WO2014141777A1 - 超電導導体の製造方法及び超電導導体 - Google Patents

超電導導体の製造方法及び超電導導体 Download PDF

Info

Publication number
WO2014141777A1
WO2014141777A1 PCT/JP2014/052639 JP2014052639W WO2014141777A1 WO 2014141777 A1 WO2014141777 A1 WO 2014141777A1 JP 2014052639 W JP2014052639 W JP 2014052639W WO 2014141777 A1 WO2014141777 A1 WO 2014141777A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
film
forming
layer
substrate
Prior art date
Application number
PCT/JP2014/052639
Other languages
English (en)
French (fr)
Inventor
義則 長洲
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP14763183.2A priority Critical patent/EP2955727B1/en
Priority to CN201480012006.9A priority patent/CN105009228B/zh
Priority to US14/775,614 priority patent/US10096403B2/en
Priority to KR1020177033767A priority patent/KR101992043B1/ko
Priority to KR1020157024181A priority patent/KR101803161B1/ko
Priority to JP2015505319A priority patent/JP6499072B2/ja
Publication of WO2014141777A1 publication Critical patent/WO2014141777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0436Processes for depositing or forming copper oxide superconductor layers by chemical vapour deposition [CVD]
    • H10N60/0464Processes for depositing or forming copper oxide superconductor layers by chemical vapour deposition [CVD] by metalloorganic chemical vapour deposition [MOCVD]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting wire conductor used in superconducting equipment such as a superconducting cable and a superconducting magnet, and a method of manufacturing the superconducting conductor.
  • a high resistance oxide is formed in a thinning groove formed along the longitudinal direction of the conductor, and laser irradiation is performed along the thinning groove.
  • a method of forming a plurality of filament conductors in the width direction of the conductor in the superconducting layer is disclosed (for example, see Patent Document 2).
  • the following method is disclosed as a method for obtaining a superconducting conductor having a desired critical current capacity from a thinned superconducting wire.
  • a method of continuously bonding the back surfaces of the thinned metal substrates of a plurality of superconducting wires on a base material having a bending rigidity lower than the bending rigidity of the superconducting wires see, for example, Patent Document 3) ).
  • a method of winding a superconducting wire thinned to a width of 0.48 mm to 1.8 mm in a spiral shape so as not to overlap around a core wire having an outer diameter of ⁇ 1.3 to 5 mm for example, see Patent Document 4).
  • a method of forming a superconducting conductor having a circular cross section by performing silver coating on the surface of a superconducting wire that has been slit to a width of 0.5 to 2.0 mm, then laminating it vertically, and then plating it thick with copper (for example, , See Patent Document 5).
  • an object of the present invention is to provide a superconducting conductor having good superconducting characteristics without a shape problem such as local protrusions and a method for manufacturing the same.
  • the features of the method for producing a superconducting conductor of the present invention include a step of preparing a plurality of film forming substrates, a step of preparing a connecting base material for connecting and integrating the plurality of film forming substrates, and a plurality of film forming steps.
  • the present invention includes a step of integrating the substrate for connection and the connecting base material, and a step of forming a superconducting layer and a protective layer on the plurality of deposition substrates.
  • a superconducting wire having a desired width without a cutting process using laser cutting or slit processing after film formation by integrating a substrate for film formation having a plurality of desired widths with a connecting base material and then performing film formation can be formed.
  • the superconducting conductor of the present invention has a core, a core material having a stabilization layer formed on the outer periphery of the core, and a plurality of superconducting wires arranged on the outer periphery of the stabilization layer of the core material, and the core is stable.
  • the superconducting wire is made of a material having a strength higher than that of the stabilizing layer, and the plurality of superconducting wires are integrated via the stabilizing layer.
  • the present invention it is possible to provide a superconducting conductor having good superconducting characteristics without a shape problem such as local protrusions, and a manufacturing method thereof.
  • an intermediate layer, a superconducting layer, and a protective layer are sequentially formed and laminated on a narrow film-forming substrate, and the superconducting conductors in an individually separated state are referred to as “superconducting wires”.
  • a superconducting conductor in which a plurality of superconducting wires are arranged in parallel to the longitudinal direction on a wide base material or stabilizer and integrated over the entire length is called a ⁇ multi-core superconducting wire '', and there are multiple superconducting conductors on the outer periphery of the core material.
  • Such a superconducting wire or a superconducting conductor wound with a multi-core superconducting wire is called a “composite superconducting conductor”.
  • FIG. 1 is a flowchart of main processes.
  • a metal wire is formed into a predetermined cross-sectional dimension.
  • the metal used preferably has a material strength of Hv hardness greater than 100, and an alloy containing Cu, Ni, Ti, Mo, Nb, Ta, W, Fe, and Ag can be used. Particularly preferred are stainless steel, Hastelloy (registered trademark), and other nickel-based alloys having excellent corrosion resistance and heat resistance.
  • the metal wire may be round or non-round, and the cross-sectional shape is not particularly limited, such as a rectangular shape or a trapezoidal shape.
  • the width of the film formation substrate is preferably about 0.1 to 4.0 mm, and more preferably 0.3 to 2 mm. If it is less than 0.1 mm, the rigidity of the substrate is lowered, and the superconducting characteristics may be deteriorated due to bending strain. If it exceeds 4.0 mm, a problem occurs in the AC characteristics.
  • ⁇ Preparation of connecting substrate (step S1-2)> According to the dimensions of the narrow film-forming substrate, a plurality of grooves for embedding the narrow film-forming substrate are formed in parallel at a predetermined pitch in a base material having a predetermined cross-sectional dimension. A connecting base material is used.
  • the material used for the connection substrate is preferably a metal having high thermal conductivity, and in particular, it is desirable to use an alloy similar to a metal wire.
  • the groove can be formed using a convex forming roll corresponding to the concave groove shape, but may be formed by a laser, or a combination of a laser and a convex forming roll may be used. Furthermore, etching with an acid solution can also be applied. Etching with an acid solution may be used in combination with a laser and / or a convex forming roll.
  • the groove shape is preferably a concave shape in which the length of the base and the top is equal, but it is more preferable that the base of the trapezoid is longer than the top so that a narrow film-forming substrate can be constrained by the groove.
  • the thickness of the connecting base material in the groove portion is The thickness is preferably equal to or less than the thickness of the substrate.
  • the thickness is larger than the thickness of the film formation substrate, it is not preferable because the heating from the support is difficult to be transmitted to the connection base material.
  • the distance between the grooves can be arbitrarily set, but the distance can be set so that the intermediate layer and the superconducting layer formed on the adjacent film formation substrate do not affect each other.
  • the distance between the grooves is preferably not less than the distance from the surface position of the film formation surface to the surface position of the connecting base material where no groove is formed in the thickness direction of the film formation substrate.
  • FIG. 2 is a cross-sectional view illustrating an example in which the narrow film-forming substrate 11 is embedded in and integrated with seven rows of grooves 21 formed in the connection base 2.
  • TA tension annealing
  • the upper part of the embedded metal wire is flatly molded in an integrated form to make the flat portion highly smooth.
  • a method of integrating by molding is also applicable. In this case, it is not necessary to increase the strength of the film-forming substrate, and it is possible to set the strength difference between the base material parts by using the connecting base material side as a strength member.
  • a combination base material and a metal wire can select the combination of a different material, and the combination of the same material.
  • the smoothness of the narrow film-forming substrate 11 and the connecting base material 2 can be made different from each other. Since the connecting base material 2 can be set to a low arithmetic average roughness Ra (Ra is 10 nm to 100 nm or less), the productivity of the plate rolling process is improved, the yield is improved, the use of a low cost material by selecting the material, etc. It has a great effect on cost reduction.
  • Ra arithmetic average roughness
  • step S3 After the narrow film formation substrate 11 and the connecting base material 2 are integrated, the film formation surface side of the narrow film formation substrate 11 is made a highly smooth surface by mechanical polishing, electrolytic polishing, or chemical polishing.
  • the arithmetic average roughness Ra of the film formation surface is preferably 5 nm or less, and more preferably 2 nm or less.
  • the main surface on the film forming surface side may have a non-film forming surface at end portions (corner portions and side surfaces) in the width direction of the film forming surface, and the arithmetic average roughness Ra of the non-film forming surface. Is preferably 15 nm or more. Accordingly, the superconducting layer 14 and / or the intermediate layer 13 can intentionally reduce the degree of orientation at the corners and side surfaces (non-film-forming surfaces) of the film-forming substrate, and the film-forming substrates adjacent in the width direction are adjacent to each other.
  • the superconducting layer 14 may have a form in which the superconducting layer 14 does not have a continuous orientation.
  • the degree of orientation of the non-film-formation surface including the intermediate layer and the superconducting layer deposited in the recesses between the film-formation substrates can be controlled. Thereby, even after the separation step in step S8, the degree of orientation at the end in the width direction of the substrate can be kept high on the deposition substrate, and the degree of orientation is high in the entire width of the substrate. Superconducting layer 14 can be obtained. Furthermore, it is possible to control an unnecessary current path caused by a non-film-formation surface including an intermediate layer and a superconducting layer deposited in the recesses between the film-formation substrates.
  • the superconducting layer 14 when used as a multi-core superconducting wire in a film-formed state, the superconducting layer 14 can be formed in a state where the distance between adjacent film-forming substrates is shortened, so that the multi-core superconducting wire is configured. It becomes possible to control the width of the gap between the plurality of superconducting layers 14 to be narrow. That is, the current density (Je) of the entire multicore superconducting wire can be increased.
  • the intermediate layer 13 is a layer formed on the narrow film-forming substrate 11 in order to achieve high in-plane orientation in the superconducting layer 14, and has physical characteristics such as a thermal expansion coefficient and a lattice constant. An intermediate value between the substrate and the oxide superconductor constituting the superconducting layer is shown.
  • the intermediate layer 13 may be a single layer or a multilayer composed of two or more layers. Examples of the intermediate layer 13 include a bed layer, a biaxially oriented layer, and a cap layer.
  • Gd 2 Zr 2 O 7- ⁇ (-1 ⁇ ⁇ 1, hereinafter referred to as GZO), YAlO 3 (yttrium aluminate), YSZ (yttria protected zirconia), Y 2 O 3 , Gd 2 O 3 , Al 2 O 3 , B 2 O 3 , Sc 2 O 3 , REZrO, RE 2 O 3 and the like
  • GZO Y 2 O 3
  • B 2 O 3 Sc 2 O 3
  • REZrO, RE 2 O 3 and the like can be used, among which GZO, Y 2 O 3 , and YSZ are preferable.
  • RE represents a single rare earth element or a plurality of rare earth elements.
  • the bed layer may have a function of improving biaxial orientation, for example.
  • GZO As a constituent material of the bed layer.
  • the film thickness of a bed layer is not specifically limited, For example, they are 10 nm or more and 200 nm or less.
  • Examples of the method for forming the bed layer include a method of forming a film by RF sputtering in an argon atmosphere.
  • an inert gas ion for example, Ar +
  • a vapor deposition source GZO or the like
  • the film formation conditions at this time are appropriately set depending on the constituent material and film thickness of the bed layer. For example, RF sputtering output: 100 W to 500 W, substrate transport speed: 10 m / h to 100 m / h, film formation Temperature: 20 degreeC or more and 500 degrees C or less.
  • the bed layer For the formation of the bed layer, an ion beam sputtering method in which ions generated by an ion generator (ion gun) collide with an evaporation source can be used.
  • the bed layer can also have a multilayer structure such as a combination of a Y 2 O 3 layer and an Al 2 O 3 layer.
  • the biaxially oriented layer is formed on the bed layer and is a layer for orienting the crystals of the superconducting layer in a certain direction.
  • the material constituting the biaxially oriented layer include polycrystalline materials such as MgO, CeO 2 , YSZ, and NbO. Among these, it is preferable to contain MgO.
  • the film thickness of a biaxial orientation layer is not specifically limited, For example, they are 1 nm or more and 20 nm or less.
  • a method for forming the biaxially oriented layer a method in which target particles are struck out from a target (evaporation source) by sputtering and the struck target particles are stacked on the bed layer is preferable.
  • a method of laminating by a sputtering method IBAD method: Ion Beam Assisted Deposition
  • IBAD method Ion Beam Assisted Deposition
  • the film formation conditions at this time are appropriately set depending on the constituent material and film thickness of the biaxially oriented layer.
  • IBAD assist ion beam voltage 800V to 1500V
  • IBAD-assisted ion beam current 80 mA to 350 mA
  • IBAD assisted ion beam acceleration voltage 200V
  • RF sputtering output 800 W or more and 1500 W or less
  • Substrate conveyance speed 80 m / h or more and 500 m / h or less
  • Deposition temperature 5 ° C. or more and 250 ° C. or less
  • the superconducting layer 14 is formed on the intermediate layer 13 and is preferably composed of an oxide superconductor, particularly a copper oxide superconductor.
  • an oxide superconductor particularly a copper oxide superconductor.
  • a crystal material represented by a composition formula such as REBa 2 Cu 3 O 7- ⁇ (referred to as RE-123) can be used.
  • RE in REBa 2 Cu 3 O 7- ⁇ is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and these Of these, Y is often used.
  • is an oxygen nonstoichiometric amount, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint of a high superconducting transition temperature.
  • the film thickness of a superconducting layer is not specifically limited, For example, they are 0.8 micrometer or more and 10 micrometers or less.
  • Examples of the method for forming the superconducting layer 14 include a TFA-MOD method, a PLD method, a CVD method, an MOCVD method, and a sputtering method.
  • a TFA-MOD method a method for forming the superconducting layer 14
  • a PLD method a PLD method
  • a CVD method a CVD method
  • MOCVD method a sputtering method.
  • it is preferable to use the MOCVD method because it does not require a high vacuum, is easy to increase in area, and is excellent in mass productivity.
  • the film formation conditions when the MOCVD method is used are appropriately set depending on the constituent material and film thickness of the superconducting layer 14.
  • Substrate conveyance speed 80 m / h or more and 500 m / h or less
  • Deposition temperature 800 ° C to 900 ° C It is preferable that Moreover, it is preferable to carry out in oxygen gas atmosphere from a viewpoint of making oxygen nonstoichiometric amount (delta) small and improving a superconducting characteristic.
  • step S6 A protective layer (stabilizing layer) 15 made of Ag or the like is formed on the upper surface of the superconducting layer 14 by sputtering, for example.
  • ⁇ Oxygen annealing step (step S7)> oxygen annealing is performed at 550 ° C. in an oxygen stream to give the superconducting layer predetermined superconducting characteristics.
  • Step S8 Each narrow film-forming substrate 11 in which the protective layer 15 is laminated on the superconducting layer 14 is separated from the state embedded in the connecting base material 2 by a separating device, and a plurality of superconducting wires are obtained.
  • the separation apparatus includes a feeding device for the connection base material 2 in which a plurality of narrow film formation substrates 11 are integrated, and winding of the separated individual film formation substrates 11 and the connection base material 2. It is the rewind line which comprised the apparatus and the guide roll of the drum-shaped cross-sectional shape arrange
  • the separation is performed by contacting and passing the surface of the connecting base 2 opposite to the surface on which the narrow film-forming substrate 11 is embedded along the center of the upper surface of the bow of the drum-shaped guide roll.
  • a film-forming layer 12 comprising an intermediate layer 13, a superconducting layer 14, and a protective layer 15 formed on a narrow film-forming substrate 11 by slightly opening the groove 21 in which the narrow film-forming substrate 11 is embedded.
  • the superconducting wire 1 can be formed by separating individual thin film-forming substrates 11 without applying mechanical stress or distortion. Since the metal connection base 2 is discontinuous on one side where the grooves 21 are formed, the metal connection base 2 is excellent in the bending property in the width direction with the surface on the groove 21 forming side being the outside.
  • a plurality of superconducting wires 1 having a film formation layer 12 composed of an intermediate layer 13, a superconducting layer 14, and a protective layer 15 are wound around the outer periphery of the core material and integrated to form a composite superconducting conductor.
  • a film formation layer 12 composed of an intermediate layer 13, a superconducting layer 14, and a protective layer 15
  • a composite superconducting conductor As an example, the case where a round core is used will be described.
  • a round core 3 having a stabilization layer 32 (for example, copper or copper alloy) is prepared on the outer periphery of a reinforcing core 31 having a hollow cross section.
  • a stabilization layer 32 for example, copper or copper alloy
  • both the superconducting wire and the fin are shown in a circular cross section.
  • Fins 33 are formed on the outer periphery stabilization layer 32 so that the side surfaces of the superconducting wire 1 do not contact each other, and the outer periphery of the cross section of the core material 3 is uneven. You may arrange
  • the height of the fin 33 is preferably approximated to the thickness of the superconducting wire 1, but may not be equal to the thickness of the superconducting wire 1.
  • the material of the core 31 having a hollow cross-section is preferably an Fe-based low magnetic material, but may be a Ni-based material such as Hastelloy, and the cross-sectional configuration may be a solid material or a clad structure, but the core 31 is higher than the stabilization layer 32.
  • a strong material is preferred.
  • the stabilization layer is copper or a copper alloy, it is desirable to have mechanical properties higher than that of copper or a copper alloy, and those having a Hv hardness of 150 or more are preferable.
  • a SUS tube is used. Is desirable.
  • ⁇ Reintegration process (step S10)>
  • a plurality of superconducting wires 1 are wound around the outer periphery of the core material 3 in an integrated state, and a round composite superconducting conductor 30 is obtained. It is done.
  • the superconducting wire 1 is preferably wound with an inclination with respect to the central axis of the core material 3 but may be arranged in parallel.
  • the superconducting wire to be wound may have a plurality of two or more configurations. In this case, the winding direction may be the same or different directions, or may be repeated alternately.
  • the superconducting wire 1 may be integrated through a stabilization layer 32 formed on the outer periphery of the core 31 and a diffusion metal layer (not shown).
  • the insulating property of the wire by applying an insulating tape or varnish is good.
  • insulating tape there is no tape displacement or insulation tape breakage, and when varnish insulation is used, the shape after varnish insulation is finished in a similar and uniform manner before insulation, entrainment of varnish-specific bubbles and local Variations in thickness and the like are suppressed, and the occurrence of dielectric breakdown sites, which has conventionally occurred, is suppressed.
  • the said core wire material shape is preferably a round wire shape, shapes other than round wire shapes, such as a rectangular shape and an instep round shape, are applicable.
  • Example 1 In Example 1, a plurality of superconducting wires having a thin film-forming substrate having a thickness of t0.05 mm and a width of w1.0 mm manufactured through the steps described in the first embodiment are manufactured and obtained. A round composite superconducting conductor was obtained using the superconducting wire.
  • Step S1-1 A metal wire (round wire) of Hastelloy C276 having a diameter of 0.31 mm was formed into a thickness t0.05 mm ⁇ width w1.0 mm ⁇ length L1050 m at a processing rate of about 34%.
  • step S3 The surfaces of the integrated narrow substrate for film formation and the connecting base material were polished, and the surface roughness was finished to an arithmetic average roughness Ra of 1.1 nm.
  • step S4 A Gd 2 Zr 2 O 7 (GZO) layer (thickness: 110 nm) was formed at room temperature on the polished Hastelloy 276 narrow substrate surface by ion beam sputtering. Further, an MgO layer (film thickness: about 5 nm) is formed at 200 to 300 ° C. by the IBAD method, and then a LaMnO 3 layer (film thickness: 30 nm) is formed at 600 to 700 ° C. by the RF sputtering method. Further, a CeO 2 layer (film thickness: 400 nm) was formed at 500 to 600 ° C. by RF sputtering.
  • GZO Gd 2 Zr 2 O 7
  • a YG d Ba 2 Cu 3 O 7-d superconducting layer was formed to a thickness of 1 ⁇ m under the condition of 800 ° C. by MOCVD.
  • step S6 An Ag layer as a protective layer was laminated to a thickness of 15 ⁇ m on the superconducting layer.
  • Step S8 Multi-core superconducting wires having 10 superconducting conductors embedded in the connecting base material were individually separated by a separating device to obtain a plurality of superconducting wires.
  • ⁇ Core material preparation step (step S9)> The side surfaces of the superconducting wire having a width of 1 mm are not in contact with the stabilization layer made of copper, which is the outermost periphery of the round core material having the stabilization layer made of copper on the outer periphery of the core made of the hollow cross-section SUS tube. Fins were molded to prepare a core material having an uneven cross-sectional outer periphery. At this time, the distance (R) from the bottom of the concave to the center of the cross-sectional circle is 2.39 mm, and ten fins with a width of 0.47 mm are formed at a pitch of 36 ° on the outer periphery of the core material.
  • step S10 A superconducting wire having a width of 1 mm is embedded in a groove portion having a pitch of about 1 mm formed between these ten fins, and a round cross section schematically shown in FIG. 3 of a 10-core structure having an outer diameter of about 4.8 mm. A composite superconducting conductor of the type was obtained.
  • the critical current I c of a round composite superconducting conductor having an outer diameter of about 4.8 mm and having ten superconducting wires having a width of 1 mm was 455A. It was confirmed that a critical current corresponding to the width ratio of the 1 mm width and 10 mm width wires was obtained, and that the critical current characteristics of the superconducting wire were not deteriorated by reintegration.
  • Example 2 In Example 2, a plurality of superconducting wires having a thin film-forming substrate having a thickness of t0.1 mm and a width of w2.0 mm were manufactured through the steps described in the first embodiment. Here, only steps S1-1, S1-2, and S2 will be described. The other steps (S3 to S8) are the same as those in the first embodiment, and will be omitted.
  • Step S1-1 A metal wire (round wire) of Hastelloy C276 having a diameter of 0.62 mm was formed into a thickness t0.1 mm ⁇ width w2.0 mm ⁇ length L740 m at a processing rate of about 34%.
  • step S1-2 Seven grooves with a depth of d 0.08 mm and a width of w 2.0 mm are formed in parallel at a pitch of 3.5 mm in the width direction over the entire length of the alloy strip of Hastelloy C276 having a thickness of t0.2 mm, a width of w26.5 mm, and a length of L105 m. A connecting substrate was obtained.
  • step S2 ⁇ Narrow deposition substrate and connecting base material integration step (step S2)> A narrow film-forming substrate was embedded in seven grooves formed on the connecting base material, and the narrow film-forming substrate and the connecting base material were integrated.
  • Example 2 Thereafter, as in Example 1, an intermediate layer, a superconducting layer, and a protective layer are formed, oxygen annealing is performed, and multi-core superconducting wires having seven superconducting conductors embedded in the connection base material are individually separated by a separation device. Into a plurality of superconducting wires.
  • the critical current I c was measured on the basis of an electric field of 1 ⁇ V / cm using a four-terminal method in a state immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal interval was 1.2 m. 90 A or more was confirmed at all measurement positions of the critical current I c .
  • the critical current I c of a superconducting wire manufactured from a 10 mm wide substrate manufactured according to the same specifications was 455A. From this, it was confirmed that a critical current matched to the width ratio of the 2 mm width wire and the 10 mm width wire was obtained.
  • Example 3 In Example 3, a plurality of superconducting wires having a thin film-forming substrate having a thickness of t0.15 mm ⁇ a width of 3.0 mm were manufactured through the steps described in the first embodiment. Here, only steps S1-1, S1-2, and S2 will be described. The other steps (S3 to S8) are the same as those in the first embodiment, and will be omitted.
  • Step S1-1 A metal wire (round wire) of Hastelloy C276 having a diameter of 0.95 mm was formed into a thickness t0.15 mm ⁇ width w3.0 mm ⁇ length L550 m at a processing rate of about 37%.
  • step S1-2 Five grooves of depth d0.13 mm ⁇ width w3.0 mm are formed in parallel with a pitch of 4.5 mm in the width direction over the entire length of the alloy strip of Hastelloy C276 having a thickness t0.25 mm ⁇ width w26.5 mm ⁇ length L105 m. A connecting substrate was obtained.
  • step S2 ⁇ Narrow deposition substrate and connecting base material integration step (step S2)> A narrow film-forming substrate was embedded in five grooves formed in the connecting base material, and the narrow film-forming substrate and the connecting base material were integrated.
  • Example 1 Thereafter, as in Example 1, an intermediate layer, a superconducting layer, and a protective layer are formed, subjected to oxygen annealing, and multi-core superconducting wires having five superconducting conductors embedded in a connecting base material are individually separated by a separation device. Into a plurality of superconducting wires.
  • Example 4 In Example 4, a plurality of superconducting wires having a thin film-forming substrate having a thickness of t0.2 mm and a width of 4.0 mm were manufactured through the processes described in the first embodiment. Here, only steps S1-1, S1-2, and S2 will be described. The other steps (S3 to S8) are the same as those in the first embodiment, and will be omitted.
  • Step S1-1) A metal wire (round wire) of Hastelloy C276 having a diameter of ⁇ 1.3 mm was formed into a thickness t0.2 mm ⁇ width w4.0 mm ⁇ length L440 m at a processing rate of about 40%.
  • the processing rate for the metal wire is about 34% to about 40%, but is not limited to this range, and depending on the material used for the metal wire, the processing rate (for example, 60% to A processing rate of about 80%) can also be selected. In the case of strong processing, it is possible to increase the processing rate by using a composite process in which a rectangular process is performed after a wire drawing process in a round line state.
  • ⁇ Preparation of connecting substrate (step S1-2)> Four grooves of depth d0.18 mm ⁇ width w4.0 mm are formed in parallel at a pitch of 5.5 mm in the width direction over the entire length of Hastelloy C276 having a thickness t0.25 mm ⁇ width w26.5 mm ⁇ length L105 m, It was set as the connection base material.
  • step S2 ⁇ Narrow deposition substrate and connecting base material integration step (step S2)> A narrow film-forming substrate was embedded in four grooves formed in the connecting base material, and the narrow film-forming substrate and the connecting base material were integrated.
  • Example 1 Thereafter, as in Example 1, an intermediate layer, a superconducting layer, and a protective layer are formed, subjected to oxygen annealing, and a multi-core superconducting wire having four superconducting conductors embedded in a connecting substrate is individually separated by a separation device. Into a plurality of superconducting wires.
  • Comparative Example 1 An intermediate layer, a superconducting layer, and a protective layer are formed on a Hastelloy substrate having a width of 10 mm by the method described in the first embodiment, and after oxygen annealing, slitting is performed to a width of 2 mm by a mechanical slit method. Thus, five superconducting wires were obtained.
  • the critical current I c was measured on the basis of an electric field of 1 ⁇ V / cm using a four-terminal method in a state immersed in liquid nitrogen. The measurement was performed at a pitch of 1 m, and the voltage terminal interval was 1.2 m. The critical current I c was 78 to 85 A at all measurement positions. The critical current I c of the superconducting conductor before slitting manufactured from the manufactured 10 mm wide substrate was 455A.
  • connection base made of Cu or Cu alloy, or integrated through a diffusion metal layer.
  • a connection base made of Cu or Cu alloy is used as the connection base before the film formation step, and the protective layer is formed as it is and is subjected to oxygen annealing without passing through the separation step. It may be used as it is.
  • the depth of embedding the superconducting wire is preferably a flat embedding in which the film-forming surface side is flush with the concave surface of the connecting base material, but may be arranged in a convex shape, a concave shape, or an uneven shape.
  • the film-forming surface side of a plurality of superconducting wires embedded in a connection substrate made of Cu or Cu alloy is mainly covered with an electroplating layer of Cu, and the cross section as shown in FIG.
  • a multi-core superconducting wire 40 is obtained in which 12 is sandwiched between Cu stabilizing layers 41 around the superconducting layer 14.
  • the stabilization layer on the non-film-forming surface side may be Cu or Cu alloy, and may include a clad structure to which a Cu or Cu alloy plate material is attached.
  • the obtained multi-core superconducting wire 40 is wound around the outer periphery of the same round core as used in the first embodiment to produce a round composite superconductor.
  • the bendability in the width direction of the multi-core superconducting wire is excellent in bendability because the connecting base material made of Cu or Cu alloy is discontinuous due to the groove formation, and further, it does not penetrate through the portion between the superconducting wires. By forming this groove, a multi-core superconducting wire excellent in bendability can be provided.
  • the multi-core superconducting wire 40 is annealed at about 300 ° C. in a non-oxidizing atmosphere, so that the stabilized Cu is softened, which is further preferable in terms of electrical characteristics and bendability.
  • Example 5 Ten superconducting wires with a width of 1 mm obtained in Example 1 were embedded in a Cu base material, and the film-forming surface side of the superconducting wire was mainly covered with a Cu electroplating layer. As a result, a 10-core multi-core superconducting wire having a film-forming layer sandwiched between Cu stabilization layers was obtained. This 10-core multi-core superconducting wire was wound around the outer periphery of the same round core as used in the first embodiment to obtain a round composite superconductor.
  • the critical current I c of a round composite superconducting conductor having ten superconducting wires having a width of 1 mm was 455A.
  • a critical current corresponding to the width ratio of the 1 mm width and 10 mm width wires was obtained, and it was confirmed that the critical current characteristics of the superconducting wire were not deteriorated by reintegration and winding.
  • a composite superconducting conductor can also be obtained by alternately winding around the outer periphery of the core material.
  • the winding direction may be either the same direction or a different direction.
  • a thin film-forming substrate thinned to a desired size is used.
  • a superconducting wire can be obtained without applying a slit processing method or the like. As a result, the problem of shape due to local protrusions on the cut surface and the problem of deterioration of superconducting characteristics (critical current characteristics) due to thermal history and non-uniform strain during cutting are improved.
  • the technical scope of this invention is not limited to the range as described in the said embodiment.
  • the intermediate layer in the above embodiment is not necessary.
  • the film formation substrate may be polished before being integrated with the connection base material.
  • the polishing quality before integration can be controlled by appropriately selecting the polishing method.
  • the present invention is a method of manufacturing a superconducting conductor and a superconducting conductor, and can be used for superconducting equipment such as a superconducting cable and a superconducting magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

 超電導線導体を、所望のサイズに成形された成膜用基板を連結基材に複数並列に埋設、連結して一体化し、成膜用基板の成膜面側に中間層、超電導層、保護層を積層し、次いで、一体化した超電導導体を1本以上所望の心材に巻き込む、一体化した超電導導体を分離して個々の超電導線材単位で心材に1本以上巻き込む、または一体化、非一体化の線材を交互に巻き込む等のいずれかによって製造することにより、局部的な突起等の形状問題がなく、良好な超電導特性を有する超電導導体を得る。

Description

超電導導体の製造方法及び超電導導体
 本発明は、超電導ケーブルや超電導マグネットなどの超電導機器に用いられる超電導線材導体および超電導導体の製造方法に関する。
 従来から、基材上に超電導層を成膜して、超電導線材を製造する試みが数多く提案されている。また、所望の線材幅を有する超電導線材を得るためには、金属板をスリット加工等で切断し、所望の幅の金属基板を準備して、その金属基板の表面上に中間層を形成し、さらにその中間層表面に結晶配向性が良好な超電導層を成膜する方法がある。一方、所望の幅よりも広い幅の金属基板上に中間層、超電導層を成膜して得られた超電導線材を更に細線化する場合もある。この場合には、レーザによって切断する方法や、スリット加工により切断する方法が取られている(例えば、特許文献1参照)。
 レーザ切断の例として、低交流損失の酸化物超電導導体において、導体の長手方向に沿って形成された細線化溝に高抵抗酸化物を形成しておき、この細線化溝に沿ってレーザ照射することにより超電導層を導体の幅方向に複数のフィラメント導体を形成する方法が開示されている(例えば、特許文献2参照)。
 また、細線化された超電導線から所望の臨界電流容量の超電導導体を得る方法として、次のような方法が開示されている。細線化された複数の超電導線の金属基板の裏面を、超電導線の曲げ剛性より低い曲げ剛性を有する母材上に均等な隙間を確保して連続的に接合する方法(例えば、特許文献3参照)。0.48mm~1.8mmの幅に細線化された超電導線を外径φ1.3~5mmの心線の周囲に重ならないようにスパイラル状に巻きつける方法(例えば、特許文献4参照)。幅0.5~2.0mmにスリット加工された超電導線の表面を銀コーテングした後、垂直方向に積層し、その後、銅で厚くメッキすることで断面円形状の超電導導体を形成する方法(例えば、特許文献5参照)。
特開平6-68727号公報 特開2007-141688号公報 特開2009-151993号公報 特開2009-110668号公報 特開2010-135295号公報
 しかしながら、レーザにより切断する方法では、レーザによる切断面には発熱による溶断痕が発生し、切断面の形状の不均一が生じ、結果として、超電導導体の絶縁特性が切断面の局部的な突起が原因で劣化する問題や、切断時の熱履歴によって超電導特性(臨界電流特性)が劣化する問題があった。また、スリット加工により切断する方法においても、レーザ切断で発生する溶断痕と同様に、切断部位にせん断による突起痕(いわゆるかえり)が生じ、切断面の形状が不均一となり、結果として超電導導体の絶縁特性が劣化する問題や、せん断応力によって超電導特性が劣化する問題があった。
 なお、金属基板と金属基板上に形成された各層の全てを切断する場合だけではなく、保護層、超電導層および中間層等の金属基板上に積層された層だけを切断して、1つの金属基板上に分割された超電導層を有する超電導導体を形成する場合にも、同様にレーザにより切断する方法等が用いられている。このような場合にも、前述の溶断痕の発生およびそれに伴う臨界電流特性の局部的な低下等の超電導導体としての問題があった。
 そこで、本発明は上記問題点に鑑みなされたものであって、局部的な突起等の形状問題がなく、良好な超電導特性を有する超電導導体及びその製造方法を提供することを目的とする。
 本発明の超電導導体の製造方法の特徴は、複数の成膜用基板を準備する工程と、それらの複数の成膜用基板を連結一体化する連結基材を準備する工程と、複数の成膜用基板と連結基材とを一体化する工程と、複数の成膜用基板の上に、超電導層と保護層を成膜する工程と、を具備することを要旨とする。
 複数の所望の幅を有する成膜用基板を連結基材と一体化し、その後成膜を行うことで、成膜後にレーザ切断やスリット加工を用いた切断工程なしに、所望の幅を有する超電導線材を形成することができる。
 本発明の超電導導体は、芯と、前記芯の外周に形成された安定化層とを有する心材と、心材の安定化層の外周に配された複数の超電導線材とを有し、芯は安定化層よりも高強度の材料からなり、複数の超電導線材は安定化層を介して一体化されている。
 複数の超電導線材を一体化することで、芯に巻きつける際に超電導線材の一本一本で巻きずれが生じるのを防止することができる。
 本発明によれば、局部的な突起等の形状問題がなく、良好な超電導特性を有する超電導導体及びその製造方法を提供することができる。
本発明の実施形態に係る超電導導体の製造工程を示すフロー図である。 本発明の実施形態に係る連結基板に埋設した幅狭の成膜用基板上への成膜の状態を示す断面図である。 本発明の実施形態に係る超電導導体の構成を示す断面図である。 本発明の実施形態に係る超電導導体を示す斜視図である。
 以下、添付図面を参照して、本発明を実施するための形態(以下、実施形態という。)について詳細に説明する。
 本発明の実施形態においては、幅狭の成膜用基板の上に中間層、超電導層、保護層を順に成膜、積層されており、個々に分離された状態の超電導導体を「超電導線材」と呼び、幅広の基材又は安定化材に長手方向に平行に複数の超電導線材を配して全長にわたって一体化された状態の超電導導体を「多芯超電導線材」と呼び、心材の外周に複数の超電導線材又は多芯超電導線材を巻きつけた状態の超電導導体を「複合超電導導体」と呼ぶ。
 (第1実施形態)
 本発明の第1実施形態として、複数の幅狭の成膜用基板を連結基材に埋設して一体化し、この上に中間層、超電導層、保護層を成膜して酸素アニールを施した後、連結基材から分離することで各成膜用基板単位の超電導線材を製造し、更に得られた超電導線材を丸形状心線材の外周部に巻きつけて再一体化して丸型の複合超電導導体を製造する方法について説明する。図1は、主要工程のフロー図である。
 <幅狭の成膜用基板の準備(ステップS1-1)>
 金属線を所定の断面寸法に成形する。用いる金属は、材料強度がHv硬度で100よりも大きいものが好ましく、Cu、Ni、Ti、Mo、Nb、Ta、W、Fe、Agを含有する合金を用いることができる。特に好ましいのは、耐食性および耐熱性に優れたステンレス、ハステロイ(登録商標)、その他のニッケル系合金である。金属線は丸形状、非丸形状のいずれでもよく、矩形型、台形型等、特に断面形状を限定するものではない。成膜用基板の幅は、0.1~4.0mm程度が好ましく、0.3~2mmがより好ましい。0.1mm未満であると、基板の剛性が低下し、曲げ歪みによる超電導特性の劣化が生じるおそれがある。4.0mmをこえると、交流特性に問題が生じる。
 <連結基材の準備(ステップS1-2)>
 上記幅狭の成膜用基板の寸法に応じて、所定の断面寸法の基材に、上記幅狭の成膜用基板を埋設するための複数本の溝を所定のピッチで平行に形成して連結基材とする。連結基材に用いる材質は、熱伝導性の高い金属であることが望ましく、特に、金属線と同様の合金を用いることが望ましい。
 溝は凹状の溝形状に対応する凸状の成形ロールを用いて成形することができるが、レーザによって成形してもよいし、レーザと凸状成形ロールを組合せて用いてもよい。さらに、酸溶液によるエッチングなども適用できる。酸溶液によるエッチングと、レーザ及び/又は凸状成形ロールを組合せて用いてもよい。
 溝形状は底辺と上辺の長さが等しい凹状とするのが好ましいが、台形状の底辺を上辺より長くして、幅狭の成膜用基板を溝で拘束できるようにするのがより好ましい。
 成膜する際に、成膜用基板の裏面(成膜面の反対面)に加熱機能を備えた支持体を用いるような場合には、溝の部分における連結基材の厚みは、成膜用基板の厚み以下であることが好ましい。成膜用基板の厚みよりも厚い場合には、支持体からの加熱が連結基材に伝わりにくくなるため、好ましくない。
 また、溝の間の距離(所定のピッチ)は任意に設けることができるが、隣り合う成膜用基板に成膜された中間層や超電導層がお互いに影響しないように、距離をとることが好ましい。この溝の間の距離は、成膜用基板の厚み方向において、成膜面の表面位置から溝が形成されていない連結用基材の表面位置の距離以上にすることが好ましい。
 <幅狭の成膜用基板と連結基材の一体化工程(ステップS2)>
 所定のピッチで連結基材に形成されている平行な複数本の溝のそれぞれに幅狭の成膜用基板を埋設して、成膜用基板と連結基材を一体化する。図2は、幅狭の成膜用基板11を、連結基材2に形成した7列の溝21に埋設し一体化する例を説明する断面図である。
 幅狭の成膜用基板11の平坦性を確保するために、一体化した状態でTA(テンションアニール)を施すこともできる。
 上記台形状溝を用いて、丸線(楕円)形状の金属線を埋め込む場合には、一体化した形態で、埋め込んだ金属線の上部の弓状部分を平坦に成型し平坦部を高平滑に成型することで一体化する方法も適用可能である。この場合、成膜用基板の高強度化は不要となり、連結基材側を強度部材とすることで、基材部位の強度差を設定することが可能となる。なお、連結基材と金属線は、異なる材質の組合せも、同じ材質の組み合わせも選択できる。
 幅狭の成膜用基板11と連結基材2の平滑性も異なる仕上りにすることが可能となる。連結基材2は算術平均粗さRaを低めに(Raが10nm以上~100nm以下)に設定することができるので、板圧延工程の製造性の向上、歩留まり向上、材質選択による安価材の適用等コスト低減に大きな効果を有する。
 <研磨工程(ステップS3)>
 幅狭の成膜用基板11と連結基材2を一体化した後、幅狭の成膜用基板11の成膜面側を機械研磨、電解研磨法又は化学研磨法により高平滑面とする。成膜面の算術平均粗さRaは5nm以下が好ましく、2nm以下がより好ましい。
 成膜用基板11と連結基材2を一体化した状態で研磨することで、成膜面の高さ、研磨面の平滑性(Ra)及び研磨面の法線方位を一定に揃えることが容易にできる。
 なお、成膜面側の主面には、成膜面の幅方向における端部(角部及び側面)に非成膜面を有していてもよく、非成膜面の算術平均粗さRaは15nm以上であることが好ましい。これにより、成膜用基板の角部及び側面(非成膜面)では超電導層14及び/又は中間層13は、意図的に配向度を下げることができ、幅方向において隣り合う成膜用基板11同士で超電導層14が連続した配向を有さない形態とすることが可能である。また、成膜用基板間の凹部に堆積した中間層、超電導層を含む非成膜面の配向度を制御できる。
 これにより、ステップS8での分離工程を経た後も、成膜用基板上には基板の幅方向の端部での配向度も高い状態で維持することができ、基板の全幅において配向度の高い超電導層14を得ることができる。更には、成膜基板間の凹部に堆積した中間層、超電導層を含む非成膜面を起因とする不要な電流パスを制御することができる。
 特に、成膜した状態のまま多芯超電導線材として用いる場合には、隣接する成膜基板間の距離を短くした状態で超電導層14を成膜することができるため、多芯超電導線材を構成する複数の超電導層14間の間隙の幅を狭く制御することが可能となる。つまり、多芯超電導線材全体の電流密度(Je)を高くすることができる。
 <中間層成膜工程(ステップS4)>
 中間層13は、超電導層14において高い面内配向性を実現するために幅狭の成膜用基板11上に形成される層であり、熱膨張率や格子定数等の物理的な特性値が基板と超電導層を構成する酸化物超電導体との中間的な値を示す。中間層13は、単層であっても2層以上からなる多層であってもよいが、例えばベッド層、二軸配向層、およびキャップ層を有する態様が挙げられる。
[ベッド層]
 ベッド層の構成材料としては、Gd2Zr27-δ(-1<δ<1、以下GZOと称す)、YAlO3(イットリウムアルミネート)、YSZ(イットリア保護ジルコニア)、Y23、Gd23、Al23、B23、Sc23、REZrO又はRE23等を用いることができ、中でもGZO、Y23、YSZが好適なものとして挙げられる。ここで、REは、単一の希土類元素または複数の希土類元素を表す。なお、ベッド層は、例えば2軸配向性を向上させるなどの機能を有していてもよい。なお、2軸配向性を向上させる機能を持たせるためには、GZOをベッド層の構成材料として用いることが好ましい。ベッド層の膜厚は、特に限定されないが、例えば10nm以上200nm以下である。
 ベッド層の成膜方法としては、例えば、アルゴン雰囲気中でRFスパッタ法により成膜する方法が挙げられる。RFスパッタ法では、プラズマ放電で発生した不活性ガスイオン(例えばAr+)を蒸着源(GZO等)に衝突させ、はじき出された蒸着粒子を成膜面に堆積させて成膜する。このときの成膜条件は、ベッド層の構成材料や膜厚等によって適宜設定されるが、例えば、RFスパッタ出力:100W以上500W以下、基板搬送速度:10m/h以上100m/h以下、成膜温度:20℃以上500℃以下とされる。
 ベッド層の成膜には、イオン発生器(イオン銃)で発生させたイオンを蒸着源に衝突させるイオンビームスパッタ法を利用することもできる。また、ベッド層は、Y23層とAl23層との組み合わせ等の多層構造とすることもできる。
[二軸配向層]
 二軸配向層は、ベッド層上に形成され、超電導層の結晶を一定の方向に配向させるための層である。二軸配向層の構成材料としては、MgO、CeO2、YSZ、NbO等の多結晶材料が挙げられる。これらの中でも、MgOを含有することが好ましい。二軸配向層の膜厚は、特に限定されないが、例えば1nm以上20nm以下である。
 二軸配向層の成膜方法としては、スパッタ法によってターゲット(蒸着源)からターゲット粒子をたたき出し、たたき出した該ターゲット粒子を前記ベッド層上に積層させる方法が好ましい。尚、成膜面に対して斜め方向からイオンビームを照射しながらターゲットからのターゲット粒子を前記成膜面に堆積させて膜を形成するスパッタ法(IBAD法:Ion Beam Assisted Deposition)により積層する方法が特に好ましい。
 このときの成膜条件は、二軸配向層の構成材料や膜厚等によって適宜設定されるが、例えば、
IBADアシストイオンビーム電圧:800V以上1500V以下、
IBADアシストイオンビーム電流:80mA以上350mA以下、
IBADアシストイオンビーム加速電圧:200V、
RFスパッタ出力:800W以上1500W以下、
基板搬送速度:80m/h以上500m/h以下、
成膜温度:5℃以上250℃以下、
であることが好ましい
 <超電導層成膜工程(ステップS5)>
 超電導層14は、上記中間層13上に形成され、酸化物超電導体、特に銅酸化物超電導体で構成されることが好ましい。この銅酸化物超電導体としては、REBa2Cu37-δ(RE-123と称す)等の組成式で表される結晶材料を用いることができる。
 REBa2Cu37-δ中のREは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbやLuなどの単一の希土類元素または複数の希土類元素であり、これらの中でYがよく用いられる。また、δは、酸素不定比量であり、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。
 超電導層の膜厚は、特に限定されないが、例えば0.8μm以上10μm以下である。
 超電導層14の成膜方法としては、例えばTFA-MOD法、PLD法、CVD法、MOCVD法、またはスパッタ法などが挙げられる。これら成膜方法の中でも、高真空を必要とせず、大面積化が容易で量産性に優れているという理由からMOCVD法を用いることが好ましい。
 MOCVD法を用いる場合の成膜条件は、超電導層14の構成材料や膜厚等によって適宜設定されるが、例えば、
基板搬送速度:80m/h以上500m/h以下、
成膜温度:800℃~900℃、
とすることが好ましい。また、酸素不定比量δを小さくして超電導特性を高めるという観点から、酸素ガス雰囲気中で行うことが好ましい。
 <保護層成膜工程(ステップS6)>
 超電導層14の上面には、例えばスパッタ法によりAg等からなる保護層(安定化層)15を成膜する。
 <酸素アニール工程(ステップS7)>
 例えば、酸素流気中550℃で酸素アニールを行い超電導層に所定の超電導特性を付与する。
 <分離工程(ステップS8)>
 超電導層14上に保護層15が積層されている個々の幅狭の成膜用基板11は、連結基材2に埋め込まれた状態から分離装置により分離され、複数の超電導線材が得られる。
 分離装置は、複数の幅狭の成膜用基板11が一体化された連結基材2の送出し装置と、分離された個々の幅狭の成膜用基板11と連結基材2の巻取り装置と、これらの中間に配置された太鼓型断面形状のガイドロールとを具備した巻き替えラインである。分離は、連結基材2の幅狭の成膜用基板11を埋め込んだ面と反対側の面を、太鼓型断面形状のガイドロールの弓上面の中央部に沿って接触、通過させて、幅狭の成膜用基板11を埋設した溝21をわずかに開口させることにより、幅狭の成膜用基板11上に成膜した中間層13、超電導層14及び保護層15からなる成膜層12に何ら、機械的応力や歪み等を与えることなく、個々の幅狭の成膜用基板11を分離して超電導線材1とすることができる。金属製の連結基材2は、溝21が形成されている片面は非連続性であるため、溝21形成側の面を外側にした幅方向の曲げ性に優れる。
 次に、中間層13、超電導層14及び保護層15からなる成膜層12を有する複数の超電導線材1を、心材の外周部に巻き付けて一体化し、複合超電導導体とする。一例として、丸形状の心材を使用する場合について説明する。
 <丸形状心材の準備(ステップS9)>
 図3に示したように、中空断面状の補強用芯31の外周に安定化層32(例えば銅、銅合金)を有する丸形状の心材3を準備する。図3では、説明の便宜上、超電導線材、フィンとも、円形断面に模擬して示している。外周の安定化層32には超電導線材1の側面同士が接触しないようにフィン33が形成されており、心材3の断面の外周は凸凹状になっている。絶縁体からなるフィン材を安定化層表面に配置してもよい。フィン33の高さは、超電導線材1の厚さに近似するのが好ましが、超電導線材1の厚さに対し同等でなくとも良い。中空断面状の芯31の材質はFe基低磁性素材が望ましいが、ハステロイ等のNi基素材でもよく、断面構成は無垢材、クラッド構造でもよいが、芯31は、安定化層32よりも高強度の材料であることが好ましい。特に、安定化層が銅、銅合金である場合には、銅、銅合金よりも高強度な機械特性を有することが望ましく、Hv硬度で150以上のものが好ましく、例えば、SUS管を用いることが望ましい。
 <再一体化工程(ステップS10)>
 フィン33間に形成される溝部に超電導線材1を埋設することにより、複数の超電導線材1が一体化された状態で心材3の外周に沿って巻きつけられ、丸型の複合超電導導体30が得られる。超電導線材1の巻きつけは、心材3の中心軸に対し傾きをもって巻きつけるのが好ましいが、平行に配置してもよい。また、巻きつける超電導線材が2以上の複数構成でもよく、その場合、巻きつけ方向は、同方向または異方向の巻きつけでもよく、交互の繰り返しでも良い。
 超電導線材1は芯31の外周に成形された安定化層32と、拡散金属層(図示せず)を介して一体化しても良い。
 この丸型の複合超電導導体30の断面は真円形状に近似するので絶縁テープ、ワニス塗布による線材絶縁性も良好である。絶縁テープを用いる場合、テープのずれや、絶縁テープ破断がなくなり、ワニス絶縁を用いる場合、ワニス絶縁後の形状も絶縁前と相似的に均一に仕上がり、ワニス特有の気泡の巻き込みや、局部的な厚さ変動などが抑制され、従来発生していた絶縁破壊部位の発生が抑制される。なお、上記心線材形状は好ましくは丸線形状であるが、矩形型、甲丸型等、丸線形状以外も適用可能である。
 上記第1実施形態に関する実施例1~4について述べる。
 (実施例1)
 実施例1においては、上記第1実施形態で説明した工程を経て製造した、厚さt0.05mm×幅w1.0mmの幅狭の成膜用基板を有する複数の超電導線材を製造し、得られた超電導線材を用いて丸型の複合超電導導体を得た。
 <幅狭の成膜用基板の準備(ステップS1-1)>
 直径φ0.31mmのハステロイC276の金属線(丸線)を、加工率約34%で厚さt0.05mm×幅w1.0mm×長さL1050mに成形した。
 <連結基材の準備(ステップS1-2)>
 t0.15mm×w26.5mm×L105mのハステロイC276の合金条の全長にわたって深さd0.03mm×幅w1.0mmの溝を幅方向のピッチ2.5mmで10本平行に形成し、連結基材とした。
 <幅狭の成膜用基板と連結基材の一体化工程(ステップS2)>
 幅狭の成膜用基板を連結基材に形成した10本の溝に埋め込み、幅狭の成膜用基板と連結基材を一体化した。
 <研磨工程(ステップS3)>
 一体化した幅狭の成膜用基板と連結基材の表面を研磨して、表面粗さを算術平均粗さRaを1.1nmに仕上げた。
 <中間層成膜工程(ステップS4)>
 研磨したハステロイ276の幅狭の成膜用基板表面上に、Gd2Zr27(GZO)層(膜厚:110nm)をイオンビームスパッタ法により、室温にて成膜した。さらに、MgO層(膜厚:約5nm)をIBAD法により200~300℃にて成膜し、次いでLaMnO3層(膜厚:30nm)をRFスパッタ法により600~700℃にて成膜し、更にCeO2層(膜厚:400nm)をRFスパッタ法により500~600℃にて成膜した。
 <超電導層形成工程(ステップS5)>
 上記中間層上に、MOCVD法により800℃の条件下で、YGdBa2Cu37-d超電導層を1μmの厚さに成膜した。
 <保護層成膜工程(ステップS6)>
 超電導層上に保護層としてのAg層を厚さ15μm積層した。
 <酸素アニール工程(ステップS7)>
 w1.0mm×L105m×10条のハステロイ276の幅狭の成膜用基板に中間層、超電導層、保護層が成膜されて連結基材に埋設された状態で、酸素流気中550℃で酸素アニールを行い多芯超電導線材を得た。
 <分離工程(ステップS8)>
 連結基材に埋設された10条の超電導導体を有する多芯超電導線材を分離装置により個々に分離し、複数の超電導線材とした。
 ≪超電導線材の臨界電流特性≫
 製造された幅w1mm×長さL100m×10条の超電導線材について、液体窒素に浸漬した状態で、四端子法を用いて1μV/cmの基準で臨界電流Icを測定した。測定は1mピッチとし、電圧端子間隔は1.2mとした。
 臨界電流Icの全測定位置で、45A以上を確認した。比較として、同様仕様で製作された幅10mm基板から製作された超電導線材の臨界電流Icは455Aであった。このことより、1mm幅線材と10mm幅線材の幅比率に合致した臨界電流が得られていることが確認された。
 <心材準備工程(ステップS9)>
 中空断面状のSUS管からなる芯の外周に銅からなる安定化層を有する丸形状の心材の最外周となる銅からなる安定化層に、幅1mmの超電導線材の側面同士が非接触となるフィンを成形し、断面外周が凸凹状となる心材を準備した。この時の凹の底辺と断面円形の中心までの距離(R)は2.39mmとし、心材外周に36°のピッチで幅0.47mmのフィンが10箇所形成されている。
 <再一体化工程(ステップS10)>
 これら10箇所のフィン間に形成された幅約1mmピッチの溝部に幅1mmの超電導線材を埋設し、外径約φ4.8mmの10本多芯構造の図3に模式的に示した断面の丸型の複合超電導導体を得た。
 ≪複合超電導導体の臨界電流特性≫
 幅1mmの超電導線材を10本有する外径約φ4.8mmの丸型の複合超電導導体の臨界電流Icは455Aであった。1mm幅と10mm幅の線材の幅比率に合致した臨界電流が得られており、また、超電導線材の臨界電流特性は再一体化によって劣化していないことが確認された。
 (実施例2)
 実施例2においては、上記第1実施形態で説明した工程を経て、厚さt0.1mm×幅w2.0mmの幅狭の成膜用基板を有する複数の超電導線材を製造した。ここでは、ステップS1-1、S1-2及びS2についてのみ述べる。他のステップ(S3~S8)は実施例1と同様の工程のため、省略する。
 <幅狭の成膜用基板の準備(ステップS1-1)>
 直径φ0.62mmのハステロイC276の金属線(丸線)を、加工率約34%で厚さt0.1mm×幅w2.0mm×長さL740mに成形した。
 <連結基材の準備(ステップS1-2)>
 厚さt0.2mm×幅w26.5mm×長さL105mのハステロイC276の合金条の全長にわたって深さd0.08mm×幅w2.0mmの溝を幅方向のピッチ3.5mmで7本平行に形成し、連結基材とした。
 <幅狭の成膜用基板と連結基材の一体化工程(ステップS2)>
 幅狭の成膜用基板を連結基材に形成した7本の溝に埋め込み、幅狭の成膜用基板と連結基材を一体化した。
 以下、実施例1と同様に、中間層、超電導層、保護層を成膜し、酸素アニールを行い、連結基材に埋め込まれた7条の超電導導体を有する多芯超電導線材を分離装置により個々に分離し、複数の超電導線材とした。
 ≪超電導線材の臨界電流特性≫
 製造された幅w2mm×長さL100m×7条の超電導線材について、液体窒素に浸漬した状態で、四端子法を用いて1μV/cmの電界基準で臨界電流Icを測定した。測定は1mピッチとし、電圧端子間隔は1.2mとした。
 臨界電流Icの全測定位置で、90A以上を確認した。比較として、同様仕様で製作された幅10mm基板から製作された超電導線材の臨界電流Icは455Aであった。このことより、2mm幅線材と10mm幅線材の幅比率に合致した臨界電流が得られていることが確認された。
 (実施例3)
 実施例3においては、上記第1実施形態で説明した工程を経て、厚さt0.15mm×幅w3.0mmの幅狭の成膜用基板を有する複数の超電導線材を製造した。ここでは、ステップS1-1、S1-2及びS2についてのみ述べる。他のステップ(S3~S8)は実施例1と同様の工程のため、省略する。
 <幅狭の成膜用基板の準備(ステップS1-1)>
 直径φ0.95mmのハステロイC276の金属線(丸線)を、加工率約37%で厚さt0.15mm×幅w3.0mm×長さL550mに成形した。
 <連結基材の準備(ステップS1-2)>
 厚さt0.25mm×幅w26.5mm×長さL105mのハステロイC276の合金条の全長にわたって深さd0.13mm×幅w3.0mmの溝を幅方向のピッチ4.5mmで5本平行に形成し、連結基材とした。
 <幅狭の成膜用基板と連結基材の一体化工程(ステップS2)>
 幅狭の成膜用基板を連結基材に形成した5本の溝に埋め込み、幅狭の成膜用基板と連結基材を一体化した。
 以下、実施例1と同様に、中間層、超電導層、保護層を成膜し、酸素アニールを行い、連結基材に埋め込まれた5条の超電導導体を有する多芯超電導線材を分離装置により個々に分離し、複数の超電導線材とした。
 ≪超電導線材の臨界電流特性≫
 製造された幅w3mm×長さL100m×5条の超電導線材について、液体窒素に浸漬した状態で、四端子法を用いて1μV/cmの基準で臨界電流Icを測定した。測定は1mピッチとし、電圧端子間隔は1.2mとした。
 臨界電流Icの全測定位置で、136A以上を確認した。比較として、同様仕様で製作された幅10mm基板から製作された超電導線材の臨界電流Icは455Aであった。このことより、3mm幅線材と10mm幅線材の幅比率に合致した臨界電流が得られていることが確認された。
 (実施例4)
 実施例4においては、上記第1実施形態で説明した工程を経て、厚さt0.2mm×幅w4.0mmの幅狭の成膜用基板を有する複数の超電導線材を製造した。ここでは、ステップS1-1、S1-2及びS2についてのみ述べる。他のステップ(S3~S8)は実施例1と同様の工程のため、省略する。
 <幅狭の成膜用基板の準備(ステップS1-1)>
 直径φ1.3mmのハステロイC276の金属線(丸線)を、加工率約40%で厚さt0.2mm×幅w4.0mm×長さL440mに成形した。
 なお、金属線に対する加工率は約34%~約40%としたが、この範囲に限定されるものではなく、金属線に用いる材質によっては、更に強加工となる加工率(例えば、60%~80%程度の加工率)の選定も可能である。強加工の場合は、丸線の状態で伸線加工を施した後に矩形化の加工を行うような複合工程を用いて加工率を高めることが可能である。
 <連結基材の準備(ステップS1-2)>
 厚さt0.25mm×幅w26.5mm×長さL105mのハステロイC276の条の全長にわたって深さd0.18mm×幅w4.0mmの溝を幅方向のピッチ5.5mmで4本平行に形成し、連結基材とした。
 <幅狭の成膜用基板と連結基材の一体化工程(ステップS2)>
 幅狭の成膜用基板を連結基材に形成した4本の溝に埋め込み、幅狭の成膜用基板と連結基材を一体化した。
 以下、実施例1と同様に、中間層、超電導層、保護層を成膜し、酸素アニールを行い、連結基材に埋め込まれた4条の超電導導体を有する多芯超電導線材を分離装置により個々に分離し、複数の超電導線材とした。
 ≪超電導線材の臨界電流特性≫
 製造された幅w4mm×長さL100m×4条の超電導線材について、液体窒素に浸漬した状態で、四端子法を用いて1μV/cmの電界基準で臨界電流Icを測定した。測定は1mピッチとし、電圧端子間隔は1.2mとした。
 臨界電流Icの全測定位置で、182A以上を確認した。比較として、同様仕様で製作された幅10mm基板から製作された超電導線材の臨界電流Icは455Aであった。このことより、4mm幅線材と10mm幅線材の幅比率に合致した臨界電流が得られていることが確認された。
 (比較例1)
 比較例1では、幅10mmのハステロイ基材に上記実施形態1で述べた方法で中間層、超電導層、保護層を成膜し、酸素アニールを施した後、幅2mmに機械スリット法によってスリット加工して5本の超電導線材を得た。
 ≪超電導線材の臨界電流特性≫
 製造された幅w2mm×長さL100m×5条の超電導線材について、液体窒素に浸漬した状態で、四端子法を用いて1μV/cmの電界基準で臨界電流Icを測定した。測定は1mピッチとし、電圧端子間隔は1.2mとした。
 臨界電流Icは全測定位置で、78~85Aであった。製作された幅10mm基板から製作されたスリット前の超電導導体の臨界電流Icは455Aであった。これは、2mm幅相当のIc約90Aに相当するので、比較例1の幅2mmの超電導線材の臨界電流Icはスリット加工により約6~14%程度劣化していることが確認された。
 (第2実施形態)
 本発明の第2実施形態においては、上記第1実施形態で分離した複数本の超電導線材をCu又はCu合金製の連結基材に再度埋設、或いは拡散金属層を介して一体化する。或いは、成膜工程前の連結基材として、ハステロイ276の代りにCu又はCu合金製の連結基材を用い、一体化したまま保護層まで成膜して酸素アニールを施し、分離工程を経ずにそのまま用いてもよい。超電導線材を埋設する深さは成膜面側が連結基材の凹面と同一面になるフラットな埋設が好ましいが、凸状、凹状に或いは凸凹状交互に配置することもできる。
 次いで、Cu又はCu合金製の連結基材に埋設した複数本の超電導線材の成膜面側を主に、Cuの電気メッキ層で覆い、図4に示したような、断面が、成膜層12が超電導層14を中心にして、Cuの安定化層41で挟み込まれた形態の多芯超電導線40を得る。非成膜面側の安定化層は、Cu又はCu合金でもよく、Cu又はCu合金板材を貼り付けるクラッド構造が含まれても良い。
 得られた多芯超電導線40を第1実施形態で用いたのと同様の丸形状の芯の外周に巻きつけて丸形の複合超電導導体を製造する。多芯超電導線の幅方向の曲げ性は、Cu又はCu合金製の連結基材が溝形成により非連続性となっているため、曲げ性に優れ、更に、超電導線材の間の部位に未貫通の溝を成形することにより、曲げ性に優れた多芯超電導線を提供することができる。或いは、多芯超電導線40を300℃程度に非酸化雰囲気で焼鈍することで、安定化Cuが軟化し、電気特性的にも、曲げ性的にも更に好ましくなる。
 (実施例5)
 実施例1で得られた幅1mmの超電導線10本をCu製の連結基材に埋設し、超電導線材の成膜面側を主に、Cuの電気メッキ層で覆い、断面において超電導成膜面を中心にして成膜層がCuの安定化層で挟み込まれた形態の10芯の多芯超電導線を得た。この10芯の多芯超電導線を第1実施形態で用いたのと同様の丸形状の芯の外周に巻きつけて丸形状の複合超電導導体を得た。
 ≪複合超電導導体の臨界電流特性≫
 幅1mmの超電導線材を10本有する丸型の複合超電導導体の臨界電流Icは455Aであった。1mm幅と10mm幅の線材の幅比率に合致した臨界電流が得られており、また、超電導線材の臨界電流特性は再一体化、巻きつけによって劣化していないことが確認された。
 (第3実施形態)
 幅狭の成膜用基板上に中間層、超電導層、保護層を有する超電導線材と、第2実施形態で用いた複数の超電導線材が安定化材に埋設されている多芯超電導線と、を交互に上記の心材の外周に巻きつけることによっても、複合超電導導体が得られる。巻きつける方向は同方向、異方向のいずれでも良い。
 第1~第3実施形態、実施例1~5で説明したように、本発明においては、所望のサイズに細線化された幅狭の成膜用基板を用いるため、従来用いていたレーザ切断法、スリット加工法等を適用せずに超電導線材を得ることができる。この結果、切断面の局部的な突起による形状問題や、切断時の熱履歴や不均一な歪によって超電導特性(臨界電流特性)が劣化する問題が改善される。また、切断によって生じる幅寸法変動が減少し、更に、成膜層単位の剥離や水分の侵入による超電導層の変質を起因とする、超電導特性の劣化が抑制され、応用機器の信頼性(安定性、均一性)が向上する。
 以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。
 例えば、基板上に直接超電導層を形成できる場合には、上記実施形態における中間層は不要である。また、連結基材と一体化する前に、成膜用基板を研磨しておいてもよい。この場合、研磨方法を適正に選択することで一体化前の研磨品質を制御できる。このように、上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 本発明は、超電導導体の製造方法及び超電導導体であって、超電導ケーブルや超電導マグネットなどの超電導機器に利用できる。
  1   超電導線材
 11   幅狭の成形用基板
 12   成膜層
 13   中間層
 14   超電導層
 15   保護層
  2   連結基材
 21   溝
  3   心材
 30   複合超電導導体
 31   芯
 32   安定化層
 33   フィン
 40   多芯超電導線
 41   安定化層

Claims (10)

  1.  複数の成膜用基板を準備する工程と、
     前記複数の成膜用基板を連結一体化する連結基材を準備する工程と、
     前記複数の成膜用基板と連結基材とを一体化する工程と、
     前記複数の成膜用基板の上に、超電導層と保護層を成膜する工程と、
     を具備することを特徴とする超電導導体の製造方法。
  2.  前記保護層を成膜した後に、前記複数の成膜用基板を前記連結基材から分離することを特徴とする、請求項1に記載の超電導導体の製造方法。
  3.  前記連結基材から分離された前記複数の成膜用基板を安定化金属内に埋設する工程を有する請求項2に記載の超電導導体の製造方法。
  4.  前記保護層を成膜した後に、一体化された前記複数の成膜用基板と前記連結基材の外周を安定化金属で覆う工程を有する請求項1に記載の超電導導体の製造方法。
  5.  前記成膜用基板は金属線からテープ状に成形加工されて形成された請求項1~4のいずれか1項に記載の超電導導体の製造方法。
  6.  前記成膜用基板は、主面に成膜面と非成膜面を有し、前記成膜面の表面粗さが算術平均粗さRaで5nm以下であり、前記非成膜面の表面粗さが算術平均粗さRaで15nm以上であることを特徴とする請求項2~5のいずれか1項に記載の超電導導体の製造方法。
  7.  前記超電導層を成膜する前に、前記連結基材に一体化された前記複数の成膜用基板を研磨する工程を有する請求項1から6のいずれか一項に記載の超電導導体の製造方法。
  8.  芯と、前記芯の外周に形成された安定化層とを有する心材と、
     前記心材の前記安定化層の外周に配された複数の超電導線材とを有し、
     前記芯は前記安定化層よりも高強度の材料からなり、前記複数の超電導線材は安定化層を介して一体化されている超電導導体。
  9.  前記超電導線材は、超電導成膜用基板と前記超電導成膜用基板の一方の主面に形成された超電導層とを有し、
     前記超電導線材は、少なくとも前記超電導成膜用基板の他方の主面が連結用基板の一方の面に接続されており、
     前記安定化層は前記連結用基板の他方の面と接するように形成されている請求項8に記載の超電導導体。
  10.  前記複数の超電導線材は長手方向の端面を除く全面が銅又は銅合金によって覆われており、
     前記安定化層は銅又は銅合金からなる請求項8に記載の超電導導体。
PCT/JP2014/052639 2013-03-15 2014-02-05 超電導導体の製造方法及び超電導導体 WO2014141777A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14763183.2A EP2955727B1 (en) 2013-03-15 2014-02-05 Method for manufacturing superconducting conductor and superconducting conductor
CN201480012006.9A CN105009228B (zh) 2013-03-15 2014-02-05 超导导体的制造方法和超导导体
US14/775,614 US10096403B2 (en) 2013-03-15 2014-02-05 Method for producing superconductive conductor and superconductive conductor
KR1020177033767A KR101992043B1 (ko) 2013-03-15 2014-02-05 초전도 도체의 제조 방법 및 초전도 도체
KR1020157024181A KR101803161B1 (ko) 2013-03-15 2014-02-05 초전도 도체의 제조 방법 및 초전도 도체
JP2015505319A JP6499072B2 (ja) 2013-03-15 2014-02-05 超電導導体の製造方法及び超電導導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-053512 2013-03-15
JP2013053512 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141777A1 true WO2014141777A1 (ja) 2014-09-18

Family

ID=51536453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052639 WO2014141777A1 (ja) 2013-03-15 2014-02-05 超電導導体の製造方法及び超電導導体

Country Status (6)

Country Link
US (1) US10096403B2 (ja)
EP (1) EP2955727B1 (ja)
JP (1) JP6499072B2 (ja)
KR (2) KR101992043B1 (ja)
CN (1) CN105009228B (ja)
WO (1) WO2014141777A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3411884A4 (en) 2016-01-21 2020-04-01 Brookhaven Technology Group, Inc. SECOND-GENERATION SUPRAL-CONDUCTING FILAMENTS AND CABLES
JP6868305B2 (ja) 2016-09-07 2021-05-12 ブルックヘイブン テクノロジー グループ, インコーポレイテッド リールツーリール剥離及び第2世代超伝導体の加工
WO2018150457A1 (ja) * 2017-02-14 2018-08-23 住友電気工業株式会社 超電導線材及び超電導コイル
EP3635754A4 (en) 2017-06-09 2021-02-24 Brookhaven Technology Group, Inc. MULTI-FILAMENT HIGH TEMPERATURE FLEXIBLE SUPPRACONDUCTOR CABLE
CN108257729A (zh) * 2017-12-13 2018-07-06 无锡友方电工股份有限公司 磁共振磁体mri月牙形超导基体、超导线及制造方法
JP2021013274A (ja) * 2019-07-09 2021-02-04 矢崎総業株式会社 ワイヤハーネスのパネル配索構造、ハーネスモジュール、及びワイヤハーネスのパネル配索方法
WO2023232975A1 (en) * 2022-06-02 2023-12-07 Subra A/S Plurality of superconducting filaments
CN117476286B (zh) * 2023-12-27 2024-04-02 西安聚能超导线材科技有限公司 一种高临界电流密度NbTi超导线材的制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465722A (en) * 1987-09-04 1989-03-13 Fujikura Ltd Manufacture of superconductive multi-core wire
JPH01130421A (ja) * 1987-11-16 1989-05-23 Matsushita Electric Ind Co Ltd 超伝導配線
JPH0261910A (ja) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd 超電導物質線材およびその製造方法
JPH04264315A (ja) * 1991-02-20 1992-09-21 Furukawa Electric Co Ltd:The 大容量酸化物超電導導体の製造方法
JPH0668727A (ja) 1992-08-19 1994-03-11 Sumitomo Electric Ind Ltd 超電導線の製造方法
JPH06325629A (ja) * 1993-05-10 1994-11-25 Fujikura Ltd 酸化物超電導導体とその製造方法およびそれを備えた酸化物超電導電力ケーブル
JPH1074988A (ja) * 1996-08-30 1998-03-17 Fujitsu Ltd 超伝導細線の形成方法
JP2007087734A (ja) * 2005-09-21 2007-04-05 Sumitomo Electric Ind Ltd 超電導テープ線材の製造方法、超電導テープ線材、および超電導機器
JP2007141688A (ja) 2005-11-18 2007-06-07 Railway Technical Res Inst 低交流損失酸化物超電導導体及びその製造方法
JP2007188844A (ja) * 2006-01-16 2007-07-26 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2008220102A (ja) * 2007-03-06 2008-09-18 Sumitomo Electric Ind Ltd 超電導ケーブルの端末構造
JP2008226624A (ja) * 2007-03-12 2008-09-25 Sumitomo Electric Ind Ltd 超電導ケーブル、および超電導ケーブルの接続部
JP2009048792A (ja) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2009110668A (ja) 2007-10-26 2009-05-21 Furukawa Electric Co Ltd:The 超電導ワイヤーおよび超電導導体
JP2009151993A (ja) 2007-12-19 2009-07-09 Sumitomo Electric Ind Ltd 超電導線材、超電導線材の製造方法、超電導導体の製造方法、超電導機器の製造方法および超電導線材の製造装置
JP2010135295A (ja) 2008-12-03 2010-06-17 Korea Electrotechnology Research Inst 超伝導薄膜線材を用いた円形ワイヤの製造方法および超伝導薄膜線材を用いた円形ワイヤ
WO2011163343A2 (en) * 2010-06-24 2011-12-29 University Of Houston System Multifilament superconductor having reduced ac losses and method for forming the same
WO2013018870A1 (ja) * 2011-08-02 2013-02-07 古河電気工業株式会社 超電導導体の製造方法、超電導導体および超電導導体用基板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1222624A (en) * 1968-04-11 1971-02-17 Mullard Ltd Josephson junctions
DE3405310A1 (de) * 1984-02-15 1985-08-22 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Supraleitendes magnetsystem fuer den betrieb bei 13k
DE4006094A1 (de) * 1990-02-27 1991-08-29 Kabelmetal Electro Gmbh Hochtemperatursupraleiter aus einem gewellten metallrohr
US7816303B2 (en) * 2004-10-01 2010-10-19 American Superconductor Corporation Architecture for high temperature superconductor wire

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465722A (en) * 1987-09-04 1989-03-13 Fujikura Ltd Manufacture of superconductive multi-core wire
JPH01130421A (ja) * 1987-11-16 1989-05-23 Matsushita Electric Ind Co Ltd 超伝導配線
JPH0261910A (ja) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd 超電導物質線材およびその製造方法
JPH04264315A (ja) * 1991-02-20 1992-09-21 Furukawa Electric Co Ltd:The 大容量酸化物超電導導体の製造方法
JPH0668727A (ja) 1992-08-19 1994-03-11 Sumitomo Electric Ind Ltd 超電導線の製造方法
JPH06325629A (ja) * 1993-05-10 1994-11-25 Fujikura Ltd 酸化物超電導導体とその製造方法およびそれを備えた酸化物超電導電力ケーブル
JPH1074988A (ja) * 1996-08-30 1998-03-17 Fujitsu Ltd 超伝導細線の形成方法
JP2007087734A (ja) * 2005-09-21 2007-04-05 Sumitomo Electric Ind Ltd 超電導テープ線材の製造方法、超電導テープ線材、および超電導機器
JP2007141688A (ja) 2005-11-18 2007-06-07 Railway Technical Res Inst 低交流損失酸化物超電導導体及びその製造方法
JP2007188844A (ja) * 2006-01-16 2007-07-26 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2008220102A (ja) * 2007-03-06 2008-09-18 Sumitomo Electric Ind Ltd 超電導ケーブルの端末構造
JP2008226624A (ja) * 2007-03-12 2008-09-25 Sumitomo Electric Ind Ltd 超電導ケーブル、および超電導ケーブルの接続部
JP2009048792A (ja) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2009110668A (ja) 2007-10-26 2009-05-21 Furukawa Electric Co Ltd:The 超電導ワイヤーおよび超電導導体
JP2009151993A (ja) 2007-12-19 2009-07-09 Sumitomo Electric Ind Ltd 超電導線材、超電導線材の製造方法、超電導導体の製造方法、超電導機器の製造方法および超電導線材の製造装置
JP2010135295A (ja) 2008-12-03 2010-06-17 Korea Electrotechnology Research Inst 超伝導薄膜線材を用いた円形ワイヤの製造方法および超伝導薄膜線材を用いた円形ワイヤ
WO2011163343A2 (en) * 2010-06-24 2011-12-29 University Of Houston System Multifilament superconductor having reduced ac losses and method for forming the same
WO2013018870A1 (ja) * 2011-08-02 2013-02-07 古河電気工業株式会社 超電導導体の製造方法、超電導導体および超電導導体用基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955727A4

Also Published As

Publication number Publication date
EP2955727B1 (en) 2019-04-10
CN105009228A (zh) 2015-10-28
EP2955727A4 (en) 2016-05-11
KR20150132132A (ko) 2015-11-25
US20160027555A1 (en) 2016-01-28
CN105009228B (zh) 2017-10-13
JPWO2014141777A1 (ja) 2017-02-16
JP6499072B2 (ja) 2019-04-10
KR101992043B1 (ko) 2019-06-21
KR20170132897A (ko) 2017-12-04
EP2955727A1 (en) 2015-12-16
KR101803161B1 (ko) 2017-11-29
US10096403B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2014141777A1 (ja) 超電導導体の製造方法及び超電導導体
JP6062248B2 (ja) 超電導導体の製造方法、および超電導導体
KR101419331B1 (ko) 감소된 교류 손실들을 갖는 다중필라멘트 초전도체 및 그 형성 방법
EP1788641B1 (en) Low alternating-current loss oxide superconductor and fabricating method thereof
JP4268645B2 (ja) 希土類系テープ状酸化物超電導体及びそれに用いる複合基板
CN110770925B (zh) 提高工程电流密度的高温超导导线
JP2023508619A (ja) 超電導線材の製造方法
JP6688914B1 (ja) 酸化物超電導線材及び超電導コイル
JP5405069B2 (ja) テープ状酸化物超電導体及びそれに用いる基板
JP5393267B2 (ja) 超電導線材の製造方法
WO2021205495A1 (ja) 酸化物超電導線材及び超電導コイル
JP6131176B2 (ja) 酸化物超電導線材の製造方法
US20230274858A1 (en) Superconductor wire including superconductor tape strands and a superconductor cable including superconducting wires
JP6724125B2 (ja) 酸化物超電導線材及びその製造方法
JP2010282892A (ja) 超電導線材
KR20150017415A (ko) 초전도 선재의 외곽 피복 구조
JP2012018870A (ja) 酸化物超電導導体用基材と該基材を備えた酸化物超電導導体およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505319

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157024181

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014763183

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14775614

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE