WO2014148013A1 - 硬質冷延鋼板およびその製造方法 - Google Patents

硬質冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014148013A1
WO2014148013A1 PCT/JP2014/001421 JP2014001421W WO2014148013A1 WO 2014148013 A1 WO2014148013 A1 WO 2014148013A1 JP 2014001421 W JP2014001421 W JP 2014001421W WO 2014148013 A1 WO2014148013 A1 WO 2014148013A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolled steel
cold
ferrite
Prior art date
Application number
PCT/JP2014/001421
Other languages
English (en)
French (fr)
Inventor
崇 小林
勇人 齋藤
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480016573.1A priority Critical patent/CN105051228B/zh
Priority to KR1020157026226A priority patent/KR101751242B1/ko
Priority to JP2014532129A priority patent/JP5725263B2/ja
Priority to MX2015013316A priority patent/MX2015013316A/es
Publication of WO2014148013A1 publication Critical patent/WO2014148013A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention is a cold-rolled steel sheet suitable as a material for disk-plate plates (friction plates, separator plates, etc.) used for transmission clutches and brakes. And a manufacturing method thereof.
  • the present invention relates to a hard cold-rolled steel sheet excellent in high temperature softening resistance and a method for producing the same.
  • Plate parts used as components for clutches and brakes are responsible for transmitting and interrupting driving and braking forces via frictional forces. Plate parts that repeat contact and separation with other parts while rotating are required to have excellent flatness in addition to high hardness for suppressing deformation and wear.
  • the plate parts as described above are generally manufactured through processes such as shape correction, strain relief annealing, surface property adjustment, friction material adhesion, and the like after a raw steel plate is punched into a predetermined shape. Therefore, as a characteristic of the material steel plate used for the plate parts, it has a predetermined hardness and is excellent in punchability, flatness after punching, and flatness after further heating after punching. preferable.
  • Patent Document 1 relates to a thin steel plate for a material such as a gear or a plate as a transmission part of an automobile, the component composition of which is mass%, C: 0.15-0.4%, Si: 0.5% or less, Mn: 1.0%
  • P 0.05% or less
  • steel sheet plate surface hardness HV is 170 to 280
  • the maximum value ⁇ HV of sheet surface hardness difference at each position in the sheet width direction is 20 or less. Techniques to do this have been proposed. And according to the technique proposed by patent document 1, it is supposed that the thin steel plate excellent in the flatness after stamping will be obtained.
  • Patent Document 2 relates to a method of manufacturing a cold-rolled steel sheet that is suitably used as a material such as a separation plate, a friction plate, and a backing plate, which are constituent members of an automatic transmission of an automobile, in terms of mass%, C: 0.15 to 0.25% , Si: 0.25% or less, Mn: 0.3 to 0.9%, P: 0.03% or less, S: 0.015% or less, Al: 0.01 to 0.08%, N: 0.008% or less, Ti: 0.01 to 0.05%, B: 0.002 to A slab containing 0.005%, with the balance being substantially Fe, is hot-rolled at a hot rolling finish temperature of Ar 3 transformation point or higher and a coiling temperature of 500 to 600 ° C.
  • Patent Document 3 relates to a cold-rolled steel sheet suitable as a material for automobile drive system parts such as gears and plates, in mass%, C: 0.10 to 0.20%, Si: 0.5% or less, Mn: 0.20 to 1.5%, P : 0.03% or less, S: 0.020% or less, Cr: 0.05-0.5%, the balance consisting of Fe and inevitable impurities, proeutectoid ferrite and pearlite, or further bainitic ferrite or bainite
  • Tensile strength having a base and a cementite present in the base having an average of 2.0 ⁇ 10 4 pieces / mm 2 or more dispersed in a hot-rolled steel sheet of 440 MPa or more, with a reduction rate in a predetermined range.
  • Techniques have been proposed for cold rolling to produce cold rolled steel sheets. And according to the technique proposed by patent document 3, it is supposed that the cold-rolled steel plate excellent in the flatness after a punching process and excellent in the end surface property will be obtained.
  • Patent Document 4 relates to a method of manufacturing a cold-rolled steel sheet that is suitably used as a plate material for an automatic transmission of an automobile, in terms of mass%, C: 0.15-0.25%, Si: 0.25% or less, Mn: 0.3-0.9% , P: 0.03% or less, S: 0.015% or less, Al: 0.01 to 0.08%, N: 0.008% or less, Cr: 0.05 to 0.5%, Ti: 0.01 to 0.05%, B: 0.002 to 0.005%, the balance being Fe And a slab having a component composition consisting of inevitable impurities is extracted by heating to a temperature exceeding 1230 ° C in a heating furnace, hot rolling finish temperature: Ar 3 transformation point or higher, and coiling temperature: 500-600 ° C hot By rolling, a hot rolled steel sheet having a ferrite-pearlite mixed structure with a ferrite crystal grain size of 5 to 15 ⁇ m and a pearlite + cementite fraction of 40% or more is obtained, and the hot rolled steel sheet
  • JP 2004-285416 A Japanese Patent Laid-Open No. 2005-200712 JP 2008-138237 A JP 2010-202922 A
  • the temperature of the parts rises due to frictional heat generation, and the temperature may rise to a temperature of less than 500 ° C depending on the usage conditions.
  • strain relief annealing annealing temperature: about 420 to 480 ° C.
  • the steel plate used as the material for the plate parts is required to be hard to decrease in hardness when exposed to a high temperature of about 420 to 480 ° C., that is, to be excellent in high temperature softening resistance.
  • the above-described prior art has the following problems.
  • the technique proposed in Patent Document 2 for the purpose of reducing the thermal strain generated in the part in the bonding process after punching, light reduction rolling with a large diameter roll is performed to reduce the residual stress in the steel sheet. .
  • the technique proposed in Patent Document 2 can suppress thermal strain after holding at 300 ° C. for 10 minutes, but the plate component is subjected to strain relief annealing or the plate component. Changes in characteristics when actually used in a transmission, that is, changes in characteristics when the plate parts are held for a certain time in a temperature range higher than 300 ° C. (about 420 to 480 ° C.) are not considered. In other words, no investigation has been made regarding the high temperature softening resistance of parts.
  • Patent Document 3 controls the base structure of the hot-rolled steel sheet and the dispersed state of cementite, which are the materials of the cold-rolled steel sheet, in order to keep the dimensional accuracy, flatness, and end face properties after punching good. Is. However, this technique does not take into consideration the high temperature softening resistance of the parts after punching.
  • the slab heating temperature is limited to a temperature exceeding 1230 ° C. and Ti is sufficiently solutionized, and TiC, Ti (C, N), etc. are reprecipitated in the subsequent hot rolling process.
  • the recrystallized softening resistance of the steel sheet is improved by forming a uniformly dispersed structure as precipitates of ultrafine size.
  • the present invention advantageously solves the above-described problems of the prior art, and is a cold-rolled steel sheet suitable as a material for an annular plate part used in a clutch, a brake, etc. of a transmission, and has high hardness and high impact.
  • An object of the present invention is to provide a hard cold-rolled steel sheet excellent in punchability and flatness after punching, and further excellent in high-temperature softening resistance and a method for producing the same.
  • the hard cold-rolled steel sheet means a cold-rolled steel sheet having a hardness of HV 250 or more.
  • the high temperature softening resistance specifically means a characteristic that the hardness does not decrease even if it is held at 480 ° C. for 60 minutes.
  • the present inventors conducted extensive research on various factors affecting the hardness, punchability, flatness after punching, and resistance to high-temperature softening of cold-rolled steel sheets.
  • the structure of the cold-rolled steel sheet is a structure in which the main phase is ferrite, it is possible to effectively suppress the fluctuation of the transformation strengthening amount as described above. Further, when fine cementite is dispersed in the cold-rolled steel sheet, the cementite partially decomposes and dissolves when the cold-rolled steel sheet is kept at a high temperature. As a result, an age hardening phenomenon derived from solute C occurs, and an effect of compensating for softening of the cold-rolled steel sheet due to temperature rise is obtained. On the other hand, there is a concern that cementite adversely affects the punchability of the cold rolled steel sheet.
  • the main strengthening mechanism is work hardening by cold rolling, that is, ferrite is processed and stretched with a predetermined average aspect ratio.
  • the present inventors have studied a method for producing a cold-rolled steel sheet having the above-described structure and exhibiting desired characteristics, and subjecting the steel material having a predetermined composition to hot rolling, ferrite, bainite, and pearlite. It was conceived that a hot-rolled steel sheet made of the above-mentioned hot-rolled steel sheet was subjected to cold rolling at a predetermined reduction rate to obtain a predetermined cold-rolled steel sheet structure (structure in which ferrite was the main phase and cementite was dispersed).
  • various methods can be considered as a method of making the structure of the cold-rolled steel sheet into a structure in which ferrite is the main phase and cementite is dispersed.
  • a hot-rolled steel sheet made of ferrite, bainite, and pearlite is cold-rolled at a predetermined reduction rate to obtain a predetermined cold-rolled steel sheet structure (ferrite as the main phase). It was found that a cold-rolled steel sheet having sufficient hardness, softening resistance at high temperature, good punchability, and flatness after heat treatment can be obtained.
  • the present invention has been completed by further studies based on the above-described findings, and the gist of the present invention is as follows.
  • the ferrite as the main phase has a structure in which cementite is dispersed.
  • the ferrite as the main phase is a processed stretch grain having an average aspect ratio of 3 or more in the rolling direction cross section of the steel sheet, and the cementite is the entire structure.
  • Excellent in high-temperature softening resistance characterized by a fraction of 5% or less, an average aspect ratio of grain cross-section in a rolling section of a steel sheet: 3 or less, and an average major axis: 1.0 ⁇ m or less Hard cold-rolled steel sheet.
  • Cooling at a cooling rate of 80 ° C / s or less then cooling the temperature range from 750 ° C to a cooling stop temperature of 500 ° C or more and 600 ° C or less at a cooling rate of 40 ° C / s or more and 60 ° C / s or less, and then allowing to cool And, it is wound at a coiling temperature of 500 ° C. or more and 600 ° C. or less to obtain a hot rolled steel sheet, and after descaling the hot rolled steel sheet, it is cold rolled at a rolling reduction of 40% or more and 80% or less.
  • a method for producing a hard cold-rolled steel sheet having excellent high-temperature softening resistance is produced by a cooling rate of 80 ° C / s or less.
  • the cold-rolled steel sheet according to the present invention is extremely suitable as a material for automatic transmission parts of automobiles.
  • the steel sheet of the present invention is a hard cold-rolled steel sheet, which is a cold-rolled steel sheet that is cold-rolled and work-hardened from a hot-rolled steel sheet having a predetermined composition and structure.
  • % which is a unit of component element content means “% by mass” unless otherwise specified.
  • C 0.10% or more and 0.25% or less C is an element necessary for strengthening the steel sheet, and in order to ensure the necessary hardness as a material for plate parts of clutches and brakes, the content of 0.10% or more is necessary. On the other hand, if the content exceeds 0.25%, coarse cementite tends to be unevenly dispersed, and the punchability of the steel sheet may be lowered. Therefore, the C content is limited to 0.10% or more and 0.25% or less. Preferably it is 0.15% or more and 0.20% or less.
  • Si 0.3% or less Si is an element that contributes to strengthening of the steel sheet by forming a solid solution in the steel.
  • strengthening by Si addition of 0.01% or more is preferable, and 0.03% or more is more preferable.
  • the Si content is limited to 0.3% or less. Preferably it is 0.1% or less.
  • Mn 0.5% or more and 1.0% or less
  • Mn is an element effective for improving hot ductility as well as contributing to strengthening of the steel sheet by dissolving in steel. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 1.0%, the microstructure of the hot-rolled steel sheet tends to be band-shaped and the punchability of the steel sheet is lowered. Therefore, the Mn content is limited to a range of 0.5% to 1.0%. Preferably they are 0.6% or more and 0.9% or less.
  • P 0.03% or less
  • P is an element that is easily segregated in steel. If it is contained in a large amount, the microstructure of the steel sheet becomes non-uniform, and the punchability of the steel sheet tends to decrease. Therefore, it is desirable to reduce P as much as possible, and the P content is 0.03% or less. Preferably it is 0.02% or less. In addition, since extreme reduction of P requires cost, 0.003% or more, or 0.01% or more of content may be allowed.
  • S 0.02% or less S is an element that forms inclusions such as MnS and lowers the punchability of the steel sheet. Therefore, it is desirable to reduce S as much as possible, and the S content is 0.02% or less. Preferably it is 0.01% or less. In addition, since extreme reduction of S is costly, the content of 0.002% or more may be allowed.
  • Al 0.01% or more and 0.08% or less
  • Al is an element added for deoxidation of steel, and if the Al content in the steel is less than 0.01%, a sufficient deoxidation effect cannot be obtained.
  • the Al content in the steel exceeds 0.08%, inclusions in the steel increase, resulting in an increase in surface defects of the steel plate and a decrease in punchability. Therefore, the Al content is limited to 0.01% or more and 0.08% or less. Preferably they are 0.01% or more and 0.05% or less.
  • Ti 0.010% or less
  • Ti is an element having an action of dispersing and strengthening a steel sheet through fine precipitation such as carbonitride.
  • the Ti content is preferably 0.002% or more.
  • the Ti content is limited to 0.010% or less. Preferably it is 0.005% or less.
  • Nb 0.010% or less
  • Nb is an element having an action of dispersing and strengthening a steel sheet through fine precipitation such as carbonitride.
  • the Nb content is preferably 0.002% or more.
  • the Nb content is limited to 0.010% or less. Preferably it is 0.005% or less.
  • B 0.0010% or less
  • B is an element having an effect of greatly improving the hardenability of steel by adding a small amount.
  • the B content is preferably 0.0001% or more.
  • the B content is 0.0010% or less.
  • it is 0.0005% or less, More preferably, it is 0.0003% or less.
  • the balance other than the above components is Fe and inevitable impurities.
  • Inevitable impurities include Cr: 0.05% or less (preferably 0.03% or less), Mo: 0.05% or less (preferably 0.03% or less), Cu: 0.05% or less (preferably 0.03% or less), Ni: 0.05 % Or less (preferably 0.03% or less), V: 0.010% or less (preferably 0.005% or less), O: 0.0050% or less, N: 0.0050% or less, etc. are acceptable.
  • the cold-rolled steel sheet of the present invention has a structure in which ferrite is the main phase and cementite is dispersed. Furthermore, the ferrite is a processed and stretched grain having an average aspect ratio of 3 or more in the cross section in the rolling direction of the steel sheet.
  • the cementite has a fraction (area ratio) occupying the whole structure of 5% or less, an average aspect ratio of the particle cross section in the rolling direction cross section of the steel sheet, and an average major axis of 1.0 ⁇ m or less.
  • the cold-rolled steel sheet of the present invention is a cold-rolled steel sheet and has a work-hardened rolled structure.
  • the structure of the cold-rolled steel sheet is a hot-rolled steel sheet having a predetermined structure, specifically ferrite, bainite, pearlite, and the fraction of the entire structure of the ferrite: 50% or more and 80% or less, Cold rolling at a predetermined reduction rate to a hot rolled steel sheet having a structure in which the fraction of the bainite structure is 15% or more and 45% or less, and the fraction of the pearlite structure is 10% or less.
  • the cementite in the cold-rolled steel sheet of the present invention refers to a hot-rolled steel sheet before cold rolling that is formed from bainite or pearlite and is cold-rolled and deformed or divided.
  • the ferrite in the cold-rolled steel sheet of the present invention is a work-stretched grain having an average aspect ratio of 3 or more in the cross section in the rolling direction of the steel sheet.
  • the cold-rolled steel sheet of the present invention has a main strengthening mechanism of work hardening by cold rolling.
  • the average aspect ratio of the ferrite grains in the cross section in the rolling direction is less than 3, the work hardening amount by cold rolling is small, and the steel sheet May not reach the required level for plate parts. Therefore, the average aspect ratio is 3 or more. Preferably it is 4 or more.
  • the upper limit of the aspect ratio is not particularly limited, and there is no particular problem as long as it is within a range obtained by a realistic cold rolling reduction ratio. For example, when the cold rolling reduction ratio is 80%, the aspect ratio is about 11 at the maximum, and when the cold rolling reduction ratio is 70%, the aspect ratio is about 25 at the maximum.
  • the aspect ratio of crystal grains and precipitates is obtained by dividing the maximum diameter (major axis) by the minimum diameter (minor axis).
  • the diameter in the rolling direction is the major axis and the diameter in the sheet thickness direction is the minor axis.
  • the fraction of ferrite in the entire structure of the cold-rolled steel sheet is 50% or more.
  • the ferrite that formed bainite and pearlite in the hot-rolled steel sheet can also become a form that should be called work-stretched grain ferrite by breaking the characteristic arrangement of bainite and pearlite by cold rolling, so the maximum case All except cementite below are ferrite. Therefore, ferrite becomes the main phase occupying most of the structure of the cold-rolled steel sheet.
  • the main phase refers to a phase having a fraction (area ratio) of 50% or more.
  • Cementite in cold-rolled steel sheet of the present invention has a fraction of 5% or less in the entire structure, an average aspect ratio of the particle section in the rolling direction section of the steel sheet is 3 or less, and particles in the rolling direction section of the steel sheet.
  • the average major axis of the cross section is 1.0 ⁇ m or less.
  • the average aspect ratio of cementite is 3 or less. Preferably it is 2 or less.
  • the average major axis of cementite is 1.0 ⁇ m or less. Preferably it is 0.8 micrometer or less. The lower limit of the average length of cementite need not be particularly limited. The minimum major axis that can be identified by the method described in the examples is about 0.1 ⁇ m.
  • the structure of the hot-rolled steel sheet is made of ferrite, bainite, and pearlite.
  • the fraction of the hot rolled steel sheet structure in the entire ferrite structure is 50% to 80%. Preferably they are 55% or more and 75% or less. If the ferrite fraction of the hot-rolled steel sheet is less than 50%, the work hardening of the ferrite tends to be non-uniform during the subsequent cold rolling, and when the part is used as a plate part and receives a thermal history, The amount of deformation tends to increase. Furthermore, since the bainite fraction becomes high, the variation of the amount of structural strengthening when the temperature of the cold-rolled steel sheet after cold rolling increases is increased, and the high-temperature softening resistance of the cold-rolled steel sheet decreases. On the other hand, when the ferrite fraction exceeds 80%, it becomes difficult to secure a desired bainite fraction described later.
  • the fraction of the hot rolled steel sheet structure in the entire bainite structure is 15% or more and 45% or less. Preferably they are 20% or more and 40% or less.
  • the bainite fraction is less than 15%, cementite particles in the steel sheet structure after cold rolling become large, and it becomes difficult to obtain a cold-rolled steel sheet having a desired structure.
  • the bainite fraction exceeds 45%, the variation in the amount of structure strengthening when the cold-rolled steel sheet after cold rolling is heated increases, and the high-temperature softening resistance of the cold-rolled steel sheet decreases.
  • the fraction of the pearlite structure in the hot-rolled steel sheet structure is 10% or less. Preferably it is 5% or less. When the pearlite fraction exceeds 10%, the cementite particles in the steel sheet structure after cold rolling increase, making it difficult to obtain a cold-rolled steel sheet having a desired structure. If a small amount of pearlite is present, a cold-rolled steel sheet having a desired structure can be obtained.
  • a more preferable pearlite fraction is 1% or more, and further preferably 2% or more.
  • the cold-rolled steel sheet of the present invention is a hot-rolled steel sheet having a structure composed of ferrite, bainite, and pearlite by hot-rolling a steel piece having the above chemical composition, and after descaling the hot-rolled steel sheet, a predetermined value is obtained. It can be obtained by cold rolling at a reduction ratio of.
  • the steel used in the present invention can be melted by any known melting method such as a converter method or an electric furnace method.
  • the molten steel is made into a slab by continuous casting or ingot-bundling rolling. If necessary, various pretreatments, secondary refining, surface treatment of steel pieces, and the like can be performed.
  • Heating temperature of steel slab 1000 ° C. or higher and 1200 ° C. or lower If the heating temperature of the steel slab during hot rolling is less than 1000 ° C., it is difficult to ensure the necessary finishing temperature. On the other hand, if the heating temperature exceeds 1200 ° C., the energy required for heating increases, and surface quality defects of the steel sheet due to scale defects and the like are likely to occur. Therefore, the heating temperature of the steel slab before hot rolling is set to 1000 ° C. or more and 1200 ° C. or less. Preferably they are 1050 degreeC or more and 1150 degrees C or less. In heating the steel slab, the steel slab cooled to room temperature may be reheated, or the steel slab in the middle of cooling after casting may be additionally heated or kept warm.
  • the steel slab is heated to the above temperature range, and then subjected to rough rolling and finish rolling to obtain a hot rolled steel sheet.
  • the rough rolling conditions may be in accordance with conventional methods and need not be particularly limited.
  • Finishing temperature Ar 3 transformation point or higher (Ar 3 transformation point +200) ° C or less
  • Ar 3 transformation point Ar 3 transformation point or higher (Ar 3 transformation point +200) ° C or less
  • the finishing temperature is limited to Ar 3 transformation point or higher (Ar 3 transformation point +200) ° C. or lower. Preferably, it is (Ar 3 transformation point +50) ° C. or higher (Ar 3 transformation point +150) ° C. or less.
  • the steel plate being rolled may be additionally heated using a heating device such as a sheet bar heater or an edge heater.
  • Cooling rate from the finishing temperature to 750 ° C: 40 ° C / s or more and 80 ° C / s or less The steel sheet after hot rolling is cooled at a temperature range from the finishing temperature to 750 ° C by 40 ° C / s or more and 80 ° C / s or less. Cool at a speed (forced cooling). Preferably they are 50 degreeC / s or more and 70 degrees C / s or less. When the cooling rate in this temperature range is less than 40 ° C./s, the structure of the hot-rolled steel sheet is easily coarsened, and the desired form of cementite cannot be obtained with the cold-rolled steel sheet.
  • the cooling rate in this temperature range exceeds 80 ° C./s, it becomes easy to produce martensite or excessive bainite in the hot-rolled steel sheet, and the structure of the cold-rolled steel sheet cannot be adjusted to a desired state.
  • the high temperature softening resistance of the cold rolled steel sheet may be significantly reduced.
  • Cooling rate from 750 ° C to cooling stop temperature 40 ° C / s to 60 ° C / s Cooling stop temperature: 500 ° C to 600 ° C
  • the temperature range from 750 ° C to cooling stop temperature is 40 ° C / s to 60 ° C Cool (forced cooling) at a cooling rate of / s or less.
  • the cooling rate in this temperature range is less than 40 ° C./s or more than 60 ° C./s, it is difficult to produce ferrite at a desired fraction in the structure of the hot-rolled steel sheet.
  • the cooling stop temperature exceeds 600 ° C., pearlite tends to be excessively increased as the second phase.
  • the cooling stop temperature is in the range of 500 ° C. or more and 600 ° C. or less. Preferably they are 520 degreeC or more and 580 degrees C or less.
  • the steel plate after forced cooling stop may rise in temperature (surface temperature) due to recuperation from the inside of the steel plate and transformation latent heat of the steel. Allow the room to cool (air).
  • Winding temperature 500 ° C or higher and 600 ° C or lower
  • the winding temperature is lower than 500 ° C
  • martensite and excessive bainite are easily generated in the structure of the hot-rolled steel sheet, and the cold-rolled steel sheet is softened at high temperature. Is significantly reduced.
  • the coiling temperature exceeds 600 ° C.
  • the coiling temperature is set to 500 ° C. or more and 600 ° C. or less.
  • they are 520 degreeC or more and 580 degrees C or less.
  • steel plate temperature Finishing temperature, cooling stop temperature, winding temperature, etc.
  • a hot-rolled steel sheet having a desired structure that is, composed of ferrite, bainite and pearlite, a fraction of the entire ferrite structure: 50% to 80%, and the entire bainite structure
  • a hot-rolled steel sheet having a structure in which the fraction is 15% or more and 45% or less and the percentage of the entire pearlite structure is 10% or less is obtained.
  • the hot-rolled steel sheet thus obtained is cold-rolled. It is also possible to subject the hot rolled steel sheet before cold rolling to temper rolling for shape correction.
  • Cold rolling reduction 40% or more and 80% or less
  • the hot-rolled steel sheet is descaled by pickling or other means, and then cold-rolled to obtain a cold-rolled steel sheet.
  • the cold rolling reduction is less than 40%, it becomes easy to obtain a non-uniform rolled structure in the thickness direction, and it becomes difficult to obtain ferrite grains having a desired shape.
  • the cold rolling reduction is less than 40%, when the temperature of the steel sheet after cold rolling is raised, fluctuations in hardness and flatness are likely to occur.
  • the cold rolling reduction exceeds 80%, the cold rolling load increases excessively, and the productivity of the steel sheet decreases. Therefore, the rolling reduction of cold rolling is 40% or more and 80% or less. Preferably they are 50% or more and 70% or less.
  • the ferrite structure fraction of hot-rolled steel sheet is 50% to 80%, the bainite structure fraction is 15% to 45%, the pearlite structure fraction is 10% or less, and cold rolling
  • the structure fraction of ferrite is at least over 50% (that is, ferrite is the main phase), and has a structure in which cementite is dispersed.
  • a certain ferrite is a processed and stretched grain having an average aspect ratio in the rolling direction cross section of the steel sheet of 3 or more, and the fraction of the cementite in the entire structure is 5% or less.
  • the average aspect ratio of the particle cross section in the cross section in the rolling direction of the steel sheet A cold-rolled steel sheet having an average major axis of 1.0 ⁇ m or less is obtained.
  • the steel sheet since the cold-rolled steel sheet is in a state where the rolling oil is attached, the steel sheet may be washed after cold rolling, or oil for rust prevention may be applied again after washing. Even if these treatments are performed, the effect of the present invention is not impaired.
  • each hot-rolled steel sheet was pickled and descaled, and then cold-rolled at the rolling reduction shown in Table 3 to obtain cold-rolled steel sheets having the thickness shown in Table 3.
  • Samples were collected from each cold-rolled steel sheet and observed in the microstructure to confirm the type of structure, and the cementite fraction in the entire structure, the average aspect ratio of ferrite and cementite, and the average major axis of cementite were measured.
  • samples were taken from each cold-rolled steel sheet, a hardness test was performed, and the hardness and high-temperature softening resistance of the cold-rolled steel sheet were evaluated.
  • samples were taken from each cold-rolled steel sheet, and the punchability of the cold-rolled steel sheet and the flatness after punching / heat treatment were evaluated.
  • the area ratio occupied by the phase was obtained by image analysis using the image, and this was defined as the fraction of each phase.
  • the average aspect ratio of ferrite and cementite and the average major axis of cementite were calculated by obtaining the individual aspect ratios and major axes of the grains in the observation range using the above images and averaging them.
  • the hardness of the cold-rolled steel sheet is measured by measuring the Vickers hardness (HV0.5) in accordance with the provisions of JIS Z 2244 at the thickness 1/4 position of the cross-section sample taken in the same way as the sample for microstructure observation. did.
  • the evaluation of the high temperature softening resistance of the cold-rolled steel sheet was conducted by subjecting the cold-rolled steel sheet to a heat treatment of holding at 480 ° C. for 60 minutes and allowing to cool, and then collecting a cross-section sample in the same manner to obtain a Vickers hardness (HV0.5 ) Was measured, and the amount of change in hardness before and after heat treatment was determined and evaluated.
  • HV0.5 Vickers hardness
  • Each cold-rolled steel sheet suitable for the present invention has sufficient hardness as it is cold-rolled, has no decrease in hardness due to heat treatment, and has excellent high-temperature softening resistance, Excellent punchability and flatness after heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

質量%で、C:0.10%以上0.25%以下、Si:0.3%以下、Mn:0.5%以上1.0%以下、P:0.03%以下、S:0.02%以下、Al:0.01%以上0.08%以下、Ti:0.010%以下、Nb:0.010%以下、B:0.0010%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、フェライト、ベイナイトおよびパーライトからなり、フェライト分率:50%以上80%以下、ベイナイト分率:15%以上45%以下、パーライト分率:10%以下である組織を有する熱延鋼板に、冷間圧延を施し、フェライトを主相としセメンタイトが分散した組織を有し、主相であるフェライトが、鋼板の圧延方向断面における平均アスペクト比:3以上の加工伸展粒であり、セメンタイトが、組織全体に占める分率:5%以下、鋼板の圧延方向断面における粒子断面の平均アスペクト比:3以下、平均長径:1.0μm以下である耐高温軟化性に優れた硬質冷延鋼板及びその製造方法。

Description

硬質冷延鋼板およびその製造方法
 本発明は、変速機のクラッチやブレーキ等に使用される円環状プレート部品(disk plate parts)(フリクションプレート、セパレータープレート等)(friction plate, separator plate, etc.)の素材として好適な冷延鋼板およびその製造方法に関する。本発明は特に、耐高温軟化性(high temperature softening resistance)に優れる硬質冷延鋼板(full hard cold-rolled steel sheet)およびその製造方法に関する。
 クラッチやブレーキの構成部品として使用されるプレート部品は、摩擦力を介して駆動力や制動力の伝達と断続の機能を担う。回転しながら他部品との接触・離反を繰り返すプレート部品には、変形や摩耗を抑制するための高い硬さに加えて、平坦度(flatness)に優れることが求められる。
 また、上記のようなプレート部品は一般に、素材鋼板を所定の形状に打ち抜いた後、形状矯正や歪取焼鈍、表面性状の調整、摩擦材の接着等の工程を経て製造される。そのため、プレート部品に使用される素材鋼板の特性としては、所定の硬度を有するとともに、打抜性や、打抜後の平坦度、および打抜後にさらに加熱された後の平坦度に優れることが好ましい。
 プレート部品に使用される素材鋼板に関しては、これまでにも多くの技術が提案されている。
 例えば、特許文献1には、自動車のトランスミッション部品としてのギアやプレート等の素材用薄鋼板に関し、その成分組成を質量%で、C:0.15~0.4%、Si:0.5%以下、Mn:1.0%以下、P:0.05%以下を含有し、残部実質的にFeから成る組成とし、且つ鋼板板面硬度HVを170~280、鋼板幅方向各位置における板面硬度差の最大値ΔHVを20以下とする技術が提案されている。そして、特許文献1で提案された技術によると、打抜き後の平坦度に優れる薄鋼板が得られるとされている。
 特許文献2には、自動車のオートマチックトランスミッションの構成部材であるセパレートプレート、フリクションプレート、バッキングプレート等の素材として好適に使用される冷延鋼板の製造方法に関し、質量%で、C:0.15~0.25%、Si:0.25%以下、Mn:0.3~0.9%、P:0.03%以下、S:0.015%以下、Al:0.01~0.08%、N:0.008%以下、Ti:0.01~0.05%、B:0.002~0.005%を含有し、残部が実質的にFeの組成をもつスラブを、熱延仕上げ温度:Ar3変態点以上、巻取り温度:500~600℃で熱間圧延し、熱延鋼板を酸洗処理した後、焼鈍処理することなく圧下率50%以上で冷間圧延し、さらにその後、径が300mm以上のロールを使用して圧下率1%以下の軽圧下圧延を施す技術が提案されている。そして、特許文献2で提案された技術によると、打抜き材を加熱保持した際に熱歪みに伴う変形を引き起こす要因となる残留応力を低減したATプレート用冷延鋼板が得られるとされている。
 特許文献3には、ギアやプレート等の自動車駆動系部品用素材として好適な冷延鋼板に関し、質量%で、C:0.10~0.20%、Si:0.5%以下、Mn:0.20~1.5%、P:0.03%以下、S:0.020%以下、Cr:0.05~0.5%を含み、残部がFe及び不可避的不純物からなる組成と、初析フェライトとパーライトと、あるいはさらにベイニティックフェライトまたはベイナイトとからなる基地を有し、かつ該基地中に存在するセメンタイトが平均で、2.0×104個/mm2以上分散した組織とを有する引張強さ:440MPa以上の熱延鋼板に、所定範囲の圧下率で冷間圧延を施して冷延鋼板とする技術が提案されている。そして、特許文献3で提案された技術によると、打抜き加工後の平坦度に優れかつ端面性状に優れた冷延鋼板が得られるとされている。
 特許文献4には、自動車のオートマチック・トランスミッション用板材として好適に使用される冷延鋼板の製造方法に関し、質量%で、C:0.15~0.25%、Si:0.25%以下、Mn:0.3~0.9%、P:0.03%以下、S:0.015%以下、Al:0.01~0.08%、N:0.008%以下、Cr:0.05~0.5%、Ti:0.01~0.05%、B:0.002~0.005%、残部はFe及び不可避不純物からなる成分組成を有するスラブを、加熱炉で1230℃を超える温度に加熱して抽出し、熱延仕上げ温度:Ar3変態点以上、および巻取り温度:500~600℃の熱間圧延により、フェライト結晶粒径:5~15μmおよびパーライト+セメンタイト分率:40%以上であるフェライト-パーライト混合組織を有する熱延鋼板を得、熱延鋼板を酸洗処理した後、焼鈍処理することなく圧下率30%以上で冷間圧延する技術が提案されている。そして、特許文献4で提案された技術によると、冷延鋼板の耐再結晶軟化特性を高めることで、プレス打抜き加工後のプレステンパー処理における軟質化(硬度低下)を効果的に抑制緩和し、ATプレートに要求される硬度等の材料特性及び良好な形状品質(平坦性)を具備し得る冷延鋼板が得られるとされている。
特開2004-285416号公報 特開2005-200712号公報 特開2008-138237号公報 特開2010-202922号公報
 クラッチやブレーキを構成するプレート部品が実際に変速機内で使用される際には、摩擦発熱によって部品の温度が上昇し、使用状況によっては500℃弱の温度にまで昇温されることがある。また、昇温による変形防止のため、部品の製造時にあらかじめ歪取焼鈍(焼鈍温度:約420~480℃)が施されることもある。したがって、このようなプレート部品では、温度の上昇に対しても必要な部品性能を維持できることが必須となる。そしてプレート部品の素材となる鋼板には、約420~480℃の高温下に曝されても硬さが低下し難いこと、すなわち耐高温軟化性に優れることが要求される。これに対し、上記した従来技術には、以下に述べるような問題点がある。
 特許文献1で提案された技術では、打抜後の部品の平坦度を良好に保つため、板幅方向の硬度差およびミクロ組織差を低減することを重視している。しかしながら、打抜後の部品の耐高温軟化性は全く考慮されていない。
 特許文献2で提案された技術では、打抜後の接着工程にて部品に生じる熱歪を低減する目的で、大径ロールによる軽圧下圧延を施して、鋼板中の残留応力を低減させている。しかし、その実施例が示すように、特許文献2で提案された技術では、300℃で10分間保持した後の熱歪を抑制し得るものの、プレート部品に歪取焼鈍を施す場合やプレート部品を実際に変速機内で使用する場合の特性変化、すなわちプレート部品を300℃よりも更に高い温度域(約420~480℃)で一定時間保持した場合における特性変化については考慮されていない。すなわち、部品の耐高温軟化性に関わる検討はなされていない。
 特許文献3で提案された技術は、打抜加工後の寸法精度、平坦度、端面性状を良好に保つため、冷延鋼板の素材となる熱延鋼板の基地組織およびセメンタイトの分散状態を制御するものである。しかしながら、この技術では打抜後の部品の耐高温軟化性は全く考慮されていない。
 特許文献4で提案された技術では、スラブ加熱温度を1230℃を超える温度に限定してTiを十分に溶体化し、その後の熱間圧延工程でTiC、Ti(C,N)等が再析出する際に超微細サイズの析出物として均一に分散した組織を形成することで、鋼板の耐再結晶軟化特性を改善している。このように1230℃を超える温度にまでスラブを高温加熱すると、鋼板の表面欠陥の増加を招き易く、加熱に要するエネルギーコストの点からも好ましくない。
 本発明は、上記した従来技術が抱える問題を有利に解決し、変速機のクラッチやブレーキ等に使用される円環状プレート部品の素材として好適な冷延鋼板であって、高硬度であり且つ打抜性や打抜後の平坦度に優れ、更に耐高温軟化性にも優れた硬質冷延鋼板およびその製造方法を提供することを目的とする。ここで、硬質冷延鋼板とは、HV 250以上の硬さを有する冷延鋼板を意味する。また、耐高温軟化性とは、具体的には、480℃で60分間保持されても硬さが低下しない特性を意味する。
 上記課題を解決すべく、本発明者らは、冷延鋼板の硬度、打抜性、打抜後の平坦度、更には耐高温軟化性に影響する各種要因について鋭意研究を重ねた。
 その結果、冷延鋼板の耐高温軟化性を高めるうえでは、冷延鋼板の組織を、フェライトを主相とし、所定分率および所定形状のセメンタイトが分散した組織とすることが極めて有効であることを知見した。冷延鋼板の高硬度化の観点からは、一般には低温変態相(マルテンサイト、ベイナイト等)を含む組織とすることが好ましい。しかしながら、低温変態相を含む冷延鋼板を高温保持すると、低温変態相が軟化し、冷延鋼板の変態強化量が変動する。それゆえ、低温変態相を多く含む冷延鋼板では、耐高温軟化性の劣化が問題となる。
 これに対し、冷延鋼板の組織をフェライトが主相である組織とすれば、上記のような変態強化量の変動を効果的に抑制することができる。また、冷延鋼板に微細なセメンタイトを分散させると、冷延鋼板を高温保持する際、セメンタイトが部分的に分解固溶する。その結果、固溶C由来の時効硬化現象が生じて、昇温による冷延鋼板の軟化を補償する作用が得られる。一方、セメンタイトは、冷延鋼板の打抜性に悪影響を及ぼすことが懸念される。しかしながら、本発明者らによる検討の結果、セメンタイトの組織分率、平均アスペクト比および平均長径を所定の範囲に規定することで、打抜性の劣化を抑制しつつ耐高温軟化性を高めることが可能であることが明らかになった。
 また、フェライトが主相である冷延鋼板の硬度を確保する手段について検討した結果、冷間圧延による加工硬化を主たる強化機構とすること、すなわちフェライトを所定の平均アスペクト比の加工伸展粒とすることで、所望の硬度を有する冷延鋼板が得られることを知見した。
 更に、本発明者らは、以上のような組織を有し所望の特性を示す冷延鋼板の製造方法について検討し、所定の組成を有する鋼素材に熱間圧延を施してフェライト、ベイナイト、パーライトからなる熱延鋼板とし、該熱延鋼板に所定の圧下率で冷間圧延を施すことで所定の冷延鋼板組織(フェライトを主相とし、セメンタイトが分散した組織)とすることに想到した。フェライトを主相とし、更にベイナイト、パーライトからなる熱延鋼板に冷間圧延を施すと、熱延鋼板のベイナイト、パーライトを構成するセメンタイトが変形・分断される結果、フェライトを主相としてセメンタイトが分散した冷延鋼板が得られる。そして、熱延鋼板のフェライト分率、ベイナイト分率、パーライト分率を特定するとともに、冷間圧延の圧下率を特定することで、上記した所望の冷間圧延組織が得られることを、本発明者らは知見した。
 なお、冷延鋼板の組織を、フェライトを主相とし、セメンタイトが分散した組織とする方法としては様々な方法が考えられる。しかしながら、本発明者らによる検討の結果、上記の如く、フェライト、ベイナイト、パーライトからなる熱延鋼板に所定の圧下率で冷間圧延を施すことで所定の冷延鋼板組織(フェライトを主相とし、セメンタイトが分散した組織)とした場合、十分な硬さと耐高温軟化性および良好な打抜性や熱処理後の平坦度をバランス良く具備した冷延鋼板が得られるという知見を得た。
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものであり、本発明の要旨は以下のとおりである。
[1] 質量%で、
C :0.10%以上0.25%以下、     Si:0.3%以下、
Mn:0.5%以上1.0%以下、      P :0.03%以下、
S :0.02%以下、          Al:0.01%以上0.08%以下、
Ti:0.010%以下、          Nb:0.010%以下、
B :0.0010%以下
を含有し、残部がFeおよび不可避的不純物からなる組成を有し、フェライト、ベイナイトおよびパーライトからなり、前記フェライトの組織全体に占める分率:50%以上80%以下、前記ベイナイトの組織全体に占める分率:15%以上45%以下、前記パーライトの組織全体に占める分率:10%以下である組織を有する熱延鋼板に、冷間圧延を施して得られる冷延鋼板であって、フェライトを主相としセメンタイトが分散した組織を有し、前記主相であるフェライトが、鋼板の圧延方向断面における平均アスペクト比:3以上の加工伸展粒であり、前記セメンタイトが、組織全体に占める分率:5%以下、鋼板の圧延方向断面における粒子断面の平均アスペクト比:3以下、平均長径:1.0μm以下であることを特徴とする耐高温軟化性に優れた硬質冷延鋼板。
[2]質量%で、
C :0.10%以上0.25%以下、    Si:0.3%以下、
Mn:0.5%以上1.0%以下、     P :0.03%以下、
S :0.02%以下、         Al:0.01%以上0.08%以下、
Ti:0.010%以下、         Nb:0.010%以下、
B :0.0010%以下
を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼片を、
1000℃以上1200℃以下に加熱し、Ar3変態点以上(Ar3変態点+200)℃以下の仕上温度で熱間圧延を施し、前記仕上温度から750℃までの温度範囲を40℃/s以上80℃/s以下の冷却速度で冷却し、次いで750℃から500℃以上600℃以下の冷却停止温度までの温度範囲を40℃/s以上60℃/s以下の冷却速度で冷却したのち放冷し、500℃以上600℃以下の巻取温度で巻き取って熱延鋼板とし、該熱延鋼板をデスケーリングしたのち、40%以上80%以下の圧下率で冷間圧延することを特徴とする耐高温軟化性に優れた硬質冷延鋼板の製造方法。
 本発明によれば、打抜性や打抜後の平坦度が良好であることに加えて耐高温軟化性にも優れた硬質な冷延鋼板を容易に製造でき、産業上格段の効果を奏する。本発明による冷延鋼板は、自動車の自動変速機部品用素材として、極めて好適である。
 本発明鋼板は硬質な冷延鋼板であり、所定の組成と組織を有する熱延鋼板を冷間圧延して加工硬化させた、冷間圧延ままの鋼板である。
 まず、本発明冷延鋼板の化学組成の限定理由について説明する。以下、成分元素含有量の単位である%は、特に断らない限り質量%を意味するものとする。
 C :0.10%以上0.25%以下
 Cは、鋼板の強化に必要な元素であり、クラッチやブレーキのプレート部品素材として必要な硬さを確保するためには、0.10%以上の含有が必要である。一方、0.25%を超えて含有すると、粗大なセメンタイトが不均一に分散した組織となり易く、鋼板の打抜性が低下することがある。したがって、Cの含有量は0.10%以上0.25%以下に限定する。好ましくは0.15%以上0.20%以下である。
 Si:0.3%以下
 Siは、鋼中に固溶して鋼板の強化に寄与する元素である。Siによる強化を利用する場合は0.01%以上の添加が好ましく、0.03%以上がさらに好ましい。しかしながら、多量に含有すると、熱延鋼板の表面において赤スケールと呼ばれる酸化スケールの発生を促進し、冷延鋼板の表面性状まで悪化させる。したがって、Siの含有量は0.3%以下に限定する。好ましくは0.1%以下である。
 Mn:0.5%以上1.0%以下
 Mnは、鋼中に固溶して鋼板の強化に寄与するとともに、熱間延性の改善にも有効な元素である。このような効果を得るためには、0.5%以上の含有を必要とする。一方、1.0%を超えて過剰に含有すると、熱延鋼板のミクロ組織がバンド状になり易く、鋼板の打抜性が低下する。したがって、Mnの含有量は0.5%以上1.0%以下の範囲に限定する。好ましくは0.6%以上0.9%以下である。
 P:0.03%以下
 Pは、鋼中で偏析し易い元素であり、多量に含有すると鋼板のミクロ組織が不均一化し、鋼板の打抜性が低下し易くなる。そのため、Pは極力低減することが望ましく、Pの含有量は0.03%以下とする。好ましくは0.02%以下である。なお、Pの極端な低減はコストが掛かるので、0.003%以上、あるいは0.01%以上の含有を許容しても良い。
 S :0.02%以下
 Sは、MnS等の介在物を形成し、鋼板の打抜性を低下させる元素である。そのため、Sは極力低減することが望ましく、Sの含有量は0.02%以下とする。好ましくは0.01%以下である。なお、Sの極端な低減はコストが掛かるので、0.002%以上の含有を許容しても良い。
 Al:0.01%以上0.08%以下
 Alは、鋼の脱酸のために添加される元素であり、鋼中のAlの含有量が0.01%未満では十分な脱酸効果が得られない。一方、鋼中のAlの含有量が0.08%を超えると、鋼中介在物の増加を招き、鋼板の表面欠陥の増加や打抜性の低下を招く。したがって、Alの含有量は0.01%以上0.08%以下に限定する。好ましくは0.01%以上0.05%以下である。
 Ti:0.010%以下
 Tiは、炭窒化物等の微細析出を通じて鋼板を分散強化する作用を有する元素である。このような効果を得るためには、Tiの含有量を0.002%以上とすることが好ましい。但し、Tiの含有量が過剰になり、析出物が多量に形成される場合には、析出物の成長や溶解を通じて分散強化量が変動し、鋼板の耐高温軟化性が低下する。したがって、Tiの含有量は0.010%以下に限定する。好ましくは0.005%以下である。
 Nb:0.010%以下
 Nbは、炭窒化物等の微細析出を通じて鋼板を分散強化する作用を有する元素である。このような効果を得るためには、Nbの含有量を0.002%以上とすることが好ましい。但し、Nbの含有量が過剰になり、析出物が多量に形成される場合には、析出物の成長や溶解を通じて分散強化量が変動し、鋼板の耐高温軟化性が低下する。したがって、Nbの含有量は0.010%以下に限定する。好ましくは0.005%以下である。
 B :0.0010%以下
 Bは、微量の添加により鋼の焼入性を大きく向上させる作用を有する元素である。このような効果を得るためには、Bの含有量を0.0001%以上とすることが好ましい。但し、Bの含有量が0.0010%を超えると、熱延鋼板の組織中に低温変態相(ベイナイト、マルテンサイト等)が多量に生成し易くなり、冷延鋼板とした後で昇温される際の鋼板の組織強化量が変動し易くなって、冷延鋼板の耐高温軟化性が低下する。したがって、Bの含有量は0.0010%以下とする。好ましくは0.0005%以下、より好ましくは0.0003%以下である。
 上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、Cr:0.05%以下(好ましくは0.03%以下)、Mo:0.05%以下(好ましくは0.03%以下)、Cu:0.05%以下(好ましくは0.03%以下)、Ni:0.05%以下(好ましくは0.03%以下)、V:0.010%以下(好ましくは0.005%以下)、O:0.0050%以下、N:0.0050%以下等が許容できる。
 次に、本発明冷延鋼板の組織について説明する。
 本発明の冷延鋼板は、フェライトを主相とし、セメンタイトが分散する組織を有する。さらに、前記フェライトは鋼板の圧延方向断面における平均アスペクト比が3以上の加工伸展粒である。また、前記セメンタイトは組織全体に占める分率(面積率)が5%以下で、かつ、鋼板の圧延方向断面における粒子断面の平均アスペクト比が3以下、さらに平均長径が1.0μm以下である。また、本発明の冷延鋼板は、冷間圧延ままの鋼板であり、加工硬化した圧延組織を有する。
 更に、上記の冷延鋼板の組織は、所定の組織を有する熱延鋼板、具体的にはフェライト、ベイナイト、パーライトからなり、前記フェライトの組織全体に占める分率:50%以上80%以下、前記ベイナイトの組織全体に占める分率:15%以上45%以下、前記パーライトの組織全体に占める分率:10%以下である組織を有する熱延鋼板に、所定の圧下率で冷間圧延を施すことにより得られる組織である。なお、本発明の冷延鋼板におけるセメンタイトは、冷間圧延前の熱延鋼板においてベイナイト或いはパーライトを構成していたものが冷間圧延されて変形・分断されたものを指す。
 冷延鋼板のフェライト
 本発明の冷延鋼板におけるフェライトは、鋼板の圧延方向断面における平均アスペクト比が3以上の加工伸展粒である。本発明の冷延鋼板は、冷間圧延による加工硬化を主たる強化機構としており、圧延方向断面におけるフェライト粒の平均アスペクト比が3未満の場合には、冷間圧延による加工硬化量が少なく、鋼板の硬さがプレート部品に必要な水準に達しないことがある。したがって、上記平均アスペクト比は3以上とする。好ましくは4以上である。なお、アスペクト比の上限はとくに限定されず、現実的な冷延圧下率により得られる範囲内であれば特に問題ない。例えば、冷延圧下率80%ではアスペクト比は最大11程度であり、冷延圧下率70%では最大25程度である。
 ここで、結晶粒や析出物におけるアスペクト比は、最大径(長径)を最小径(短径)で除したものである。本発明では事実上、圧延方向の径が長径、板厚方向の径が短径となる。
 なお、熱延鋼板におけるフェライトは冷間圧延後もフェライトなので、冷延鋼板の組織全体に占めるフェライトの分率は50%以上である。ただし、熱延鋼板におけるベイナイトやパーライトを形成していたフェライトも、冷間圧延によってベイナイトやパーライトに特徴的な配列が崩れることにより、加工伸展粒のフェライトと呼ぶべき形態となり得るので、最大の場合、下記セメンタイト以外の全てがフェライトとなる。したがって、フェライトが冷延鋼板の組織の大半を占める主相となる。なお、ここで主相とは分率(面積率)が50%以上の相を言う。
 冷延鋼板のセメンタイト
 本発明の冷延鋼板におけるセメンタイトは、組織全体に占める分率が5%以下で、鋼板の圧延方向断面における粒子断面の平均アスペクト比が3以下、鋼板の圧延方向断面における粒子断面の平均長径が1.0μm以下である。セメンタイトが過度に多い場合には、鋼板の打抜性が低下する。したがって、セメンタイトの分率は5%以下とする。なお、セメンタイトは微量存在すれば、前記の耐高温軟化性の改善効果が得られる。より好ましいセメンタイトの分率は1%以上であり、さらに好ましくは2%以上である。
 また、セメンタイトの平均アスペクト比が高い場合、すなわち板状のセメンタイトが多い場合にも、鋼板の打抜性が低下し易い。したがって、セメンタイトの平均アスペクト比は3以下とする。好ましくは2以下である。
 更に、セメンタイトが過度に大きい場合には、冷延鋼板が昇温された際に部分的な分解固溶が生じ難くなり、固溶C由来の時効硬化現象が抑制されるため、昇温による鋼板の軟化を補償する作用が得難くなる。したがって、セメンタイトの平均長径は1.0μm以下とする。好ましくは0.8μm以下である。セメンタイトの平均長径の下限はとくに限定する必要は無い。実施例に記載の方法で識別できる最小の長径は0.1μm程度である。
 熱延鋼板の組織:フェライト、ベイナイト、パーライト
 フェライト、ベイナイトおよびパーライトからなる熱延鋼板に冷間圧延を施すと、熱延鋼板のベイナイト、パーライトを構成するセメンタイトが変形・分断される結果、フェライトを主相としてセメンタイトが分散した冷延鋼板が得られる。熱延鋼板の組織にマルテンサイトが存在すると、冷間圧延の圧延負荷が過度に高まるだけでなく、冷間圧延後にもマルテンサイトが残存して、冷延鋼板の耐高温軟化性が大幅に低下する。また、冷間圧延による変形が不均一になり易く、冷間圧延後の鋼板が昇温された際に、硬さの変動や平坦度の低下が生じ易くなる。したがって、熱延鋼板の組織はフェライト、ベイナイト、パーライトからなる組織とする。
 熱延鋼板組織のフェライトの組織全体に占める分率は50%以上80%以下とする。好ましくは55%以上75%以下である。熱延鋼板のフェライト分率が50%未満の場合には、後の冷間圧延の際に、フェライトの加工硬化が不均一となり易く、プレート部品として使用されて熱履歴を受けたときに部品の変形量が大きくなり易い。さらに、ベイナイト分率が高くなるので、冷間圧延後の冷延鋼板を昇温した際の組織強化量の変動が大きくなり、冷延鋼板の耐高温軟化性が低下する。一方、フェライト分率が80%を超える場合には、後述する所望のベイナイト分率を確保し難くなる。
 熱延鋼板組織のベイナイトの組織全体に占める分率は15%以上45%以下とする。好ましくは20%以上40%以下である。ベイナイト分率が15%未満である場合には、冷間圧延後の鋼板組織中のセメンタイト粒子が大きくなり、所望の組織の冷延鋼板が得難くなる。また、ベイナイト分率が45%を超える場合には、冷間圧延後の冷延鋼板を昇温した際の組織強化量の変動が大きくなり、冷延鋼板の耐高温軟化性が低下する。
 熱延鋼板組織のパーライトの組織全体に占める分率は10%以下とする。好ましくは5%以下である。パーライトの分率が10%を超える場合には、冷間圧延後の鋼板組織中のセメンタイト粒子が大きくなり、所望の組織の冷延鋼板が得難くなる。なお、パーライトは少量存在すれば、所望の組織の冷延鋼板が得られる。より好ましいパーライトの分率は1%以上であり、さらに好ましくは2%以上である。
 次に、本発明の冷延鋼板の製造方法について説明する。
 本発明の冷延鋼板は、前記の化学組成を有する鋼片に熱間圧延を施して、フェライト、ベイナイトおよびパーライトからなる組織を有する熱延鋼板とし、この熱延鋼板をデスケーリングした後、所定の圧下率で冷間圧延することによって得られる。
 本発明に用いる鋼の溶製は、転炉法や電炉法等、公知の溶製方法のいずれによっても可能である。溶製した鋼は、連続鋳造または造塊-分塊圧延により鋼片(スラブ)とする。なお、必要に応じて、各種予備処理や二次精錬、鋼片の表面手入などを実施することができる。
 鋼片の加熱温度:1000℃以上1200℃以下
 熱間圧延を施す際の鋼片の加熱温度が1000℃未満では、必要な仕上温度の確保が困難となる。一方、加熱温度が1200℃を超えると、加熱に要するエネルギーが増大するうえ、スケール性欠陥等による鋼板の表面性状不良が生じ易い。したがって、熱間圧延前の鋼片の加熱温度は1000℃以上1200℃以下とする。好ましくは1050℃以上1150℃以下である。なお、鋼片の加熱においては、常温まで冷却した鋼片を再加熱してもよいし、鋳造後に冷却途中の鋼片を追加加熱あるいは保熱してもよい。
 なお、本発明では鋼片を上記温度範囲に加熱したのち、粗圧延と仕上げ圧延を施して熱延鋼板とする。粗圧延条件については常法に従えば良く、特に限定する必要はない。
 仕上温度:Ar3変態点以上(Ar3変態点+200)℃以下
 熱間圧延工程での仕上温度がAr3変態点を下回ると、フェライト変態が過度に促進されるとともに、熱延鋼板にて圧延方向に伸展したフェライト組織および未再結晶フェライト組織が鋼板表層部に形成されて板厚方向の鋼板組織の均一性が失われ、冷延鋼板とした後で昇温したときに、鋼板の平坦度が大きく低下することがある。一方、仕上温度が(Ar3変態点+200)℃を超えると、熱延鋼板の組織が粗大化し易く、鋼板の表面性状の不良も招き易い。したがって、仕上温度はAr3変態点以上(Ar3変態点+200)℃以下に限定する。好ましくは、(Ar3変態点+50)℃以上(Ar3変態点+150)℃以下である。なお、必要な仕上温度を確保するために、シートバーヒーターあるいはエッヂヒーターなどの加熱装置を利用して、圧延中の鋼板を追加加熱してもよい。
 仕上温度から750℃までの冷却速度:40℃/s以上80℃/s以下
 熱間圧延後の鋼板は、仕上温度から750℃までの温度範囲を40℃/s以上80℃/s以下の冷却速度で冷却(強制冷却)する。好ましくは50℃/s以上70℃/s以下である。この温度範囲での冷却速度が40℃/s未満の場合、熱延鋼板の組織が粗大化し易く、冷延鋼板で所望の形態のセメンタイトが得られない。一方、この温度範囲での冷却速度が80℃/sを超える場合、熱延鋼板にマルテンサイト或いは過度に多くのベイナイトが生成し易くなり、冷延鋼板の組織を所望の状態に調製できないうえ、冷延鋼板の耐高温軟化性が大幅に低下することがある。
 750℃から冷却停止温度までの冷却速度:40℃/s以上60℃/s以下
 冷却停止温度:500℃以上600℃以下
 750℃から冷却停止温度までの温度範囲は、40℃/s以上60℃/s以下の冷却速度で冷却(強制冷却)する。この温度範囲での冷却速度が40℃/s未満または60℃/s超である場合は、熱延鋼板の組織中にフェライトが所望の分率で生成し難い。また、冷却停止温度(強制冷却を停止する温度)が600℃を超える場合には、第二相としてパーライトが過度に多くなり易い。一方、冷却停止温度が500℃を下回る場合には、第二相としてマルテンサイト或いは過度に多くのベイナイトが生成し易くなる。したがって、冷却停止温度は500℃以上600℃以下の範囲とする。好ましくは520℃以上580℃以下である。なお、強制冷却停止後の鋼板は、鋼板内部からの復熱および鋼の変態潜熱によって温度(表面温度)が上昇する場合もあるので、強制冷却停止後巻取機(コイラー)で巻き取るまでの間は放冷(空冷)する。
 巻取温度:500℃以上600℃以下
 巻取温度が500℃未満の場合には、熱延鋼板の組織中にマルテンサイトや過度に多くのベイナイトが生成し易くなり、冷延鋼板の耐高温軟化性が大幅に低下する。一方、巻取温度が600℃を超える場合には、熱延鋼板の組織中にパーライトが多量に生成して、冷延鋼板の組織で所望の形態のセメンタイトが得られない。したがって、巻取温度は500℃以上600℃以下とする。好ましくは520℃以上580℃以下である。
 なお、上記の鋼板温度(仕上温度、冷却停止温度、巻取温度等)はいずれも、鋼板表面で測定される温度とする。
 以上の工程を経ることで、所望の組織を有する熱延鋼板、すなわち、フェライト、ベイナイトおよびパーライトからなり、前記フェライトの組織全体に占める分率:50%以上80%以下、前記ベイナイトの組織全体に占める分率:15%以上45%以下、前記パーライトの組織全体に占める分率:10%以下である組織を有する熱延鋼板が得られる。
 本発明では、このようにして得られた熱延鋼板に冷間圧延を施す。なお、冷間圧延前の熱延鋼板に、形状矯正のための調質圧延を施すことも可能である。
 冷間圧延の圧下率:40%以上80%以下
 熱延鋼板は、酸洗あるいはその他の手段によりデスケーリングした後、冷間圧延を施すことにより冷延鋼板とする。このとき、冷間圧下率が40%未満では、板厚方向に不均一な圧延加工組織となり易く、所望の形状のフェライト粒が得難くなる。また、冷間圧下率が40%未満では、冷間圧延後の鋼板が昇温された際に、硬さの変動や平坦度の低下が生じ易くなる。一方、冷間圧下率が80%を超える場合には、冷間圧延の負荷が過度に高まり、鋼板の製造性が低下する。したがって、冷間圧延の圧下率は40%以上80%以下とする。好ましくは50%以上70%以下である。
 以上のように、熱延鋼板のフェライト組織分率を50%以上80%以下、ベイナイトの組織分率を15%以上45%以下、パーライトの組織分率を10%以下とし、更に冷間圧延の圧下率を40%以上80%以下とすることで、フェライトの組織分率が少なくとも50%超であり(すなわち、フェライトが主相であり)、セメンタイトが分散した組織を有し、前記主相であるフェライトが、鋼板の圧延方向断面における平均アスペクト比:3以上の加工伸展粒であり、前記セメンタイトが、組織全体に占める分率:5%以下、鋼板の圧延方向断面における粒子断面の平均アスペクト比:3以下、平均長径:1.0μm以下である冷延鋼板が得られる。
 なお、冷間圧延された鋼板は圧延油が付着した状態であるため、冷間圧延後に鋼板を洗浄したり、洗浄後に防錆のための油を再度塗布してもよい。これらの処理を施しても、本発明の効果が損なわれることはない。
 表1に示す成分元素を含有し、残部がFeおよび不可避的不純物よりなる鋼A~Iを溶製し、鋳造して鋼片とした。次いで、各鋼片を表2に示す条件で熱間圧延して、板厚4.0mmの熱延鋼板とした。各熱延鋼板から試料を採取してミクロ組織観察を行い、組織全体に占めるフェライト分率、ベイナイト分率、パーライト分率を測定した。
 更に、各熱延鋼板を酸洗してデスケーリングした後、表3に示す圧下率で冷間圧延し、表3に示す板厚の冷延鋼板を得た。各冷延鋼板から試料を採取してミクロ組織観察を行い、組織の種類を確認するとともに、組織全体に占めるセメンタイト分率、フェライトおよびセメンタイトの平均アスペクト比、並びにセメンタイトの平均長径を測定した。また、各冷延鋼板から試料を採取して硬さ試験を実施し、冷延鋼板の硬度および耐高温軟化性の評価を行った。更に、各冷延鋼板から試料を採取し、冷延鋼板の打抜性および打抜き・熱処理後の平坦度の評価を行った。
 鋼板のミクロ組織は、熱延鋼板および冷延鋼板の双方とも、鋼板の板幅1/4位置の圧延方向に平行な板厚断面の試料を採取し、鏡面研磨してナイタールで腐食した後、走査型電子顕微鏡により、板厚1/4位置を500ないし5000倍の適当な倍率で撮影した画像を用いて確認した。ミクロ組織における各相の分率は、前記画像を用い、当該相の占める面積率を画像解析により求め、これを各相の分率とした。
 冷延鋼板について、フェライトおよびセメンタイトの平均アスペクト比、並びにセメンタイトの平均長径は、前記画像を用い、観察範囲内の当該粒の個々のアスペクト比および長径を求め、これらを平均して算出した。
 冷延鋼板の硬さは、ミクロ組織観察用試料と同様にして採取した断面試料の板厚1/4位置にて、JIS Z 2244の規定に準拠してビッカース硬さ(HV0.5)を測定した。また、冷延鋼板の耐高温軟化性の評価は、冷延鋼板に480℃で60分間保持して放冷する熱処理を施した後、同様に断面試料を採取してビッカース硬さ(HV0.5)を測定し、熱処理前後の硬さの変化量を求めて評価した。ここで、ビッカース硬さの値が250以上であり、かつ熱処理によってビッカース硬さが低下しなかった場合に、十分な硬さを有し、かつ耐高温軟化性に優れると判定した。
 冷延鋼板の打抜性については、各冷延鋼板から直径100mmφの円板をクリアランス5%(板厚に対する比率)の条件で打ち抜き、円板の打抜端面における微小亀裂の有無を目視で確認することで評価した。ここで、微小亀裂が認められない場合に良好と判定した。
 また、冷延鋼板の打抜き・熱処理後の平坦度については、各冷延鋼板から上記と同じ条件で打ち抜いた直径100mmφの円板に、480℃で60分間保持して放冷する熱処理を施して、熱処理後の円板の反り量を測定することで評価した。ここで、最大反り量が板厚の15%以下となった場合に、熱処理後の平坦度に優れると判定した。
 各鋼板の調査結果を表2および表3にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明に適合する各冷延鋼板(発明例)は、冷間圧延ままで十分な硬さを有し、かつ熱処理による硬さの低下もなく、耐高温軟化性に優れる鋼板となっており、打抜性や熱処理後の平坦度にも優れている。一方、鋼の化学組成やミクロ組織が本発明の範囲を外れるその他の各冷延鋼板(比較例)では、前記特性をすべて満足するものはなく、いずれかが不十分な水準となっている。

Claims (2)

  1.  質量%で、
    C :0.10%以上0.25%以下、      Si:0.3%以下、
    Mn:0.5%以上1.0%以下、       P :0.03%以下、
    S :0.02%以下、           Al:0.01%以上0.08%以下、
    Ti:0.010%以下、           Nb:0.010%以下、
    B :0.0010%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成を有し、フェライト、ベイナイトおよびパーライトからなり、前記フェライトの組織全体に占める分率:50%以上80%以下、前記ベイナイトの組織全体に占める分率:15%以上45%以下、前記パーライトの組織全体に占める分率:10%以下である組織を有する熱延鋼板に、冷間圧延を施して得られる冷延鋼板であって、フェライトを主相としセメンタイトが分散した組織を有し、前記主相であるフェライトが、鋼板の圧延方向断面における平均アスペクト比:3以上の加工伸展粒であり、前記セメンタイトが、組織全体に占める分率:5%以下、鋼板の圧延方向断面における粒子断面の平均アスペクト比:3以下、平均長径:1.0μm以下であることを特徴とする硬質冷延鋼板。
  2.  質量%で、
    C :0.10%以上0.25%以下、      Si:0.3%以下、
    Mn:0.5%以上1.0%以下、       P :0.03%以下、
    S :0.02%以下、           Al:0.01%以上0.08%以下、
    Ti:0.010%以下、           Nb:0.010%以下、
    B :0.0010%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼片を、
    1000℃以上1200℃以下に加熱し、Ar3変態点以上(Ar3変態点+200)℃以下の仕上温度で熱間圧延を施し、前記仕上温度から750℃までの温度範囲を40℃/s以上80℃/s以下の冷却速度で冷却し、次いで750℃から500℃以上600℃以下の冷却停止温度までの温度範囲を40℃/s以上60℃/s以下の冷却速度で冷却したのち放冷し、500℃以上600℃以下の巻取温度で巻き取って熱延鋼板とし、該熱延鋼板をデスケーリングしたのち、40%以上80%以下の圧下率で冷間圧延することを特徴とする硬質冷延鋼板の製造方法。
PCT/JP2014/001421 2013-03-19 2014-03-13 硬質冷延鋼板およびその製造方法 WO2014148013A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480016573.1A CN105051228B (zh) 2013-03-19 2014-03-13 硬质冷轧钢板及其制造方法
KR1020157026226A KR101751242B1 (ko) 2013-03-19 2014-03-13 경질 냉연 강판 및 그의 제조 방법
JP2014532129A JP5725263B2 (ja) 2013-03-19 2014-03-13 硬質冷延鋼板およびその製造方法
MX2015013316A MX2015013316A (es) 2013-03-19 2014-03-13 Lamina de acero laminada en frio extra-dura y metodo para la fabricacion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-056092 2013-03-19
JP2013056092 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148013A1 true WO2014148013A1 (ja) 2014-09-25

Family

ID=51579711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001421 WO2014148013A1 (ja) 2013-03-19 2014-03-13 硬質冷延鋼板およびその製造方法

Country Status (6)

Country Link
JP (1) JP5725263B2 (ja)
KR (1) KR101751242B1 (ja)
CN (1) CN105051228B (ja)
MX (1) MX2015013316A (ja)
TW (1) TWI561643B (ja)
WO (1) WO2014148013A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209560A (ja) * 2014-04-25 2015-11-24 新日鐵住金株式会社 フルハード冷延鋼板
RU2681074C1 (ru) * 2018-05-21 2019-03-01 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства коррозионностойкого проката из низколегированной стали

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886946B (zh) * 2016-04-15 2018-06-08 芜湖德业摩擦材料有限公司 一种刹车片摩擦块的制备方法
CN111500935B (zh) * 2020-06-09 2021-10-26 首钢集团有限公司 一种1000MPa级高强钢及其制备方法、应用
CN114381654B (zh) * 2020-10-21 2022-11-15 宝山钢铁股份有限公司 一种780MPa级冷轧高强电镀锌钢板及其制造方法
CN112522607A (zh) * 2020-11-17 2021-03-19 马鞍山钢铁股份有限公司 一种q125钢级sew石油套管及其制造方法
CN116555673B (zh) * 2023-05-08 2024-09-17 邯郸钢铁集团有限责任公司 一种屈服强度460MPa级低合金高强镀锌带钢及生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138261A (ja) * 2005-11-21 2007-06-07 Jfe Steel Kk 高強度鋼板及びその製造方法
JP2007270329A (ja) * 2006-03-31 2007-10-18 Jfe Steel Kk ファインブランキング加工性に優れた鋼板の製造方法
JP2007314817A (ja) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2008189987A (ja) * 2007-02-02 2008-08-21 Sumitomo Metal Ind Ltd テーラードブランク用熱延鋼板およびテーラードブランク
JP2012241217A (ja) * 2011-05-18 2012-12-10 Jfe Steel Corp 高炭素薄鋼板およびその製造方法
JP2013181212A (ja) * 2012-03-01 2013-09-12 Jfe Steel Corp 熱延鋼板およびその製造方法ならびに冷延鋼板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191174B (zh) * 2006-11-20 2010-05-12 宝山钢铁股份有限公司 抗拉强度750MPa级热轧相变诱发塑性钢及制造方法
KR101010971B1 (ko) * 2008-03-24 2011-01-26 주식회사 포스코 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138261A (ja) * 2005-11-21 2007-06-07 Jfe Steel Kk 高強度鋼板及びその製造方法
JP2007270329A (ja) * 2006-03-31 2007-10-18 Jfe Steel Kk ファインブランキング加工性に優れた鋼板の製造方法
JP2007314817A (ja) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2008189987A (ja) * 2007-02-02 2008-08-21 Sumitomo Metal Ind Ltd テーラードブランク用熱延鋼板およびテーラードブランク
JP2012241217A (ja) * 2011-05-18 2012-12-10 Jfe Steel Corp 高炭素薄鋼板およびその製造方法
JP2013181212A (ja) * 2012-03-01 2013-09-12 Jfe Steel Corp 熱延鋼板およびその製造方法ならびに冷延鋼板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209560A (ja) * 2014-04-25 2015-11-24 新日鐵住金株式会社 フルハード冷延鋼板
RU2681074C1 (ru) * 2018-05-21 2019-03-01 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства коррозионностойкого проката из низколегированной стали

Also Published As

Publication number Publication date
MX2015013316A (es) 2016-01-25
KR20150119951A (ko) 2015-10-26
CN105051228B (zh) 2017-04-12
TWI561643B (en) 2016-12-11
JPWO2014148013A1 (ja) 2017-02-16
TW201443247A (zh) 2014-11-16
CN105051228A (zh) 2015-11-11
JP5725263B2 (ja) 2015-05-27
KR101751242B1 (ko) 2017-06-27

Similar Documents

Publication Publication Date Title
JP5725263B2 (ja) 硬質冷延鋼板およびその製造方法
JP5056876B2 (ja) 冷間加工性と焼入れ性に優れた熱延鋼板およびその製造方法
KR101150365B1 (ko) 고탄소 열연강판 및 그 제조방법
JP5030280B2 (ja) 焼入れ性、疲労特性、靭性に優れた高炭素鋼板及びその製造方法
WO2017168962A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP2005290547A (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
JP4600196B2 (ja) 加工性に優れた高炭素冷延鋼板およびその製造方法
JP6065121B2 (ja) 高炭素熱延鋼板およびその製造方法
JPWO2019151017A1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法
JP4696853B2 (ja) 加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板
JP2017179596A (ja) 高炭素鋼板およびその製造方法
CN101960036B (zh) 冷轧钢板及其制造方法
JP5070824B2 (ja) 打抜き加工後の平坦度および端面性状に優れた冷延鋼板およびその製造方法
KR20100076073A (ko) 강판 및 그 제조 방법
JP5501819B2 (ja) 窒化特性及び耐再結晶軟化特性に優れた窒化処理用冷延鋼板およびその製造方法
JP5920256B2 (ja) 硬さの熱安定性に優れた硬質冷延鋼板およびその製造方法
JP2010202922A (ja) 耐再結晶軟化特性に優れた冷延鋼板の製造方法およびオートマチック・トランスミッション用冷延鋼板
JP5125081B2 (ja) 打抜き加工後の平坦度に優れた冷延鋼板およびその製造方法
JP2015145521A (ja) 高強度冷延鋼板およびその製造方法
JP4412094B2 (ja) 高炭素冷延鋼板およびその製造方法
JP4319948B2 (ja) 伸びフランジ性の優れた高炭素冷延鋼板
JP5157417B2 (ja) 鋼板およびその製造方法
JP4280202B2 (ja) 焼き入れ性と伸びフランジ性の優れた高炭素鋼板
JP5338245B2 (ja) 強度−伸びバランスが良好で、かつリジングの小さいステンレス冷延鋼板およびその製造方法
JP2005200712A (ja) 残留応力を低減したatプレート用冷延鋼板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016573.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014532129

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14771042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013316

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157026226

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201506192

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14771042

Country of ref document: EP

Kind code of ref document: A1