WO2014141987A1 - ロータ構造および電動流体ポンプ - Google Patents

ロータ構造および電動流体ポンプ Download PDF

Info

Publication number
WO2014141987A1
WO2014141987A1 PCT/JP2014/055731 JP2014055731W WO2014141987A1 WO 2014141987 A1 WO2014141987 A1 WO 2014141987A1 JP 2014055731 W JP2014055731 W JP 2014055731W WO 2014141987 A1 WO2014141987 A1 WO 2014141987A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
rotor core
magnet insertion
resin
Prior art date
Application number
PCT/JP2014/055731
Other languages
English (en)
French (fr)
Inventor
邦人 野口
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201480003682.XA priority Critical patent/CN104937816A/zh
Priority to DE112014001408.7T priority patent/DE112014001408T5/de
Priority to US14/767,017 priority patent/US20150369248A1/en
Publication of WO2014141987A1 publication Critical patent/WO2014141987A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/681Component parts, details or accessories; Auxiliary operations
    • B29C70/682Preformed parts characterised by their structure, e.g. form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2781Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/54Building or constructing in particular ways by sheet metal manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/507Magnetic properties

Definitions

  • the present invention relates to a rotor structure and an electric fluid pump.
  • Patent Document 1 discloses a technique for preventing a magnet inserted into a magnet insertion hole from falling off by disposing electromagnetic steel sheets without a magnet insertion hole at both axial ends of a laminate of electromagnetic steel sheets having a magnet insertion hole. ing.
  • the objective of this invention is providing the rotor structure and electric fluid pump which can suppress the increase in the number of processes.
  • an electromagnetic steel plate without a magnet insertion portion is provided only on one end side in the axial direction of the rotor core, and a resin holder for restricting the movement of the magnet is provided on the other end side in the axial direction.
  • the rotor core is covered with an integral resin mold part.
  • the rotor core can be covered with the resin layer by one insert molding, an increase in the number of processes can be suppressed.
  • FIG. 3 is a front perspective view of the rotor assembly according to the first embodiment. It is a principal part longitudinal cross-sectional view of the electric water pump of Example 1.
  • FIG. It is a rear view of the rotor core before insert molding of Example 1. It is a back side perspective view which shows the assembly procedure of a rotor. It is a front side perspective view of the rotor core before insert molding. It is a rear view of the rotor core before insert shaping of Example 2. It is a principal part longitudinal cross-sectional view of the electric water pump of Example 3.
  • FIG. 3 is a front perspective view of the rotor assembly according to the first embodiment. It is a principal part longitudinal cross-sectional view of the electric water pump of Example 1.
  • FIG. It is a rear view of the rotor core before insert molding of Example 1. It is a back side perspective view which shows the assembly procedure of a rotor. It is a front side perspective view of the rotor core before insert molding. It is a rear view of the rotor core
  • Example 1 1 is a front perspective view of a rotor assembly according to a first embodiment
  • FIG. 2 is a longitudinal sectional view of a main part of the electric water pump according to the first embodiment
  • FIG. 3 is a rear view of the rotor core before the insert molding according to the first embodiment.
  • the rotor assembly 1 of the first embodiment is applied to an electric water pump as a supply source for supplying engine cooling water.
  • the rotor assembly 1 is an assembly in which an impeller 2 and a rotor 3 are integrally assembled, and is mainly molded from a synthetic resin.
  • the impeller 2 and the rotor 3 are connected by a small diameter portion 4 having a smaller diameter than the outer diameter of the impeller 2 and the rotor 3.
  • a through hole 5 that penetrates the entire rotor assembly is formed at the center of the rotor assembly 1.
  • Bearing accommodation portions 5 a and 5 b are formed at both ends of the through hole 5.
  • Bearings 6a and 6b are press-fitted into the bearing housing portions 5a and 5b.
  • the rotor assembly 1 is rotatably supported by a shaft 7 that passes through the through hole 5 via bearings 6a and 6b.
  • the shaft 7 has a cylindrical bar shape, and the large diameter portion 7 a on one end side in the axial direction is fixed to a pump housing 8 that houses the impeller 2 and the rotor 3.
  • a stator 30 is fixed to the pump housing 8 at a position facing the rotor 3. Electric power corresponding to the rotation control of the rotor 3 is supplied to a coil (not shown) of the stator 30.
  • the impeller 2 includes a hub 21, a shroud 22, and a plurality (eight) blades 23.
  • the hub 21 is formed in a disc shape integrally with the rotor 3, and is driven to rotate around the central axis of the rotor 3 (hereinafter, referred to as “O” because it substantially coincides with the central axis O of the shaft 7).
  • the hub 21 is provided perpendicular to the central axis direction.
  • the shroud 22 is formed in a substantially disc shape having a circular opening 22a for sucking a fluid in the center, which is disposed opposite to the hub 21 in the direction of the center axis O and opposite to the rotor 3.
  • the blades 23 are formed integrally with the hub 21 and are arranged at predetermined intervals in the circumferential direction. Each blade 23 extends radially outward from the center and is formed in a spiral shape when viewed from the front. The radially inner end of each blade 23 is arranged on a circle smaller than the opening diameter of the opening 22a.
  • the rotor 3 includes a rotor core 9, a magnet insertion part 10, a magnet 11, a resin holder 12, and a resin mold part 13.
  • the rotor core 9 is formed in a substantially donut shape in which a plurality of electromagnetic steel plates formed into a predetermined shape from a thin plate by pressing are stacked in the axial direction of the central axis O, and an opening 9a is provided in the central portion.
  • the magnet insertion portion 10 is a hole that accommodates the magnet 11, and is provided in all the electromagnetic steel plates except the electromagnetic steel plate 91 on one end side in the axial direction of the rotor core 9. In FIG. 2, all the electromagnetic steel sheets except the electromagnetic steel sheet 91 are shown in a simplified manner.
  • the magnet insertion portion 10 has a substantially rectangular shape that is slightly larger than the outer diameter of the magnet 11.
  • the magnet insertion part 10 is formed when the electromagnetic steel sheet is pressed.
  • the magnet 11 is a permanent magnet having a rectangular cross section. Magnetization of the magnet 11 is performed after the hub 21, the blade 23, the small diameter portion 4 and the resin mold portion 13 are formed by insert molding.
  • the resin holder 12 is provided on the other axial end side of the rotor core 9 and restricts the movement of the magnet 11 inserted in the magnet insertion portion 10 in the axial direction.
  • the resin holder 12 is formed of the same synthetic resin as that of the resin mold part 13 and has a cylindrical part 14 and a flange part 15.
  • the cylindrical portion 14 is formed in a cylindrical shape and is inserted into the opening 9 a of the rotor core 9.
  • the collar portion 15 is provided on the other axial end side of the cylindrical portion 14 and is formed in a substantially donut shape.
  • a groove portion 15 a having a substantially elongated hole shape is formed on the other side surface in the axial direction of the flange portion 15. As shown in FIG.
  • FIG. 3A six groove portions 15a are provided at equal intervals in the circumferential direction.
  • the groove 15a is for engaging the claw of the fixing jig at the time of insert molding.
  • FIG. 3B is an enlarged view of part A of FIG. 3A, and the outer diameter of the flange 15 does not completely block each magnet insertion part 10, and part of the magnet insertion part 10 and the magnet 11. Is set to the size to expose.
  • the resin mold portion 13 is a resin layer that covers the entire rotor core 9 except for the groove portion 15 a of the resin holder 12 for the purpose of preventing rust of the rotor core 9.
  • the resin mold portion 13 is formed by insert molding simultaneously with the hub 21, the blade 23, and the small diameter portion 4.
  • FIG. 4 is a rear perspective view showing a procedure for assembling the rotor.
  • the electromagnetic steel sheet is cut out, the electromagnetic steel sheet 91 without the magnet insertion part 10 is arranged on the bottom surface, and a plurality of electromagnetic steel sheets having the magnet insertion part 10 are laminated on the rotor core 9 by doweling.
  • the dowel caulking is a method of providing a protruding portion called a dowel at a predetermined position of each electromagnetic steel sheet and caulking the protrusion on the front side according to the recess on the back side of the protruding portion of the adjacent electromagnetic steel sheet.
  • the resin holder 12 is mounted on the top surface.
  • an insert molding process is performed, and the claw 16 of the fixing jig is engaged with the groove 15a and fixed as shown in FIG. 5, and the hub 21, the blade 23, the small diameter portion 4 and the resin are used using a mold.
  • the mold part 13 is insert-molded.
  • the magnet 11 is fixed when the resin enters the magnet insertion portion 10.
  • the rotor assembly 1 shown in FIGS. 1 and 2 is obtained by welding the shroud 22 and the blade 23 and magnetizing the magnet 11.
  • the conventional rotor structure is a structure that prevents the magnet from falling off by placing electromagnetic steel plates without magnet insertion parts at both ends of the rotor core. There was a problem that a layer could not be formed, and a step of covering the portion with a resin layer again was required, resulting in an increase in the number of steps. Also, when assembling the rotor, an electromagnetic steel plate without a magnet insertion part is arranged on the bottom surface, and after laminating a plurality of electromagnetic steel sheets having a magnet insertion part thereon, a magnet is inserted into the magnet insertion part and an adhesive is poured. It is necessary to fix the magnetic steel plate with no magnet insertion part on the top surface.
  • Example 1 the electromagnetic steel plate 91 that covers the magnet insertion portion 10 is provided only on one axial end side of the rotor core 9, and the resin holder 12 that restricts the movement of the magnet 11 is provided on the other axial end side.
  • the rotor core 9 is configured to be covered with the resin mold part 13 integrated with the resin holder 12. Therefore, by fixing the groove 15a of the resin holder 12 to the jig and performing the insert molding, the rotor core 9 can be covered with the resin layer by a single insert molding, and thus the number of steps can be suppressed.
  • the electromagnetic steel sheet 91 since the difference in shape between the electromagnetic steel sheet 91 and the other electromagnetic steel sheet is only the presence or absence of the magnet insertion part 10, only the electromagnetic steel sheet 91 skips the process of the magnet insertion part 10, and a series of Since it can be molded and laminated in the pressing process, and it is not necessary to insert the magnet 11 during the lamination, productivity can be improved. Furthermore, since the prevention of falling off of the magnet 11 can be realized only by inserting the magnet 11 into the magnet insertion portion 10 and mounting the resin holder 12, the process can be simplified.
  • the flange portion 15 of the resin holder 12 has a shape that does not completely block each magnet insertion portion 10, the resin enters the magnet insertion portion 10 during insert molding, so that the magnet 11 can be used without using an adhesive. It can be completely fixed and the process can be simplified.
  • Example 1 has the effects listed below.
  • An insertion portion 10, a magnet 11 inserted into the magnet insertion portion 10, a resin holder 12 that is provided on the other axial end side of the rotor core 9 and restricts movement of the magnet 11 in the axial direction, and the resin holder 12 are integrated.
  • a resin mold portion 13 that covers the rotor core 9.
  • the flange portion 15 of the resin holder 12 has a shape that covers a part of the magnet insertion hole 11.
  • Example 2 differs from Example 1 only in the outer diameter of the flange portion of the resin holder.
  • FIG. 6 is a rear view of the rotor core before insert molding according to the second embodiment.
  • the outer diameter of the flange portion 18 is set to a size that completely covers each magnet insertion portion 10. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted. Next, the operation will be described.
  • Example 2 since each magnet insertion part 10 is completely covered with the flange part 18, the interface distance between the resin holder 17 and the resin mold part 13 is increased as compared with Example 1. And the interface adhesive strength can be improved.
  • the second embodiment has the following effects.
  • (4) The flange portion 18 of the resin holder 17 has a shape that completely covers the magnet insertion hole 11. Thereby, since the interface distance of the resin holder 17 and the resin mold part 13 can be increased, interface adhesive strength can be improved.
  • Example 3 The third embodiment is different from the second embodiment only in the shape of the flange portion on the rotor core side.
  • FIG. 7 is a longitudinal sectional view of an essential part of the electric water pump according to the third embodiment.
  • a protrusion 20b having a circular shape in front view is formed on the rotor core side surface 20a of the flange portion 20.
  • Six protrusions 20b are provided at predetermined intervals in the circumferential direction corresponding to the position of the magnet insertion part 10. Each protrusion 20b abuts on the magnet 11 inserted into the corresponding magnet insertion portion 10, and a gap is provided between the rotor core-side surface 20a and the rotor core 9.
  • Example 3 since the projection 20b is provided on the surface 20a on the rotor core side of the flange portion 20, the gap between the surface 20a on the rotor core side of the flange portion 20 and the rotor core 9 at the time of insert molding. By allowing the resin to flow into the gap, the interface distance between the resin holder 19 and the resin mold portion 13 can be increased and the interface adhesion strength can be improved as compared with the first embodiment. Moreover, since resin can enter the magnet insertion part 10 and the magnet 11 can be fixed, simplification of a process can be achieved.
  • the third embodiment has the following effects.
  • the protrusion 20b is provided on the surface 20a of the flange 20 on the rotor core side.
  • the present invention has been described based on the embodiments, the specific configuration of each invention is not limited to the embodiments, and even if there is a design change or the like without departing from the scope of the invention, Included in the invention.
  • the flange portion of the resin holder does not need to be circular, and it is only necessary that a part of the magnet is exposed while restricting movement of the magnet in the axial direction when it is attached to the rotor core in a polygonal shape or the like.
  • the present invention is particularly suitable as a rotor structure of an electric fluid pump that requires rust prevention performance, but when applied to a rotor structure of another electric motor, the increase in the number of processes, simplification of processes, etc. Has an effect.
  • the uneven shape of the collar portion may be a shape that allows resin to flow into the magnet insertion portion during insert molding.
  • the uneven shape of the third embodiment may be applied to the collar portion of the first embodiment.

Abstract

 工程数の増加を抑制できるロータ構造および電動流体ポンプを提供する。 ロータアッシー1は、複数の電磁鋼板を積層して構成されたロータコア9と、ロータコア9の軸方向一端側の電磁鋼板91を除く電磁鋼板に設けられ、軸方向他端側からマグネット11が挿入されるマグネット挿入部10と、マグネット挿入部10に挿入されたマグネット11と、ロータコア9の軸方向他端側に設けられ、マグネット11の軸方向への移動を規制する樹脂ホルダ12と、樹脂ホルダ12と一体に設けられ、ロータコア9を覆う樹脂モールド部13と、を備えた。

Description

ロータ構造および電動流体ポンプ
 本発明は、ロータ構造および電動流体ポンプに関する。
 特許文献1には、マグネット挿入孔を有する電磁鋼板の積層体の軸方向両端にマグネット挿入孔の無い電磁鋼板を配置することで、マグネット挿入孔に挿入したマグネットの脱落を防止する技術が開示されている。
特開2012-115016号公報
 しかしながら、上記従来技術にあっては、防錆等の要請から電磁鋼板の積層体を樹脂層で覆う場合、インサート成型時、治具に支持される部分には樹脂層を形成できないため、当該箇所を再度樹脂層で覆う工程が必要となり、工程数の増加を招くという問題があった。
 本発明の目的は、工程数の増加を抑制できるロータ構造および電動流体ポンプを提供することにある。
 上記目的を達成するため、本発明では、ロータコアの軸方向一端側にのみマグネット挿入部の無い電磁鋼板を設け、軸方向他端側にはマグネットの移動を規制する樹脂ホルダを設け、樹脂ホルダと一体の樹脂モールド部によりロータコアを覆う構成とした。
 よって、一度のインサート成型によってロータコアを樹脂層で覆うことができるため、工程数の増加を抑制できる。
実施例1のロータアッシーの正面側斜視図である。 実施例1の電動ウォーターポンプの要部縦断面図である。 実施例1のインサート成型前のロータコアの背面図である。 ロータの組み立て手順を示す背面側斜視図である。 インサート成型前のロータコアの正面側斜視図である。 実施例2のインサート整形前のロータコアの背面図である。 実施例3の電動ウォーターポンプの要部縦断面図である。
 〔実施例1〕
 図1は実施例1のロータアッシーの正面側斜視図、図2は実施例1の電動ウォーターポンプの要部縦断面図、図3は実施例1のインサート成型前のロータコアの背面図である。
 実施例1のロータアッシー1は、エンジンの冷却水を供給する供給源としての電動ウォーターポンプに適用される。ロータアッシー1は、インペラ2とロータ3を一体に組み付けたもので、主に合成樹脂で成形されている。
 インペラ2およびロータ3間は、インペラ2およびロータ3の外径よりも小径の小径部4で接続されている。ロータアッシー1の中心部には、ロータアッシー全体を貫通する貫通孔5が形成されている。貫通孔5の両端にはベアリング収容部5a,5bが形成されている。ベアリング収容部5a,5bには、ベアリング6a,6bが圧入されている。ロータアッシー1は、貫通孔5を貫通するシャフト7に対しベアリング6a,6bを介して回転自在に支持されている。シャフト7は円柱棒状であって、軸方向一端側の大径部7aはインペラ2およびロータ3を収容する
ポンプハウジング8に固定されている。ポンプハウジング8には、ロータ3と対向する位置にステータ30が固定されている。ステータ30のコイル(不図示)には、ロータ3の回転制御に応じた電力が供給される。
 インペラ2は、ハブ21とシュラウド22と複数(8個)のブレード23とを有する。
 ハブ21は、ロータ3と一体に円盤状に形成され、ロータ3の中心軸(シャフト7の中心軸Oと略一致するため、以下Oと記載する。)周りに回転駆動される。ハブ21は中心軸方向に対して垂直に設けられている。シュラウド22は、中心軸O方向であってロータ3と反対側にハブ21と対向配置され、中心部に流体を吸入するための円形状の開口部22aを有する略円盤状に形成されている。ブレード23は、ハブ21と一体に形成され、周方向所定間隔毎に並んでいる。各ブレード23は、中心から径方向外側へ向かって放射状に延び、正面視渦巻き状に形成されている。各ブレード23の径方向内側端部は、開口部22aの開口径よりも小さな円上に配置されている。
 ロータ3は、ロータコア9と、マグネット挿入部10と、マグネット11と、樹脂ホルダ12と、樹脂モールド部13とを有する。
 ロータコア9は、プレス加工により薄板から所定形状に成形された複数枚の電磁鋼板を中心軸Oの軸方向に積層し、中心部に開口部9aを有する略ドーナツ形状に形成されている。
 マグネット挿入部10は、マグネット11を収容する孔であって、ロータコア9の軸方向一端側の電磁鋼板91を除く全ての電磁鋼板に設けられている。なお、図2では、電磁鋼板91を除く全ての電磁鋼板を簡略化して示している。マグネット挿入部10は、周方向に等間隔で6つ設けられている。マグネット挿入部10は、マグネット11の外径よりも僅かに大きな略長方形状を有する。マグネット挿入部10は、電磁鋼板のプレス加工の際に形成される。
 マグネット11は、断面長方形状を有する永久磁石である。マグネット11の着磁は、インサート成型によりハブ21、ブレード23、小径部4および樹脂モールド部13を形成した後に行われる。
 樹脂ホルダ12は、ロータコア9の軸方向他端側に設けられ、マグネット挿入部10に挿入されたマグネット11の軸方向への移動を規制する。樹脂ホルダ12は、樹脂モールド部13と同一の合成樹脂で形成され、筒部14と鍔部15とを有する。筒部14は、円筒状に形成され、ロータコア9の開口部9aに挿入される。鍔部15は、筒部14の軸方向他端側に設けられ、略ドーナツ形状に形成されている。鍔部15の軸方向他端側面には、略長穴形状を有する溝部15aが形成されている。溝部15aは、図3(a)にも示すように、周方向に等間隔で6つ設けられている。溝部15aは、インサート成型時、固定用治具の爪を係合させるためのものである。
 図3(b)は図3(a)のA部拡大図であり、鍔部15の外径は、各マグネット挿入部10を完全には塞がず、マグネット挿入部10およびマグネット11の一部が露出する大きさに設定されている。
 樹脂モールド部13は、ロータコア9の防錆を目的とし、樹脂ホルダ12の溝部15aを除くロータコア9全体を覆う樹脂層である。樹脂モールド部13は、ハブ21、ブレード23および小径部4と同時にインサート成型により形成される。
 図4は、ロータの組み立て手順を示す背面側斜視図である。
 まず、プレス工程では、電磁鋼板の切り出しを行い、底面にマグネット挿入部10の無い電磁鋼板91を配置し、その上にマグネット挿入部10を有する複数の電磁鋼板をダボカシメにより積層してロータコア9を構成する。ここで、ダボカシメとは、各電磁鋼板の所定位置にダボと呼ばれる突き出し部を設け、表側の突き出しを隣接する電磁鋼板の突き出し部の裏側のくぼみに合わせてカシメる方法である。
 続いて、天面からマグネット挿入部10にマグネット11を挿入した後、天面に樹脂ホルダ12を装着する。
 ロータの組み立て後は、インサート成型工程となり、図5のように固定用治具の爪16を溝部15aに係合させて固定し、金型を用いてハブ21、ブレード23、小径部4および樹脂モールド部13をインサート成型する。このとき、マグネット挿入部10の一部は外部に露出しているため、マグネット挿入部10に樹脂が入り込むことでマグネット11が固定される。
 次に、シュラウド22とブレード23との溶着、およびマグネット11の着磁を行うことで、図1,2に示したロータアッシー1が得られる。
 次に、実施例1の作用を説明する。
 従来のロータ構造は、ロータコアの両端にマグネット挿入部の無い電磁鋼板を配置することでマグネットの脱落を防止する構造であるため、ロータコアをインサート成型する際、治具に支持される部分には樹脂層を形成できず、当該箇所を再度樹脂層で覆う工程が必要であり、工程数の増加を招くという問題があった。
 また、ロータを組み立てる際、底面にマグネット挿入部の無い電磁鋼板を配置し、その上にマグネット挿入部を有する複数の電磁鋼板を積層した後、マグネット挿入部にマグネットを挿入し、接着剤を流し込んでマグネットを固定し、天面にマグネット挿入部の無い電磁鋼板を固定する必要が有る。このため、電磁鋼板の積層途中にマグネットを挿入する際、プレス工程を休止しなければならず、生産性の低下が懸念される。さらに、プレス工程の途中にマグネットの挿入とマグネット挿入部に接着剤を流し込む別工程が必要であるため、工程が細分化されてしまう。
 これに対し、実施例1では、ロータコア9の軸方向一端側にのみマグネット挿入部10を覆う電磁鋼板91を設け、軸方向他端側にはマグネット11の移動を規制する樹脂ホルダ12を設け、樹脂ホルダ12と一体の樹脂モールド部13によりロータコア9を覆う構成とした。よって、樹脂ホルダ12の溝部15aを治具に固定してインサート成型を行うことで、一度のインサート成型でロータコア9を樹脂層で覆うことがでるため、工程数の増加を抑制できる。
 また、ロータコア9において、電磁鋼板91と他の電磁鋼板との形状の違いは、マグネット挿入部10の有無のみであるため、電磁鋼板91のみマグネット挿入部10の工程をスキップすることで、一連のプレス工程で成形および積層可能であり、積層途中にマグネット11を挿入する必要がないため、生産性を向上できる。
 さらに、マグネット11の脱落防止を、マグネット挿入部10へのマグネット11の挿入、樹脂ホルダ12の装着のみで実現できるため、工程の簡素化を達成できる。
 加えて、樹脂ホルダ12の鍔部15を、各マグネット挿入部10を完全に塞がない形状としたため、インサート成型時にマグネット挿入部10へ樹脂が入り込むことで、接着剤を用いることなくマグネット11を完全に固定でき、工程の簡素化を達成できる。
 実施例1は、以下に列挙する効果を奏する。
 (1)複数の電磁鋼板を積層して構成されたロータコア9と、ロータコア9の軸方向一端側の電磁鋼板91を除く電磁鋼板に設けられ、軸方向他端側からマグネット11が挿入されるマグネット挿入部10と、マグネット挿入部10に挿入されたマグネット11と、ロータコア9の軸方向他端側に設けられ、マグネット11の軸方向への移動を規制する樹脂ホルダ12と、樹脂ホルダ12と一体に設けられ、ロータコア9を覆う樹脂モールド部13と、を備えた。
 これにより、樹脂ホルダ12を治具に固定してインサート成型を行うことで、一度のインサート成型でロータコア9を樹脂層で覆うことができるため、工程数の増加を抑制できる。
 (2)樹脂ホルダ12の鍔部15は、マグネット挿入孔11の一部を覆う形状を有する。
 これにより、マグネット11の軸方向移動を規制しつつ、インサート成型時にはマグネット挿入部10に樹脂を入り込ませてマグネット11を固定でき、工程の簡素化を達成できる。
 (3)複数の電磁鋼板を積層した構成されたロータコア9をインサート部材とし、ロータ3とインペラ2とがインサート成型により一体形成された電動ウォーターポンプにおいて、ロータ3の構造として、(1),(2)のロータ構造を適用した。
 これにより、防錆性能の高い電動ウォーターポンプを低コストで製造できる。
 〔実施例2〕
 実施例2は、樹脂ホルダの鍔部の外径のみ実施例1と異なる。
 図6は、実施例2のインサート成型前のロータコアの背面図である。
 実施例2の樹脂ホルダ17において、鍔部18の外径は、各マグネット挿入部10を完全に覆う大きさに設定されている。
 なお、他の構成については実施例1と同じであるため、図示ならびに説明を省略する。
 次に、作用を説明すると、実施例2では、鍔部18で各マグネット挿入部10を完全に覆うため、実施例1と比較して、樹脂ホルダ17と樹脂モールド部13との界面距離を増大でき、界面接着強度を向上できる。
 実施例2は、実施例1の効果(1),(3)に加え、以下の効果を奏する。
 (4)樹脂ホルダ17の鍔部18は、マグネット挿入孔11を完全に覆う形状を有する。
 これにより、樹脂ホルダ17と樹脂モールド部13との界面距離を増大できるため、界面接着強度を向上できる。
 〔実施例3〕
 実施例3は、鍔部のロータコア側の形状のみ実施例2と異なる。
 図7は、実施例3の電動ウォーターポンプの要部縦断面図である。
 実施例3の樹脂ホルダ19において、鍔部20のロータコア側の面20aには、正面視円形形状の突起部20bが形成されている。突起部20bは、マグネット挿入部10の位置に対応して周方向所定間隔で6つ設けられている。各突起部20bは、対応するマグネット挿入部10に挿入されたマグネット11と当接し、ロータコア側の面20aとロータコア9との間には隙間が設けられている。
 なお、他の構成については実施例2と同じであるため、図示ならびに説明を省略する。
 次に、作用を説明すると、実施例3では、鍔部20のロータコア側の面20aに突起部20bを設けたため、インサート成型時、鍔部20のロータコア側の面20aとロータコア9との間の隙間に樹脂が流れこむことにより、実施例1と比較して、樹脂ホルダ19と樹脂モールド部13との界面距離を増大でき、界面接着強度を向上できる。また、マグネット挿入部10に樹脂を入り込ませてマグネット11を固定できるため、工程の簡素化を達成できる。
 実施例3は、実施例1の効果(1),(3)に加え、以下の効果を奏する。
 (5)鍔部20のロータコア側の面20aに突起部20bを設けた。
 これにより、鍔部20と樹脂モールド部13との界面距離を増大できるため、樹脂ホルダ19と樹脂モールド部13との界面接着強度を向上できるため、界面接着強度を向上できる。また、インサート成型時にはマグネット挿入部10に樹脂を入り込ませてマグネット11を固定でき、工程の簡素化を達成できる。
 〔他の実施例〕
 以上、本発明を実施例に基づいて説明してきたが、各発明の具体的な構成は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
 例えば、樹脂ホルダの鍔部は円形である必要はなく、多角形等でロータコアに装着した際にマグネットの軸方向移動を規制しつつ、マグネットの一部が露出していれば良い。  また、本発明は、防錆性能が要求される電動流体ポンプのロータ構造として特に好適であるが、他の電動機のロータ構造に適用した場合も、工程数の増加抑制、工程の簡素化等の作用効果を奏する。
 鍔部の凹凸形状は、インサート成型時、マグネット挿入部に樹脂が流れこむ形状であれば良い。
 実施例1の鍔部に実施例3の凹凸形状を適用しても良い。

Claims (5)

  1.  複数の電磁鋼板を積層して構成されたロータコアと、
     前記ロータコアの軸方向一端側の電磁鋼板を除く電磁鋼板に設けられ、軸方向他端側からマグネットが挿入されるマグネット挿入部と、
     前記マグネット挿入部に挿入されたマグネットと、
     前記ロータコアの軸方向他端側に設けられ、前記マグネットの軸方向への移動を規制する樹脂ホルダと、
     前記樹脂ホルダと一体に設けられ、前記ロータコアを覆う樹脂モールド部と、
     を備えたことを特徴とするロータ構造。
  2.  請求項1に記載のロータ構造において、
     前記樹脂ホルダは、前記マグネット挿入孔の一部を覆う形状を有することを特徴とするロータ構造。
  3.  請求項1に記載のロータ構造において、
     前記樹脂ホルダは、前記マグネット挿入孔を完全に覆う形状を有することを特徴とするロータ構造。
  4.  請求項2または請求項3に記載のロータ構造において、
     前記樹脂ホルダの前記ロータコア側と接触する面を凹凸形状としたことを特徴とするロータ構造。
  5.  複数の電磁鋼板を積層した構成されたロータコアをインサート部材とし、ロータとインペラとがインサート成型により一体形成された電動流体ポンプにおいて、
     前記ロータの構造として、請求項1ないし請求項4のいずれか1項に記載のロータ構造を適用したことを特徴とする電動流体ポンプ。
PCT/JP2014/055731 2013-03-15 2014-03-06 ロータ構造および電動流体ポンプ WO2014141987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480003682.XA CN104937816A (zh) 2013-03-15 2014-03-06 转子结构和电动流体泵
DE112014001408.7T DE112014001408T5 (de) 2013-03-15 2014-03-06 Rotoraufbau und elektrische Fluidpumpe
US14/767,017 US20150369248A1 (en) 2013-03-15 2014-03-06 Rotor structure and electric fluid pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013052667A JP2014180146A (ja) 2013-03-15 2013-03-15 ロータ構造および電動流体ポンプ
JP2013-052667 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141987A1 true WO2014141987A1 (ja) 2014-09-18

Family

ID=51536651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055731 WO2014141987A1 (ja) 2013-03-15 2014-03-06 ロータ構造および電動流体ポンプ

Country Status (5)

Country Link
US (1) US20150369248A1 (ja)
JP (1) JP2014180146A (ja)
CN (1) CN104937816A (ja)
DE (1) DE112014001408T5 (ja)
WO (1) WO2014141987A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405788B2 (ja) * 2014-08-20 2018-10-17 株式会社デンソー 回転電機の回転子
DE102017203833A1 (de) * 2017-03-08 2018-09-13 Mahle International Gmbh Flüssigkeitspumpe
DE102017216337A1 (de) * 2017-09-14 2019-03-14 Robert Bosch Gmbh Elektrischer Antrieb
EP3696947A4 (en) * 2017-10-11 2021-09-29 LG Innotek Co., Ltd. MOTOR
CN109322851B (zh) * 2018-11-27 2024-02-27 常州雷利电机科技有限公司 转子叶轮组件、包括其的水泵电机以及制造其的方法
CN210889358U (zh) * 2019-07-25 2020-06-30 盾安汽车热管理科技有限公司 电子水泵
JP2021046849A (ja) * 2019-09-20 2021-03-25 パナソニックIpマネジメント株式会社 自吸式ポンプ、及び自吸式ポンプのロータの製造方法
DE102020110617A1 (de) 2020-04-20 2021-10-21 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung eines Rotors, Rotor und permanenterregte Synchronmaschine
CN112008990B (zh) * 2020-08-14 2022-03-29 威海锦阳电子有限公司 线性压缩机磁桶加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149059A (ja) * 2004-11-18 2006-06-08 Toyota Motor Corp ロータおよびロータの製造方法
JP2007198350A (ja) * 2006-01-30 2007-08-09 Mitsumi Electric Co Ltd 遠心式ポンプ及びロータ
JP2010142038A (ja) * 2008-12-12 2010-06-24 Toyota Motor Corp 回転電機のロータ製造方法及びロータ
JP2011055594A (ja) * 2009-08-31 2011-03-17 Toyota Motor Corp 回転電機
JP2012115016A (ja) * 2010-11-24 2012-06-14 Toyota Motor Corp 回転電機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135213A (en) * 1962-10-30 1964-06-02 Watt V Smith Immersible motor-pump unit
US3143972A (en) * 1963-02-06 1964-08-11 Watt V Smith Axial flow unit
US4080112A (en) * 1976-02-03 1978-03-21 March Manufacturing Company Magnetically-coupled pump
US5474429A (en) * 1994-01-11 1995-12-12 Heidelberg; Goetz Fluid-displacement apparatus especially a blower
JP4162565B2 (ja) * 2003-09-30 2008-10-08 株式会社東芝 電動機のロータ
JP4559831B2 (ja) * 2004-11-29 2010-10-13 日本電産シバウラ株式会社 モータのロータ
JP5039439B2 (ja) * 2007-06-12 2012-10-03 アイシン精機株式会社 電動ポンプ用ロータ
JP2010063285A (ja) * 2008-09-04 2010-03-18 Nidec Shibaura Corp モータ及びその製造方法
TW201038828A (en) * 2009-04-28 2010-11-01 Assoma Inc Permanent magnetism can pump
KR101490901B1 (ko) * 2009-11-19 2015-02-09 현대자동차 주식회사 전기식 워터 펌프
JP5299727B2 (ja) * 2010-06-30 2013-09-25 アイシン精機株式会社 インペラ
JP5516976B2 (ja) * 2010-07-14 2014-06-11 アイシン精機株式会社 電動ポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149059A (ja) * 2004-11-18 2006-06-08 Toyota Motor Corp ロータおよびロータの製造方法
JP2007198350A (ja) * 2006-01-30 2007-08-09 Mitsumi Electric Co Ltd 遠心式ポンプ及びロータ
JP2010142038A (ja) * 2008-12-12 2010-06-24 Toyota Motor Corp 回転電機のロータ製造方法及びロータ
JP2011055594A (ja) * 2009-08-31 2011-03-17 Toyota Motor Corp 回転電機
JP2012115016A (ja) * 2010-11-24 2012-06-14 Toyota Motor Corp 回転電機

Also Published As

Publication number Publication date
JP2014180146A (ja) 2014-09-25
US20150369248A1 (en) 2015-12-24
DE112014001408T5 (de) 2015-11-26
CN104937816A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014141987A1 (ja) ロータ構造および電動流体ポンプ
JP4715280B2 (ja) 永久磁石埋め込み型モータ、ポンプ装置、及び永久磁石埋め込み型モータの製造方法
JP6640621B2 (ja) 電動機用ロータ、およびブラシレスモータ
US20130127283A1 (en) Rotor of an electric motor and manufacturing method of same
JP2007006689A (ja) モータのロータ及びその製作方法
US20140062245A1 (en) Rotor for rotating electric machine
JP2011135640A (ja) インシュレータ、回転電機および回転電機の製造方法
JP2010130847A5 (ja)
JP2009540787A (ja) 高精度モータならびにその機械加工および組み立て方法
JP6333402B2 (ja) 回転電機の回転子、回転電機、及び空調機器
JP2008312348A (ja) 電動モータ
JP6745612B2 (ja) 電動モータのロータの製造方法
JP6525329B2 (ja) ロータおよびロータの製造方法
JP2009240109A (ja) 電動モータ
KR101870450B1 (ko) 모터
KR101188073B1 (ko) 스핀들 모터
US9673670B2 (en) Method for producing a rotor and electric machine having a rotor
JP5771958B2 (ja) ポンプ装置
US9470237B2 (en) Electric fluid pump
JP6210003B2 (ja) ステータコア、回転電機およびステータコアの製造方法
JP2008312402A (ja) アキシャルエアギャップ型電動機
KR20170066868A (ko) 자석 압입형 모터 회전자
CN108292872B (zh) 转子、马达、空调装置及转子的制造方法
JP6373505B2 (ja) 電動機及び空気調和機
KR101836526B1 (ko) 환경 차량의 모터 회전자 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14767017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140014087

Country of ref document: DE

Ref document number: 112014001408

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764751

Country of ref document: EP

Kind code of ref document: A1