等脚台形柱体である。なお、プリズムの形状は、プリズムが台形柱体以外でもよく、プリズムがプリズムとは呼びがたい形状物に置き換えられてもよい。例えば、プリズムは半円柱体であってもよく、プリズムが板形状のものに置き換えられてもよい。
 なお、本発明で用いられるプリズムは、特に用途が限定されるものではなく、レンズのようなものであってもよい。他の用途に係るレンズについては図18及び図19を参照して後述することとする。
 また、光学素子1090Aは、図2Aに示すように、光学面1091、1092と非光学面1093Aを備える。光学面1091と対向する面が非光学面1093Aになる。一方の光学面1092は入射面になり、他方の光学面1092は出射面になり、光学面1091は反射面になる。なお、形態については図2Bに示すような側面部に位置決め部1088を有するような形状の光学素子でもよい。光学素子のさらに他の形態については後述することとする。
[光学素子の作製方法]
 光学素子1090Aは、射出成形機を用いて、所定の工程を経て完成する。ここで、射出成形金型を用いた射出成形工程について図12A及び図12Bを参照して簡単に説明する。なお、図12Aは可動金型と固定金型を突き合わせてキャビティを形成する、いわゆる型締め工程の様子を示した模式図である。図12Bは射出成形機から光学素子を離型させる、いわゆる突出し工程の様子を示した模式図である。
 可動側金型コアの入れ子(以下、「可動側金型コア入れ子」と呼ぶ。)1300は、可動側裏面コア1302Aと、可動側裏面コア1302Aを挟むように配置されている一対の可動側鏡面コア1301、1301とを含んで構成されている。可動側裏面コア1302Aの表面領域は、ヒケさせたい領域である転写領域(以下、「ヒケ形成領域」と呼ぶ。)1095と、ヒケさせたくない領域であって転写領域1095の両側に隣接配置された各高転写領域1094、1094とを有している。表面領域の四隅に突出しピン1320が配置される。
 射出成形金型の一部(以下、便宜上「射出成形金型」と呼ぶ場合がある。)1200は、図1に示すように、射出成形品(光学素子1090A)の形状を有する凹部(キヤビティ)1330が形成された可動側金型コア入れ子1300と、可動側金型コア入れ子1300に突き合わせることによって凹部1330を塞ぐ機能を有する固定側金型コアの入れ子(以下、「固定側金型コア入れ子」と呼ぶ。)1310と、突出しピン1320と、エジェクタ部材(図示せず)で構成され、射出成形品の材料である樹脂材はシリンダー部1260よりキャビティに供給される。
 図12Aに示すように、射出成形金型1250は、射出成形品の形状を有する凹部(キャビティ)1330が形成された可動側金型コア入れ子1300と、可動側金型コア入れ子1300に突き合わせることによって凹部1330を塞ぐ機能を有する固定側金型コア入れ子1310と、突出しピン1320と、エジェクタ部材1325と、射出成形品の材料である樹脂材をキャビティに供給するシリンダー部1260とを含んで構成されている。
 射出成形の工程には、型締め工程、射出工程、保圧工程、冷却工程、型開き工程、突出し/製品取り出し工程があり、この順に射出成形が行われる。型締め工程では、可動側金型コア入れ子1300と固定側金型コア入れ子1310を突き合わせることによって、可動側金型コア入れ子1300に形成された凹部1330を塞いでキャビティを形成する。次に、樹脂材供給炉1303からの樹脂材(溶融樹脂)1305を射出してキャビティにこれを充填する(射出工程)。樹脂材は、スプルー1177、ゲート1176を通り、キャビティに充填される。なお、樹脂材は、金型のキャビティ内に充填される際、金型で冷やされ収縮する。この収縮により体積が変化するため、この収縮作用は、成形品の寸法変化や形状転写不良等の原因となる。これらを防ぐため、成形機側で保圧をかけ、収縮で減少した分の樹脂を補っている(保圧工程)。次に、金型から取り出せる温度程度になるまで、金型内で冷却する(冷却工程)。
 次に、所定時間経過し、樹脂材1305が十分に冷却されると、図12Bに示すように、可動側金型コア入れ子1300を固定側金型コア入れ子1310から離す(型開工程)。このとき、成形品は可動側金型コア入れ子1300に付いてくる。次に、突出しピン1320を固定側金型コア入れ子1310に摺動させることにより光学素子1090Aが離型される(突出し工程)。この光学素子1090Aに図示しない基板及び流路形成部品を接合することによってセンサーチップ1026を得る。
 光学素子1090Aのヒケ面1175に生じるヒケは、上述の保圧工程で生じる。65MPa以下の保圧設定でヒケ面1175にヒケを生じさせる。また、突き出し工程の際、一般的に射出成形品には突き出しピン跡が付くが、今回光学素子1090Aのヒケ面1175に、突出しピン1320の配置に対応して突き出しピン跡1180が形成される。
 後述する各実施例(実施例1~実施例6)では、高転写領域1094の短辺幅がamm、ヒケ形成領域1095の短辺幅がbmm、可動側裏面コア1302Aの短辺幅がcmmである射出成形金型1200を用いて後述する可動側裏面コア1302Aの材質、熱伝導率、表面粗さを変えて光学素子の複屈折分布及び光学面精度(光学面1091、1092の光学面精度)の評価を行った。また、隣接光学面距離から片側の高転写部距離を減じた距離dを対隣接光学面距離と呼び、距離dに対する距離aの割合を40%として後述の評価を行った。
 なお、高転写領域1094及びヒケ形成領域1095はそもそも光学素子1090Aの非光学面1093Aに形成される領域であるが、可動側裏面コア1302Aの裏面領域と非光学面1093Aとは対応しているので、以下の説明では、便宜上可動側裏面コア1302Aの裏面領域についても高転写領域1094及びヒケ形成領域1095を有するとして説明することとする。また、以下の説明では、非光学面に対向する(非光学面に隣接していない)光学面1091を対向側光学面(固定側光学面)と呼び、非光学面に隣接している光学面1092を隣接光学面と呼ぶ。
[可動側裏面コアの熱伝導率(W・m/K)]
 ヒケ形成領域1095における第1の熱伝導率は0.6W・m/K以上、かつ、20W・m/K以下であり、高転写領域1094における第2の熱伝導率は8W・m/K以上、かつ、200W・m/K以下の範囲内にあり、さらに第1の熱伝導率が第2の熱伝導率よりも低いことが望ましい。第1の熱伝導率が第2の熱伝導率よりも小さいことが望ましいとする理由は、非光学面のヒケを集中させたい箇所の熱伝導率を非光学面のヒケにくくしたい箇所の熱伝導率よりも小さくすることによりヒケが非光学面に隣接する光学面に及ぶことなく、光学面の面精度の向上が図れるからである。
 第1の熱伝導率は、8W・m/K以上、かつ、200W・m/K以下の範囲内にあることが望ましい。上記数値範囲を満たす金型材料としては、例えば、メッキ、銅合金が挙げられる。第2の熱伝導率は、0.6W・m/K以上、かつ、20W・m/K以下の範囲内にあることが望ましい。上記数値範囲を満たす金型材料としては、SUS材に断熱樹脂材を貼合したりコーティングしたもの、SUS材にセラミック層を貼合したり溶射で積層したもの、SUS材にNi-Pメッキを積層したもの、スターバックス材(STAVAX)が挙げられる。
(裏面コア表面のヒケ形成領域の金型材料のボリュームについて)
 なお、ヒケ形成領域の第1の熱伝導率を持つ金型材料の厚みは、冷却ムラを生じさせず複屈折の分布が安定した分布、均一な分布となるように可能な限り薄いことが望ましく、各光学素子に求められる仕様に応じて適宜調整して決めることは言うまでもない。例えば、母材がスターバックス材であるヒケ形成領域の表面が一様に低熱伝導材料としてメッキ処理されており、ヒケ形成領域がラップ処理され、ヒケ形成領域端部がブラスト処理され、端部の表面粗さRaの方が大きいという条件であってもよい。このような構成であれば、裏面にヒケを誘発でき、かつ、ブラスト処理された端部領域がより高転写になることにより光学面への面割の影響を抑制することができる。
 ここで、断熱樹脂材料とは、耐熱性や対化学薬品性に優れたポリイミドをコーティングしたものであったり、ポリイミドをベースに耐熱性シリコン系粘着剤を塗布したフィルムをいう。また、スターバックス材は、クロム合金ステンレスエ具鋼で、耐食性や耐摩耗性に特に優れた金属であり、HRCでは概ね45~54が推奨され、常温での密度は7800kg/m3、比熱は460J/(kg.k)、成分はCr(クロム)、V(バナジウム)、Mn(マンガン)、Si(シリコン)、C(炭素)等を含有するものをいう。なお、第2の熱伝導率は第1の熱伝導率よりも大きくなることが望ましい。
[可動側裏面コアの表面粗さRa(μm)]
 高転写領域1094の表面はブラスト加工により処理され、シボ面とも言う。このシボ面の表面粗さRa(中心線平均粗さ:JIS規格、以下同じ)は、0.5μm以上、かつ、100μm以下の範囲内にあることが望ましい。ヒケ形成領域1095の表面粗さRaは、0.1nm以上、かつ、0.5μm未満の範囲内にあることが望ましい。
 ヒケ形成領域1095の表面粗さRaが例えば0.1nmである場合には、その面はいわゆる鏡面であり、研磨加工、研削加工により仕上げられる。表面粗さRaが0.5μm未満である表面は研削加工後にイエプコ処理ともいわれるような小粒形のブラスト加工処理することで得られる。
 さらに、高転写領域1094の表面粗さとヒケ形成領域1095の表面粗さの差がRa0.3μm以上、かつ、100μm未満であることが望ましい。この理由は、ヒケ形成領域1095の表面粗さを離型工程に影響しない程度の粗さとし、高転写領域1094の表面粗さを離型工程の際のアンカー効果が得られる粗さとすることにより、非光学面1093Aにおけるヒケがそれに隣接する光学面1092に及ぶことなく光学面1091、1092の面精度の向上が図れるからである。
 以下に、高転写領域1094及びヒケ形成領域1095の熱伝導率と表面祖さRaの数値を変えて光学素子の評価を測定した結果について説明する。なお、評価測定については、実施例1~実施例6及び比較例1~5の合計11回の評価測定を行った。
[実施例1]
 実施例1については、図1に示される可動側裏面コア1302Aにおけるヒケ形成領域1095及び高転写領域1094の材質が共にスターバックス材(STAVAX)で、それらの熱伝導率が20W/m・Kである。ヒケ形成領域1095は、図3の表中の非光学面領域区分では符号A(短辺中央領域)として表示し、高転写領域1094は、表中の非光学面領域区分では符号B(光学面隣接領域)として表示されており、後述の実施例2~6においても同様である。
 実施例1は、ヒケ形成領域1095の表面粗さRaが0.2μmで、高転写領域1094の表面粗さRaが0.7μmである金型を用いて行なわれたものである。なお、使用された金型は、ヒケ形成領域1095の短辺幅が3mm、高転写領域1094の短辺幅が2mmとなる光学素子を射出成形できるものである。
 上記した条件を有する射出成形金型1200によって射出成形された光学素子1090に関する評価測定の結果について以下に説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価判断基準>
 上記した条件を満たす射出成形金型の一部1200(図1参照)を構成する金型によって成形された光学素子5の複屈折分布については、プリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率(P偏光維持率ともいう)が93%以上で、分布がPVで4%未満である場合には良好であるとする。また、光学面精度については、白色干渉計において面割があるか否かを評価判断基準とし、面割がない場合には良好であると判断する。なお、後述する実施例2~6、比較例1~5についても上記同様の判断基準で評価を行った。ここでP偏光比率(P偏光維持率)とは、プリズムに入射するP偏光の、入射面から反射面までの区間におけるP偏光成分の維持率と定義する。
<評価結果>
 実施例1については、図3の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)において、P偏光比率が93%以上で、分布がPVで4%未満のため複屈折分布は良好であった。また、ヒケ形成領域に隣接する光学面について外観においてヒケが無く、白色干渉計での干渉縞評価より面割がないことを確認できたため光学面精度は良好と判断した。
[実施例2]
 実施例2については、図4に示される可動側裏面コア1302Bにおけるヒケ形成領域1096の下側にさらにセラミック層1097が形成されている点が実施例1と異なる。ヒケ形成領域1096の材質はNi-Pメッキ(厚みt20μm)である。高転写領域1094の材質はスターバックス材(STAVAX)である。
 実施例2は、Ni-Pメッキの熱伝導率が8W/m・K、セラミック層1097の熱伝導率が3W/m・Kであって、スターバックス材の熱伝導率が20W/m・Kであって、ヒケ形成領域1096の表面粗さRaが0.05μmで、高転写領域1094の表面粗さRaが0.7μmである金型を用いて行われたものである。なお、使用された金型は、ヒケ形成領域1096の短辺幅が3mm、高転写領域1094の短辺幅が2mmとなる光学素子を射出成形できるものである。
 上記した条件を有する射出成形金型の一部1200を構成する金型によって射出成形された光学素子1090Bに関する評価測定の結果について以下に説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 実施例2については、図3の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、ヒケ形成領域に隣接する光学面について外観においてヒケが無く、白色干渉計での干渉縞評価より面割がないことを確認できたため光学面精度は良好と判断した。
[実施例3]
 実施例3については、図5に示される可動側裏面コア1302Cにおけるヒケ形成領域1098の材質がNi-Pメッキ(厚みt500μm)である。高転写領域1094の材質はスターバックス材(STAVAX)である。
 実施例3は、Ni-Pメッキの熱伝導率が8W/m・Kであり、スターバックス材の熱伝導率が20W/m・Kであって、ヒケ形成領域1098の表面粗さRaが0.05μmで、高転写領域1094の表面粗さRaが0.7μmである金型を用いて行なわれたものである。なお、使用された金型は、ヒケ形成領域1098の短辺幅が3mm、高転写領域1094の短辺幅が2mmとなる光学素子を射出成形できるものである。
 上記した条件を有する可動側金型コア入れ子1300を構成する金型によって射出成形された光学素子1090Cに関する評価測定の結果について以下に説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 実施例3については、図3の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、ヒケ形成領域に隣接する光学面について外観においてヒケが無く、白色干渉計での干渉縞評価より面割がないことを確認できたため光学面精度は良好と判断した。
[実施例4]
 実施例4は、図1に示される可動側裏面コア1302Aにおけるヒケ形成領域1095の材質が耐熱樹脂材(ポリイミドフィルム貼付又はポリイミドコーティング(厚み50μm))が形成されている点で実施例1と異なる。高転写領域1094の材質はスターバックス材(STAVAX)である。
 実施例4は、断熱樹脂材の熱伝導率が0.6W/m・K、スターバックス材の熱伝導率が20W/m・Kであって、ヒケ形成領域1095の表面粗さRaが0.07μmで、高転写領域1094の表面粗さRaが0.7μmである金型を用いて行なわれたものである。なお、使用された金型は、ヒケ形成領域1095の短辺幅が3mm、高転写領域1094の短辺幅が2mmとなる光学素子を射出成形できるものである。
 上記した条件を有する射出成形金型コア入れ子1200を構成する金型によって射出成形された光学素子に関する評価測定の結果について以下に説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 実施例4については、図3の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、ヒケ形成領域に隣接する光学面について外観においてヒケが無く、白色干渉計での干渉縞評価より面割がないことを確認できたため光学面精度は良好と判断した。
[実施例5]
 実施例5については、図1に示される可動側裏面コア1302Aにおけるヒケ形成領域1095の材質がスターバックス材(STAVAX)で、高転写領域1094の材質が銅合金である金型を用いて評価測定を行った。
 スターバックス材の熱伝導率は20W/m・Kであり、ヒケ形成領域1095の表面粗さRaが0.2μmである。銅合金の熱伝導率は200W/m・Kであり、高転写領域1094の表面粗さRaは0.7μmである。なお、使用された金型は、ヒケ形成領域1095の短辺幅が3mm、高転写領域1094の短辺幅が2mmとなる光学素子を射出成形できるものである。
 上記した条件を有する射出成形金型の一部1200を構成する金型によって射出成形された光学素子に関する評価測定の結果について以下に説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 実施例5については、図3の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、ヒケ形成領域に隣接する光学面について外観においてヒケが無く、白色干渉計での干渉縞評価より面割がないことを確認できたため光学面精度は良好と判断した。
[実施例6]
 実施例6については、図1に示される可動側裏面コア1302Aにおけるヒケ形成領域1095の材質がセラミック接合層で、高転写領域1094の材質が銅合金である金型を用いて評価測定を行った。
 セラミック接合層の熱伝導率は3W/m・Kであり、ヒケ形成領域1095の表面粗さRaが0.2μmである。銅合金の熱伝導率は200W/m・Kであり、高転写領域1094の表面粗さRaは0.2μmである。なお、使用された金型は、ヒケ形成領域1095の短辺幅が3mm、高転写領域1094の短辺幅が2mmとなる光学素子を射出成形できるものである。
 上記した条件を有する射出成形金型の一部1200を構成する金型によって射出成形された光学素子1090に関する評価測定の結果について以下に説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 実施例6については、図3の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、ヒケ形成領域に隣接する光学面について外観においてヒケが無く、白色干渉計での干渉縞評価より面割がないことを確認できたため光学面精度は良好と判断した。
[比較例1]
 比較例1では、図6に示すように、射出成形金型の一部1210は、射出成形品(光学素子1100A)の形状を有する凹部(キヤビティ)1330が形成された可動側金型コア入れ子1400と、可動側金型コア入れ子1400に突き合わせることによって凹部1330を塞ぐ機能を有する固定側金型コア入れ子1310と、突出しピン1180と、エジェクタ部材(図示せず)で構成され、射出成形品の材料である樹脂材はシリンダー部1260よりキャビティに供給される。なお、実施例1に比較して同様の構成を有する部分については同様の符号を付することとする。
 可動金型コア入れ子1400は、可動側裏面コア1402Aと、可動側裏面コア1402Aを挟むように配置されている一対の可動側鏡面コア1301、1301とを含んで構成されている。
 実施例1~6は、可動側裏面コアの裏面がヒケ形成領域とその両側に形成された高転写領域を有しているのに対し、比較例1は、可動側裏面コア1402Aの裏面全面が転写領域1110となっており、この点で両者は異なります。表面領域の四隅には突出しピン1320が配置される。ここで、使用された金型は、転写領域1110の短辺幅が7mmとなる光学素子1100Aを射出成形できるものである。
 なお、比較例1~比較例4においては、非光学面領域区分が全域に渡って同じ材質、熱伝導率、表面粗さとなっているが、比較例5では短辺中央領域と光学面隣接領域のそれぞれに異なる表面処理を施しているため、図10の表では、便宜上非光学面領域区分に符号短辺中央領域A、光学面隣接領域Bの記載をしている。
 後述する比較例1~比較例5では、可動側裏面コアにおける転写領域の短辺幅が7mmである射出成形金型を用いて後述する可動側裏面コアの材質、熱伝導率、表面粗さを変えて光学素子の複屈折分布及び光学面精度の評価測定を行った。なお、転写領域はそもそも光学素子の非光学面に形成される領域であるが、可動側裏面コアの裏面領域と非光学面とは対応しているので、以下の説明では、便宜上可動側裏面コアの裏面領域についても転写領域を有するとして説明することとする。
 ここで、比較例1は、転写領域1110の材質がスターバックス材(STAVAX)で8あり、その熱伝導率が20W/m・Kであって、その表面粗さRaが0.2μmである金型を用いて行ったものである。なお、可動側裏面コア1402Aの転写領域1110には研削加工後にイエプコ処理が施されている。
 以下に、上記した条件を有する射出成形金型の一部1200によって射出成形された光学素子1100Aに関する評価測定の結果について説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度(対向側光学面及び隣接側光学面の面精度)を評価項目として、それらの測定を行った。
<評価結果>
 比較例1については、図10の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、外観において、光学面(対向側光学面もしくは固定側光学面)1091にはヒケがなく光学面精度も良好であったが、光学面(隣接側光学面)1092には面割が生じた。したがって、良好な複屈折分布と光学面精度の両立は困難であると判定される。
[比較例2]
 比較例2は、転写領域1120の材質がスターバックス材(STAVAX)であり、その熱伝導率が20W/m・Kであって、その表面粗さRaが0.7μmである金型(図7参照)を用いて行ったものである。なお、可動側裏面コア1402Bの表面にはシボ処理が施されている。
 以下に、上記した条件を有する射出成形金型1210によって射出成形された光学素子1100Bに関する評価測定の結果について説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 比較例2については、図10の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率の分布がPVで4%以上であり、良好な複屈折分布は得られなかった。また、外観において、光学面1091にはヒケが生じた。したがって、比較例2では、良好な複屈折分布と光学面精度の両立は困難であると判定される。
[比較例3]
 比較例3は、転写領域1130の材質がNi-Pメッキ(厚みt500μm)であり、その熱伝導率が8W/m・Kであって、その粗さRaが0.5μmである金型(図8参照)を用いて行ったものである。なお、可動側裏面コア1402Cの表面にはイエプコ処理が施されている。
 以下に、上記した条件を有する射出成形金型1210によって射出成形された光学素子1100Cに関する評価測定の結果について説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 比較例3については、図10の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、外観において、光学面1091にはヒケ、スジがなく光学面精度も良好であったが、光学面1092にはヒケが生じた。したがって、良好な複屈折分布と光学面精度の両立は困難であると判定される。
[比較例4]
 比較例4は、転写領域1140の材質がセラミック材であり、その熱伝導率が3W/m・Kであって、その表面粗さRaが0.6μmである金型(図9参照)を用いて行ったものである。なお、可動側裏面コア1402Bの表面には何の処理も施していない。
 以下に、上記した条件を有する射出成形金型1210によって射出成形された光学素子1100Dに関する評価測定の結果について説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 比較例4については、図10の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率の分布がPVで4%以上であり、良好な複屈折分布は得られなかった。また、外観において、光学面1091、1092にはヒケ、面割がなく光学面精度も良好であった。したがって、良好な複屈折分布と光学面精度の両立は困難であると判定される。
[比較例5]
 比較例5は、上記比較例1~4とは異なり、転写領域における短辺中央領域(A)の表面粗さRaと短辺中央領域(A)の両側に形成された光学面隣接領域(B)の表面粗さRaとが異なる金型を用いて評価測定を行った例である(図示せず)。
 転写領域の材質はスターバックス材であり、その熱伝導率が3W/m・Kである。短辺中央領域(A)の表面粗さRaは0.05μmであり鏡面処理が施され、光学面隣接領域(B)の表面粗さRaは0.2μmでありイエプコ処理が施されている。なお、使用された金型は、鏡面処理が施された短辺中央領域(A)の短辺幅が3mm、イエプコ処理が施された光学面隣接領域(B)の短辺幅が2mmとなる光学素子を射出成形できるものである。
 以下に、上記した条件を有する射出成形金型によって射出成形された光学素子に関する評価測定の結果について説明する。上記条件の下で射出成形された光学素子の複屈折分布と光学面精度を評価項目として、それらの測定を行った。
<評価結果>
 比較例5については、図10の表に示すようにプリズム長辺側中心プラスマイナス5mm(±5mm)においてP偏光比率が93%以上で、分布がPVで4%未満であり複屈折分布は良好であった。また、外観において、非光学面に対向する光学面(固定側光学面)にはヒケがなく光学面精度も良好であったが、白色干渉計評価において非光学面に隣接する光学面には面割が生じた。したがって、良好な複屈折分布と光学面精度の両立は困難であると判定される。
[高転写領域の幅(片側)と光学面精度との関係]
 以下に、図1を例にして高転写領域1094の距離(片側幅)と隣接光学面精度との関係について説明する。隣接光学面精度とは、上述した「隣接光学面」の光学面精度のことをいう。以下において、隣接光学面間距離とは、隣接光学面に挟まれる位置にある可動側裏面コア1302の距離(幅:cmm)をいう。
 隣接光学面間距離をc(mm)とした場合における高転写部距離と、高転写領域1094の片側幅a(mm)の対隣接光学面距離d(mm)に対する割合(%)を求める。
 なお、高転写部距離とは隣接光学面とヒケ形成領域との間の距離のことを言う。図1より、片側の高転写部距離に対する評価を説明するために上記した割合を求める場合において、隣接光学面距離から片側の高転写部距離を減じたもの(図のd)を分母とし、その片側の高転写部距離(図のa)を分子として割合を求める。
 図13Aの例では、高転写部距離をa(mm)、ヒケ形成領域1095の短辺幅(ヒケ領域距離)をb(mm)、隣接光学面間距離をc(mm)とする射出成形金型1200を用いて後述する可動側裏面コア1302Aの材質、熱伝導率、表面粗さを変えて光学素子の複屈折分布及び光学面精度(光学面1091、1092の光学面精度)の評価を行った。ここで、対隣接光学面間距離d(mm)に対する高転写部距離a(mm)の割合を13%として評価を行った。例えば、高転写領域1094の幅(片側)を0.8mmとし、隣接光学面距離を7mmとした場合に、対隣接光学面距離は上記定義より、7mm(隣接光学面距離c)-0.8mm(片側の高転写部距離a)=6.2mmとなり、上記した割合は、0.8mm/(7-0.8)mm=13%となる(図11の表参照)。この場合には図13Aに示すように隣接光学面に面割が生じ、隣接光学面精度は良好ではなかった。
 図1の例では、高転写部距離a(領域1094の片側幅)が2.0mmであるので、対隣接光学面距離dは上記定義より、7mm(隣接光学面距離c)-2.0mm(高転写部距離a)=5.0mmとなり、上記した割合は、2.0mm/(7-2.0)mm=40%となる(図11の表参照)。この場合には図1に示すように隣接光学面に面割は生じず、隣接光学面精度は良好であった。
 図13Bの例では、高転写部距離a(領域1094の片側幅)が3mmであるので、対隣接光学面距離dは、上記定義より7mm(隣接光学面距離c)-3.0mm=5.0mmとなり、上記した割合は、3mm/(7-3)mm=75%となる(図11の表参照)。この場合には図13Bに示すように隣接光学面に面割が生じず、隣接光学面精度は良好であった。
 図11に示す評価結果によれば、例えば対隣接光学面間距離dに対して、高転写領域距離aが小さい場合(例えば図13Aの領域1094)は相対的にヒケ形成領域が大きくなり、光学面への面割の影響を抑止することができない。一方、対隣接光学面間距離dに対して、ヒケ領域距離bが小さい場合(例えば13Bの領域1095)には必要なヒケの大きさを可動側裏面コアの裏面のみでは形成できず、ヒケ形成領域に対向する光学面を含めいずれかの面にヒケが生じることがわかる。実験の結果(高転写領域距離a)/(対隣接光学面間距離d)の割合が15~60%を占めることが望ましい。
<効果>
 本実施形態における光学素子の製造方法では、射出成形金型の可動側裏面コアの裏面領域に、第1の表面粗さを有するヒケ形成領域と、第1の表面粗さよりも大きい第2の表面粗さを有し、ヒケ形成領域の外側(ヒケ形成領域とヒケ形成領域に隣接して形成される光学面との間)に設けられた高転写領域とを形成する可動側裏面コアを含む金型を用いて光学素子を低射出圧力の成形条件下において成形することによって、良好な複屈折分布と光学面精度を備えた光学素子を形成することができる。したがって、金型そのものの構成を複雑化することなく、必要とされる光学面にヒケ、面割など転写不良を発生させることなく、かつ複屈折分布も良好な光学素子を安定的に供給することができる。
 また、上記第1及び第2の表面粗さの条件に加えて、可動側裏面コアの裏面領域の内のヒケ形成領域における第1の熱伝導率と、ヒケ形成領域の外側に設けられた高転写領域における第2の熱伝導率について上記した条件を満たす金型を用いて光学素子を低射出圧力の成形条件下において成形することによって、金型そのものの構成を複雑化することなく、良好な複屈折分布と光学面精度を備えた光学素子を形成することができる。
[レンズの変形例]
 以下に、成形されるレンズの形状を変えて、本発明を適用した場合における効果について検証する。図20は、後述する図15~図19に示す各レンズにおける光学面評価を示した図である。
<ヒケ形成領域が、裏面中央のみの例>
 本例は、図15に示すように、可動側裏面コア1502Aの裏面中央のみにヒケ形成領域(ヒケ形成面)1595が形成されており、その周囲にヒケ形成領域1595を囲むように光学面に隣接する面(以下、「光学面隣接面」と呼ぶ。)が形成されている例である。なお、ヒケ形成領域1595の表面粗さRaは0.5μm未満であって光学面隣接面1594の表面粗さRaは0.5μm以上である。
 評価方法は、光学面隣接面についての外観観察によるヒケの有無(第1の評価)、白色干渉計による面割の有無(第2の評価)、ヒケ形成領域1595に隣接していない光学面についての外観観察によるヒケの有無(第3の評価)、複屈折と面精度の両立ができるか否か(第4の評価)について行った。以降各例における評価方法も上記同様に行った。
 図20に示すように、本例では、第1の評価~第4の評価については良好な結果となった。
<光学素子の形状が円形である例>
 本例は、図16に示すように、光学素子の形状が円形の場合であり、可動側裏面コア1502Bの裏面中央のみに円形のヒケ形成領域(ヒケ形成面)1595が形成されており、その周囲に円形の光学面隣接面が形成されている例である。なお、ヒケ形成領域1595の表面粗さRaは0.5μm未満であって光学面隣接面1594の表面粗さRaは0.5μm以上である。
 図20に示すように、本例では、第1の評価~第4の評価については良好な結果となった。
<長尺レンズの例>
 本例は、図17Aに示すように、長尺レンズの場合であり、光学面の配置が上述した例とは異なる配置となっている例である。つまり、可動側裏面コア1502Cの裏面とそれに対向する面が光学面であり、可動側裏面コア1502Cの裏面に隣接する2つの面1693Cが非光学面である。非光学面1693Cには図17Cに示すようにヒケ形成領域1695が形成され、その周囲に光学面隣接面1694が形成されている。なお、ヒケ形成領域1695の表面粗さRaは0.5μm未満であって光学面隣接面1694の表面粗さRaは0.5μm以上である。
 図20に示すように、本例では、第1の評価~第4の評価については良好な結果となった。
<撮像レンズの例>
 本例は、撮像レンズの場合であり、図18に示すように、図の破線部分(領域)が高転写領域1794であり、太実線部分(領域)がヒケ形成領域1795である。評価測定の結果、光学面に面割の発生が無く、ヒケをヒケ形成領域に集中することができ、レンズ外形寸法も安定した成形が可能となった。図20に示すように、本例では、第1の評価~第4の評価については良好な結果となった。
<ヘッドマウントディスプレイ用の導光板の例>
 本例は、ヘッドマウントディスプレイ用の導光板の例であり、図19に示すように、光学面21a及び21bに面割の発生が無く、ヒケをヒケ形成領域1895に集中することができた。図20に示すように、本例では、第1の評価~第4の評価については良好な結果となった。
1090A  光学素子
1090B  光学素子
1090C  光学素子
1091  光学面
1092  光学面
1093A  非光学面
1093B  非光学面
1093C  非光学面
1094  高転写領域
1095  低転写領域(ヒケ形成領域)
1097  セラミック層
1200  射出成形金型の一部
1300  可動金型コア入れ子
1301  可動側鏡面コア
1302A  可動側裏面コア
1302B  可動側裏面コア
1302C  可動側裏面コア
1310  固定金型コア入れ子
1320  突出しピン
1330  凹部(キャビティ)

Claims (11)

  1.  光学面と前記光学面に稜線を介して隣接する非光学面とを有する光学素子を射出成形により製造する方法であって、
     第1の表面粗さを有し、ヒケ領域を形成するための第1の領域と、前記第1の表面粗さよりも大きい第2の表面粗さを有し、前記第1の領域と前記光学面との間に位置する第2の領域とを有する金型面によって、前記非光学面を形成する
     光学素子の製造方法。
  2.  前記第1の領域における前記第1の表面粗さがRa0.1nm以上、かつ、Ra0.5μm未満であり、
     前記第2の領域における前記第2の表面粗さがRa0.5μm以上、かつ、Ra100μm以下である
     請求項1に記載の光学素子の製造方法。
  3.  前記第1の領域における前記第1の表面粗さと前記第2の領域における前記第2の表面粗さの差がRa0.3μm以上、かつ、Ra100μm未満である
     請求項1又は2に記載の光学素子の製造方法。
  4.  前記第1の領域を形成する金型の面は、第1の熱伝導率を有する材料で構成され、
     前記第2の領域を形成する金型の面は、前記第1の熱伝導率よりも大きい第2の熱伝導率を有する材料で構成される
     請求項1~請求項3のいずれかに記載の光学素子の製造方法。
  5.  前記第1の熱伝導率が0.6W・m/K以上、かつ、20W・m/K以下であり、
     前記第2の熱伝導率が8W・m/K以上、かつ、200W・m/K以下である
     請求項4に記載の光学素子の製造方法。
  6.  光学面と前記光学面に稜線を介して隣接する非光学面とを有する光学素子を射出成形により製造する方法であって、
     第1の熱伝導率を有し、ヒケ領域を形成するための第1の領域と、前記第1の熱伝導率よりも大きい第2の熱伝導率を有し、前記第1の領域と前記光学面との間に位置する第2の領域とを有する金型面によって、前記非光学面を形成する
     光学素子の製造方法。
  7.  前記第1の熱伝導率が0.6W・m/K以上、かつ、20W・m/K以下であり、
     前記第2の熱伝導率が8W・m/K以上、かつ、200W・m/K以下である
     請求項6に記載の光学素子の製造方法。
  8.  前記第2の領域の表面粗さと前記第1の領域の表面粗さの差がRa0.3μm以上、かつ、Ra100μm未満である
     請求項6又は7に記載の光学素子の製造方法。
  9.  前記第2の領域は、前記光学面を形成する金型の面に隣接して存在する
     請求項1~8のいずれかに記載の光学素子の製造方法。
  10.  前記第2の領域の前記非光学面に隣接する光学面間の距離に対する比率が15~60%を占める請求項1~9のいずれかに記載の光学素子の製造方法。
  11.  請求項1~10のいずれかに記載の製造方法により製造された光学素子。
PCT/JP2014/050510 2013-03-21 2014-01-15 光学素子及び光学素子の製造方法 WO2014148072A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14768385.8A EP2977168A1 (en) 2013-03-21 2014-01-15 Optical element, and method for producing optical element
CN201480017239.8A CN105050792B (zh) 2013-03-21 2014-01-15 光学元件以及光学元件的制造方法
JP2015506623A JP6299748B2 (ja) 2013-03-21 2014-01-15 光学素子の製造方法
US14/776,303 US10369728B2 (en) 2013-03-21 2014-01-15 Optical element and method for manufacturing optical element
US16/427,835 US11358311B2 (en) 2013-03-21 2019-05-31 Optical element and method for manufacturing optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-058838 2013-03-21
JP2013058838 2013-03-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/776,303 A-371-Of-International US10369728B2 (en) 2013-03-21 2014-01-15 Optical element and method for manufacturing optical element
US16/427,835 Division US11358311B2 (en) 2013-03-21 2019-05-31 Optical element and method for manufacturing optical element

Publications (1)

Publication Number Publication Date
WO2014148072A1 true WO2014148072A1 (ja) 2014-09-25

Family

ID=51579769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050510 WO2014148072A1 (ja) 2013-03-21 2014-01-15 光学素子及び光学素子の製造方法

Country Status (5)

Country Link
US (2) US10369728B2 (ja)
EP (1) EP2977168A1 (ja)
JP (1) JP6299748B2 (ja)
CN (1) CN105050792B (ja)
WO (1) WO2014148072A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208509A1 (ja) * 2015-06-25 2018-04-05 コニカミノルタ株式会社 成形型、光学素子、及び光学素子の製造方法
JP2018081179A (ja) * 2016-11-15 2018-05-24 株式会社エンプラス 光学部品、光学部品の射出成形金型、及び光学部品の射出成形方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10974475B2 (en) * 2017-09-22 2021-04-13 Canon Kabushiki Kaisha Prism, forming mold, and method of producing prism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128218A (ja) * 1989-10-13 1991-05-31 Olympus Optical Co Ltd 光学用反射ミラーの製造法と成形用金型
JPH06328522A (ja) * 1993-05-21 1994-11-29 Ricoh Co Ltd プラスチック光学素子の成形金型およびそのプラスチック光学素子
JP2012020511A (ja) 2010-07-15 2012-02-02 Ricoh Co Ltd プラスチック成形品、プラスチック成形品の成形方法、および該プラスチック成形品を有する光走査装置
JP2012056269A (ja) * 2010-09-13 2012-03-22 Ricoh Co Ltd 樹脂成形用型、樹脂成形品、光学素子、光走査装置及び画像形成装置
JP2012250510A (ja) * 2011-06-06 2012-12-20 Seiko Epson Corp 射出成形金型、射出成形品及び射出成形方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793320B2 (ja) * 1990-03-29 1998-09-03 オリンパス光学工業株式会社 光学成形体の射出成形金型および成形方法
JPH05278039A (ja) * 1992-03-31 1993-10-26 Isuzu Motors Ltd 樹脂成形金型
JP3812287B2 (ja) * 2000-06-01 2006-08-23 コニカミノルタホールディングス株式会社 成形型、成形装置、成形方法、射出成形機、射出圧縮成形機、圧縮成形機及びガラス成形機
JP4574900B2 (ja) * 2001-07-11 2010-11-04 オリンパス株式会社 プラスチック光学素子の射出成形方法及び射出成形金型
JP4992107B2 (ja) * 2004-08-02 2012-08-08 コニカミノルタアドバンストレイヤー株式会社 光学部品の製造装置
CN100519133C (zh) * 2004-10-29 2009-07-29 柯尼卡美能达精密光学株式会社 光学元件成形装置
JP2006264192A (ja) * 2005-03-24 2006-10-05 Canon Inc プラスチック光学素子及びその成形方法
US20130301274A1 (en) * 2012-05-09 2013-11-14 Deloren E. Anderson Led fixture with interchangeable components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128218A (ja) * 1989-10-13 1991-05-31 Olympus Optical Co Ltd 光学用反射ミラーの製造法と成形用金型
JPH06328522A (ja) * 1993-05-21 1994-11-29 Ricoh Co Ltd プラスチック光学素子の成形金型およびそのプラスチック光学素子
JP2012020511A (ja) 2010-07-15 2012-02-02 Ricoh Co Ltd プラスチック成形品、プラスチック成形品の成形方法、および該プラスチック成形品を有する光走査装置
JP2012056269A (ja) * 2010-09-13 2012-03-22 Ricoh Co Ltd 樹脂成形用型、樹脂成形品、光学素子、光走査装置及び画像形成装置
JP2012250510A (ja) * 2011-06-06 2012-12-20 Seiko Epson Corp 射出成形金型、射出成形品及び射出成形方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208509A1 (ja) * 2015-06-25 2018-04-05 コニカミノルタ株式会社 成形型、光学素子、及び光学素子の製造方法
EP3315277B1 (en) * 2015-06-25 2021-03-10 Konica Minolta, Inc. Forming mold, optical element, and method for producing optical element
JP7133923B2 (ja) 2015-06-25 2022-09-09 大塚製薬株式会社 成形型、光学素子、及び光学素子の製造方法
JP2018081179A (ja) * 2016-11-15 2018-05-24 株式会社エンプラス 光学部品、光学部品の射出成形金型、及び光学部品の射出成形方法
WO2018092546A1 (ja) * 2016-11-15 2018-05-24 株式会社エンプラス 光学部品、光学部品の射出成形金型、及び光学部品の射出成形方法
US10830969B2 (en) 2016-11-15 2020-11-10 Enplas Corporation Optical component, injection molding die for optical component, and injection molding method for optical component

Also Published As

Publication number Publication date
JPWO2014148072A1 (ja) 2017-02-16
US20160039130A1 (en) 2016-02-11
EP2977168A1 (en) 2016-01-27
JP6299748B2 (ja) 2018-03-28
CN105050792A (zh) 2015-11-11
US20190283290A1 (en) 2019-09-19
US11358311B2 (en) 2022-06-14
CN105050792B (zh) 2017-04-12
US10369728B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
US11358311B2 (en) Optical element and method for manufacturing optical element
US8865042B2 (en) Mold for thermoplastic resin molding, cavity mold, and process for producing the cavity mold
JPH06218769A (ja) 熱可塑性樹脂射出成形用金型
JP2002096335A (ja) 光学素子成形用金型及び光学素子成形方法
WO2012132597A1 (ja) 多層成形用金型装置及び多層成形品
JP2013230672A (ja) 成形品の製造方法、成形用金型およびフレネルレンズを有する光学部材
JP4815897B2 (ja) 射出成形用金型及び射出成形方法
JP4650514B2 (ja) 光学素子の成形方法
JP5731359B2 (ja) 多層成形品及び光学レンズ
Li et al. An affordable injection-molded precision hybrid glass–polymer achromatic lens
JP2012250510A (ja) 射出成形金型、射出成形品及び射出成形方法
JP4057385B2 (ja) プラスチック成形品の成形方法および射出成形用金型
JP2009241574A (ja) レンズ成型金型
JP2009113423A (ja) 射出成形用金型
WO2017142066A1 (ja) 樹脂製の成形品、ミラー及び成形品の製造方法
JP2004341048A (ja) 光学反射ミラー
US20150075701A1 (en) Mold for thermoplastic resin molding, cavity mold, and process for producing the cavity mold
KR101344093B1 (ko) 사출물
JP5740028B2 (ja) レンズ成形用金型
US20100021724A1 (en) Injection molded product
JP2014162012A (ja) 微細構造体成形方法及び微細構造体成形金型
JP2009184108A (ja) 導波路成形用型の研磨治具
JP2006044246A (ja) 射出成形用金型及び射出成形方法
JPH08190007A (ja) 光学反射鏡及びその製造方法
JP2022126095A (ja) 樹脂成形方法及び樹脂成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017239.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506623

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14776303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014768385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014768385

Country of ref document: EP