WO2014141350A1 - Ad変換器 - Google Patents
Ad変換器 Download PDFInfo
- Publication number
- WO2014141350A1 WO2014141350A1 PCT/JP2013/007655 JP2013007655W WO2014141350A1 WO 2014141350 A1 WO2014141350 A1 WO 2014141350A1 JP 2013007655 W JP2013007655 W JP 2013007655W WO 2014141350 A1 WO2014141350 A1 WO 2014141350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- output
- conversion
- switch
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
- H03M1/069—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
- H03M1/0695—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/144—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in a single stage, i.e. recirculation type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
- H03M3/46—Analogue/digital converters using delta-sigma modulation as an intermediate step using a combination of at least one delta-sigma modulator in series with at least one analogue/digital converter of a different type
Definitions
- the present disclosure relates to an AD (analog-to-digital) converter having improved differential nonlinearity (DNL).
- AD analog-to-digital
- multifunctional mobile terminals are required to be miniaturized in order to improve portability. For this purpose, it is necessary to reduce the size of integrated circuits and sensor elements incorporated in multifunction terminals.
- the integrated circuit includes an AD converter that converts the output signal of the sensor element into a digital signal, it is necessary to realize the AD converter that occupies the main area of the integrated circuit with a small area.
- the AD converter is also required to have high accuracy.
- 16 (a) to 16 (d) are diagrams showing output waveforms of a conventional lower-bit AD converter.
- a missing code is generated at the switching point of the upper bits output from the delta sigma type AD converter.
- the missing code is a phenomenon in which a part of a digital code (symbol) corresponding to an analog input is not output. In other words, if the differential nonlinearity is ⁇ 1 LSB or more based on LSB (least significant bit), the phenomenon that the output code does not exist is caused.
- the AD converter is required not to generate a missing code, but it has been difficult to suppress the occurrence of the missing code.
- This disclosure solves the above-described problems, and an object thereof is to provide an AD converter that improves the linearity of an output signal.
- Means taken by the AD converter of the present disclosure are: 1) an AD converter including an analog accumulation circuit, an AD converter, and a DA (digital-to-analog) converter, which provides an analog signal to A first AD converter for obtaining a first conversion result; and 2) an AD converter comprising an analog accumulator circuit, an AD converter and a DA converter, and providing a residual signal excluding the upper bits, A second AD converter that performs a first conversion process and a second conversion process to obtain a second conversion result of lower bits; and 3) calculates the first conversion result and the second conversion result. And 4) a gain of the analog accumulation circuit in the first conversion process, and a gain of the analog accumulation circuit in the second conversion process. Are different.
- AD converter of the present disclosure is 1) a) an input terminal for supplying an analog signal, b) a first analog accumulation circuit having a first gain, and c) a first numerical value.
- a first bit data AD converter for outputting the bit data; d) a DA converter; and e) a difference circuit for outputting a difference signal between the signal of the input terminal and the output signal of the DA converter.
- the second analog accumulator circuit includes: It is assumed that the first gain is the first gain in the first conversion process and the second gain is different from the first gain in the second conversion process.
- AD converter of the present disclosure is 1) a) an input terminal for supplying an analog signal, b) a first analog accumulation circuit having a first gain, and c) a first numerical value. 1) a first bit data AD converter that outputs the bit data; d) a DA converter; and e) a difference circuit that outputs a difference signal between the signal of the input terminal and the output signal of the DA converter.
- a first AD converter that forms a loop with at least two and provides the analog input signal to obtain a first conversion result of the upper bits, 2) a) an input terminal that provides an analog signal, and b) a third A second analog accumulator circuit capable of selecting a gain and a second gain; c) a second bit data AD converter for outputting bit data of a second numerical value; d) a DA converter; and e) the input.
- An AD converter comprising: a second AD converter that performs a first conversion process and a second conversion process and obtains a second conversion result of lower bits; 3) the second analog accumulation It is assumed that the circuit is the third gain in the first conversion process and the second gain different from the third gain in the second conversion process.
- AD converter of the present disclosure is 1) a) an input terminal for supplying an analog signal, b) a first analog accumulation circuit having a first gain, and c) a first numerical value.
- a first bit data AD converter for outputting the bit data; d) a DA converter; and e) a difference circuit for outputting a difference signal between the signal of the input terminal and the output signal of the DA converter.
- a first AD converter which forms a loop and gives an analog signal to obtain a first conversion result of upper bits; 2) a) the input terminal; b) the DA converter; c) the difference circuit And a second analog accumulator circuit capable of selecting a gain, and d) a second bit data AD converter that outputs bit data of a second numerical value to form a loop, and the analog signal
- the residual signal obtained by removing the upper bits from And a second AD converter that performs a first conversion process and a second conversion process to obtain a second conversion result of lower bits, and 3) the second analog accumulation circuit includes the second analog accumulation circuit
- integration is performed with a first gain
- the second conversion process integration is performed with a second gain different from the first gain.
- the AD converter according to the present disclosure is effective for AD conversion with excellent linearity that suppresses occurrence of missing codes.
- Embodiment 1 concerning an AD converter of this indication.
- A) And (b) is the figure which showed the conversion flow and bit position of Embodiment 1 which concern on the AD converter of this indication.
- A), (b) and (c) is the figure which showed the structure of each conversion mode of Embodiment 1 which concerns on the AD converter of this indication.
- (A), (b), (c) and (d) are the figures which showed the input voltage and output code of Embodiment 1 which concern on the AD converter of this indication.
- FIG. 6 is a circuit diagram illustrating a fourth embodiment according to an AD converter of the present disclosure. It is the figure which showed Embodiment 5 which concerns on the AD converter of this indication. It is the figure which showed Embodiment 6 which concerns on the AD converter of this indication.
- (A) And (b) is the figure which showed the conversion flow and bit position of Embodiment 6 which concern on the AD converter of this indication. It is the figure which showed Embodiment 6 concerning the AD converter of this indication concretely. It is the figure which showed Embodiment 7 which concerns on the AD converter of this indication. It is the figure which showed Embodiment 8 which concerns on the AD converter of this indication. It is the figure which showed Embodiment 9 which concerns on the AD converter of this indication.
- (A), (b), (c), and (d) are the figures which showed the output waveform of the conventional AD converter for lower bits.
- FIG. 1 is a diagram illustrating a first embodiment of an AD converter according to the present disclosure.
- a signal is given to the input terminal 1, and the conversion result is outputted to the output terminals 5, 7 and 9.
- These output terminals 5, 7, and 9 are described as separate terminals, but one output terminal can also be a terminal for each elapse of time for each processing result.
- the analog input signal Ain at the input terminal 1 is given to the delta sigma AD converter 2, and 1-bit delta sigma AD conversion processing is performed.
- the quantized signal Dout1 is output by the conversion process cycle.
- the quantized signal Dout1 is given to the shift register 3 and subjected to shift processing.
- the signal subjected to the shift process is given to the digital accumulator circuit 4 and the digitally integrated signal is outputted to the output terminal 5 as the upper bit signal DSBIT.
- the upper bit is set to 2 bits, delta-sigma AD conversion is performed for 4 cycles.
- the delta sigma AD converter 2 When the upper bit signal DSBIT is obtained, the delta sigma AD converter 2 outputs a residual signal Vrsd1 which is an analog residual signal of the upper bits.
- the residual signal Vrsd1 is supplied to the first cyclic AD converter 6, and 1.5-bit cyclic AD conversion processing is performed.
- the first cyclic AD converter 6 outputs a quantized signal Dout2.
- the amplification degree 1 is set in the first cyclic AD converter 6.
- the quantized signal Dout2 is given to the shift register 3 and subjected to shift processing.
- the shift-processed signal is given to the digital accumulating circuit 4 and an upper bit and lower bit overlap bit signal CYBIT1 is output to the output terminal 7.
- the residual signal Vrsd2 obtained by extracting the overlap bit signal CYBIT1 from the first cyclic AD converter 6 is given to the second cyclic AD converter 8, and cyclic AD conversion processing is performed.
- the amplification degree 2 is set in the second cyclic AD converter 8.
- the quantized signal Dout3 is output every cycle.
- the quantized signal Dout3 is given to the shift register 3 and subjected to shift processing.
- the shift-processed signal is given to the digital accumulator circuit 4 and the lower bit signal CYBIT2 is output to the output terminal 9.
- the second cyclic AD conversion is performed for 4 cycles.
- FIG. 2A is a diagram illustrating a conversion flow of the AD converter according to the first embodiment
- FIG. 2B illustrates a bit position (depth) of the digital data according to the first embodiment.
- the AD converter according to the present disclosure performs conversion by switching between three operation states (modes).
- the first mode is a delta sigma conversion mode 20 that performs delta sigma AD conversion
- the second mode is a 1 ⁇ gain cyclic conversion mode 21 that performs cyclic AD conversion at 1 ⁇ gain
- This mode is a double gain cyclic conversion mode 22 in which cyclic AD conversion with double gain is performed.
- the conversion result of the upper bits can be obtained.
- the upper bits are DSBIT bits
- DSBIT conversion results are arranged from the MSB (most significant bit) of the bit array toward the LSB.
- the conversion result of the lower bit CYBIT can be obtained.
- the output digital signals of the conversion results of these modes are added in the adding step 23 to obtain the final AD conversion result.
- this addition need not be performed after all conversion modes have been completed.
- the 1.5 bits obtained in the 1 ⁇ gain cyclic conversion mode 21 are the bits located at the least significant bit from the MSB to the LSB of the upper bit signal DSBIT and the 2 ⁇ gain cyclic conversion mode 22.
- the conversion result overlaps with the bit located at the most significant bit of the lower-order bit signal CYBIT to be output, and the overlap is realized.
- FIG. 3A is a block diagram showing the configuration of the AD converter in the delta-sigma conversion mode
- FIG. 3B is a block diagram showing the configuration of the AD converter in the 1 ⁇ gain cyclic conversion mode
- FIG. 3C is a block diagram showing the configuration of the AD converter in the double gain cyclic conversion mode.
- an analog signal Ain is input from the input terminal 1 and applied to the subtractor 31.
- the output signal of the subtracter 31 is held by the sample hold circuit 32.
- the held signal is supplied to the amplifier 33 and amplified with a gain of 1.
- the signal output from the amplifier 33 is fed back to the subtractor 31 to constitute a 1 ⁇ gain analog accumulating circuit 41.
- the output signal of the amplifier 33 is supplied to the Sub-AD converter 34, 1-bit AD conversion is performed, and a binary digital signal “+1” or “ ⁇ 1” is output.
- the digital signal output from the Sub-AD converter 34 is supplied to the Sub-DA converter 35, and 1-bit DA conversion is performed using the reference voltages + Vref and -Vref.
- the output of the Sub-DA converter 35 is given to one of the subtracters 31, and a difference signal obtained from the difference from the analog input signal Ain is output from the subtractor 31.
- the shift register 36 shifts the output digital signal of the Sub-AD converter 34 from the MSB to the LSB by (DSBIT-1) in synchronization with a clock signal (not shown) given from the outside (hereinafter referred to as “DSB-1”). , Written as “right shift”).
- DSBIT is 2 bits, as shown in FIG. 2B, it is shifted right by one bit toward LSB.
- the digital accumulation circuit 37 accumulates the output digital signal of the shift register 36.
- the digital integration for example, 1-bit digital data that is input one after another is accumulated and output.
- the above operation is set as one cycle, and a cycle of 2nd power of DSBIT is repeated to obtain DSBIT which is an upper bit at the output terminal 100.
- ⁇ 1x gain cyclic conversion mode >> In the 1 ⁇ gain cyclic conversion mode of FIG. 3B, since the input signal is zero, the sample hold circuit 32 holds the difference between the output of the amplifier 33 and the output of the Sub-DA converter 35. The held signal is supplied to the amplifier 33 and amplified with a gain of 1. The signal output from the amplifier 33 is fed back to the subtractor 31 to constitute a 1 ⁇ gain analog accumulating circuit 41.
- the Sub-AD converter 39 performs 1.5-bit AD conversion on the output analog signal of the gain 1 ⁇ amplifier 33. Further, the Sub-DA converter 35 performs 1.5-bit DA conversion on the output digital signal of the Sub-AD converter 39.
- the subtractor 31, the sample hold circuit 32, the amplifier 33, the Sub-AD converter 39, and the Sub-DA converter 35 form a closed loop of the 1 ⁇ gain cyclic conversion mode.
- the shift register 36 right-shifts the output digital signal of the Sub-AD converter 39 by (DSBIT-1).
- the digital accumulation circuit 37 digitally integrates the output digital signal from the shift register 36.
- the initial shift amount in the following double gain cyclic conversion mode is larger by 1 than the shift amount (DSBIT-1) in the single gain cyclic conversion mode.
- the sample hold circuit 32 holds the difference between the output of the amplifier 33 of 2 ⁇ gain and the output of the Sub-DA converter 35.
- the amplifier 33 having a gain of 2 doubles the output analog signal of the sample hold circuit 32.
- the signal output from the amplifier 33 is fed back to the subtractor 31 to constitute a double gain analog accumulating circuit 42.
- the Sub-AD converter 39 performs 1.5-bit AD conversion on the output analog signal of the amplifier 33 having a double gain.
- the shift register 36 is the number obtained by adding the output digital signal of the Sub-AD converter 39 to (DSBIT-1) and the current cycle number of the double gain cyclic conversion mode. Just shift right.
- the digital accumulator circuit 37 digitally integrates the output digital signal from the shift register 36. In the 2 ⁇ gain cyclic conversion mode, the above operation is set as one cycle, and (CYBIT) cycles are repeated to obtain CYBIT as a lower bit at the output terminal 100.
- FIG. 4 (a) is a diagram showing the upper bits when 2-bit delta-sigma conversion is performed.
- FIG. 4B is a diagram showing the residual voltage of the integrator after performing 2-bit delta-sigma conversion.
- FIG. 4C is a diagram showing a cyclic conversion output code obtained as a result of performing cyclic conversion on the residual voltage.
- FIG. 4 (d) shows the input voltage and the output code when the 6-bit AD conversion is performed by performing the processing by 2-bit delta-sigma conversion and the total 5-bit cyclic conversion including overlap. Showing the relationship.
- conversion can be performed without using the code (MSB, LSB) at the end of the conventional cyclic conversion. For this reason, the conventional missing codes shown in FIGS. 16A to 16D are not generated.
- FIG. 5 is a diagram illustrating the second embodiment of the AD converter according to the present disclosure.
- a control (cycle) counter 51 counts the number of cycles of a clock (not shown) given from the outside from the start of conversion.
- the controller 52 controls each component of the AD converter based on the count output of the cycle counter 51.
- the controller 52 performs conversion by switching to the first mode, the second mode, and the third mode.
- the switch 15 is connected to the input terminal 1, and the analog input signal Ain of the input terminal 1 is given to the subtractor 31.
- the output signal of the subtracter 31 is given to the sample hold circuit 32 and is held by the sample hold circuit 32.
- the held signal is given to the amplifier 33 via the switch 16 and amplified by a gain of 1. Note that the signal output from the amplifier 33 is fed back to the subtractor 31, so that the analog accumulating circuit 40 constitutes an analog accumulating circuit of 1 ⁇ gain.
- the output signal of the amplifier 33 is supplied to the Sub-AD converter 34 that performs 1-bit AD conversion via the switch 17 and the switch 18.
- the Sub-AD converter 34 outputs a binary digital signal.
- the binary signal is “+1” or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 34 via the switch 19 is given to the Sub-DA converter 35, and the Sub-DA converter 35 performs 1-bit DA conversion.
- a closed loop is formed by the subtractor 31, the sample hold circuit 32, the amplifier 33, the Sub-AD converter 34, and the Sub-DA converter 35.
- the shift register 56 right-shifts the output digital signal of the Sub-AD converter 34 by (DSBIT-1) in synchronization with a clock signal (not shown) given from the outside.
- DSBIT When DSBIT is 2 bits, as shown in FIG. 2B, it is shifted right by one bit toward the LSB.
- the digital accumulator circuit 57 integrates the output digital signal from the shift register 56.
- the above operation is taken as one cycle, and a cycle of 2 to the DSBIT power is repeated, thereby obtaining DSBIT which is the upper bit.
- ⁇ 1x gain cyclic conversion mode The switch 15 is connected to the input terminal 10. Since the input signal at the input terminal 10 is zero, the sample hold circuit 32 holds the difference between the output of the amplifier 33 and the output of the Sub-DA converter 35. The held signal is given to the amplifier 33 via the switch 16 and amplified by a gain of 1. Note that the signal output from the amplifier 33 is fed back to the subtractor 31, so that the analog accumulating circuit 40 constitutes an analog accumulating circuit of 1 ⁇ gain.
- the output signal of the amplifier 33 is supplied to the Sub-AD converter 39 that performs 1.5-bit AD conversion via the switches 17 and 18.
- a ternary digital signal is output from the Sub-AD converter 39.
- the ternary signal is “+1”, “0”, or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 39 is given to the Sub-DA converter 35.
- the Sub-DA converter 35 performs 1.5-bit DA conversion.
- the shift register 56 shifts the output digital signal of the Sub-AD converter 39 to the right by (DSBIT-1).
- the digital accumulation circuit 57 digitally integrates the output digital signal from the shift register 56.
- the initial shift amount in the double gain cyclic conversion mode is DSBIT larger by one than the shift amount (DSBIT-1) in the single gain cyclic conversion mode.
- the switch 15 is connected to the input terminal 10. Since the input signal is zero, the sample and hold circuit 32 holds the difference between the output of the amplifier 38 and the output of the Sub-DA converter 35. The held signal is supplied to the amplifier 38 via the switch 16 and amplified by a gain of 2. The signal output from the amplifier 38 is fed back to the subtractor 31, thereby constituting an analog accumulator circuit with a double gain in the analog accumulator circuit 40.
- the output signal of the amplifier 38 is supplied to the Sub-AD converter 39 that performs 1.5-bit AD conversion via the switches 17 and 18.
- the Sub-AD converter 39 outputs a ternary digital signal.
- the ternary signal is “+1”, “0”, or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 39 is given to the Sub-DA converter 35.
- the Sub-DA converter 35 performs 1.5-bit DA conversion.
- the shift register 56 shifts the output digital signal of the Sub-AD converter 39 to the right by the number obtained by adding (DSBIT-1) to the current cycle number of the double gain cyclic conversion mode.
- the digital accumulator circuit 57 digitally integrates the output digital signal from the shift register 56.
- the above operation is set as one cycle, and (CYBIT) cycles are repeated to obtain CYBIT as a lower bit.
- FIG. 6 is a diagram illustrating each process related to the conversion of the AD converter according to the present disclosure.
- the AD converter according to the present disclosure performs conversion in the first mode, the second mode, and the third mode.
- Each mode corresponds to, for example, modes 20 to 22 in FIG.
- the first mode corresponds to the delta-sigma conversion mode 20
- the second mode corresponds to the 1 ⁇ gain cyclic conversion mode 21
- the third mode corresponds to the 2 ⁇ gain cyclic conversion mode 22.
- the first mode is disclosed by FIG. 3 (a)
- the second mode is disclosed by FIG. 3 (b)
- the third mode is disclosed by FIG. 3 (c).
- first mode, the second mode, and the third mode are realized, for example, by switching the switch 15 to the switch 19 in FIG.
- ⁇ Reset process ⁇ Conversion start starts from the reset process.
- the reset process 60 in FIG. 6 starts when the cycle counter 51, the sample hold circuit 32, the Sub-AD converters 34 and 39, and the digital accumulation circuit 57 are reset in FIG.
- the output of the control counter 51 is CT (n)
- the output of the sample hold circuit 32 is Ai (n)
- the output of the Sub-DA converter 35 is DAout (n ) If the output of the digital accumulation circuit 57 is Di (n), the value of n is 0 at reset.
- the first mode 20 includes a first counting step 61, a first conversion step 62, a second conversion step 63, and a first determination step 64.
- ADout (n) + 1 if Ai (n)> 0 -1 if Ai (n) ⁇ 0 It is.
- Di (n) Di (n-1) + ADout (n) / 2 ⁇ (DSBIT-1) It is.
- 2 ⁇ (DSBIT-1) means 2 to the power of (DSBIT-1).
- the first determination step 64 it is determined whether or not the control counter output CT (n) is a value of 2 to the DSBIT power. If YES, the process proceeds to the next mode, and if NO, the control counter 51 is updated. Then, the first conversion process 62, the second conversion process 63, and the first determination process 64 are repeated.
- the second mode 21 includes a second count process 161, a third conversion process 162, and a fourth conversion process 163.
- the third mode 22 includes a third counting step 261, a fifth conversion step 262, a sixth conversion step 263, and a second determination step 264.
- ADout (n) + 1 if Ai (n)> Vref / 4 -1 if Ai (n) ⁇ -Vref / 4 0 else Get.
- ⁇ is the number of repetitions in the third mode 22.
- each process is repeated CYBIT times.
- FIG. 7 is a circuit diagram illustrating Embodiment 3 according to the AD converter of the present disclosure.
- an analog accumulator circuit and an amplifier having a gain of 2 are realized by an analog accumulator circuit 71 having an amplification function.
- the analog accumulating circuit 71 includes switches 213 to 217, capacitive elements 304 and 305, and an operational amplifier 77.
- the AD converter of FIG. 7 further includes switches 201 to 204 and a capacitive element 301 between the input terminal 1 and the operational amplifier 77.
- the Sub-AD converter 72 includes switches 218 to 227, capacitive elements 306 to 309, and comparators 78 and 79 connected to the output terminals 12 and 13.
- the AD converter of FIG. 7 further includes a switch 73 and a determination circuit 74.
- the Sub-DA converter 76 includes switches 205 to 212 and capacitive elements 302 and 303.
- first reference voltage VCOM in FIG. 7 is lower than the second reference voltage VREF.
- the capacitance values of the capacitive element 304 and the capacitive element 305 are equal.
- the operational amplifier 77 sets the switches 213 and 216 to on and sets the switches 214 and 215 to off in order to set the gain to 1.
- the output of the output terminal 12 and the output of the output terminal 13 are individually given to the determination circuit 74, and each switch of the Sub-DA converter 76 is controlled according to the determined result. In the delta-sigma conversion mode, the path from the output terminal 13 to the determination circuit 74 is blocked by the switch 73.
- the analog input signal Ain input from the input terminal 1 is charged to the capacitor 301 with the switch 201 and the switch 203 turned on, with the first reference voltage VCOM as a reference.
- the switch 201 and the switch 203 are turned off, and the switch 202 and the switch 204 are turned on, so that the capacitor 301, the capacitor 304, and the capacitor 305 are connected with respect to the first reference voltage VCOM.
- It is integrated by the operational amplifier 77 using the charge / discharge at.
- the operational amplifier 77 since one input terminal of the operational amplifier 77 is connected to the first reference voltage VCOM, the other input terminal is virtually grounded.
- both ends of the capacitive element 301 become the first reference voltage VCOM, the charge of the capacitive element 301 moves to the capacitive element 305.
- the charge of the capacitor 306 is reset when the switch 219 and the switch 226 are turned on.
- the switch 219 and the switch 226 are turned off and the switch 218 is turned on, so that the positive input voltage of the comparator 78 becomes equal to the output voltage of the operational amplifier 77.
- 1-bit AD conversion is performed using the first reference voltage VCOM that is the negative input voltage of the comparator 78 as a threshold value.
- the Sub-DA converter 76 is controlled by the determination circuit 74 as follows.
- the switches 213 and 216 are set to ON, and the switches 214 and 215 are set to OFF.
- the switch 219, the switch 221, and the switch 226 when the switch 219, the switch 221, and the switch 226 are turned on, the charges of the capacitor 306 and the capacitor 307 are reset. Next, the switch 219, the switch 221, and the switch 226 are turned off, and the switch 218 and the switch 220 are turned on, whereby the positive input voltage of the comparator 78 is determined.
- charge redistribution is performed between the capacitive element 306 and the capacitive element 307 with reference to the output voltage of the operational amplifier 77 and the second reference voltage VREF.
- the threshold value of the comparator 78 is VCOM ⁇ (VREF ⁇ VCOM) ⁇ C7 / (C6 + C7).
- the switch 223, the switch 225, and the switch 227 are turned on, so that the charge of the capacitor 308 is reset, and the capacitor 309 is charged with a differential voltage between VREF and VCOM.
- the switch 223, the switch 225, and the switch 227 are turned off, and the switch 222 and the switch 224 are turned on, whereby the positive input voltage of the comparator 79 is determined.
- charge redistribution is performed between the capacitive element 308 and the capacitive element 309 with reference to the output voltage of the operational amplifier 77 and the first reference voltage VCOM.
- the positive input voltage of the comparator 79 is VCOM ⁇ when the capacitance value of the capacitor 308 is C8 and the capacitance value of the capacitor 309 is C9.
- VCOM positive input voltage
- the negative input voltage is VCOM.
- the threshold value of the comparator 79 being VCOM + (VREF ⁇ VCOM) ⁇ C9 / (C8 + C9).
- the sub-AD converter 72 performs 1.5-bit AD conversion.
- the output of the output terminal 12 and the output of the output terminal 13 are individually given to the determination circuit 74, and each switch of the Sub-DA converter 76 is controlled according to the determined result.
- the Sub-DA converter 76 is controlled by the determination circuit 74 as follows.
- the switch 206 and the switch 208 are turned on, the positive charge accumulated in the capacitor 302 due to the difference voltage between the second reference voltage VREF and the first reference voltage VCOM is determined with reference to VCOM. Then, integration is performed by the operational amplifier 77 using charge / discharge between the capacitor 302, the capacitor 304, and the capacitor 305.
- the output voltage of the operational amplifier 77 is charged to the capacitor element 304 with reference to VCOM.
- the switch 213 and the switch 215 are turned on, the output voltage of the operational amplifier 77 is accumulated by the operational amplifier 77.
- charging / discharging between the capacitor 304 and the capacitor 305 is used for accumulation based on the first reference voltage VCOM.
- the output voltage of the operational amplifier 77 is amplified by a factor of two.
- the Sub-AD converter 72 and the Sub-DA converter 76 operate in the same manner as in the 1 ⁇ gain cyclic conversion mode.
- the values C2 and C3 of the capacitors 302 and 303 are 1/2 times the values C1 of the capacitor 301, and the values C4 and C5 of the capacitors 304 and 305 are set to be 1 times the capacitance value.
- the value C8 of the capacitor 308 is configured to be 1 times the value C6 of the capacitor 306, and the value C7 of the capacitor 307 and the value C9 of the capacitor 309 are configured to be 1/8 times the capacitance value. desirable.
- C1 may be configured as a capacitance value that is 1 ⁇ 2 times the above.
- the values C2, C3, C7, and C9 of the capacitive elements 302, 303, 307, and 309 are configured with the above-described doubled capacitance value. May be.
- FIG. 8 is a diagram illustrating the fourth embodiment of the AD converter according to the present disclosure. As shown in FIG. 8, it is possible to reduce the influence of power supply noise and the like by using the AD converter in a differential manner.
- the input terminal 1 that receives the positive analog input signal Ainp is connected to the circuit of the switches 201 to 204 and the capacitive element 301.
- An input terminal 11 that receives a negative analog input signal Ainn is connected to a circuit of switches 1201 to 1204 and a capacitor element 1301.
- the analog accumulation function and the amplification function with a gain of 2 are realized by an analog accumulation circuit 81 having an amplification function.
- the analog accumulation circuit 81 includes switches 213 to 217, capacitive elements 304 and 305, and an operational amplifier 77 between the non-inverting input terminal and the inverting output terminal of the operational amplifier 77. Further, between the inverting input terminal and the non-inverting output terminal of the operational amplifier 77, switches 1213 to 1217, capacitive elements 1304 and 1305, and the operational amplifier 77 are configured.
- the Sub-AD converter 82 takes in the output of the inverting input terminal of the operational amplifier 77 through the switches 218 to 227, the capacitive elements 306 to 309, the positive input terminal of the comparator 78, and the positive input terminal of the comparator 79. Further, the non-inverting input terminal output of the operational amplifier 77 is taken in by the switches 1218 to 1227, the capacitive elements 1306 to 1309, the negative input terminal of the comparator 78, and the negative input terminal of the comparator 79.
- the AD converter further includes a shift register 56 that receives the output signals of the comparators 78 and 79, a switch 83, and a determination circuit 84.
- the Sub-DA converter 86 includes switches 205 to 212, switches 1208 and 1212, and capacitive elements 302 and 303.
- first reference voltage VCOM in FIG. 8 is lower than the second reference voltage VREF.
- the capacitance values of the capacitive element 304 and the capacitive element 305 are equal, and the capacitive values of the capacitive element 1304 and the capacitive element 1305 are equal.
- the operational amplifier 77 sets the switches 213 and 216 to on and sets the switches 214 and 215 to off in order to set the gain to 1. Further, the switches 1213 and 1216 are set to ON, and the switches 1214 and 1215 are set to OFF.
- the output DOUT_L of the output terminal 12 and the output DOUT_H of the output terminal 13 are given to the determination circuit 84 individually.
- Each switch of the Sub-DA converter 86 is controlled according to the determination result. In the delta-sigma conversion mode, the path from the output terminal 13 to the determination circuit 84 is blocked by the switch 83.
- the analog input signal Ainp input from the input terminal 1 is charged in the capacitor 301 with the first reference voltage VCOM as a reference when the switch 201 and the switch 203 are turned on.
- the switch 201 and the switch 203 are turned off, and the switch 202 and the switch 204 are turned on, so that the capacitor 301, the capacitor 304, and the capacitor 305 are connected with respect to the first reference voltage VCOM.
- the differential input terminal of the operational amplifier 77 is virtually grounded to the first reference voltage VCOM, and both ends of the capacitive element 301 are equal to the first reference voltage VCOM. Move to element 305.
- the analog input signal Ainn input from the input terminal 11 is charged to the capacitive element 1301 with the first reference voltage VCOM as a reference when the switch 1201 and the switch 1203 are turned on.
- the switch 1201 and the switch 1203 are turned off and the switch 1202 and the switch 1204 are turned on, so that the capacitor 1301, the capacitor 1304, and the capacitor 1305 are connected to each other with the first reference voltage VCOM as a reference.
- the differential input terminal of the operational amplifier 77 is virtually grounded to the first reference voltage VCOM, and both ends of the capacitive element 1301 are equal to the first reference voltage VCOM. Move to element 1305.
- the switch 219, the switch 1219, the switch 226, and the switch 1226 when the switch 219, the switch 1219, the switch 226, and the switch 1226 are turned on, the charges of the capacitor 306 and the capacitor 1306 are reset. Next, the switch 219, the switch 1219, the switch 226, and the switch 1226 are turned off, and the switch 218 and the switch 1218 are turned on, so that the positive input voltage of the comparator 78 is equal to the positive output voltage of the operational amplifier 77. Voltage. As a result, the negative input voltage of the comparator 78 becomes equal to the negative output voltage of the operational amplifier 77, and 1-bit AD conversion is performed.
- the Sub-DA converter 86 is controlled by the determination circuit 84 as follows.
- Sub-DA converter 86 does not operate at the first input when the Sub-AD converter 82 does not operate.
- ⁇ 1x gain cyclic conversion mode In the 1 ⁇ gain cyclic conversion mode, the switches 201 to 204 do not operate and the analog input signal Ainp is not input. Also, the switches 1201 to 1204 do not operate and the analog input signal Ainn is not input.
- the switches 213 and 216 are set to ON, and the switches 214 and 215 are set to OFF. Further, the switches 1213 and 1216 are set to ON, and the switches 1214 and 1215 are set to OFF.
- the sub-AD converter 82 resets the charges of the capacitive elements 306 and 307 when the switches 219, 221 and 226 are turned on, and turns on the charges of the capacitive element 1306 when the switches 1219, 1221 and 1226 are turned on. Is reset, and the capacitor 1307 is charged with a voltage difference between VREF and VCOM.
- the switches 219, 221 and 226 are turned off and the switches 218 and 220 are turned on, whereby the positive input voltage of the comparator 78 is determined.
- the switches 1219, 1221 and 1226 are turned off and the switches 1218 and 1220 are turned on, whereby the negative input voltage of the comparator 78 is determined.
- the positive input voltage of the comparator 78 is VCOM + (VREF ⁇ VCOM) ⁇ C7 / (C6 + C7).
- the negative input voltage is VCOM ⁇ (VREF ⁇ VCOM) ⁇ C7 / (C6 + C7).
- the threshold value of the comparator 78 is ⁇ 2 ⁇ (VREF ⁇ VCOM) ⁇ C7 / (C6 + C7).
- the capacitance values of the capacitive elements 306 and 1306 are C6, and the capacitance values of the capacitive elements 307 and 1307 are C7.
- the switches 223, 225, and 227 are turned on, so that the charge of the capacitor 308 is reset, and the capacitor 309 is charged with the voltage difference between VREF and VCOM.
- the switches 1223, 1225, and 1227 are turned on, the charges of the capacitor elements 1308 and 1309 are reset.
- the switches 223, 225, and 227 are turned off and the switches 222 and 224 are turned on, whereby the positive input voltage of the comparator 79 is determined.
- the switches 1223, 1225, 1227 are turned off and the switches 1222, 1224 are turned on, whereby the negative input voltage of the comparator 79 is determined.
- the positive input voltage of the comparator 79 is VCOM ⁇ (VREF ⁇ VCOM) ⁇ C9 / (C8 + C9).
- the negative input voltage is VCOM + (VREF ⁇ VCOM) ⁇ C9 / (C8 + C9).
- the threshold value of the comparator 79 is 2 ⁇ (VREF ⁇ VCOM) ⁇ C9 / (C8 + C9).
- the capacitance values of the capacitive elements 308 and 1308 are C8, and the capacitance values of the capacitive elements 309 and 1309 are C9.
- the sub-AD converter 82 performs 1.5-bit AD conversion.
- the Sub-DA converter 86 is controlled by the determination circuit 84 as follows.
- the switch 214 and the switch 216 when the switch 214 and the switch 216 are turned on, the positive output voltage of the operational amplifier 77 is charged to the capacitor 304 with reference to VCOM, and the switch 1214 and the switch 1216 are turned on. Thus, the negative output voltage of the operational amplifier 77 is charged in the capacitor element 1304 with reference to VCOM.
- the operation amplifier 77 accumulates the charge / discharge between the capacitor 304 and the capacitor 305 with reference to VCOM.
- the switch 1213 and the switch 1215 when the switch 1213 and the switch 1215 are turned on, the charge / discharge between the capacitive element 1304 and the capacitive element 1305 is utilized by the operational amplifier 77 with reference to VCOM.
- the output voltage of the operational amplifier 77 is amplified by a factor of two.
- the Sub-AD converter 82 and the Sub-DA converter 86 operate in the same manner as in the 1 ⁇ gain cyclic conversion mode.
- the values C2 and C3 of the capacitive elements 302, 1302, 303, and 1303 are 1 ⁇ 2 times the value C1 of the capacitive elements 301 and 1301, and the values C4 and C5 of the capacitive elements 304, 1304, 305, and 1305 are 1 It is desirable to configure with a double capacitance value.
- the value C8 of the capacitive elements 308 and 1308 is configured to be one time the value C6 of the capacitive elements 306 and 1306, the value C7 of the capacitive elements 307 and 1307, and the value C9 of the capacitive elements 309 and 1309 is It is desirable that the capacitance value is 1/8 times.
- C1 may be configured as a capacitance value that is 1 ⁇ 2 times the above.
- the respective values C2, C3, C7, C9 of the capacitive elements 302, 1302, 303, 1303, 307, 1307, 309, 1309 are provided. May be configured with a capacitance value twice the above.
- FIG. 9 is a diagram illustrating the fifth embodiment of the AD converter according to the present disclosure.
- the cycle counter 51 counts the number of clock cycles given from the outside after the start of conversion.
- the controller 52 controls each component of the AD converter based on the count output of the cycle counter 51.
- the controller 52 performs conversion by switching to the first mode, the second mode, and the third mode.
- the switch 15 is connected to the input terminal 1, and the analog signal Ain input from the input terminal 1 is given to the subtractor 31.
- the output signal of the subtracter 31 is held by the sample hold circuit 32.
- the held signal is given to the amplifier 33 via the switch 16 and amplified by a gain of 1. Note that the signal output from the amplifier 33 is fed back to the subtractor 31, so that the analog accumulating circuit 40 constitutes an analog accumulating circuit of 1 ⁇ gain.
- the output signal of the amplifier 33 is supplied to the Sub-AD converter 34 that performs 1-bit AD conversion via the switch 17 and the switch 18.
- the Sub-AD converter 34 outputs a binary digital signal via the switch 19.
- the binary signal is “+1” or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 34 via the switch 19 is given to the Sub-DA converter 55, and the Sub-DA converter 55 performs 1-bit DA conversion.
- the subtractor 31, the sample hold circuit 32, the amplifier 33, the Sub-AD converter 34, and the Sub-DA converter 55 form a closed loop.
- the shift register 56 right-shifts the output digital signal of the Sub-AD converter 34 by (DSBIT-1) in synchronization with an externally applied clock signal.
- DSBIT is 2 bits, as shown in FIG. 2B, it is shifted right by one bit toward the LSB.
- the digital accumulator circuit 57 integrates the output digital signal from the shift register 56.
- the above operation is taken as one cycle, and a cycle of 2 to the DSBIT power is repeated, thereby obtaining DSBIT which is the upper bit.
- the switch 15 is connected to the input terminal 10. Since the input signal at the input terminal 10 is zero, the sample hold circuit 32 holds the difference between the output of the amplifier 33 and the output of the Sub-DA converter 55. The held signal is given to the amplifier 33 via the switch 16 and amplified by a gain of 1. Note that the signal output from the amplifier 33 is fed back to the subtractor 31, so that the analog accumulating circuit 40 constitutes an analog accumulating circuit of 1 ⁇ gain.
- the output signal of the amplifier 33 is supplied to the Sub-AD converter 59 that performs 2.5-bit AD conversion via the switches 17 and 18.
- a 5-level digital signal is output from the Sub-AD converter 59.
- the quinary signal is “+1” or “+0.5” or “0” or “ ⁇ 0.5” or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 59 is given to the Sub-DA converter 55.
- the Sub-DA converter 55 performs 2.5-bit DA conversion.
- the shift register 56 shifts the output digital signal of the Sub-AD converter 59 to the right by (DSBIT-1).
- the digital accumulation circuit 57 accumulates the output digital signal from the shift register 56.
- the switch 15 is connected to the input terminal 10. Since the input signal is zero, the sample and hold circuit 32 holds the difference between the output of the amplifier 33 and the output of the Sub-DA converter 55. The held signal is supplied to the amplifier 58 via the switch 16 and amplified by a gain of 4. Note that the signal output from the amplifier 58 is fed back to the subtractor 31 to constitute a 4-times gain analog accumulator circuit.
- the output signal of the amplifier 58 is supplied to the Sub-AD converter 59 that performs 2.5-bit AD conversion via the switches 17 and 18.
- the Sub-AD converter 59 outputs a quinary digital signal.
- the quinary signal is “+1” or “+0.5” or “0” or “ ⁇ 0.5” or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 59 is given to the Sub-DA converter 55.
- the Sub-DA converter 55 performs 2.5-bit DA conversion.
- the shift register 56 right-shifts the output digital signal of the Sub-AD converter 59 by the number obtained by adding twice the current cycle number to (DSBIT-1) in the 4-times gain cyclic conversion mode.
- the digital accumulation circuit 57 accumulates the output digital signal of the shift register 56. In the quadruple gain cyclic conversion mode, the above operation is taken as one cycle, and (CYBIT / 2) cycles are repeated to obtain CYBIT which is a lower bit.
- FIG. 10 is a diagram illustrating the sixth embodiment of the AD converter according to the present disclosure.
- a signal is given to the input terminal 1 and the conversion result is outputted to the output terminals 5, 7 and 9.
- These output terminals 5, 7, and 9 are described as separate terminals, but one output terminal can also be a terminal for each elapse of time for each processing result.
- the analog input signal Ain at the input terminal 1 is given to the secondary delta sigma AD converter 2, and 1-bit delta sigma AD conversion processing is performed.
- the quantized signal Dout1 is output by the conversion process cycle.
- the quantized signal Dout1 is given to the shift register 3, subjected to shift processing, given to the digital accumulating circuit 4, and a digitally integrated signal is output to the output terminal 5 as the upper bit signal DSBIT.
- the delta-sigma AD conversion is performed for 4 cycles.
- the digital accumulation circuit 4 After the final quantized signal Dout1 is determined, the digital accumulation circuit 4 outputs the upper bit signal DSBIT, and the secondary delta-sigma AD converter 2 outputs the residual signal Vrsd1 that is an analog residual signal of the upper bits.
- the residual signal Vrsd1 is given to the first cyclic AD converter 6 and 1.5-bit cyclic AD conversion processing is performed to output a quantized signal Dout2.
- an amplification factor of 0.5 is set in the first cyclic AD converter 6.
- the quantized signal Dout2 is supplied to the shift register 3 and subjected to shift processing.
- the signal subjected to the shift processing is supplied to the digital accumulator circuit 4 and the output terminal 7 is connected to the upper bit and the lower bit.
- a wrap bit signal CYBIT1 is output.
- the residual signal Vrsd2 obtained by extracting the quantized signal Dout2 from the first cyclic AD converter 6 is given to the second cyclic AD converter 8, and cyclic AD conversion processing is performed.
- the amplification degree 2 is set in the second cyclic AD converter 8.
- the quantized signal Dout3 is output every cycle.
- the quantized signal Dout3 is given to the shift register 3, subjected to shift processing, and the signal subjected to the shift processing is given to the digital accumulating circuit 4 to output the lower bit signal CYBIT2 to the output terminal 9.
- the second cyclic AD conversion is performed for 5 cycles.
- FIG. 11A is a diagram illustrating a conversion flow of the AD converter according to the sixth embodiment
- FIG. 11B illustrates a bit position (depth) of digital data according to the sixth embodiment.
- the AD converter according to the present disclosure performs conversion by switching three operation states (modes).
- the first mode is a second order delta sigma conversion mode 20 that performs second order delta sigma AD conversion
- the second mode is a 0.5 times gain cyclic type that performs cyclic AD conversion at 0.5 times gain.
- This is a conversion mode 21, and the third mode is a double gain cyclic conversion mode 22 in which cyclic AD conversion with double gain is performed.
- the conversion result of the upper bits can be obtained.
- the upper bits are DSBIT bits
- DSBIT conversion results are arranged from the MSB to the LSB of the bit array.
- the output digital signals of the conversion results of these modes are added in the adding step 23 to obtain the final AD conversion result.
- this addition need not be performed after all conversion modes have been completed.
- the 1.5 bits obtained in the 0.5 times gain cyclic conversion mode 21 result in a conversion result in which the bit located at the least significant bit from the MSB to the LSB of the upper bit signal DSBIT overlaps with two bits, and
- the result of conversion is one bit overlapping with the bit located at the most significant bit of the lower-order bit signal (CYBIT + 1) output from the double gain cyclic conversion mode 22. That is, overlap is realized.
- FIG. 12 is a diagram illustrating the sixth embodiment according to the AD converter of the present disclosure.
- a control (cycle) counter 51 counts the number of cycles of a clock (not shown) given from the outside from the start of conversion.
- the controller 52 controls each component of the AD converter based on the count output of the cycle counter 51.
- the controller 52 performs conversion by switching to the first mode, the second mode, and the third mode.
- Second-order delta-sigma conversion mode The analog input signal Ain at the input terminal 1 is given to the subtractor 31a.
- the output signal of the subtractor 31a is given to the sample hold circuit 32a and is held by the sample hold circuit 32a.
- the held signal is supplied to the amplifier 33a and amplified with a gain of 1.
- the signal output from the amplifier 33a is fed back to the subtractor 31a to constitute a first-stage 1 ⁇ -gain analog accumulating circuit 40a.
- the output of the first-stage analog accumulation circuit 40a is input to the second-stage analog accumulation circuit 40 via the switch 15.
- the input signal is given to the subtractor 31.
- the output signal of the subtracter 31 is given to the sample hold circuit 32 and is held by the sample hold circuit 32.
- the held signal is given to the amplifier 33 via the switch 16 and amplified by a gain of 1. Note that the signal output from the amplifier 33 is fed back to the subtractor 31 to constitute a second-stage 1 ⁇ -gain analog accumulating circuit 40.
- the output signal of the second-stage analog accumulating circuit 40 is supplied to the Sub-AD converter 34 that performs 1-bit AD conversion via the switch 17 and the switch 18.
- the Sub-AD converter 34 outputs a binary digital signal via the switch 19.
- the binary signal is “+1” or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 34 via the switch 19 is given to the Sub-DA converter 35, and the Sub-DA converter 35 performs 1-bit DA conversion.
- the output of the Sub-DA converter 35 is fed back as it is to the first-stage analog accumulator circuit 40a, and is fed back via the amplifier 46 having a unity gain in the second-stage analog accumulator circuit 40.
- a closed loop is formed by the subtractors 31a and 31, sample hold circuits 32a and 32, amplifiers 33a and 33, sub-AD converter 34, and sub-DA converter 35.
- the shift register 56 right-shifts the output digital signal of the Sub-AD converter 34 by (DSBIT-1) in synchronization with a clock signal (not shown) given from the outside.
- DSBIT is 3 bits, shift right by 2 toward LSB.
- the digital signal output from the shift register 56 is quadratic integrated by two digital accumulator circuits 57a and 57 connected in series via the switch 44 and the switch 45.
- the switch 15 is connected to the input terminal 10, and the first stage analog accumulating circuit 40a is not necessary. Since the input signal at the input terminal 10 is zero, the second-stage sample and hold circuit 32 holds the difference between the output of the amplifier 33 and the output of the Sub-DA converter 35. The held signal is supplied to the amplifier 43 through the switch 16 and amplified with a gain of 0.5. The signal output from the amplifier 43 is fed back to the subtractor 31, so that the analog accumulating circuit 40 constitutes an analog accumulating circuit with a gain of 0.5 times.
- the output signal of the amplifier 43 is supplied to the Sub-AD converter 39 that performs 1.5-bit AD conversion via the switches 17 and 18.
- a ternary digital signal is output from the Sub-AD converter 39.
- the ternary signal is “+1”, “0”, or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 39 is given to the Sub-DA converter 35.
- the Sub-DA converter 35 performs 1.5-bit DA conversion.
- the output of the Sub-DA converter 35 is connected to the double amplifier 47 by the switch 48 and the switch 49 and fed back to the subtractor 31.
- the shift register 56 shifts the output digital signal of the Sub-AD converter 39 to the right by (DSBIT-2).
- the digital accumulator circuit 57 is set to one stage by the switch 44 and the switch 45, and digitally integrates the output digital signal of the shift register 56.
- the switch 15 is connected to the input terminal 10. Since the input signal is zero, the sample hold circuit 32 holds the difference between the output of the amplifier 33 and the output of the Sub-DA converter 35. The held signal is supplied to the amplifier 38 via the switch 16 and amplified by a gain of 2. The signal output from the amplifier 38 is fed back to the subtractor 31, thereby constituting an analog accumulator circuit with a double gain in the analog accumulator circuit 40.
- the output signal of the amplifier 38 is supplied to the Sub-AD converter 39 that performs 1.5-bit AD conversion via the switches 17 and 18.
- the Sub-AD converter 39 outputs a ternary digital signal.
- the ternary signal is “+1”, “0”, or “ ⁇ 1”.
- the output digital signal of the Sub-AD converter 39 is given to the Sub-DA converter 35.
- the Sub-DA converter 35 performs 1.5-bit DA conversion.
- the switches 48 and 49 are connected to the double amplifier 47.
- the shift register 56 shifts the output digital signal of the Sub-AD converter 39 to the right by the number obtained by adding (DSBIT-2) the current cycle number of the double gain cyclic conversion mode.
- the digital accumulator circuit 57 is set in one stage by the switch 44 and the switch 45, and digitally integrates the output digital signal of the shift register 56.
- the gain in the first conversion in the cyclic conversion mode takes into account the variation of each component so that the maximum residual voltage in the second-order delta-sigma conversion does not exceed the convertible voltage range of the cyclic conversion. Is set. By maintaining this relationship, it can be applied to other types of secondary delta-sigma conversion, higher-order delta-sigma conversion, cascade-type delta-sigma conversion, and the like.
- FIG. 13 is a diagram illustrating the seventh embodiment according to the AD converter of the present disclosure.
- the seventh embodiment practically shows an analog accumulator circuit in the configuration of the sixth embodiment.
- Second-order delta-sigma conversion mode In the first stage analog accumulating circuit 40a, an amplifier 1341 having a gain a is inserted between the input terminal 1 of the analog input signal Ain and the subtractor 31a. Further, an amplifier 1342 having a gain a is inserted between the 1.5-bit Sub-AD converter 35 and the subtractor 31a.
- a gain b amplifier 1343 is inserted between the switch 15 and the subtractor 31, and a gain a is inserted between the 1.5-bit Sub-AD converter 35 and the subtractor 31.
- An xb amplifier 46 is inserted.
- the gains a and b of the amplifier are set so that the maximum output value of the analog accumulation circuit 40a and the analog accumulation circuit 40 does not exceed the dynamic range of the circuit. As a result, it is possible to prevent characteristic deterioration due to saturation of the outputs of the analog accumulating circuits 40a and 40.
- ⁇ c-times gain cyclic conversion mode The switch 15 is connected to the input terminal 10.
- the amplifier 47 between the 1.5-bit Sub-DA converter 35 and the subtractor 31 is set to a gain of a ⁇ b / c times.
- the switch 16 and the switch 17 are connected to the amplifier 38, and the switch 48 and the switch 49 are connected to the amplifier 47, respectively.
- the gain in the first conversion in the cyclic conversion mode takes into account the variation of each component so that the maximum residual voltage in the second-order delta-sigma conversion does not exceed the convertible voltage range of the cyclic conversion. Is set. By maintaining this relationship, it can be applied to other types of second-order delta-sigma conversion and the like.
- FIG. 14 is a diagram illustrating the eighth embodiment according to the AD converter of the present disclosure. Here, description of the first and second cyclic conversion modes is omitted, and only the secondary (1 + 1) cascade type delta-sigma conversion mode is described.
- the output of the first stage analog accumulator circuit 40a is given to a Sub-AD converter 34a that performs 1-bit AD conversion.
- the output digital signal of the Sub-AD converter 34a is given to the Sub-DA converter 35a, and the Sub-DA converter 35a performs 1-bit DA conversion.
- the differential voltage between the output of the first stage analog accumulation circuit 40a and the output of the Sub-DA converter 35a is input to the second stage analog accumulation circuit 40 via the switch 15.
- the second-stage analog accumulation circuit 40 also forms a closed loop independently of the first-stage analog accumulation circuit 40a. In the second-stage analog accumulator circuit 40, the gain 1 amplifier 33, the gain 1 amplifier 43, and the gain 2 amplifier 38 are switched.
- the shift register 56 right-shifts the output digital signals of the Sub-AD converters 34a and 34 by (DSBIT-1) in synchronization with an externally applied clock signal (not shown).
- DSBIT is 3 bits, shift right by 2 toward LSB.
- the first stage output digital signal is second-order integrated by the two digital accumulator circuits 57a and 57 connected in series via the switch 44 and the switch 45, and the second stage output digital signal is first-order integrated. Is done.
- the gain in the first conversion in the cyclic conversion mode takes into account the variation of each component so that the maximum residual voltage in the second-order delta-sigma conversion does not exceed the convertible voltage range of the cyclic conversion. Is set. By maintaining this relationship, it is possible to apply to cascade type delta-sigma conversion of other configurations.
- FIG. 15 is a diagram illustrating the ninth embodiment according to the AD converter of the present disclosure. Here, description of the first and second cyclic conversion modes is omitted, and only the third-order delta-sigma conversion mode is described.
- FIG. 15 is a configuration in which another analog accumulation circuit 40b is added between the first-stage analog accumulation circuit 40a and the second-stage analog accumulation circuit 40 of the sixth embodiment shown in FIG. .
- 31b is a subtracter
- 32b is a sample and hold circuit
- 33b is a gain 1 amplifier.
- the output digital signal of the shift register 56 is third-order integrated by three stages of digital accumulating circuits 57a, 57b, 57.
- the gain in the first conversion in the cyclic conversion mode takes into account the variation of each component so that the maximum residual voltage in the third-order delta-sigma conversion does not exceed the convertible voltage range of the cyclic conversion. Is set. By maintaining this relationship, it can be applied to higher-order delta-sigma conversion and the like.
- the AD converter according to the present disclosure can improve the linearity without causing an increase in circuit area, current consumption, and conversion time as compared with the conventional method. For example, sensor signals can be detected at high speed and with high accuracy. Can be done.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
入力端子(1)からアナログ信号を入力して、上位ビット変換結果を得るデルタシグマAD変換器(2)と、上位ビットを除いた残留信号を与えて、増幅度1の変換処理を行い、1.5ビットの変換結果を得る第1の巡回型AD変換器(6)と、増幅度2の変換処理を行い、下位ビットの変換結果を得る第2の巡回型AD変換器(8)と、上位ビット、1.5ビット、下位ビットの変換結果を与えて、AD変換値を出力するシフトレジスタ(3)及びデジタル累積回路(4)とを備える。
Description
本開示は、微分非直線性(differential nonlinearity:DNL)を改善したAD(analog-to-digital)変換器に関するものである。
近年、多機能携帯端末は、携帯性を向上させるために、小型化が求められている。そのためには、多機能端末に内蔵化する集積回路やセンサ素子について、小型化を進めていく必要がある。特に、集積回路が、センサ素子の出力信号をデジタル信号に変換するAD変換器を備えている場合は、集積回路の主要な面積を占めるAD変換器を小面積で実現する必要がある。
一方、センサ素子を小型化することよって、センサ素子の検出感度が低下し、出力信号レベルが小さくなってきている。このような感度の低下を補うため、AD変換器には高精度化も求められている。
そこで、異なる種類のAD変換器を組み合わせて、上位ビットと下位ビットとを取り出す技術が開発されている(特許文献1及び非特許文献1参照)。しかし、この種の従来のAD変換器において、入力信号に対する出力信号の線形性が劣化することがあった。
図16(a)~図16(d)は、従来の下位ビット用AD変換器の出力波形を示した図である。これらの図に示すように、デルタシグマ型AD変換器が出力する上位ビットの切り替わり点において、ミッシングコードが発生する。ミッシングコードは、アナログ入力に対応したデジタルコード(符号)の一部が出力されない現象である。つまり、微分非直線性がLSB(least significant bit:最下位ビット)を基に±1LSB以上になると、出力コードが存在しない現象を招く。
H. Chen et al.,"A 13-bit, Low-Power, Compact ADC Suitable for Sensor Applications", Proceedings of 2010 International Symposium on Circuits and Systems (ISCAS), pp.2414-2417, 2010.
上記のとおり、AD変換器にはミッシングコードが発生しないことが求められているが、ミッシングコードの発生を抑制することは、従来は困難であった。
本開示は、以上のような課題を解決するものであり、出力信号の線形性を改善したAD変換器を提供することを目的とする。
本開示のAD変換器が講じた手段は、1)アナログ累積回路、AD変換器及びDA(digital-to-analog)変換器を備えたAD変換器であって、アナログ信号を与えて上位ビットの第1の変換結果を得る第1のAD変換器と、2)アナログ累積回路、AD変換器及びDA変換器を備えたAD変換器であって、前記上位ビットを除いた残留信号を与えて、第1の変換処理と第2の変換処理を行い、下位ビットの第2の変換結果を得る第2のAD変換器と、3)前記第1の変換結果と前記第2の変換結果を演算して、前記アナログ信号のAD変換値を出力する演算部と、を備え、4)前記第1の変換処理における前記アナログ累積回路のゲインと、前記第2の変換処理における前記アナログ累積回路のゲインとを異ならせている。
また、本開示のAD変換器が講じた他の手段は、1)a)アナログ信号を与える入力端子と、b)第1のゲインを有した第1のアナログ累積回路と、c)第1数値のビットデータを出力する第1ビットデータAD変換器と、d)DA変換器と、e)前記入力端子の信号と前記DA変換器の出力信号との差分信号を出力する差分回路とを備えてループを形成し、前記アナログ信号を与えて上位ビットの第1の変換結果を得る第1のAD変換器と、2)a)アナログ信号を与える入力端子と、b)第1のゲインと第2のゲインを選択可能な第2のアナログ累積回路と、c)第2数値のビットデータを出力する第2ビットデータAD変換器と、d)DA変換器と、e)前記入力端子の信号と前記DA変換器の出力信号との差分信号を出力する差分回路とを備えてループを形成し、前記入力端子に与える信号を無信号として、前記上位ビットを除いた残留信号との差分信号を前記第2のアナログ累積回路に与えて、第1の変換処理と第2の変換処理とを行い、下位ビットの第2の変換結果を得る第2のAD変換器と、を備えたAD変換器であって、3)前記第2のアナログ累積回路が、前記第1の変換処理で前記第1のゲインであり、前記第2の変換処理で前記第1のゲインとは異なる前記第2のゲインであるとする。
また、本開示のAD変換器が講じた他の手段は、1)a)アナログ信号を与える入力端子と、b)第1のゲインを有した第1のアナログ累積回路と、c)第1数値のビットデータを出力する第1ビットデータAD変換器と、d)DA変換器と、e)前記入力端子の信号と前記DA変換器の出力信号との差分信号を出力する差分回路とをそれぞれ1つ以上備えてループを形成し、前記アナログ入力信号を与えて上位ビットの第1の変換結果を得る第1のAD変換器と、2)a)アナログ信号を与える入力端子と、b)第3のゲインと第2のゲインを選択可能な第2のアナログ累積回路と、c)第2数値のビットデータを出力する第2ビットデータAD変換器と、d)DA変換器と、e)前記入力端子の信号と前記DA変換器の出力信号との差分信号を出力する差分回路とを備えてループを形成し、前記入力端子に与える信号を無信号として、前記上位ビットを除いた残留信号との差分信号を前記第2のアナログ累積回路に与えて、第1の変換処理と第2の変換処理を行い、下位ビットの第2の変換結果を得る第2のAD変換器と、を備えたAD変換器であって、3)前記第2のアナログ累積回路が、前記第1の変換処理で前記第3のゲインであり、前記第2の変換処理で前記第3のゲインとは異なる前記第2のゲインであるとする。
また、本開示のAD変換器が講じた他の手段は、1)a)アナログ信号を与える入力端子と、b)第1のゲインを有した第1のアナログ累積回路と、c)第1数値のビットデータを出力する第1ビットデータAD変換器と、d)DA変換器と、e)前記入力端子の信号と前記DA変換器の出力信号との差分信号を出力する差分回路とを備えてループを形成し、アナログ信号を与えて上位ビットの第1の変換結果を得る第1のAD変換器と、2)a)前記入力端子と、b)前記DA変換器と、c)前記差分回路とを共有すると共に、ゲインの選択が可能な第2のアナログ累積回路と、d)第2数値のビットデータを出力する第2ビットデータAD変換器とを備えてループを形成し、前記アナログ信号から前記上位ビットを除いた残留信号を与えて、第1の変換処理と第2の変換処理を行って下位ビットの第2の変換結果を得る第2のAD変換器と、を備え、3)前記第2のアナログ累積回路が、前記第1の変換処理において、第1のゲインで積分し、前記第2の変換処理において、前記第1のゲインとは異なる第2のゲインで積分する。
本開示におけるAD変換器は、ミッシングコードの発生を抑制した、線形性の優れたAD変換に有効である。
以下、本開示の各実施形態を、図面を参照しながら説明する。
なお、本開示にあたって、詳細な説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
また、発明者らは、本開示を当業者が十分に理解することを助けるために、図面を添付し、また詳細な説明を提供する。しかし、図面や詳細な説明によって、特許請求の範囲に記載された主題を限定するものではない。
<実施形態1>
図1は、本開示のAD変換器に係る実施形態1を示した図である。図1において、入力端子1に信号が与えられ、出力端子5,7,9に変換結果が出力される。これらの出力端子5,7,9は、別々の端子として記載されているが、1つの出力端子について、各処理の結果に対する時間の経過ごとの端子とすることもできる。
図1は、本開示のAD変換器に係る実施形態1を示した図である。図1において、入力端子1に信号が与えられ、出力端子5,7,9に変換結果が出力される。これらの出力端子5,7,9は、別々の端子として記載されているが、1つの出力端子について、各処理の結果に対する時間の経過ごとの端子とすることもできる。
入力端子1のアナログ入力信号Ainは、デルタシグマAD変換器2に与えられ、1ビットのデルタシグマAD変換処理が行われる。デルタシグマAD変換処理は、変換処理サイクルによって、量子化信号Dout1を出力する。量子化信号Dout1は、シフトレジスタ3に与えられ、シフト処理が施される。シフト処理された信号が、デジタル累積回路4に与えられ、デジタル積分された信号が、上位ビット信号DSBITとして出力端子5に出力される。なお、上位ビットが2ビットに設定されたとき、デルタシグマAD変換は、4サイクル行われる。
上位ビット信号DSBITを得ると、デルタシグマAD変換器2から、上位ビットのアナログ残差信号である残差信号Vrsd1を出力する。残差信号Vrsd1は、第1の巡回型AD変換器6に与えられ、1.5ビットの巡回型AD変換処理が行われる。第1の巡回型AD変換器6は、量子化信号Dout2を出力する。このとき、第1の巡回型AD変換器6には、増幅度1が設定される。量子化信号Dout2は、シフトレジスタ3に与えられ、シフト処理が施される。シフト処理された信号が、デジタル累積回路4に与えられ、出力端子7に、上位ビットと下位ビットのオーバーラップビット信号CYBIT1を出力する。
次に、第1の巡回型AD変換器6から、オーバーラップビット信号CYBIT1を取り出した残差信号Vrsd2が、第2の巡回型AD変換器8に与えられ、巡回型AD変換処理が行われる。このとき、第2の巡回型AD変換器8には、増幅度2が設定される。第2の巡回型AD変換処理は、1サイクルごとに量子化信号Dout3を出力する。量子化信号Dout3は、シフトレジスタ3に与えられ、シフト処理が施される。シフト処理された信号が、デジタル累積回路4に与えられ、出力端子9に下位ビット信号CYBIT2を出力する。なお、下位ビットが4ビットに設定されたとき、第2の巡回型AD変換は、4サイクル行われる。
図2(a)は、実施形態1に係るAD変換器の変換フローを示した図であり、図2(b)は、実施形態1に係るデジタルデータのビットの位置(深さ)を示した図である。
図2(a)に示したように、本開示のAD変換器は、3つの動作の状態(モード)を切り替えることで変換が行われる。第1のモードは、デルタシグマAD変換を行うデルタシグマ変換モード20であり、第2のモードは、1倍ゲインでの巡回型AD変換を行う1倍ゲイン巡回型変換モード21であり、第3のモードは、2倍ゲインでの巡回型AD変換を行う2倍ゲイン巡回型変換モード22である。
デルタシグマ変換モード20において、図2(b)に示したように、上位ビットの変換結果を得ることができる。上位ビットがDSBITビットである場合は、ビットの配列のMSB(most significant bit:最上位ビット)からLSBに向かって、DSBIT個の変換結果を配置する。
1倍ゲイン巡回型変換モード21において、図2(b)に示したように、1.5ビットの変換結果を得る。この結果には、2個のビット枠が与えられる。
また、2倍ゲイン巡回型変換モード22において、図2(b)に示したように、下位ビットCYBITの変換結果を得ることができる。
これら各モードの変換結果の出力デジタル信号は、加算工程23で加算され、最終AD変換結果を得る。ただし、この加算は全ての変換モードが完了してから行う必要はない。
このようにして、1倍ゲイン巡回型変換モード21で得た1.5ビットは、上位ビット信号DSBITのMSBからLSBに向かって最下位に位置するビットと、2倍ゲイン巡回型変換モード22から出力される下位ビット信号CYBITの最上位に位置するビットと重なる変換結果となり、オーバーラップを実現している。
図3(a)は、デルタシグマ変換モードにおけるAD変換器の構成を示したブロック図であり、図3(b)は、1倍ゲイン巡回型変換モードにおけるAD変換器の構成を示したブロック図であり、図3(c)は、2倍ゲイン巡回型変換モードにおけるAD変換器の構成を示したブロック図である。
《デルタシグマ変換モード》
図3(a)において、入力端子1からアナログ信号Ainが入力され、減算器31に与えられる。減算器31の出力信号は、サンプルホールド回路32によって、保持される。保持された信号は、増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、1倍ゲインのアナログ累積回路41を構成している。
図3(a)において、入力端子1からアナログ信号Ainが入力され、減算器31に与えられる。減算器31の出力信号は、サンプルホールド回路32によって、保持される。保持された信号は、増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、1倍ゲインのアナログ累積回路41を構成している。
増幅器33の出力信号は、Sub-AD変換器34に与えられ、1ビットのAD変換が行われ、2値のデジタル信号「+1」又は「-1」を出力する。Sub-AD変換器34の出力のデジタル信号は、Sub-DA変換器35に与えられて、参照電圧+Vref及び-Vrefを用いた1ビットのDA変換がされる。Sub-DA変換器35の出力は、減算器31の一方に与えられ、アナログ入力信号Ainとの差分を求めた差分信号が、減算器31から出力される。
なお、1回目の入力時においては、Sub-DA変換器35の出力は0にリセットされている。
このようにして、減算器31、サンプルホールド回路32、増幅器33、Sub-AD変換器34、Sub-DA変換器35によって、デルタシグマ変換の閉ループが形成される。
次に、シフトレジスタ36は、Sub-AD変換器34の出力デジタル信号を、外部から与えるクロック信号(不図示)に同期して、(DSBIT-1)だけ、MSBからLSBに向けてシフト(以下、「右シフト」と記す)する。DSBITが2ビットであるとき、図2(b)に示されたように、1ビットだけLSBに向かって右シフトする。
デジタル累積回路37は、シフトレジスタ36の出力デジタル信号を累積する。なお、デジタル積分は、次々と入力される、例えば、1ビットのデジタルデータを累積して出力する。
デルタシグマ変換モード20では、以上の動作を1サイクルとして、2のDSBIT乗のサイクルを繰り返して、出力端子100に、上位ビットであるDSBITを得る。
《1倍ゲイン巡回型変換モード》
図3(b)の1倍ゲイン巡回型変換モードにおいて、入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、1倍ゲインのアナログ累積回路41を構成している。Sub-AD変換器39は、ゲイン1倍増幅器33の出力アナログ信号に対して、1.5ビットのAD変換を行う。更に、Sub-DA変換器35は、Sub-AD変換器39の出力デジタル信号に対して、1.5ビットのDA変換を行う。
図3(b)の1倍ゲイン巡回型変換モードにおいて、入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、1倍ゲインのアナログ累積回路41を構成している。Sub-AD変換器39は、ゲイン1倍増幅器33の出力アナログ信号に対して、1.5ビットのAD変換を行う。更に、Sub-DA変換器35は、Sub-AD変換器39の出力デジタル信号に対して、1.5ビットのDA変換を行う。
このようにして、減算器31、サンプルホールド回路32、増幅器33、Sub-AD変換器39、Sub-DA変換器35によって、1倍ゲイン巡回型変換モードの閉ループが形成される。
シフトレジスタ36は、図2(b)に示したように、Sub-AD変換器39の出力デジタル信号を(DSBIT-1)だけ右シフトする。また、デジタル累積回路37は、シフトレジスタ36の出力デジタル信号をデジタル積分する。
このようにして、デルタシグマ変換と同じシフト量で累積するので、出力端子100に、デルタシグマ変換の最下位ビットとオーバーラップする変換結果を得る。また、1.5ビットの結果を得ることによって、次に示す2倍ゲイン巡回型変換モードにおける初回のシフト量を、1倍ゲイン巡回型変換モードのシフト量(DSBIT-1)よりも1だけ大きいDSBITとすることで、1倍ゲイン巡回型変換モードと2倍ゲイン巡回型変換モードとをオーバーラップすることができる。
《2倍ゲイン巡回型変換モード》
図3(c)の2倍ゲイン巡回型変換モードにおいて、サンプルホールド回路32は、ゲイン2倍の増幅器33の出力とSub-DA変換器35の出力との差分を保持する。また、ゲイン2倍の増幅器33は、サンプルホールド回路32の出力アナログ信号を2倍する。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、2倍ゲインのアナログ累積回路42を構成している。Sub-AD変換器39は、ゲイン2倍の増幅器33の出力アナログ信号に対して、1.5ビットのAD変換を行う。
図3(c)の2倍ゲイン巡回型変換モードにおいて、サンプルホールド回路32は、ゲイン2倍の増幅器33の出力とSub-DA変換器35の出力との差分を保持する。また、ゲイン2倍の増幅器33は、サンプルホールド回路32の出力アナログ信号を2倍する。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、2倍ゲインのアナログ累積回路42を構成している。Sub-AD変換器39は、ゲイン2倍の増幅器33の出力アナログ信号に対して、1.5ビットのAD変換を行う。
シフトレジスタ36は、図2(b)に示したように、Sub-AD変換器39の出力デジタル信号を、(DSBIT-1)に2倍ゲイン巡回型変換モードの現在のサイクル数を加算した数だけ右シフトする。
デジタル累積回路37は、シフトレジスタ36の出力デジタル信号をデジタル積分する。2倍ゲイン巡回型変換モードでは、以上の動作を1サイクルとして、(CYBIT)サイクルを繰り返すことで、出力端子100に、下位ビットであるCYBITを得る。
図4(a)は、2ビットのデルタシグマ変換を行ったときの上位ビットを示した図である。図4(b)は、2ビットのデルタシグマ変換を行った後の積分器の残留電圧を示した図である。図4(c)は、残留電圧に対して、サイクリック変換を行った結果のサイクリック変換出力コードを示した図である。図4(d)は、2ビットのデルタシグマ変換と、オーバーラップを含む計5ビットの巡回型変換によって処理を行って、計6ビットのAD変換を実施した時の入力電圧と出力コードとの関係を示している。本実施形態のオーバーラップを行うことで、従来の巡回型変換の端のコード(MSB、LSB)を使用せずに変換が可能となる。このため、図16(a)~図16(d)に示された従来のミッシングコードは、発生しなくなる。
<実施形態2>
図5は、本開示のAD変換器に係る実施形態2を示した図である。図5において、制御(サイクル)カウンタ51は、変換開始から、外部から与えられるクロック(不図示)のサイクル数をカウントする。コントローラ52は、サイクルカウンタ51のカウント出力に基づき、AD変換器の各構成の制御を行う。コントローラ52によって、第1のモード、第2のモード及び第3のモードに切り替えられて変換が行われる。
図5は、本開示のAD変換器に係る実施形態2を示した図である。図5において、制御(サイクル)カウンタ51は、変換開始から、外部から与えられるクロック(不図示)のサイクル数をカウントする。コントローラ52は、サイクルカウンタ51のカウント出力に基づき、AD変換器の各構成の制御を行う。コントローラ52によって、第1のモード、第2のモード及び第3のモードに切り替えられて変換が行われる。
《デルタシグマ変換モード》
スイッチ15は、入力端子1に接続されており、入力端子1のアナログ入力信号Ainが減算器31に与えられる。減算器31の出力信号は、サンプルホールド回路32に与えられ、サンプルホールド回路32によって保持される。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
スイッチ15は、入力端子1に接続されており、入力端子1のアナログ入力信号Ainが減算器31に与えられる。減算器31の出力信号は、サンプルホールド回路32に与えられ、サンプルホールド回路32によって保持される。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
増幅器33の出力信号は、スイッチ17とスイッチ18とを介して、1ビットのAD変換を行うSub-AD変換器34に与えられる。Sub-AD変換器34は、2値のデジタル信号を出力する。2値信号は、「+1」又は「-1」である。
スイッチ19を介したSub-AD変換器34の出力デジタル信号は、Sub-DA変換器35に与えられ、Sub-DA変換器35は、1ビットのDA変換を行う。
このようにして、減算器31、サンプルホールド回路32、増幅器33、Sub-AD変換器34、Sub-DA変換器35によって、閉ループを形成する。
なお、1回目の入力時においては、Sub-DA変換器35の出力は0にリセットされている。
シフトレジスタ56は、Sub-AD変換器34の出力デジタル信号を、外部から与えるクロック信号(不図示)に同期して、(DSBIT-1)だけ右シフトする。
DSBITが2ビットであるとき、図2(b)に示したように、1ビットだけLSBに向かって右シフトする。また、デジタル累積回路57は、シフトレジスタ56の出力デジタル信号を積分する。
以上の動作を1サイクルとして、2のDSBIT乗のサイクルが繰り返され、これによって上位ビットであるDSBITを得る。
《1倍ゲイン巡回型変換モード》
スイッチ15は、入力端子10に接続される。入力端子10の入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
スイッチ15は、入力端子10に接続される。入力端子10の入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
増幅器33の出力信号は、スイッチ17,18を介して、1.5ビットのAD変換を行うSub-AD変換器39に与えられる。Sub-AD変換器39から3値のデジタル信号を出力する。3値信号は、「+1」又は「0」又は「-1」である。
Sub-AD変換器39の出力デジタル信号は、Sub-DA変換器35に与えられる。Sub-DA変換器35は、1.5ビットのDA変換を行う。
シフトレジスタ56は、Sub-AD変換器39の出力デジタル信号を(DSBIT-1)だけ右シフトする。また、デジタル累積回路57は、シフトレジスタ56の出力デジタル信号をデジタル積分する。
このようにして、デルタシグマ変換と同じシフト量で累積するので、出力端子100に、デルタシグマ変換の最下位ビットとオーバーラップする変換結果を得る。また、1.5ビットの結果を得ることによって、1倍ゲイン巡回型変換モードと2倍ゲイン巡回型変換モードとをオーバーラップさせることができる。なお、2倍ゲイン巡回型変換モードにおける初回のシフト量は、1倍ゲイン巡回型変換モードのシフト量(DSBIT-1)よりも1だけ大きいDSBITとなる。
《2倍ゲイン巡回型変換モード》
スイッチ15は、入力端子10に接続された状態である。入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器38の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器38に与えられ、ゲイン2で増幅される。なお、増幅器38から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、2倍ゲインのアナログ累積回路を構成している。
スイッチ15は、入力端子10に接続された状態である。入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器38の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器38に与えられ、ゲイン2で増幅される。なお、増幅器38から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、2倍ゲインのアナログ累積回路を構成している。
増幅器38の出力信号は、スイッチ17,18を介して、1.5ビットのAD変換を行うSub-AD変換器39に与えられる。Sub-AD変換器39は、3値のデジタル信号を出力する。3値信号は、「+1」又は「0」又は「-1」である。
Sub-AD変換器39の出力デジタル信号は、Sub-DA変換器35に与えられる。Sub-DA変換器35は、1.5ビットのDA変換を行う。
シフトレジスタ56は、Sub-AD変換器39の出力デジタル信号を、(DSBIT-1)に2倍ゲイン巡回型変換モードの現在のサイクル数を加算した数だけ右シフトする。
デジタル累積回路57は、シフトレジスタ56の出力デジタル信号をデジタル積分する。2倍ゲイン巡回型変換モードでは、以上の動作を1サイクルとして、(CYBIT)サイクル繰り返されることで下位ビットであるCYBITを得る。
図6は、本開示のAD変換器の変換に係る各工程を示した図である。本開示のAD変換器は、第1のモード、第2のモード及び第3のモードで変換が行われる。
各モードは、例えば、図2(a)のモード20~22に対応する。第1のモードはデルタシグマ変換モード20に対応し、第2のモードは1倍ゲイン巡回型変換モード21に対応し、第3のモードは2倍ゲイン巡回型変換モード22に対応する。第1のモードは図3(a)によって開示され、第2のモードは図3(b)によって開示され、第3のモードは図3(c)によって開示されている。
また、第1のモード、第2のモード及び第3のモードは、例えば、図5におけるスイッチ15~スイッチ19を切り替えることによって実現される。
以下、図6の各工程について、図5を用いて説明する。
《リセット工程》
変換開始は、リセット工程からスタートする。図6のリセット工程60は、図5において、サイクルカウンタ51、サンプルホールド回路32、Sub-AD変換器34、39及びデジタル累積回路57がリセットされることから開始する。
変換開始は、リセット工程からスタートする。図6のリセット工程60は、図5において、サイクルカウンタ51、サンプルホールド回路32、Sub-AD変換器34、39及びデジタル累積回路57がリセットされることから開始する。
n番目のクロックn(nは、自然数である)について、制御カウンタ51の出力をCT(n)、サンプルホールド回路32の出力をAi(n)、Sub-DA変換器35の出力をDAout(n)、デジタル累積回路57の出力をDi(n)とすると、リセット時は、nの値が0であるので、
CT(0) = 0
Ai(0) = 0
DAout(0) = 0
Di(0) = 0
である。
CT(0) = 0
Ai(0) = 0
DAout(0) = 0
Di(0) = 0
である。
《第1のモード》
次に、第1のモード20は、第1のカウント工程61、第1の変換工程62、第2の変換工程63及び第1の判定工程64によって構成される。
次に、第1のモード20は、第1のカウント工程61、第1の変換工程62、第2の変換工程63及び第1の判定工程64によって構成される。
第1のカウント工程61において、制御カウンタ51が更新され、
CT(n) = CT(n-1)+1
である。
CT(n) = CT(n-1)+1
である。
第1の変換工程62において、入力信号Ain及びSub-DA変換器35の出力をアナログ累積回路40に入力すると、サンプルホールド回路32の出力は、
Ai(n) = Ai(n-1) + IN(n) + DAout(n-1)
である。
Ai(n) = Ai(n-1) + IN(n) + DAout(n-1)
である。
次に、サンプルホールド回路32の出力をSub-AD変換器34に入力すると、
ADout(n) = +1 if Ai(n) > 0
-1 if Ai(n) ≦ 0
である。
ADout(n) = +1 if Ai(n) > 0
-1 if Ai(n) ≦ 0
である。
第2の変換工程63において、Sub-AD変換器34の出力をDSBIT右シフトし、デジタル累積回路57に入力することで、
Di(n) = Di(n-1) + ADout(n)/2^(DSBIT-1)
である。ここで、2^(DSBIT-1)は、2の(DSBIT-1)乗を意味する。
Di(n) = Di(n-1) + ADout(n)/2^(DSBIT-1)
である。ここで、2^(DSBIT-1)は、2の(DSBIT-1)乗を意味する。
更に、Sub-AD変換器出力をSub-DA変換器35に入力して、
DAout(n) = Vref/2 × ADout(n)
が得られる。
DAout(n) = Vref/2 × ADout(n)
が得られる。
第1の判定工程64において、制御カウンタ出力CT(n)が、2のDSBIT乗の値であるか否か判定し、YESなら、次のモードに進み、NOならば、制御カウンタ51を更新して、第1の変換工程62、第2の変換工程63及び第1の判定工程64を繰り返す。
上位ビットが2ビットの場合は、各工程をそれぞれ4回繰り返す。
《第2のモード》
第2のモード21は、第2のカウント工程161、第3の変換工程162、第4の変換工程163によって構成される。
第2のモード21は、第2のカウント工程161、第3の変換工程162、第4の変換工程163によって構成される。
第2のカウント工程161において、制御カウンタ51が更新され、
CT(n) = CT(n-1)+1
である。
CT(n) = CT(n-1)+1
である。
第3の変換工程162は、Sub-DA変換器35の出力をサンプルホールド回路32に入力して、
Ai(n) = Ai(n-1) + DAout(n-1)
である。更に、サンプルホールド回路32の出力をSub-AD変換器39に入力して、
ADout(n) = +1 if Ai(n) > Vref/4
-1 if Ai(n) ≦ -Vref/4
0 else
を得る。
Ai(n) = Ai(n-1) + DAout(n-1)
である。更に、サンプルホールド回路32の出力をSub-AD変換器39に入力して、
ADout(n) = +1 if Ai(n) > Vref/4
-1 if Ai(n) ≦ -Vref/4
0 else
を得る。
第4の変換工程163は、Sub-AD変換器39の出力をデジタル累積回路57に入力して、
Di(n) = Di(n-1) + ADout(n)/2^(DSBIT-1)
を得る。また、Sub-AD変換器39の出力を1.5ビットのSub-DA変換器35に入力して、
DAout(n) = Vref/2 × ADout(n)
を得る。
Di(n) = Di(n-1) + ADout(n)/2^(DSBIT-1)
を得る。また、Sub-AD変換器39の出力を1.5ビットのSub-DA変換器35に入力して、
DAout(n) = Vref/2 × ADout(n)
を得る。
《第3のモード》
第3のモード22は、第3のカウント工程261、第5の変換工程262、第6の変換工程263及び第2の判定工程264によって構成される。
第3のモード22は、第3のカウント工程261、第5の変換工程262、第6の変換工程263及び第2の判定工程264によって構成される。
第3のカウント工程261において、制御カウンタ51が更新され、
CT(n) = CT(n-1) + 1
である。
CT(n) = CT(n-1) + 1
である。
第5の変換工程262において、Sub-DA変換器35の出力をサンプルホールド回路32に入力し、2倍することで、サンプルホールド回路32の出力は、
Ai(n) = 2×(Ai(n-1) + DAout(n-1))
である。
Ai(n) = 2×(Ai(n-1) + DAout(n-1))
である。
次に、サンプルホールド回路32の出力をSub-AD変換器39に入力して、
ADout(n) = +1 if Ai(n) > Vref/4
-1 if Ai(n) ≦ -Vref/4
0 else
を得る。
ADout(n) = +1 if Ai(n) > Vref/4
-1 if Ai(n) ≦ -Vref/4
0 else
を得る。
第6の変換工程263において、Sub-AD変換器39の出力をデジタル累積回路57に入力して、
Di(n) = Di(n-1)+ADout(n)/2^(DSBIT-1+α)
を得る。ここで、αは、第3のモード22における繰り返し数である。また、Sub-AD変換器39の出力を1.5ビットのSub-DA変換器35に入力して、
DAout(n) = Vref/2 × ADout(n)
を得る。
Di(n) = Di(n-1)+ADout(n)/2^(DSBIT-1+α)
を得る。ここで、αは、第3のモード22における繰り返し数である。また、Sub-AD変換器39の出力を1.5ビットのSub-DA変換器35に入力して、
DAout(n) = Vref/2 × ADout(n)
を得る。
第2の判定工程264において、制御カウンタ51の出力が、
CT(n) = 2^DSBIT + CYBIT + 1
であるか否か判定し、YESなら、変換を完了する。NOならば、制御カウンタ51を更新し、第5の変換工程262、第6の変換工程263及び第2の判定工程264を繰り返す。
CT(n) = 2^DSBIT + CYBIT + 1
であるか否か判定し、YESなら、変換を完了する。NOならば、制御カウンタ51を更新し、第5の変換工程262、第6の変換工程263及び第2の判定工程264を繰り返す。
下位ビットがCYBITビットの場合は、各工程を、それぞれCYBIT回繰り返す。
<実施形態3>
図7は、本開示のAD変換器に係る実施形態3を示した回路図である。図7では、アナログ累積回路とゲイン2倍の増幅器が、増幅機能を備えたアナログ累積回路71によって実現される。アナログ累積回路71は、スイッチ213~217と、容量素子304,305と、演算増幅器77とによって構成される。図7のAD変換器は、入力端子1と演算増幅器77との間に、スイッチ201~204と、容量素子301とを更に備える。
図7は、本開示のAD変換器に係る実施形態3を示した回路図である。図7では、アナログ累積回路とゲイン2倍の増幅器が、増幅機能を備えたアナログ累積回路71によって実現される。アナログ累積回路71は、スイッチ213~217と、容量素子304,305と、演算増幅器77とによって構成される。図7のAD変換器は、入力端子1と演算増幅器77との間に、スイッチ201~204と、容量素子301とを更に備える。
Sub-AD変換器72は、スイッチ218~227と、容量素子306~309と、出力端子12、13に接続された比較器78,79とによって構成される。図7のAD変換器は、スイッチ73と、判定回路74とを更に備える。
Sub-DA変換器76は、スイッチ205~212と、容量素子302,303とによって構成される。
なお、図7中の第1の基準電圧VCOMは、第2の基準電圧VREFよりも低い電圧である。
また、容量素子304と容量素子305との容量値は等しい。
《デルタシグマ変換モード》
演算増幅器77は、ゲイン1に設定するために、スイッチ213,216をオンに設定して、スイッチ214,215をオフに設定する。
演算増幅器77は、ゲイン1に設定するために、スイッチ213,216をオンに設定して、スイッチ214,215をオフに設定する。
出力端子12の出力と出力端子13の出力とは、判定回路74に個々に与えられ、判定された結果に応じて、Sub-DA変換器76の各スイッチを制御する。なお、デルタシグマ変換モードにおいて、出力端子13の出力は、スイッチ73によって、判定回路74への経路が遮断される。
デルタシグマ変換モードにおいて、入力端子1から入力されたアナログ入力信号Ainは、スイッチ201とスイッチ203とがオンとなることで、第1の基準電圧VCOMを基準として容量素子301に充電される。次に、スイッチ201とスイッチ203とがオフとなり、スイッチ202とスイッチ204とがオンとなることで、第1の基準電圧VCOMを基準として、容量素子301と容量素子304と容量素子305との間での充放電を利用して、演算増幅器77によって積分される。ここで、演算増幅器77の一方の入力端子が、第1の基準電圧VCOMに接続されているので、他方の入力端子は、仮想接地される。一方、容量素子301の両端が第1の基準電圧VCOMになるので、容量素子301の電荷は、容量素子305へ移動する。
Sub-AD変換器72は、スイッチ219とスイッチ226とがオンとなることで、容量素子306の電荷がリセットされる。次に、スイッチ219とスイッチ226とがオフとなり、スイッチ218がオンとなることで、比較器78の正入力電圧が演算増幅器77の出力電圧と等しい電圧となる。この結果、比較器78の負入力電圧である第1の基準電圧VCOMを閾値として1ビットのAD変換が行われる。
Sub-DA変換器76は、判定回路74によって以下のように制御される。
〔DOUT_L:ロー〕
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lがローの時、スイッチ205とスイッチ207とがオンとなることで、第2の基準電圧VREFがVCOMを基準電圧として、容量素子302に充電される。次に、スイッチ206とスイッチ208とがオンとなることで、第2の基準電圧VREFと第1の基準電圧VCOMとの差電圧によって容量素子302に蓄積された正の電荷が、演算増幅器77によって積分される。ここで、第1の基準電圧VCOMを基準として、容量素子302と容量素子304と容量素子305との間に充放電が行われる。
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lがローの時、スイッチ205とスイッチ207とがオンとなることで、第2の基準電圧VREFがVCOMを基準電圧として、容量素子302に充電される。次に、スイッチ206とスイッチ208とがオンとなることで、第2の基準電圧VREFと第1の基準電圧VCOMとの差電圧によって容量素子302に蓄積された正の電荷が、演算増幅器77によって積分される。ここで、第1の基準電圧VCOMを基準として、容量素子302と容量素子304と容量素子305との間に充放電が行われる。
〔DOUT_L:ハイ〕
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lがハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。次に、スイッチ210とスイッチ212とがオンとなることで、第1の基準電圧VCOMと第2の基準電圧VREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。ここで、第1の基準電圧VCOMを基準として、容量素子303と容量素子304と容量素子305との間に充放電が行われる。なお、Sub-AD変換器72が動作しない1回目の入力時には、Sub-DA変換器76は動作しない。
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lがハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。次に、スイッチ210とスイッチ212とがオンとなることで、第1の基準電圧VCOMと第2の基準電圧VREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。ここで、第1の基準電圧VCOMを基準として、容量素子303と容量素子304と容量素子305との間に充放電が行われる。なお、Sub-AD変換器72が動作しない1回目の入力時には、Sub-DA変換器76は動作しない。
《1倍ゲイン巡回型変換モード》
1倍ゲイン巡回型変換モードにおいて、スイッチ201~スイッチ204は動作せず、アナログ入力信号Ainは入力されない。
1倍ゲイン巡回型変換モードにおいて、スイッチ201~スイッチ204は動作せず、アナログ入力信号Ainは入力されない。
アナログ累積回路71において、演算増幅器77をゲイン1に設定するために、スイッチ213,216をオンに設定して、スイッチ214,215をオフに設定する。
Sub-AD変換器72は、スイッチ219とスイッチ221とスイッチ226とがオンとなることで、容量素子306と容量素子307との電荷がリセットされる。次に、スイッチ219とスイッチ221とスイッチ226とがオフとなり、スイッチ218とスイッチ220とがオンとなることで、比較器78の正入力電圧が決定される。ここで、演算増幅器77の出力電圧と第2の基準電圧VREFとを基準として、容量素子306と容量素子307との間で電荷再配分が行われる。
例えば、演算増幅器77の出力電圧が第1の基準電圧VCOMと等しい時、比較器78の正入力電圧は、容量素子306の容量値をC6、容量素子307の容量値をC7とすると、VCOM+(VREF-VCOM)×C7/(C6+C7)となり、負入力電圧はVCOMとなる。これは、比較器78の閾値が、VCOM-(VREF-VCOM)×C7/(C6+C7)となっていることと等しい。
また、同時にスイッチ223とスイッチ225とスイッチ227とがオンとなることで、容量素子308の電荷がリセットされ、容量素子309にはVREFとVCOMとの差電圧が充電される。次に、スイッチ223とスイッチ225とスイッチ227とがオフとなり、スイッチ222とスイッチ224とがオンとなることで、比較器79の正入力電圧が決定される。ここで、演算増幅器77の出力電圧と第1の基準電圧VCOMとを基準として、容量素子308と容量素子309との間で電荷再配分が行われる。
例えば、演算増幅器77の出力電圧が第1の基準電圧VCOMと等しい時、比較器79の正入力電圧は、容量素子308の容量値をC8、容量素子309の容量値をC9とすると、VCOM-(VREF-VCOM)×C9/(C8+C9)となり、負入力電圧はVCOMとなる。これは、比較器79の閾値が、VCOM+(VREF-VCOM)×C9/(C8+C9)となっていることと等しい。
以上により、Sub-AD変換器72では1.5ビットのAD変換が行われる。
出力端子12の出力と出力端子13の出力とは、判定回路74に個々に与えられ、判定された結果に応じて、Sub-DA変換器76の各スイッチを制御する。
Sub-DA変換器76は、判定回路74によって以下のように制御される。
〔DOUT_L:ロー、DOUT_H:ロー〕
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとの両方がローの時、スイッチ205とスイッチ207とがオンとなる。このことで、第2の基準電圧VREFが、VCOMを基準として、容量素子302に充電される。
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとの両方がローの時、スイッチ205とスイッチ207とがオンとなる。このことで、第2の基準電圧VREFが、VCOMを基準として、容量素子302に充電される。
次に、スイッチ206とスイッチ208とがオンとなることで、第2の基準電VREFと第1の基準電圧VCOMとの差電圧によって容量素子302に蓄積された正の電荷が、VCOMを基準として、容量素子302、容量素子304及び容量素子305の間での充放電を利用して、演算増幅器77によって積分される。
〔DOUT_L:ハイ、DOUT_H:ハイ〕
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとの両方がハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。
Sub-AD変換器72の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとの両方がハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。
次に、スイッチ210とスイッチ212とがオンとなることで、容量素子303の片方の端子電圧が、演算増幅器77の仮想接地電圧VCOMよりも高い電圧VREFとなる。このことで、容量素子304と容量素子305の電荷が、容量素子303に配分される。
〔DOUT_L:ハイ、DOUT_H:ロー〕
出力端子12のDOUT_Lがハイであり、出力端子13のDOUT_Hがローのときには、Sub-DA変換器76は動作しない。
出力端子12のDOUT_Lがハイであり、出力端子13のDOUT_Hがローのときには、Sub-DA変換器76は動作しない。
〔DOUT_L:ロー、DOUT_H:ハイ〕
出力端子12のDOUT_Lがローであり、出力端子13のDOUT_Hがハイの組み合わせにおいて、判定回路74の出力が出ることはない。
出力端子12のDOUT_Lがローであり、出力端子13のDOUT_Hがハイの組み合わせにおいて、判定回路74の出力が出ることはない。
《2倍ゲイン巡回型変換モード》
2倍ゲイン巡回型変換モードにおいて、スイッチ201~204は動作せず、アナログ入力信号Ainは入力されない。
2倍ゲイン巡回型変換モードにおいて、スイッチ201~204は動作せず、アナログ入力信号Ainは入力されない。
アナログ累積回路71は、スイッチ214とスイッチ216とがオンとなることで、VCOMを基準として演算増幅器77の出力電圧が容量素子304に充電される。次にスイッチ213とスイッチ215とがオンとなることで、演算増幅器77の出力電圧が、演算増幅器77によって累積される。なお、第1の基準電圧VCOMを基準として、容量素子304と容量素子305の間での充放電が、累積に用いられる。ここで、容量素子304と容量素子305との容量値は等しいので、演算増幅器77の出力電圧は2倍に増幅される。
2倍ゲイン巡回型変換モードにおいて、Sub-AD変換器72とSub-DA変換器76とは、1倍ゲイン巡回型変換モードと同様に動作する。
ここで、容量素子301の値C1に対し、容量素子302,303の値C2、C3は1/2倍、容量素子304,305の値C4、C5は1倍の容量値で構成することが望ましい。また、容量素子306の値C6に対し、容量素子308の値C8は1倍で構成し、容量素子307の値C7,容量素子309の値C9は1/8倍の容量値で構成することが望ましい。
しかし、例えば入力レンジを2倍に広げる目的で、C1を上記の1/2倍の容量値として構成してもよい。また、例えば、VREFの2倍の値を積分器の出力レンジとして構成するために、容量素子302,303,307,309の値C2,C3,C7,C9を上記の2倍の容量値で構成してもよい。
<実施形態4>
図8は、本開示のAD変換器に係る実施形態4を示した図である。図8に示すように、本AD変換器を差動化して用いることで、電源ノイズ等による影響を軽減することも可能である。
図8は、本開示のAD変換器に係る実施形態4を示した図である。図8に示すように、本AD変換器を差動化して用いることで、電源ノイズ等による影響を軽減することも可能である。
図8のAD変換器では、正極性のアナログ入力信号Ainpを受ける入力端子1がスイッチ201~204と容量素子301との回路に接続される。また、負極性のアナログ入力信号Ainnを受ける入力端子11がスイッチ1201~1204と容量素子1301との回路に接続される。
アナログ累積機能とゲイン2倍の増幅機能は、増幅機能を備えたアナログ累積回路81によって実現される。アナログ累積回路81は、演算増幅器77の非反転入力端子と反転出力端子との間において、スイッチ213~217と容量素子304,305と演算増幅器77とによって構成される。また、演算増幅器77の反転入力端子と非反転出力端子との間において、スイッチ1213~1217と容量素子1304,1305と演算増幅器77とによって構成される。
Sub-AD変換器82は、スイッチ218~227、容量素子306~309、比較器78の正入力端子、比較器79の正入力端子によって、演算増幅器77の反転入力端子出力を取り入れる。また、スイッチ1218~1227、容量素子1306~1309、比較器78の負入力端子、比較器79の負入力端子によって、演算増幅器77の非反転入力端子出力を取り入れる。
更に、本AD変換器は、比較器78,79の出力信号を受けるシフトレジスタ56と、スイッチ83及び判定回路84とを備える。
Sub-DA変換器86は、スイッチ205~212と、スイッチ1208、1212と、容量素子302,303とによって構成される。
なお、図8中の第1の基準電圧VCOMは、第2の基準電圧VREFよりも低い電圧である。
また、容量素子304と容量素子305との容量値は等しく、容量素子1304と容量素子1305との容量値は等しい。
《デルタシグマ変換モード》
演算増幅器77は、ゲイン1に設定するために、スイッチ213,216をオンに設定して、スイッチ214,215をオフに設定する。また、スイッチ1213,1216をオンに設定して、スイッチ1214,1215をオフに設定する。
演算増幅器77は、ゲイン1に設定するために、スイッチ213,216をオンに設定して、スイッチ214,215をオフに設定する。また、スイッチ1213,1216をオンに設定して、スイッチ1214,1215をオフに設定する。
出力端子12の出力DOUT_Lと出力端子13の出力DOUT_Hとは、判定回路84に個々に与えられる。判定結果に応じて、Sub-DA変換器86の各スイッチが制御される。なお、デルタシグマ変換モードにおいて、出力端子13の出力は、スイッチ83によって、判定回路84への経路が遮断される。
デルタシグマ変換モードにおいて、入力端子1から入力されたアナログ入力信号Ainpは、スイッチ201とスイッチ203とがオンとなることで、第1の基準電圧VCOMを基準として容量素子301に充電される。次に、スイッチ201とスイッチ203とがオフとなり、スイッチ202とスイッチ204とがオンとなることで、第1の基準電圧VCOMを基準として、容量素子301と容量素子304と容量素子305との間での充放電によって、演算増幅器77によって積分される。ここで、演算増幅器77の差動入力端子は第1の基準電圧VCOMに仮想接地されており、容量素子301の両端が第1の基準電圧VCOMと等しくなるため、容量素子301の電荷は、容量素子305へ移動する。
同様に、入力端子11から入力されたアナログ入力信号Ainnは、スイッチ1201とスイッチ1203とがオンとなることで、第1の基準電圧VCOMを基準として容量素子1301に充電される。次に、スイッチ1201とスイッチ1203とがオフとなり、スイッチ1202とスイッチ1204とがオンとなることで、第1の基準電圧VCOMを基準として、容量素子1301と容量素子1304と容量素子1305との間での充放電によって、演算増幅器77によって積分される。ここで、演算増幅器77の差動入力端子は第1の基準電圧VCOMに仮想接地されており、容量素子1301の両端が第1の基準電圧VCOMと等しくなるため、容量素子1301の電荷は、容量素子1305へ移動する。
Sub-AD変換器82は、スイッチ219とスイッチ1219とスイッチ226とスイッチ1226とがオンとなることで、容量素子306と容量素子1306との電荷がリセットされる。次に、スイッチ219とスイッチ1219とスイッチ226とスイッチ1226とがオフとなり、スイッチ218とスイッチ1218とがオンとなることで、比較器78の正入力電圧が演算増幅器77の正の出力電圧と等しい電圧となる。その結果、比較器78の負入力電圧が演算増幅器77の負の出力電圧と等しい電圧となり、1ビットのAD変換が行われる。
Sub-DA変換器86は、判定回路84によって以下のように制御される。
〔DOUT_L:ロー〕
Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lがローの時、スイッチ205とスイッチ207とがオンとなることで、第2の基準電圧VREFが、VCOMを基準電圧として、容量素子302に充電され、スイッチ209とスイッチ211とがオンとなることによって、容量素子303の電荷がリセットされる。次に、スイッチ206とスイッチ208とがオンとなることで、VREFとVCOMとの差電圧によって容量素子302に蓄積された正の電荷が、演算増幅器77によって積分される。同時に、スイッチ210とスイッチ1208とがオンとなることで、第1の基準電圧VCOMと第2の基準電圧VREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。
Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lがローの時、スイッチ205とスイッチ207とがオンとなることで、第2の基準電圧VREFが、VCOMを基準電圧として、容量素子302に充電され、スイッチ209とスイッチ211とがオンとなることによって、容量素子303の電荷がリセットされる。次に、スイッチ206とスイッチ208とがオンとなることで、VREFとVCOMとの差電圧によって容量素子302に蓄積された正の電荷が、演算増幅器77によって積分される。同時に、スイッチ210とスイッチ1208とがオンとなることで、第1の基準電圧VCOMと第2の基準電圧VREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。
〔DOUT_L:ハイ〕
Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lがハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。また、スイッチ205とスイッチ207とがオンとなることによって、第2の基準電圧VREFが、第1の基準電圧VCOMを基準として、容量素子302に充電される。次に、スイッチ210とスイッチ212とがオンとなることで、VCOMとVREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。同時に、スイッチ206とスイッチ1212とがオンすることで、VREFとVCOMとの差電圧によって、容量素子302に蓄積された正の電荷が、演算増幅器77に蓄積される。
Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lがハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。また、スイッチ205とスイッチ207とがオンとなることによって、第2の基準電圧VREFが、第1の基準電圧VCOMを基準として、容量素子302に充電される。次に、スイッチ210とスイッチ212とがオンとなることで、VCOMとVREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。同時に、スイッチ206とスイッチ1212とがオンすることで、VREFとVCOMとの差電圧によって、容量素子302に蓄積された正の電荷が、演算増幅器77に蓄積される。
なお、Sub-AD変換器82が動作しない1回目の入力時には、Sub-DA変換器86は動作しない。
《1倍ゲイン巡回型変換モード》
1倍ゲイン巡回型変換モードにおいて、スイッチ201~204は動作せず、アナログ入力信号Ainpは入力されない。また、スイッチ1201~1204は動作せず、アナログ入力信号Ainnは入力されない。
1倍ゲイン巡回型変換モードにおいて、スイッチ201~204は動作せず、アナログ入力信号Ainpは入力されない。また、スイッチ1201~1204は動作せず、アナログ入力信号Ainnは入力されない。
アナログ累積回路81において、演算増幅器77をゲイン1に設定するために、スイッチ213,216をオンに設定して、スイッチ214,215をオフに設定する。また、スイッチ1213,1216をオンに設定して、スイッチ1214,1215をオフに設定する。
Sub-AD変換器82は、スイッチ219,221,226がオンとなることで、容量素子306,307の電荷がリセットされ、スイッチ1219,1221,1226がオンとなることで、容量素子1306の電荷がリセットされ、容量素子1307にはVREFとVCOMとの差電圧が充電される。次に、スイッチ219,221,226がオフとなり、スイッチ218,220がオンとなることで、比較器78の正入力電圧が決定される。同時に、スイッチ1219,1221,1226がオフとなり、スイッチ1218,1220がオンとなることで、比較器78の負入力電圧が決定される。
例えば、演算増幅器77の正と負の出力電圧が第1の基準電圧VCOMと等しい時、比較器78の正入力電圧は、VCOM+(VREF-VCOM)×C7/(C6+C7)となり、比較器78の負入力電圧はVCOM-(VREF-VCOM)×C7/(C6+C7)となる。これは、比較器78の閾値が、-2×(VREF-VCOM)×C7/(C6+C7)となっていることと等しい。ここで、容量素子306,1306の容量値をC6、容量素子307,1307の容量値をC7とする。
また、同時にスイッチ223,225,227がオンとなることで、容量素子308の電荷がリセットされ、容量素子309にはVREFとVCOMとの差電圧が充電される。また、スイッチ1223,1225,1227がオンとなることで、容量素子1308,1309の電荷がリセットされる。次に、スイッチ223,225,227がオフとなり、スイッチ222,224がオンとなることで、比較器79の正入力電圧が決定される。同時に、スイッチ1223,1225,1227がオフとなり、スイッチ1222,1224がオンとなることで、比較器79の負入力電圧が決定される。
例えば、演算増幅器77の正と負の出力電圧が第1の基準電圧VCOMと等しい時、比較器79の正入力電圧は、VCOM-(VREF-VCOM)×C9/(C8+C9)となり、比較器79の負入力電圧はVCOM+(VREF-VCOM)×C9/(C8+C9)となる。これは、比較器79の閾値が、2×(VREF-VCOM)×C9/(C8+C9)となっていることと等しい。ここで、容量素子308,1308の容量値をC8、容量素子309,1309の容量値をC9とする。
以上により、Sub-AD変換器82では1.5ビットのAD変換が行われる。
Sub-DA変換器86は、判定回路84によって以下のように制御される。
〔DOUT_L:ロー、DOUT_H:ロー〕
Sub-DA変換器86は、Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとが共にローの時、スイッチ205とスイッチ207とがオンとなることで、第2の基準電圧VREFが、VCOMを基準電圧として、容量素子302に充電され、また、スイッチ209とスイッチ211とがオンとなることによって、容量素子303の電荷がリセットされる。次に、スイッチ206とスイッチ208とがオンとなることで、VREFとVCOMとの差電圧によって容量素子302に蓄積された正の電荷が、演算増幅器77によって積分される。同時に、スイッチ210とスイッチ1208とがオンとなることで、第1の基準電圧VCOMと第2の基準電圧VREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。
Sub-DA変換器86は、Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとが共にローの時、スイッチ205とスイッチ207とがオンとなることで、第2の基準電圧VREFが、VCOMを基準電圧として、容量素子302に充電され、また、スイッチ209とスイッチ211とがオンとなることによって、容量素子303の電荷がリセットされる。次に、スイッチ206とスイッチ208とがオンとなることで、VREFとVCOMとの差電圧によって容量素子302に蓄積された正の電荷が、演算増幅器77によって積分される。同時に、スイッチ210とスイッチ1208とがオンとなることで、第1の基準電圧VCOMと第2の基準電圧VREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。
〔DOUT_L:ハイ、DOUT_H:ハイ〕
Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとが共にハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。また、スイッチ205とスイッチ207とがオンとなることによって、第2の基準電圧VREFが、第1の基準電圧VCOMを基準として、容量素子302に充電される。次に、スイッチ210とスイッチ212とがオンとなることで、VCOMとVREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。同時に、スイッチ206とスイッチ1212とがオンすることで、VREFとVCOMとの差電圧によって、容量素子302に蓄積された正の電荷が、演算増幅器77に蓄積される。
Sub-AD変換器82の出力端子12のデジタル信号DOUT_Lと出力端子13のデジタル信号DOUT_Hとが共にハイの時、スイッチ209とスイッチ211とがオンとなることで、容量素子303の電荷がリセットされる。また、スイッチ205とスイッチ207とがオンとなることによって、第2の基準電圧VREFが、第1の基準電圧VCOMを基準として、容量素子302に充電される。次に、スイッチ210とスイッチ212とがオンとなることで、VCOMとVREFとの差電圧によって、容量素子303に蓄積された負の電荷が、演算増幅器77に蓄積される。同時に、スイッチ206とスイッチ1212とがオンすることで、VREFとVCOMとの差電圧によって、容量素子302に蓄積された正の電荷が、演算増幅器77に蓄積される。
〔DOUT_L:ハイ、DOUT_H:ロー〕
出力端子12のDOUT_Lがハイであり、出力端子13のDOUT_Hがローのときには、Sub-DA変換器86は動作しない。
出力端子12のDOUT_Lがハイであり、出力端子13のDOUT_Hがローのときには、Sub-DA変換器86は動作しない。
〔DOUT_L:ロー、DOUT_H:ハイ〕
出力端子12のDOUT_Lがローであり、出力端子13のDOUT_Hがハイの組み合わせにおいて、判定回路84の出力が出ることはない。
出力端子12のDOUT_Lがローであり、出力端子13のDOUT_Hがハイの組み合わせにおいて、判定回路84の出力が出ることはない。
《2倍ゲイン巡回型変換モード》
2倍ゲイン巡回型変換モードにおいて、スイッチ201~204は動作せず、アナログ入力信号Ainpは入力されない。また、スイッチ1201~1204は動作せず、アナログ入力信号Ainnは入力されない。
2倍ゲイン巡回型変換モードにおいて、スイッチ201~204は動作せず、アナログ入力信号Ainpは入力されない。また、スイッチ1201~1204は動作せず、アナログ入力信号Ainnは入力されない。
アナログ累積回路81は、スイッチ214とスイッチ216とがオンとなることで、VCOMを基準として演算増幅器77の正の出力電圧が容量素子304に充電されるとともに、スイッチ1214とスイッチ1216とがオンとなることで、VCOMを基準として演算増幅器77の負の出力電圧が容量素子1304に充電される。次に、スイッチ213とスイッチ215とがオンとなることで、VCOMを基準として容量素子304と容量素子305との間での充放電を利用して演算増幅器77によって累積される。これとともに、スイッチ1213とスイッチ1215とがオンとなることで、VCOMを基準として容量素子1304と容量素子1305との間での充放電を利用して、演算増幅器77によって累積される。ここで、容量素子304,305,1304,1305の容量値は等しいので、演算増幅器77の出力電圧は2倍に増幅される。
2倍ゲイン巡回型変換モードにおいて、Sub-AD変換器82とSub-DA変換器86とは、1倍ゲイン巡回型変換モードと同様に動作する。
ここで、容量素子301,1301の値C1に対し、容量素子302,1302,303,1303の値C2、C3は1/2倍、容量素子304,1304,305,1305の値C4、C5は1倍の容量値で構成することが望ましい。また、容量素子306,1306の値C6に対し、容量素子308,1308の値C8は1倍で構成し、容量素子307,1307の値C7で構成し、容量素子309,1309の値C9は、1/8倍の容量値で構成することが望ましい。しかし、例えば、入力レンジを2倍に広げる目的で、C1を上記の1/2倍の容量値として構成してもよい。また、例えば、VREFの2倍の値を積分器の出力レンジとして構成するために、容量素子302,1302,303,1303,307,1307,309,1309のそれぞれの値C2,C3,C7,C9を上記の2倍の容量値で構成してもよい。
<実施形態5>
図9は、本開示のAD変換器に係る実施形態5を示した図である。図9のAD変換器において、サイクルカウンタ51は、変換開始から、外部から与えられるクロックのサイクル数をカウントする。コントローラ52は、サイクルカウンタ51のカウント出力に基づき、AD変換器の各構成の制御を行う。コントローラ52によって、第1のモード、第2のモード及び第3のモードに切り替えられて変換が行われる。
図9は、本開示のAD変換器に係る実施形態5を示した図である。図9のAD変換器において、サイクルカウンタ51は、変換開始から、外部から与えられるクロックのサイクル数をカウントする。コントローラ52は、サイクルカウンタ51のカウント出力に基づき、AD変換器の各構成の制御を行う。コントローラ52によって、第1のモード、第2のモード及び第3のモードに切り替えられて変換が行われる。
《デルタシグマ変換モード》
スイッチ15は、入力端子1に接続されており、入力端子1から入力されたアナログ信号Ainが減算器31に与えられる。減算器31の出力信号は、サンプルホールド回路32によって、保持される。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
スイッチ15は、入力端子1に接続されており、入力端子1から入力されたアナログ信号Ainが減算器31に与えられる。減算器31の出力信号は、サンプルホールド回路32によって、保持される。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
増幅器33の出力信号は、スイッチ17とスイッチ18とを介して、1ビットのAD変換を行うSub-AD変換器34に与えられる。Sub-AD変換器34は、スイッチ19を介して、2値のデジタル信号を出力する。2値信号は、「+1」又は「-1」である。
スイッチ19を介したSub-AD変換器34の出力デジタル信号は、Sub-DA変換器55に与えられ、Sub-DA変換器55は、1ビットのDA変換を行う。
このようにして、減算器31、サンプルホールド回路32、増幅器33、Sub-AD変換器34、Sub-DA変換器55によって、閉ループを形成する。
なお、1回目の入力時においては、Sub-DA変換器55の出力は0にリセットされている。
シフトレジスタ56は、Sub-AD変換器34の出力デジタル信号を、外部から与えるクロック信号に同期して、(DSBIT-1)だけ右シフトする。DSBITが2ビットであるとき、図2(b)に示したように、1ビットだけLSBに向かって右シフトする。また、デジタル累積回路57は、シフトレジスタ56の出力デジタル信号を積分する。
以上の動作を1サイクルとして、2のDSBIT乗のサイクルが繰り返され、これによって上位ビットであるDSBITを得る。
《1倍ゲイン巡回型変換モード》
次に、スイッチ15は、入力端子10に接続される。入力端子10の入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器55の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
次に、スイッチ15は、入力端子10に接続される。入力端子10の入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器55の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、1倍ゲインのアナログ累積回路を構成している。
増幅器33の出力信号は、スイッチ17,18を介して、2.5ビットのAD変換を行うSub-AD変換器59に与えられる。Sub-AD変換器59から5値のデジタル信号を出力する。5値信号は、「+1」又は「+0.5」又は「0」又は「-0.5」又は「-1」である。
Sub-AD変換器59の出力デジタル信号は、Sub-DA変換器55に与えられる。Sub-DA変換器55は、2.5ビットのDA変換を行う。
シフトレジスタ56は、Sub-AD変換器59の出力デジタル信号を(DSBIT-1)だけ右シフトする。また、デジタル累積回路57は、シフトレジスタ56の出力デジタル信号を累積する。
以上の動作によって、デルタシグマ変換の最下位ビットとオーバーラップした変換結果が得られる。また、2.5ビットの結果を得ることで、次に示す4倍ゲイン巡回型変換モードの最上位ビットともオーバーラップした変換結果を得ることができる。
《4倍ゲイン巡回型変換モード》
次に、スイッチ15は、入力端子10に接続された状態である。入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器55の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器58に与えられ、ゲイン4で増幅される。なお、増幅器58から出力された信号は、減算器31にフィードバックされることで、4倍ゲインのアナログ累積回路を構成している。
次に、スイッチ15は、入力端子10に接続された状態である。入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器55の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器58に与えられ、ゲイン4で増幅される。なお、増幅器58から出力された信号は、減算器31にフィードバックされることで、4倍ゲインのアナログ累積回路を構成している。
増幅器58の出力信号は、スイッチ17,18を介して、2.5ビットのAD変換を行うSub-AD変換器59に与えられる。Sub-AD変換器59は、5値のデジタル信号を出力する。5値信号は、「+1」又は「+0.5」又は「0」又は「-0.5」又は「-1」である。
Sub-AD変換器59の出力デジタル信号は、Sub-DA変換器55に与えられる。Sub-DA変換器55は、2.5ビットのDA変換を行う。
シフトレジスタ56は、Sub-AD変換器59の出力デジタル信号を、(DSBIT-1)に4倍ゲイン巡回型変換モードの中で、現在のサイクル数の2倍を加算した数だけ右シフトする。
デジタル累積回路57は、シフトレジスタ56の出力デジタル信号を累積する。4倍ゲイン巡回型変換モードでは、以上の動作を1サイクルとして、(CYBIT/2)サイクル繰り返されることで下位ビットであるCYBITを得る。
<実施形態6>
図10は、本開示のAD変換器に係る実施形態6を示した図である。図10において、入力端子1に信号が与えられ、出力端子5,7,9に変換結果が出力される。これらの出力端子5,7,9は、別々の端子として記載されているが、1つの出力端子について、各処理の結果に対する時間の経過ごとの端子とすることもできる。
図10は、本開示のAD変換器に係る実施形態6を示した図である。図10において、入力端子1に信号が与えられ、出力端子5,7,9に変換結果が出力される。これらの出力端子5,7,9は、別々の端子として記載されているが、1つの出力端子について、各処理の結果に対する時間の経過ごとの端子とすることもできる。
入力端子1のアナログ入力信号Ainは、2次デルタシグマAD変換器2に与えられ、1ビットのデルタシグマAD変換処理が行われる。デルタシグマAD変換処理は、変換処理サイクルによって、量子化信号Dout1を出力する。量子化信号Dout1は、シフトレジスタ3に与えられ、シフト処理を施して、デジタル累積回路4に与えられ、デジタル積分した信号を上位ビット信号DSBITとして出力端子5に出力する。なお、上位ビットが3ビットに設定されたとき、デルタシグマAD変換は、4サイクル行われる。
最後の量子化信号Dout1が確定した後、デジタル累積回路4は上位ビット信号DSBITを出力し、2次デルタシグマAD変換器2は上位ビットのアナログ残差信号である残差信号Vrsd1を出力する。残差信号Vrsd1は、第1の巡回型AD変換器6に与えられ、1.5ビットの巡回型AD変換処理が行われ、量子化信号Dout2を出力する。このとき、第1の巡回型AD変換器6には、増幅度0.5が設定される。量子化信号Dout2は、シフトレジスタ3に与えられて、シフト処理が施され、シフト処理が施された信号が、デジタル累積回路4に与えられて、出力端子7に、上位ビットと下位ビットのオーバーラップビット信号CYBIT1を出力する。
次に、第1の巡回型AD変換器6から、量子化信号Dout2を取り出した残差信号Vrsd2が、第2の巡回型AD変換器8に与えられ、巡回型AD変換処理が行われる。このとき、第2の巡回型AD変換器8には、増幅度2が設定される。第2の巡回型AD変換処理は、1サイクルごとに量子化信号Dout3を出力する。量子化信号Dout3は、シフトレジスタ3に与えられて、シフト処理が施され、シフト処理が施された信号が、デジタル累積回路4に与えられて、出力端子9に下位ビット信号CYBIT2を出力する。なお、下位ビットが、4ビットに設定されたとき、第2の巡回型AD変換は、5サイクル行われる。
図11(a)は、実施形態6に係るAD変換器の変換フローを示した図であり、図11(b)は、実施形態6に係るデジタルデータのビットの位置(深さ)を示した図である。
図11(a)に示したように、本開示のAD変換器は、3つの動作の状態(モード)を切り替えることで変換が行われる。第1のモードは、2次デルタシグマAD変換を行う2次デルタシグマ変換モード20であり、第2のモードは、0.5倍ゲインでの巡回型AD変換を行う0.5倍ゲイン巡回型変換モード21であり、第3のモードは、2倍ゲインでの巡回型AD変換を行う2倍ゲイン巡回型変換モード22である。
2次デルタシグマ変換モード20において、図11(b)に示したように、上位ビットの変換結果を得ることができる。上位ビットがDSBITビットである場合は、ビットの配列のMSBからLSBに向かって、DSBIT個の変換結果を配置する。
0.5倍ゲイン巡回型変換モード21において、図11(b)に示したように、1.5ビットの変換結果を得る。この結果には、2個のビット枠が与えられる。
また、2倍ゲイン巡回型変換モード22において、図11(b)に示したように、下位ビット(CYBIT+1)の変換結果を得ることができる。
これら各モードの変換結果の出力デジタル信号は、加算工程23で加算され、最終AD変換結果を得る。ただし、この加算は全ての変換モードが完了してから行う必要はない。
このようにして、0.5倍ゲイン巡回型変換モード21で得た1.5ビットは、上位ビット信号DSBITのMSBからLSBに向かって最下位に位置するビットと2ビット重なる変換結果となり、また、2倍ゲイン巡回型変換モード22から出力される下位ビット信号(CYBIT+1)の最上位に位置するビットと1ビット重なる変換結果となる。つまり、オーバーラップを実現している。
図12は、本開示のAD変換器に係る実施形態6を示した図である。図12において、制御(サイクル)カウンタ51は、変換開始から、外部から与えられるクロック(不図示)のサイクル数をカウントする。コントローラ52は、サイクルカウンタ51のカウント出力に基づき、AD変換器の各構成の制御を行う。コントローラ52によって、第1のモード、第2のモード及び第3のモードに切り替えられて変換が行われる。
《2次デルタシグマ変換モード》
入力端子1のアナログ入力信号Ainが減算器31aに与えられる。減算器31aの出力信号は、サンプルホールド回路32aに与えられ、サンプルホールド回路32aによって保持される。保持された信号は、増幅器33aに与えられ、ゲイン1で増幅される。なお、増幅器33aから出力された信号は、減算器31aにフィードバックされることで、1段目の1倍ゲインのアナログ累積回路40aを構成している。
入力端子1のアナログ入力信号Ainが減算器31aに与えられる。減算器31aの出力信号は、サンプルホールド回路32aに与えられ、サンプルホールド回路32aによって保持される。保持された信号は、増幅器33aに与えられ、ゲイン1で増幅される。なお、増幅器33aから出力された信号は、減算器31aにフィードバックされることで、1段目の1倍ゲインのアナログ累積回路40aを構成している。
1段目のアナログ累積回路40aの出力は、スイッチ15を介して2段目のアナログ累積回路40に入力される。入力された信号は減算器31に与えられる。減算器31の出力信号は、サンプルホールド回路32に与えられ、サンプルホールド回路32によって保持される。保持された信号は、スイッチ16を介して増幅器33に与えられ、ゲイン1で増幅される。なお、増幅器33から出力された信号は、減算器31にフィードバックされることで、2段目の1倍ゲインのアナログ累積回路40を構成している。
2段目のアナログ累積回路40の出力信号は、スイッチ17とスイッチ18とを介して、1ビットのAD変換を行うSub-AD変換器34に与えられる。Sub-AD変換器34は、スイッチ19を介して、2値のデジタル信号を出力する。2値信号は、「+1」又は「-1」である。
スイッチ19を介したSub-AD変換器34の出力デジタル信号は、Sub-DA変換器35に与えられ、Sub-DA変換器35は、1ビットのDA変換を行う。Sub-DA変換器35の出力は、1段目のアナログ累積回路40aにそのままフィードバックされるとともに、2段目のアナログ累積回路40にて1倍ゲインの増幅器46を介してフィードバックされる。
このようにして、減算器31a,31、サンプルホールド回路32a,32、増幅器33a,33、Sub-AD変換器34、Sub-DA変換器35によって、閉ループを形成する。
なお、1回目の入力時においては、Sub-DA変換器35の出力は0にリセットされている。
シフトレジスタ56は、Sub-AD変換器34の出力デジタル信号を、外部から与えるクロック信号(不図示)に同期して、(DSBIT-1)だけ右シフトする。DSBITが3ビットであるとき、2だけLSBに向かって右シフトする。また、スイッチ44とスイッチ45とを介して直列に接続された2つのデジタル累積回路57a,57によって、シフトレジスタ56の出力デジタル信号は2次積分される。
以上の動作を1サイクルとして、DSBITが3ビットであれば4サイクル繰り返され、これによって上位ビットであるDSBITを得る。
《0.5倍ゲイン巡回型変換モード》
スイッチ15は、入力端子10に接続され、1段目のアナログ累積回路40aは不要となる。入力端子10の入力信号は、ゼロであるので、2段目のサンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器43に与えられ、ゲイン0.5で増幅される。なお、増幅器43から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、0.5倍ゲインのアナログ累積回路を構成している。
スイッチ15は、入力端子10に接続され、1段目のアナログ累積回路40aは不要となる。入力端子10の入力信号は、ゼロであるので、2段目のサンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器43に与えられ、ゲイン0.5で増幅される。なお、増幅器43から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、0.5倍ゲインのアナログ累積回路を構成している。
増幅器43の出力信号は、スイッチ17,18を介して、1.5ビットのAD変換を行うSub-AD変換器39に与えられる。Sub-AD変換器39から3値のデジタル信号を出力する。3値信号は、「+1」又は「0」又は「-1」である。
Sub-AD変換器39の出力デジタル信号は、Sub-DA変換器35に与えられる。Sub-DA変換器35は、1.5ビットのDA変換を行う。Sub-DA変換器35の出力は、スイッチ48及びスイッチ49により2倍増幅器47に接続され、減算器31にフィードバックされる。
シフトレジスタ56は、Sub-AD変換器39の出力デジタル信号を(DSBIT-2)だけ右シフトする。また、デジタル累積回路57は、スイッチ44及びスイッチ45により1段に設定され、シフトレジスタ56の出力デジタル信号をデジタル積分する。
以上の動作によって、2次デルタシグマ変換の最下位ビットと2ビットオーバーラップした変換結果が得られる。また、1.5ビットの結果を得ることによって、次に示す2倍ゲイン巡回型変換モードの最上位ビットともオーバーラップした変換結果を得ることができる。
《2倍ゲイン巡回型変換モード》
スイッチ15は、入力端子10に接続された状態である。入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器38に与えられ、ゲイン2で増幅される。なお、増幅器38から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、2倍ゲインのアナログ累積回路を構成している。
スイッチ15は、入力端子10に接続された状態である。入力信号は、ゼロであるので、サンプルホールド回路32は、増幅器33の出力とSub-DA変換器35の出力との差分を保持する。保持された信号は、スイッチ16を介して増幅器38に与えられ、ゲイン2で増幅される。なお、増幅器38から出力された信号は、減算器31にフィードバックされることで、アナログ累積回路40において、2倍ゲインのアナログ累積回路を構成している。
増幅器38の出力信号は、スイッチ17,18を介して、1.5ビットのAD変換を行うSub-AD変換器39に与えられる。Sub-AD変換器39は、3値のデジタル信号を出力する。3値信号は、「+1」又は「0」又は「-1」である。
Sub-AD変換器39の出力デジタル信号は、Sub-DA変換器35に与えられる。Sub-DA変換器35は、1.5ビットのDA変換を行う。スイッチ48及びスイッチ49は、2倍増幅器47に接続されている。
シフトレジスタ56は、Sub-AD変換器39の出力デジタル信号を、(DSBIT-2)に2倍ゲイン巡回型変換モードの現在のサイクル数を加算した数だけ右シフトする。
デジタル累積回路57は、スイッチ44及びスイッチ45により1段に設定され、シフトレジスタ56の出力デジタル信号をデジタル積分する。
2倍ゲイン巡回型変換モードでは、以上の動作を1サイクルとして、(CYBIT+1)サイクル繰り返されることで下位ビットであるCYBITを得る。
なお、巡回型変換モードの第1の変換におけるゲインは、各構成要素のばらつきを考慮したうえで、2次デルタシグマ変換における最大の残留電圧が巡回型変換の変換可能電圧範囲を超えないように設定される。この関係を保つことで、他の方式の2次デルタシグマ変換や、更に高次のデルタシグマ変換、カスケード型デルタシグマ変換等に応用することが可能である。
<実施形態7>
図13は、本開示のAD変換器に係る実施形態7を示した図である。実施形態7は、実施形態6の構成中のアナログ累積回路を実用的に示したものである。
図13は、本開示のAD変換器に係る実施形態7を示した図である。実施形態7は、実施形態6の構成中のアナログ累積回路を実用的に示したものである。
《2次デルタシグマ変換モード》
1段目のアナログ累積回路40aにおいて、アナログ入力信号Ainの入力端子1と減算器31aとの間にゲインaの増幅器1341を挿入する。また、1.5ビットのSub-AD変換器35と減算器31aとの間に、ゲインaの増幅器1342を挿入する。
1段目のアナログ累積回路40aにおいて、アナログ入力信号Ainの入力端子1と減算器31aとの間にゲインaの増幅器1341を挿入する。また、1.5ビットのSub-AD変換器35と減算器31aとの間に、ゲインaの増幅器1342を挿入する。
2段目のアナログ累積回路40において、スイッチ15と減算器31との間にゲインbの増幅器1343を挿入し、1.5ビットのSub-AD変換器35と減算器31との間にゲインa×bの増幅器46を挿入する。
増幅器のゲインa、bは、アナログ累積回路40a、アナログ累積回路40の最大出力値が回路のダイナミックレンジを超えないように設定する。このことで、アナログ累積回路40a,40の出力が飽和することによる特性劣化を防ぐことが可能となる。
《c倍ゲイン巡回型変換モード》
スイッチ15は、入力端子10に接続される。増幅器43のゲインがc倍の時、1.5ビットのSub-DA変換器35と減算器31との間の増幅器47はa×b/c倍のゲインに設定する。
スイッチ15は、入力端子10に接続される。増幅器43のゲインがc倍の時、1.5ビットのSub-DA変換器35と減算器31との間の増幅器47はa×b/c倍のゲインに設定する。
以上の構成によって、2次デルタシグマ変換の最下位ビットと1+log2(1/c)ビットオーバーラップした変換結果が得られる。
《2倍ゲイン巡回型変換モード》
スイッチ16及びスイッチ17は増幅器38に、スイッチ48及びスイッチ49は増幅器47にそれぞれ接続されている。
スイッチ16及びスイッチ17は増幅器38に、スイッチ48及びスイッチ49は増幅器47にそれぞれ接続されている。
なお、巡回型変換モードの第1の変換におけるゲインは、各構成要素のばらつきを考慮したうえで、2次デルタシグマ変換における最大の残留電圧が巡回型変換の変換可能電圧範囲を超えないように設定される。この関係を保つことで、他の方式の2次デルタシグマ変換等に応用することが可能である。
<実施形態8>
図14は、本開示のAD変換器に係る実施形態8を示した図である。ここでは、第1及び第2の巡回型変換モードについての説明は省略し、2次(1+1)カスケード型デルタシグマ変換モードのみについて説明する。
図14は、本開示のAD変換器に係る実施形態8を示した図である。ここでは、第1及び第2の巡回型変換モードについての説明は省略し、2次(1+1)カスケード型デルタシグマ変換モードのみについて説明する。
1段目のアナログ累積回路40aの出力は、1ビットのAD変換を行うSub-AD変換器34aに与えられる。Sub-AD変換器34aの出力デジタル信号は、Sub-DA変換器35aに与えられ、Sub-DA変換器35aは、1ビットのDA変換を行う。また、1段目のアナログ累積回路40aの出力とSub-DA変換器35aの出力との差分電圧は、スイッチ15を介して2段目のアナログ累積回路40に入力される。
2段目のアナログ累積回路40も、1段目のアナログ累積回路40aから独立して閉ループを構成している。2段目のアナログ累積回路40では、ゲイン1の増幅器33と、ゲイン1の増幅器43と、ゲイン2の増幅器38とが切り替えられる。
シフトレジスタ56は、Sub-AD変換器34a,34の出力デジタル信号を、外部から与えるクロック信号(不図示)に同期して、(DSBIT-1)だけ右シフトする。DSBITが3ビットであるとき、2だけLSBに向かって右シフトする。また、スイッチ44とスイッチ45とを介して直列に接続された2つのデジタル累積回路57a,57によって、1段目の出力デジタル信号は2次積分され、2段目の出力デジタル信号は1次積分される。
なお、巡回型変換モードの第1の変換におけるゲインは、各構成要素のばらつきを考慮したうえで、2次デルタシグマ変換における最大の残留電圧が巡回型変換の変換可能電圧範囲を超えないように設定される。この関係を保つことで、他の構成のカスケード型デルタシグマ変換等に応用することが可能である。
<実施形態9>
図15は、本開示のAD変換器に係る実施形態9を示した図である。ここでは、第1及び第2の巡回型変換モードについての説明は省略し、3次デルタシグマ変換モードのみについて説明する。
図15は、本開示のAD変換器に係る実施形態9を示した図である。ここでは、第1及び第2の巡回型変換モードについての説明は省略し、3次デルタシグマ変換モードのみについて説明する。
図15の構成は、図12に示した実施形態6の1段目のアナログ累積回路40aと2段目のアナログ累積回路40との間にもう1段のアナログ累積回路40bを追加した構成である。31bは減算器、32bはサンプルホールド回路、33bはゲイン1の増幅器である。シフトレジスタ56の出力デジタル信号は、3段のデジタル累積回路57a,57b,57により3次積分される。
なお、巡回型変換モードの第1の変換におけるゲインは、各構成要素のばらつきを考慮したうえで、3次デルタシグマ変換における最大の残留電圧が巡回型変換の変換可能電圧範囲を超えないように設定される。この関係を保つことで、更に高次のデルタシグマ変換等に応用することが可能である。
以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。
なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略等を行うことができる。
本開示に係るAD変換器は、従来の方式と比べて回路面積や消費電流、変換時間の増加を招くことなく、線形性を良化させることができ、例えばセンサ信号の検知を高速かつ高精度に行うことができる。
1 入力端子
2 デルタシグマAD変換器
3 シフトレジスタ
4 デジタル累積回路
5 出力端子
6 第1の巡回型AD変換器
7 出力端子
8 第2の巡回型AD変換器
9 出力端子
10,11 入力端子
12,13 出力端子
15~19 スイッチ
20 デルタシグマ変換モード
21 1倍ゲイン巡回型変換モード
22 2倍ゲイン巡回型変換モード
23 加算工程
31,31a,31b 減算器
32,32a,32b サンプルホールド回路
33,33a,33b 増幅器
34,34a Sub-AD変換器
35,35a Sub-DA変換器
36 シフトレジスタ
37 デジタル累積回路
38 増幅器
39 Sub-AD変換器
40,40a,40b アナログ累積回路
41 1倍ゲインのアナログ累積回路
42 2倍ゲインのアナログ累積回路
43,46,47 増幅器
44,45,48,49 スイッチ
51 サイクルカウンタ
52 コントローラ
55 Sub-DA変換器
56 シフトレジスタ
57,57a,57b デジタル累積回路
58 増幅器
59 Sub-AD変換器
60 リセット工程
61 第1のカウント工程
62 第1の変換工程
63 第2の変換工程
64 第1の判定工程
71 アナログ累積回路
72 Sub-AD変換器
73 スイッチ
74 判定回路
76 Sub-DA変換器
77 演算増幅器
78,79 比較器
81 アナログ累積回路
82 Sub-AD変換器
83 スイッチ
84 判定回路
86 Sub-DA変換器
100 出力端子
103 デジタルカウンタ
161 第2のカウント工程
162 第3の変換工程
163 第4の変換工程
201~227 スイッチ
301~309 容量素子
261 第3のカウント工程
262 第5の変換工程
263 第6の変換工程
264 第2の判定工程
1201~1204 スイッチ
1208 容量素子
1212~1227 スイッチ
1301 容量素子
1304~1309 容量素子
1341~1343 増幅器
2 デルタシグマAD変換器
3 シフトレジスタ
4 デジタル累積回路
5 出力端子
6 第1の巡回型AD変換器
7 出力端子
8 第2の巡回型AD変換器
9 出力端子
10,11 入力端子
12,13 出力端子
15~19 スイッチ
20 デルタシグマ変換モード
21 1倍ゲイン巡回型変換モード
22 2倍ゲイン巡回型変換モード
23 加算工程
31,31a,31b 減算器
32,32a,32b サンプルホールド回路
33,33a,33b 増幅器
34,34a Sub-AD変換器
35,35a Sub-DA変換器
36 シフトレジスタ
37 デジタル累積回路
38 増幅器
39 Sub-AD変換器
40,40a,40b アナログ累積回路
41 1倍ゲインのアナログ累積回路
42 2倍ゲインのアナログ累積回路
43,46,47 増幅器
44,45,48,49 スイッチ
51 サイクルカウンタ
52 コントローラ
55 Sub-DA変換器
56 シフトレジスタ
57,57a,57b デジタル累積回路
58 増幅器
59 Sub-AD変換器
60 リセット工程
61 第1のカウント工程
62 第1の変換工程
63 第2の変換工程
64 第1の判定工程
71 アナログ累積回路
72 Sub-AD変換器
73 スイッチ
74 判定回路
76 Sub-DA変換器
77 演算増幅器
78,79 比較器
81 アナログ累積回路
82 Sub-AD変換器
83 スイッチ
84 判定回路
86 Sub-DA変換器
100 出力端子
103 デジタルカウンタ
161 第2のカウント工程
162 第3の変換工程
163 第4の変換工程
201~227 スイッチ
301~309 容量素子
261 第3のカウント工程
262 第5の変換工程
263 第6の変換工程
264 第2の判定工程
1201~1204 スイッチ
1208 容量素子
1212~1227 スイッチ
1301 容量素子
1304~1309 容量素子
1341~1343 増幅器
Claims (15)
- アナログ累積回路、AD変換器及びDA変換器を備えたAD変換器であって、アナログ信号を与えて上位ビットの第1の変換結果を得る第1のAD変換器と、
アナログ累積回路、AD変換器及びDA変換器を備えたAD変換器であって、前記上位ビットを除いた残留信号を与えて、第1の変換処理と第2の変換処理を行い、下位ビットの第2の変換結果を得る第2のAD変換器と、
前記第1の変換結果と前記第2の変換結果を演算して、前記アナログ信号のAD変換値を出力する演算部と、を備え、
前記第1の変換処理における前記アナログ累積回路のゲインと、前記第2の変換処理における前記アナログ累積回路のゲインとを異ならせたことを特徴とするAD変換器。 - 請求項1記載のAD変換器において、
前記第1の変換処理は、前記残留信号を与えた初回の変換処理であり、前記第2の変換処理は、前記初回の変換処理の後における少なくとも1つの新たな変換処理であることを特徴とするAD変換器。 - 請求項2記載のAD変換器において、
前記第1の変換処理において、前記アナログ累積回路のゲインが1であり、前記第2の変換処理において、前記アナログ累積回路のゲインが2であることを特徴とするAD変換器。 - 請求項3記載のAD変換器において、
前記第1のAD変換器を構成する前記アナログ累積回路は、1次のデルタシグマ変調器であることを特徴とするAD変換器。 - 請求項2記載のAD変換器において、
前記第1の変換処理において、前記アナログ累積回路のゲインが2―k(k=0,1,2,…)であり、前記第2の変換処理において、前記アナログ累積回路のゲインが2であることを特徴とするAD変換器。 - 請求項5記載のAD変換器において、
前記第1のAD変換器を構成する前記アナログ累積回路は、高次のデルタシグマ変調器であることを特徴とするAD変換器。 - 請求項6記載のAD変換器において、
前記第1のAD変換器を構成する前記アナログ累積回路は、カスケード型のデルタシグマ変調器であることを特徴とするAD変換器。 - 請求項1記載のAD変換器において、
前記アナログ累積回路は、
入力端子に信号を与えて出力端子から信号を出力する演算増幅器と、
前記演算増幅器の前記入力端子と前記出力端子との間に接続した第1の容量と、
前記演算増幅器の前記入力端子と前記出力端子との間に接続した第2の容量と、
前記第2の容量の第1端子と前記演算増幅器の前記入力端子もしくは固定電圧端子とを選択して接続する第1のスイッチ回路と、
前記第2の容量の第2端子と前記演算増幅器の前記出力端子もしくは前記固定電圧端子とを選択して接続する第2のスイッチ回路とを備えたことを特徴とするAD変換器。 - 請求項1記載のAD変換器において、
前記アナログ累積回路は、
第1入力端子及び第2入力端子を備え、前記第1入力端子に信号を与え、前記第2入力端子に固定電圧を与えて、出力端子から信号を出力する演算増幅器と、
前記第1入力端子と前記出力端子間に各々並列に接続した第1の容量、第2の容量及び第1のスイッチと、
前記第2の容量の第1端子と前記演算増幅器の前記第1入力端子間にあって、両端子間を導通・遮断する第2のスイッチと、
前記第2の容量の前記第1端子と固定電圧端子間にあって、両端子間を導通・遮断する第3のスイッチと、
前記第2の容量の第2端子と前記演算増幅器の前記出力端子間にあって、両端子間を導通・遮断する第4のスイッチと、
前記第2の容量の前記第2端子と前記固定電圧端子間にあって、両端子間を導通・遮断する第5のスイッチとを備えることを特徴とするAD変換器。 - 請求項9記載のAD変換器において、
前記演算増幅器の前記第1入力端子及び前記第2入力端子間に信号を与え、
前記第2入力端子と前記出力端子間に各々並列に接続した第3の容量、第4の容量及び第5のスイッチと、
前記第4の容量の第1端子と前記演算増幅器の前記第2入力端子間にあって、両端子間を導通・遮断する第6のスイッチと、
前記第4の容量の前記第2端子と固定電圧端子間にあって、両端子間を導通・遮断する第7のスイッチと、
前記第4の容量の第2端子と前記演算増幅器の前記出力端子間にあって、両端子間を導通・遮断する第8のスイッチと、
前記第4の容量の前記第2端子と前記固定電圧端子間にあって、両端子間を導通・遮断する第9のスイッチとを備えることを特徴とするAD変換器。 - 請求項1記載のAD変換器において、
前記第2のAD変換器は、巡回型AD変換器であることを特徴とするAD変換器。 - 請求項1記載のAD変換器において、
前記第1のAD変換器及び前記第2のAD変換器の出力信号を与えて、各々の出力デジタルデータを累積処理して出力するデジタル回路を更に有することを特徴とするAD変換器。 - 請求項4記載のAD変換器において、
前記第1の積分型AD変換器の出力デジタルデータは等しい重みでデジタル積分され、前記第2のAD変換器の初回出力デジタルデータは、前記第1の積分型AD変換器の前記出力デジタルデータと等しい重みでデジタル積分され、次に、1回ごとに重みを半分にしてデジタル積分することを特徴とするAD変換器。 - 請求項5記載のAD変換器において、
前記第1の変換処理における前記アナログ累積回路の第3のゲインをmとして、前記第2のAD変換器の初回出力デジタルデータは、前記第1のAD変換器の前記出力デジタルデータの最も小さい重みの1/m倍と等しい重みでデジタル積分され、次に、1回ごとに重みを半分にしてデジタル積分されることを特徴とするAD変換器。 - 請求項12記載のAD変換器において、
前記デジタル回路は、シフトレジスタ及びデジタル累積回路を備えたことを特徴とするAD変換器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015505093A JP6206738B2 (ja) | 2013-03-12 | 2013-12-26 | Ad変換器 |
US14/852,440 US9276603B2 (en) | 2013-03-12 | 2015-09-11 | AD converter |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013049450 | 2013-03-12 | ||
JP2013-049450 | 2013-03-12 | ||
JP2013-162140 | 2013-08-05 | ||
JP2013162140 | 2013-08-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/852,440 Continuation US9276603B2 (en) | 2013-03-12 | 2015-09-11 | AD converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014141350A1 true WO2014141350A1 (ja) | 2014-09-18 |
Family
ID=51536053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007655 WO2014141350A1 (ja) | 2013-03-12 | 2013-12-26 | Ad変換器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9276603B2 (ja) |
JP (1) | JP6206738B2 (ja) |
WO (1) | WO2014141350A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015171046A (ja) * | 2014-03-07 | 2015-09-28 | パナソニックIpマネジメント株式会社 | Ad変換装置及びad変換方法 |
WO2016147523A1 (ja) * | 2015-03-19 | 2016-09-22 | パナソニックIpマネジメント株式会社 | イメージセンサおよびそれを備えた撮像装置 |
CN106325592A (zh) * | 2015-07-02 | 2017-01-11 | 三星电子株式会社 | 执行两步式模数转换的触摸处理器电路和触摸屏系统 |
JP2017216561A (ja) * | 2016-05-31 | 2017-12-07 | 株式会社デンソー | A/d変換器 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6565746B2 (ja) | 2016-03-11 | 2019-08-28 | 株式会社デンソー | 電圧検出装置 |
CN111083941A (zh) * | 2018-08-21 | 2020-04-28 | 康姆索利德有限责任公司 | 模数转换器 |
TWI807939B (zh) * | 2022-07-27 | 2023-07-01 | 茂達電子股份有限公司 | 具有電壓反向機制的光感測器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002532937A (ja) * | 1998-12-10 | 2002-10-02 | インフィネオン テクノロジース アクチエンゲゼルシャフト | アナログ/デジタル変換器 |
JP2007036580A (ja) * | 2005-07-26 | 2007-02-08 | Denso Corp | 巡回型a/d変換器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9403736L (sv) | 1994-11-01 | 1996-02-19 | Foersvarets Forskningsanstalt | Analog-till-digitalomvandlare och sensoranordning innefattande sådan |
KR100286322B1 (ko) * | 1997-09-11 | 2001-04-16 | 김영환 | 아날로그/디지털변환회로 |
JP4829695B2 (ja) * | 2006-06-16 | 2011-12-07 | パナソニック株式会社 | A/d変換器 |
US20090031195A1 (en) * | 2007-07-25 | 2009-01-29 | Digital Prospect Sdn.Bhd. | Method and apparatus for encoding and decoding Reed-Muller codes |
JP4480744B2 (ja) * | 2007-07-31 | 2010-06-16 | 三洋電機株式会社 | アナログデジタル変換器 |
-
2013
- 2013-12-26 WO PCT/JP2013/007655 patent/WO2014141350A1/ja active Application Filing
- 2013-12-26 JP JP2015505093A patent/JP6206738B2/ja active Active
-
2015
- 2015-09-11 US US14/852,440 patent/US9276603B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002532937A (ja) * | 1998-12-10 | 2002-10-02 | インフィネオン テクノロジース アクチエンゲゼルシャフト | アナログ/デジタル変換器 |
JP2007036580A (ja) * | 2005-07-26 | 2007-02-08 | Denso Corp | 巡回型a/d変換器 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015171046A (ja) * | 2014-03-07 | 2015-09-28 | パナソニックIpマネジメント株式会社 | Ad変換装置及びad変換方法 |
WO2016147523A1 (ja) * | 2015-03-19 | 2016-09-22 | パナソニックIpマネジメント株式会社 | イメージセンサおよびそれを備えた撮像装置 |
JPWO2016147523A1 (ja) * | 2015-03-19 | 2018-03-01 | パナソニックIpマネジメント株式会社 | イメージセンサおよびそれを備えた撮像装置 |
US9961288B2 (en) | 2015-03-19 | 2018-05-01 | Panasonic Intellectual Property Management Co., Ltd. | Image sensor and imaging device comprising oversampling AD converter and recursive AD converter |
CN106325592A (zh) * | 2015-07-02 | 2017-01-11 | 三星电子株式会社 | 执行两步式模数转换的触摸处理器电路和触摸屏系统 |
CN106325592B (zh) * | 2015-07-02 | 2020-11-20 | 三星电子株式会社 | 执行两步式模数转换的触摸处理器电路和触摸屏系统 |
JP2017216561A (ja) * | 2016-05-31 | 2017-12-07 | 株式会社デンソー | A/d変換器 |
WO2017208635A1 (ja) * | 2016-05-31 | 2017-12-07 | 株式会社デンソー | A/d変換器 |
Also Published As
Publication number | Publication date |
---|---|
US9276603B2 (en) | 2016-03-01 |
US20150381200A1 (en) | 2015-12-31 |
JP6206738B2 (ja) | 2017-10-04 |
JPWO2014141350A1 (ja) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6206738B2 (ja) | Ad変換器 | |
US7289054B1 (en) | Parallel oversampling algorithmic A/D converter and method of using the same | |
US10158369B2 (en) | A/D converter | |
JP6070654B2 (ja) | A/d変換器 | |
US9197240B1 (en) | Method and circuit for noise shaping SAR analog-to-digital converter | |
US9432049B2 (en) | Incremental delta-sigma A/D modulator and A/D converter | |
US8947285B2 (en) | ADC with noise-shaping SAR | |
US9467163B1 (en) | Power reduction in delta sigma modulator | |
US9900023B1 (en) | Multi-stage delta-sigma pipelined successive approximation register analog-to-digital converter | |
JP6571493B2 (ja) | インクリメンタル型デルタシグマad変調器及びad変換器 | |
US9077373B1 (en) | Analog-to-digital conversion apparatus | |
JP4811339B2 (ja) | A/d変換器 | |
US10484003B2 (en) | A/D converter | |
JP5811153B2 (ja) | A/d変換装置 | |
JP2009260605A (ja) | Δς変調器及びδς型ad変換器 | |
KR102710875B1 (ko) | 오디오 아날로그-투-디지털 변환기 시스템 및 방법 | |
JP5094916B2 (ja) | パイプライン・ad変換回路 | |
WO2010041187A1 (en) | A method of gain calibration of an adc stage and an adc stage | |
JP2008028855A (ja) | 半導体集積回路装置 | |
CN115801003A (zh) | 一种多步模数转换器及其实现方法 | |
Temes | Micropower data converters: A tutorial | |
JP4939497B2 (ja) | Δς型アナログデジタル変換器 | |
JP2011244200A (ja) | デルタシグマ変調装置 | |
JP2014146893A (ja) | マルチビットδς変調器およびそれを用いたマルチビットa/d変換器 | |
Chao et al. | A 12-bit 4-kHz incremental ADC with loading-free extended counting technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13878024 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015505093 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13878024 Country of ref document: EP Kind code of ref document: A1 |