WO2014136749A1 - 窒化物半導体結晶及びその作製方法 - Google Patents

窒化物半導体結晶及びその作製方法 Download PDF

Info

Publication number
WO2014136749A1
WO2014136749A1 PCT/JP2014/055391 JP2014055391W WO2014136749A1 WO 2014136749 A1 WO2014136749 A1 WO 2014136749A1 JP 2014055391 W JP2014055391 W JP 2014055391W WO 2014136749 A1 WO2014136749 A1 WO 2014136749A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
layer
film
gan
crystal
Prior art date
Application number
PCT/JP2014/055391
Other languages
English (en)
French (fr)
Inventor
竹内 哲也
智行 鈴木
浩希 笹島
素顕 岩谷
赤▲崎▼ 勇
Original Assignee
学校法人名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人名城大学 filed Critical 学校法人名城大学
Priority to JP2015504315A priority Critical patent/JP6066530B2/ja
Priority to CN201480012830.4A priority patent/CN105027262B/zh
Priority to US14/773,045 priority patent/US20170155016A9/en
Publication of WO2014136749A1 publication Critical patent/WO2014136749A1/ja
Priority to US16/738,946 priority patent/US20200144451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02549Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Definitions

  • the present invention relates to a nitride semiconductor crystal and a method of manufacturing the same.
  • a nitride semiconductor represented by gallium nitride (GaN) is a direct transition semiconductor and has a wide band gap of 0.7 to 6.2 eV, so it is widely used for high efficiency blue light emitting diode (LED) etc. ing.
  • LED blue light emitting diode
  • Patent Document 1 discloses a method of making the interface between the p-type nitride semiconductor and the p-side electrode sharp and flat using a surfactant.
  • the film formation temperature of the nitride semiconductor crystal in a general vapor phase growth method is relatively high at about 1000 ° C., the manufacturing cost is high, and the miniaturization of the film formation apparatus is also difficult.
  • the film formation of the nitride semiconductor crystal is performed at a temperature lower than 1000 ° C., there is a problem that the flatness of the crystal surface and the interface between the crystals is significantly deteriorated.
  • p-type GaN deposited at a low temperature does not exhibit sufficient p-type conductivity due to the decrease in the crystallinity.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and an object thereof is to produce high quality nitride semiconductor crystals under low temperature conditions.
  • the nitride semiconductor crystal of the first invention is At least one or more nitride semiconductor films are vapor-phase grown on a substrate by supplying Group III elements and / or compounds thereof, nitrogen elements and / or compounds thereof, and Sb elements and / or compounds thereof as raw materials onto a substrate
  • a nitride semiconductor crystal produced by The nitride semiconductor crystal film of at least one layer is characterized in that the supply ratio of the Sb element to the nitrogen element in the growth process is 0.004 or more.
  • the nitride semiconductor crystal of the second invention is characterized in that the Sb composition in the crystal is 0.04% or more.
  • these nitride semiconductor crystals have high surface flatness and high quality, they are useful as semiconductor device applications such as light emitting / receiving devices and electronic devices.
  • the method for producing a nitride semiconductor of the third invention is At least one or more nitride semiconductor films are formed in the gas phase by supplying the raw material group III element and / or compound thereof, nitrogen element and / or compound thereof, and Sb element and / or compound thereof onto the substrate.
  • a method for producing a nitride semiconductor crystal to be grown, comprising In the growth process of the at least one nitride semiconductor film, the supply ratio of the Sb element to the nitrogen element is 0.004 or more.
  • This nitride semiconductor production method can produce a nitride semiconductor crystal having a high quality nitride semiconductor film at low temperature by setting the supply ratio of Sb element to nitrogen element to 0.004 or more.
  • this method of production can also suppress the occurrence of phase separation due to heat when producing mixed crystals of nitride semiconductor crystals, so that control of the composition of the obtained crystals becomes easy.
  • this manufacturing method when the nitride semiconductor film is sequentially laminated and grown, the characteristic deterioration of the base film due to heat can be prevented.
  • FIG. 2 is a cross-sectional view of the nitride semiconductor crystal of Example 1; Similarly it is a surface SEM image of a low temperature film-forming GaN layer, Comprising: (a) is a sample without Sb supply, (b) is a figure which shows the sample with Sb supply. Similarly, it is an AFM image of the surface of the low temperature film-forming GaN layer, and (a) shows a sample without Sb supply, (b) shows a sample with Sb supply. Similarly, it is a graph showing the PL spectrum of the low temperature film formation GaN layer, wherein (a) is a sample formed at 950 ° C., and (b) is a graph showing a sample formed at 850 ° C.
  • FIG. 10 is a cross-sectional view of the AlInN / GaN heterojunction structure of Example 2.
  • FIG. 7 is a cross-sectional view of a nitride semiconductor light emitting diode element structure of Example 3;
  • the nitride semiconductor crystal of the first invention or the second invention can be doped with acceptor impurities in the crystal.
  • the nitride semiconductor crystal contains Sb at a composition of 0.04% or more, the upper end of the valence band of the nitride semiconductor is raised, and the energy difference with the acceptor impurity level is increased accordingly. Since it becomes smaller, a high hole concentration can be easily obtained.
  • the nitride semiconductor film can be formed at a film forming temperature equal to or lower than the film forming temperature of the base film. In this case, thermal degradation of the base film can be prevented by forming the nitride semiconductor film, and the degree of freedom in device design / prototyping is improved.
  • Example 1 A sample of a nitride semiconductor crystal having the structure shown in FIG. 1 was prepared by the following procedure by metal organic chemical vapor deposition (MOCVD). First, a 1 cm square c-plane sapphire substrate 101 was set in a reaction furnace of a metal organic chemical vapor deposition (MOCVD) apparatus. After that, the surface of the sapphire substrate 101 was thermally cleaned by raising the temperature while flowing hydrogen into the reaction furnace.
  • MOCVD metal organic chemical vapor deposition
  • the substrate temperature (film formation temperature) is set to 630 ° C.
  • hydrogen as a carrier gas ammonia (nitrogen compound) and trimethylgallium (TMGa: group III compound) as raw materials are flowed into the reaction furnace
  • a low-temperature buffer layer 102 of gallium nitride (GaN) was grown to 20 nm on a sapphire substrate 101.
  • the substrate temperature is raised to 1130 ° C., and the same carrier gas and the above-mentioned raw materials are flowed, thereby growing the non-doped base GaN layer (i-GaN: base film) 103 to 3 ⁇ m.
  • the sapphire substrate 101 to the base GaN layer 103 correspond to the substrate 105.
  • the substrate temperature is lowered to a desired temperature, and low temperature film formation is performed on the base GaN layer 103 while supplying triethylantimony (TESb) as an Sb compound in addition to hydrogen as a carrier gas, TMGa as a raw material and ammonia.
  • TESb triethylantimony
  • the GaN layer 104 was grown (deposited) to 2 ⁇ m.
  • the gas flow rates at the time of film formation of the low temperature film formation GaN layer (nitride semiconductor film) 104 are respectively 27 mmol / min for ammonia, 28 ⁇ mol / min for TMGa, and 98 ⁇ mol / min for TESb.
  • the ratio of ammonia to TMGa (hereinafter referred to as N / Ga) is about 1000.
  • the ratio of TESb to ammonia (hereinafter referred to as Sb / N) is about 0.004.
  • Samples S0, S1, and S2 were prepared by forming low-temperature deposited GaN layers 104 at three substrate temperatures of 750 ° C., 850 ° C., and 950 ° C. while supplying TESb. Further, as a comparative example, samples C0, C1, and C2 were prepared in which the low temperature deposition GaN layer 104 was formed under the same substrate temperature conditions as the samples S0, S1, and S2 without supplying TESb.
  • the samples S0, S1 and S2 and the samples C0, C1 and C2 will be referred to as a sample with Sb supply and a sample without Sb supply, respectively.
  • FIG. 2 shows surface scanning electron microscope images (surface SEM images) of samples S0 and C0 deposited at 750 ° C., samples S1 and C1 deposited at 850 ° C., and samples S2 and C2 deposited at 950 ° C. It shows each.
  • FIG. 2 (a) shows surface SEM images of the samples C0, C1, and C2 without Sb supply.
  • FIG. 2B shows surface SEM images of the samples S0, S1, and S2 with Sb supply. In the sample C2 without Sb supply, a plurality of inverted hexagonal pyramidal pits are observed on the crystal surface.
  • FIG. 3A shows AFM images of samples C0, C1, and C2 without Sb supply.
  • FIG. 3 (b) shows AFM images of the samples S0, S1 and S2 with Sb supply.
  • the surface roughness root mean square (RMS) values of the samples C0, C1, and C2 without Sb supply were all about 100 nm.
  • the surface roughness RMS values of the samples S0, S1 and S2 with Sb supply are significantly improved as compared with the samples C0, C1 and C2 without Sb supply.
  • Specific surface roughness RMS values were 1.56 nm for sample S2, 0.85 nm for sample S1, and 23 nm for sample S0.
  • the surface roughness RMS values of the samples S1 and S2 fall within the value of about one atomic layer. This is comparable to the surface roughness RMS value of the GaN layer formed under the conventional film forming temperature condition of 1000 ° C. or more. Therefore, it can be confirmed microscopically that the surface flatness of the samples S0, S1 and S2 with Sb supply is extremely good.
  • FIG. 4 is a graph showing the PL detection intensity with respect to the PL emission wavelength.
  • FIG. 4 (a) shows the PL spectra of the samples S2 and C2 deposited at 950.degree.
  • FIG. 4 (b) shows the PL spectra of the samples S1 and C1 deposited at 850.degree.
  • the emission peak based on the band edge confirmed in the sample C2 can hardly be observed in the sample C1.
  • the intensity of light emission based on the band edge is inferior to the sample S2, the peak itself can be observed. That is, the superiority of the samples S1 and S2 with Sb supply is also suggested from the viewpoint of the optical characteristics. Therefore, by increasing the gas flow ratio Sb / N to 0.004 or more, further improvement of the crystallinity and the optical characteristics of the low temperature film-forming GaN layer 104 can be expected.
  • X-ray diffraction measurement (XRD: 2 ⁇ / ⁇ scan) of the samples S1 and S2 with Sb supply was performed.
  • the horizontal axis is the rotation angle (2 ⁇ / ⁇ )
  • the vertical axis is the detected intensity.
  • a peak attributed to (0002) of GaN is observed in any of the samples S2 and S1 deposited at 950 ° C. and 850 ° C.
  • a peak considered to be due to the incorporation of Sb indicated by the arrow was confirmed.
  • the Sb composition in the low temperature deposition GaN layer 104 estimated from its peak position was found to be 0.2 to 0.4%.
  • FIG. 6 is a graph showing the Sb concentration with respect to the depth of the laminated film. From the results of FIG. 6, the Sb composition contained in the crystal was calculated, and the values were 0.04% for sample S0, 0.4% for sample S1, and 0.2% for sample S2, respectively.
  • the Sb composition in the crystal of the low-temperature deposited GaN layer 104 is increased to 0.04% or more.
  • the surface flatness of the low temperature deposition GaN layer 104 is improved.
  • the surface flatness and optical properties of the low-temperature deposited GaN layer 104 are comparable to those of the GaN layer deposited under high-temperature conditions. Will be improved.
  • the film forming temperature (growth temperature) is about 750 ° C. by setting the gas flow ratio of TESb to ammonia to 0.004 or more. It is possible to lower the temperature to Therefore, the manufacturing cost and the film formation apparatus can be miniaturized.
  • the low temperature deposition GaN layer 104 formed at low temperature by supplying Sb has crystallinity, surface flatness, and optical characteristics as compared with the low temperature deposition GaN layer 104 formed at low temperature without supplying Sb. Is useful for semiconductor device applications such as light emitting / receiving devices and electronic devices.
  • the low temperature deposition GaN layer 104 having an Sb composition in the crystal of 0.04% or more is excellent in surface flatness even when deposited under low temperature conditions.
  • the low-temperature deposited GaN layer 104 having an Sb composition of 0.2% or more in the crystal is confirmed to emit light based on the band edge, and the optical characteristics are also favorable. Therefore, it is particularly useful as a light emitting / receiving device application.
  • the characteristics may be deteriorated by being exposed to the high temperature environment in the film formation process (growth process).
  • the thermal history thermal budget
  • the freedom in design / prototyping in device fabrication is also improved.
  • Example 2 The AlInN / GaN heterojunction structure shown in FIG. 7 was fabricated by MOCVD according to the following procedure. The manufacturing steps up to the substrate 105 and the manufacturing conditions are the same as in Example 1, and thus the description is omitted.
  • the substrate temperature is lowered to 850 ° C., and nitrogen as a carrier gas, trimethylindium (TMIn: Group III compound), trimethylaluminum (TMAl: Group III compound), ammonia, ammonia, and TESb as an Sb compound are reacted
  • TMIn Group III compound
  • TMAl trimethylaluminum
  • ammonia ammonia
  • TESb TESb
  • the AlInN layer 201 was grown to 40 nm on the base GaN layer 103.
  • the deposition rate was 0.2 ⁇ m / h, which is relatively high.
  • the gas flow ratio was set so that Sb / N was about 0.004 as in the first embodiment.
  • the In composition of the formed AlInN layer 201 was 0.17, and it was made to be substantially lattice matched with the GaN crystal.
  • the substrate temperature was maintained at 850 ° C.
  • TESb was supplied in addition to carrier gas and TMGa which is a source gas, and a 40 nm GaN layer 202 was grown on the AlInN layer 201.
  • TMGa which is a source gas
  • the thermal history is reduced by fabricating the AlInN / GaN heterojunction structure at a temperature lower than the deposition temperature of the underlayer GaN layer 103 which is the underlayer, thereby reducing the design / prototype freedom at the time of fabricating the device structure. improves.
  • Example 3 The nitride semiconductor light emitting diode device structure shown in FIG. 8 was manufactured by the MOCVD method in the following procedure. The fabrication steps up to the low temperature buffer layer 102 and the fabrication conditions are the same as in Example 1, and thus the description thereof is omitted. Further, the gas flow ratio Sb / N under the following film forming conditions was all about 0.004.
  • the substrate temperature is raised to 1080 ° C.
  • the low temperature buffer layer is supplied into the reaction furnace by supplying hydrogen as a carrier gas, TMGa and ammonia as raw materials, and silane (SiH 4 ) as an impurity raw material gas.
  • An n-type GaN layer 301 (n-GaN) was grown to 3 ⁇ m on 102. Si is doped at a concentration of 3 ⁇ 10 18 / cm 3 .
  • the substrate temperature is lowered to 850 ° C., and nitrogen as a carrier gas, TMIn and TMGa as raw materials, ammonia, and TESb as an Sb compound are supplied into the reaction furnace to form an n-type GaN layer 301.
  • the GaN barrier layer 302 and the GaInN quantum well layer 303 were sequentially laminated and grown.
  • the film thickness of the GaN barrier layer 302 is 10 nm, and the film thickness of the GaInN quantum well layer 303 is 2.5 nm.
  • the In composition of the GaInN quantum well layer 303 is 0.15.
  • the substrate temperature is raised to 980 ° C., hydrogen as a carrier gas, TMGa and TMAl as raw materials, ammonia, TESb as an Sb compound, and cyclopentadienyl magnesium (CP 2 Mg as an impurity raw material gas)
  • P-AlGaN electron blocking layer 305 (p-AlGaN) was grown on the GaN / GaInN active layer 304 by supplying the.
  • the film thickness of the p-type AlGaN electron blocking layer 305 is 25 nm, and the Al composition is 0.15.
  • Mg (acceptor impurity) is doped at a concentration of 3 ⁇ 10 19 / cm 3 .
  • the substrate temperature is lowered to 850 ° C., and hydrogen as a carrier gas, TMGa as a raw material, TMGa, ammonia, TESb as an Sb compound, and CP 2 Mg as an impurity raw material gas are supplied into the reaction furnace.
  • a p-type GaN layer (p-GaN) 306 and a p-type GaN contact layer (p ++ -GaN) 307 for contact formation were sequentially grown on the p-type AlGaN electron block layer 305.
  • the film thickness of the p-type GaN layer 306 is 60 nm, and the film thickness of the p-type GaN contact layer 307 is 10 nm.
  • the p-type GaN layer 306 is doped with Mg at a concentration of 3 ⁇ 10 19 / cm 3
  • the p-type GaN contact layer 307 is doped with Mg at a concentration of 1 ⁇ 10 20 / cm 3 .
  • high-quality crystals can be obtained at low temperature also for the n-type GaN layer 301 doped with Si.
  • high-quality crystals can be obtained at a low temperature also for the Mg-doped p-type GaN layer 306, the p-type GaN contact layer 307, and the p-type AlGaN electron blocking layer 305.
  • the film formation temperature of the p-type AlGaN electron block layer 305 formed on the GaN / GaInN active layer 304 can also be set to 980 ° C. or lower, which is lower than the conventional temperature, the thermal history for the GaN / GaInN active layer 304 is reduced. It is possible to improve design / prototype freedom in device fabrication.
  • Sb is taken in with a composition of 0.2% or more with respect to GaN and AlGaN, so the upper end of the valence band of GaN and AlGaN rises, and the acceptor impurity (Mg) level Energy difference is reduced.
  • Mg acceptor impurity
  • Example 4 In the nitride semiconductor light emitting diode element structure similar to that of Example 3, the In composition can be raised to 0.3 or more by setting the substrate temperature of the GaInN quantum well layer 303 to 750 ° C. According to the fourth embodiment, it is possible to set the light emission from the GaN / InGaN active layer 304 to the long wavelength side, and it is possible to manufacture a green or yellow light emitting diode element.
  • the raw materials of Group III element and / or compound thereof, nitrogen element and / or compound thereof and Sb element and / or compound thereof, which are raw materials are supplied onto the substrate 105.
  • At least one nitride semiconductor film 104 was vapor-phase grown to fabricate a nitride semiconductor crystal. Then, by setting the supply ratio of Sb element to nitrogen element at this time to be 0.004 or more, it becomes possible to produce a high quality nitride semiconductor crystal at a low temperature.
  • the obtained nitride semiconductor crystal is of high quality, it is useful for application to semiconductor devices such as light emitting / receiving devices and electronic devices.
  • the present invention is not limited to the first to fourth embodiments described above with reference to the drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the sapphire substrate is used in the above embodiment, the present invention is not limited thereto, and silicon (Si), zinc oxide (ZnO), silicon carbide (SiC), gallium arsenide (GaAs), gallium nitride (GaN), nitrided Aluminum (AlN) or the like may be used.
  • silicon Si
  • zinc oxide ZnO
  • SiC silicon carbide
  • GaAs gallium arsenide
  • GaN gallium nitride
  • AlN nitrided Aluminum
  • MOCVD metal organic chemical vapor deposition
  • HVPE hydride vapor growth
  • MBE molecular beam epitaxy
  • TMGa trimethylgallium
  • TMAl trimethylaluminum
  • TMIn trimethylindium
  • triethylantimony was used as the Sb element and its compound, but trimethylantimony (TMSb), trisdimethylaminoantimony (TDMASb) or the like can be used.
  • TMSb trimethylantimony
  • TDMASb trisdimethylaminoantimony
  • hydrogen or nitrogen is used as the carrier gas, but other active gas or other inert gas such as argon may be used, or they may be mixed and used.
  • gallium nitride GaN is used for the low temperature buffer layer, but other materials such as aluminum nitride (AlN), indium nitride (InN), boron nitride (BN) and the like may be used.
  • the base film of 3 ⁇ m is formed before the nitride semiconductor film is formed, but the base film may not be formed.
  • the c-axis oriented nitride semiconductor crystal is fabricated on the c-plane sapphire substrate, but it can be applied to m-axis and a-axis oriented nitride semiconductor crystals.
  • Si and Mg were used as the n-type and p-type GaN dopants, respectively.
  • the present invention is not limited to this, and Ge, Zn, Be, etc. may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 低温で高品質な窒化物半導体結晶を作製する。 原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板(105)上に供給することで少なくとも一層以上の窒化物半導体膜(104)を気相成長させて作製した窒化物半導体結晶であって、少なくとも一層以上の窒化物半導体結晶膜(104)は、その成長過程における窒素元素に対するSb元素の供給比が0.004以上である。

Description

窒化物半導体結晶及びその作製方法
 本発明は、窒化物半導体結晶及びその作製方法に関するものである。
 窒化ガリウム(GaN)に代表される窒化物半導体は直接遷移型半導体であり、そのバンドギャップも0.7~6.2eVと広いため、高効率の青色発光ダイオード素子(LED)などに広く用いられている。窒化物半導体結晶の成長方法は種々あるが、作製する結晶の組成制御が容易であり、量産性に優れる有機金属気相成長法(MOCVD法)が広く用いられている。そして、下記特許文献1では、サーファクタントを利用してp型窒化物半導体とp側電極間の界面について急峻、及び平坦にする手法が開示されている。
特開2009-277931号公報
 しかしながら、一般的な気相成長法における窒化物半導体結晶の成膜温度は約1000℃と比較的高い為、製造コストが高く、成膜装置の小型化も困難であった。また、1000℃より低温条件にて窒化物半導体結晶の成膜を行った場合には、結晶表面および結晶同士の界面の平坦性が大きく劣化してしまう問題点があった。更に、低温で成膜したp型GaNは、上記結晶性の低下により、十分なp型伝導性を示さないという問題点もあった。
 本発明は、上記従来の実情に鑑みてなされたものであって、高品質な窒化物半導体結晶を低温条件にて作製することを目的とする。
 第1発明の窒化物半導体結晶は、
 原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで少なくとも一層以上の窒化物半導体膜を気相成長させて作製した窒化物半導体結晶であって、
 少なくとも一層以上の前記窒化物半導体結晶膜は、その成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする。
 第2発明の窒化物半導体結晶は、結晶中におけるSb組成が0.04%以上であることを特徴とする。
 これら窒化物半導体結晶は、表面平坦性が高く、高品質であるから、発光/受光デバイスや電子デバイスなどの半導体デバイス用途として有用である。
 第3発明の窒化物半導体の作製方法は、
 原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで、少なくとも一層以上の窒化物半導体膜を気相成長させる窒化物半導体結晶の作製方法であって、
 少なくとも一層以上の前記窒化物半導体膜の成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする。
 この窒化物半導体の作成方法は、窒素元素に対するSb元素の供給比を0.004以上とすることで、低温で高品質な窒化物半導体膜を有する窒化物半導体結晶を作製することができる。また、この作製方法は、窒化物半導体結晶の混晶を作製する際、熱による相分離の発生を抑制することもできる為、得られる結晶の組成制御が容易になる。更に、この作製方法は、窒化物半導体膜を順次積層成長させる際、熱による下地膜の特性劣化を防止することができる。
実施例1の窒化物半導体結晶の断面図である。 同じく低温成膜GaN層の表面SEM像であって、(a)はSb供給無しのサンプル、(b)はSb供給有りのサンプルを示す図である。 同じく低温成膜GaN層の表面のAFM像であって、(a)はSb供給無しのサンプル、(b)はSb供給有りのサンプルを示す図である。 同じく低温成膜GaN層のPLスペクトルを示すグラフであって、(a)は950℃で成膜したサンプル、(b)は850℃で成膜したサンプルを示すグラフである。 同じく低温成膜GaN層のX線回折測定結果を示すグラフであって、(a)は950℃で成膜したサンプル、(b)は850℃で成膜したサンプルを示すグラフである。 同じく低温成膜GaN層の積層膜の深さ方向に対するSb濃度のSIMSプロファイルを示すグラフである。 実施例2のAlInN/GaNヘテロ接合構造の断面図である。 実施例3の窒化物半導体発光ダイオード素子構造の断面図である。
 本発明における好ましい実施の形態を説明する。
 第1発明又は第2発明の窒化物半導体結晶は、結晶中にアクセプタ不純物がドーピングされ得る。この場合、窒化物半導体結晶中にSbが0.04%以上の組成で含まれていることにより、窒化物半導体の価電子帯上端が上昇し、それに伴ってアクセプタ不純物準位とのエネルギー差が小さくなる為、高い正孔濃度が得られやすくなる。
 第3の発明の窒化物半導体結晶の作製方法は、前記窒化物半導体膜は下地膜の成膜温度以下の成膜温度にて成膜し得る。この場合、窒化物半導体膜の成膜によって下地膜の熱劣化を防止することができ、デバイスの設計/試作自由度が向上する。
 次に、第1発明または第2発明の窒化物半導体結晶と、第3発明の窒化物半導体結晶の作製方法とを具体化した実施例1~4について、図面を参照しつつ説明する。
 <実施例1>
 図1に示される構造の窒化物半導体結晶のサンプルを有機金属気相成長法(MOCVD法)により以下の手順で作製した。まず、1cm角のc面サファイア基板101を、有機金属気相成長(MOCVD)装置の反応炉内にセットした。その後、反応炉内に水素を流しながら昇温することで、サファイア基板101表面のサーマルクリーニングを行った。次に、基板温度(成膜温度)を630℃とし、キャリアガスである水素と、原料であるアンモニア(窒素化合物)及びトリメチルガリウム(TMGa:III族化合物)とを反応炉内に流す事で、サファイア基板101上に窒化ガリウム(GaN)の低温バッファ層102を20nm成長させた。その後、基板温度を1130℃に昇温し、同様のキャリアガスと上記原料を流す事で、ノンドープの下地GaN層(i-GaN:下地膜)103を3μm成長させた。尚、サファイア基板101から下地GaN層103までが基板105に相当する。
 更に、基板温度を所望の温度まで降温し、キャリアガスである水素、原料であるTMGa、アンモニアに加えてSb化合物としてトリエチルアンチモン(TESb)を供給しつつ、下地GaN層103上に、低温成膜GaN層104を2μm成長(成膜)させた。低温成膜GaN層(窒化物半導体膜)104の成膜時のガス流量についてはそれぞれアンモニアが27mmol/min、TMGaが28μmol/min、TESbが98μmol/minである。ガス流量比(供給比)については、TMGaに対するアンモニアの比(以下では、N/Gaと記載する。)が約1000である。また、アンモニアに対するTESbの比(以下では、Sb/Nと記載する。)が約0.004である。
 TESbを供給しつつ、低温成膜GaN層104を750℃、850℃、950℃の3水準の基板温度にて成膜したサンプルS0、S1、S2を用意した。また、比較例として、TESbの供給をせず、サンプルS0、S1、S2と同様の基板温度条件で低温成膜GaN層104の成膜を行ったサンプルC0、C1、C2を用意した。尚、以下では、サンプルS0、S1、S2及びサンプルC0、C1、C2をそれぞれSb供給有りのサンプル、Sb供給無しのサンプルと呼ぶことにする。
 次に、Sb供給有りのサンプルS0、S1、S2と、Sb供給無しのサンプルC0、C1、C2の結晶性の評価結果を示す。
 図2に、750℃で成膜したサンプルS0、C0と、850℃で成膜したサンプルS1、C1と、950℃で成膜したサンプルS2、C2の表面走査電子顕微鏡像(表面SEM像)をそれぞれ示す。図2(a)は、Sb供給無しのサンプルC0、C1、C2の表面SEM像を示している。図2(b)は、Sb供給有りのサンプルS0、S1、S2の表面SEM像を示している。Sb供給無しのサンプルC2については、結晶表面に逆六角錐状のピットが複数個観察される。また、Sb供給無しでサンプルC2より低温で成膜したサンプルC0、C1についてはピットで表面全体が覆われていることから、基板温度が低下するにつれて結晶性及び表面平坦性が悪化していることが示唆される。しかし、Sb供給有りのサンプルS0、S1、S2についてはいずれも結晶表面にはピットは確認されず、良好な表面平坦性が得られている。
 更に微視的な表面平坦性を観察する為に、750℃で成膜したサンプルS0、C0と、850℃で成膜したサンプルS1、C1と、950℃で成膜したサンプルS2、C2の原子間力顕微鏡(AFM)による表面段差のマッピング測定を行った。図3(a)はSb供給無しのサンプルC0、C1、C2のAFM像を示している。図3(b)はSb供給有りのサンプルS0、S1、S2のAFM像を示している。Sb供給無しのサンプルC0、C1、C2の表面粗度二乗平均平方根(root mean square:RMS)値はいずれも約100nm程度であった。しかし、Sb供給有りのサンプルS0、S1、S2については、Sb供給無しのサンプルC0、C1、C2に比べて、表面粗度RMS値は大幅に改善されている。具体的な表面粗度RMS値はそれぞれ、サンプルS2が1.56nm、サンプルS1が0.85nm、サンプルS0が23nmであった。サンプルS1、S2の表面粗度RMS値は、約1原子層分の値に収まっている。これは1000℃以上の従来の成膜温度条件にて成膜したGaN層の表面粗度RMS値と遜色がない。よって、微視的にもSb供給有りのサンプルS0、S1、S2の表面平坦性は極めて良好であることが確認できる。
 次に、低温成膜GaN層104の光学的特性を評価する為に、850℃で成膜したサンプルS1、C1と、950℃で成膜したサンプルS2、C2の20ケルビン(K)の低温下においてフォトルミネッセンス(PL)スペクトルを測定した。図4は、PLの発光波長に対するPL検出強度を示すグラフである。図4(a)は950℃で成膜したサンプルS2、C2のPLスペクトルを示している。図4(b)は850℃で成膜したサンプルS1、C1のPLスペクトルを示している。950℃で成膜したサンプルS2、C2に注目すると、いずれにおいても波長360nm近傍においてGaN単結晶のバンド端に基づく急峻な発光ピークが確認できる。しかし、Sb供給無しのサンプルC2は、500~700nmの波長帯において、結晶欠陥であるGa空孔に起因するブロードな発光(イエロールミネッセンス)が観測される。一方で、Sb供給有りのサンプルS2についてはイエロールミネッセンスは観測されない。すなわち、Sb供給有りのサンプルの方が、Ga空孔が少なく、結晶性が良好であることが示唆される。また、850℃で成膜したサンプルS1、C1に注目すると、サンプルC2では確認できたバンド端に基づく発光ピークがサンプルC1ではほとんど観測できない。また、サンプルS1についてはバンド端に基づく発光の強度はサンプルS2に劣るもののピーク自体は観測できる。すなわち、光学的特性の観点からもSb供給有りのサンプルS1、S2の優位性が示唆される。よって、ガス流量比Sb/Nを0.004以上に増加させることにより、更に低温成膜GaN層104の結晶性及び光学特性の改善が期待できる。
 次に、低温成膜GaN層104におけるSbの取り込み量を評価すべく、Sb供給有りのサンプルS1、S2のX線回折測定(XRD:2θ/ωスキャン)を行った。図5のグラフは、横軸が回転角度(2θ/ω)であり、縦軸が検出強度である。950℃及び850℃にて成膜したサンプルS2、S1のいずれについてもGaNの(0002)に起因するピークが観測される。また、その低角度側においては、矢印で示されるSbの取り込みに起因すると考えられるピークが確認された。そのピーク位置より見積もられる低温成膜GaN層104中のSb組成は0.2~0.4%であることがわかった。
 そして、より詳細に低温成膜GaN層104におけるSbの取り込み量を評価すべく、Sb供給有りのサンプルS0、S1、S2と同じ成長条件で作製した低温成長GaN層を積層して同一サンプルとし、その積層膜中の深さ方向に対するSb濃度をSIMS(二次イオン質量分析法)により測定した。図6は、積層膜の深さに対するSb濃度を示すグラフである。図6の結果より、結晶中に含まれるSb組成を算出したところ、その値はそれぞれ、サンプルS0が0.04%、サンプルS1が0.4%、サンプルS2が0.2%であった。
 以上のSIMSにより測定したSb組成と、図3のAFM測定による表面粗度RMS値の結果を総合すると、低温成膜GaN層104の結晶中のSb組成が0.04%以上に増加させることにより、低温成膜GaN層104の表面平坦性が向上する。そして、より好ましくは、Sb組成を0.2%以上に増加させることにより、低温成膜GaN層104の表面平坦性及び光学的特性が、高温条件にて成膜したGaN層と遜色のない程度まで改善される。
 本実施例によれば、MOCVD法による窒化物半導体結晶(GaN)の作製において、アンモニアに対するTESbのガス流量比を0.004以上とすることにより、成膜温度(成長温度)を約750℃程度まで低温化することが可能となる。よって、製造コストや、成膜装置を小型化することが可能となる。
 更に、Sbを供給して低温で形成した低温成膜GaN層104は、Sbを供給せずに低温で成膜した低温成膜GaN層104に比べて、結晶性及び表面平坦性、光学的特性が優れている為、発光/受光デバイスや電子デバイスなどの半導体デバイス用途として有用である。
 また、結晶中のSb組成が0.04%以上である低温成膜GaN層104は低温条件で成膜したものであっても表面平坦性に優れている。また、結晶中のSb組成が0.2%以上である低温成膜GaN層104は、バンド端に基づく発光が確認され、光学的特性についても良好である。よって、特に、発光/受光デバイス用途として有用である。
 また、従来のように1000℃程度と高い成膜温度条件下では、III族元素であるInが取り込まれにくく、かつ相分離が発生する懸念があり、良質なInを含む窒化物半導体結晶が得られ難かった。本実施例では、Inの取り込みが十分に行われる800℃以下の成長温度条件にて良好なGaN層104の形成が可能となった。よって、結晶中のIn組成を増加させつつ、高品質な窒化物半導体混晶を得ることが可能となる。よって、窒化物半導体混晶の組成制御が容易になり、これまで作製が困難だった高In組成の活性層を形成してより長波長側の発光/受光デバイスの作製が容易になる。
 更に、作製するデバイスの構造上、成膜過程(成長過程)の高温環境に晒されることでその特性が劣化してしまう場合がある。本実施例のように窒化物半導体結晶の成長温度が全体的に低下することにより、熱履歴(サーマルバジェット)を低減することが可能となる為、デバイス作製の際の設計/試作自由度も向上する。
 <実施例2>
 図7に示されるAlInN/GaNヘテロ接合構造をMOCVD法により以下の手順で作製した。基板105までの作製工程及び作製条件は実施例1と共通の為、説明を省略する。
 まず、基板温度を850℃まで降温し、キャリアガスである窒素と、原料であるトリメチルインジウム(TMIn:III族化合物)、トリメチルアルミニウム(TMAl:III族化合物)、アンモニアと、Sb化合物としてTESbを反応炉内に供給することで、下地GaN層103上に、AlInN層201を40nm成長させた。成膜速度は比較的高速な0.2μm/hとした。また、ガス流量比については、実施例1と同様に、Sb/Nが約0.004になるように設定した。そして、成膜したAlInN層201のIn組成は0.17であり、GaN結晶と略格子整合するようにした。その後、基板温度を850℃に維持し、キャリアガス及び原料ガスであるTMGaに加えてTESbを供給し、AlInN層201上に40nmのGaN層202を成長させた。このAlInN層201及びGaN層202の成膜のサイクルを3回繰り返すことで、図7に示すような3ペア積層のAlInN/GaNヘテロ接合構造を作製した。
 AlInN層201の成膜過程において、成膜速度を0.2μm/h以上と高速化することにより、得られるAlInN層201の結晶性及び結晶性が大幅に劣化してしまうことが知られている。本実施例2によれば、高速な成膜条件においてもTESbを供給することで、AlInN層201についても高品質な結晶を得ることが可能となる。よって、AlInN/GaNヘテロ接合構造の作製においても、高品質な結晶が得られるという実施例1記載の効果のみならず、成膜速度の高速化も実現できる為、作製時間及びコストを低減することができる。
 更に、下地膜である下地GaN層103の成膜温度よりも低温条件にてAlInN/GaNヘテロ接合構造を作製することにより、熱履歴を低減し、デバイス構造の作製時の設計/試作自由度が向上する。
 また、面発光レーザに必要な多層膜反射鏡を作製する際には、AlInN/GaNヘテロ接合構造を40~60ペア積層する必要がある。よって、作製時間及びコストの低減効果は非常に大きくなる。
 <実施例3>
 図8に示される窒化物半導体発光ダイオード素子構造をMOCVD法により以下の手順で作製した。低温バッファ層102までの作製工程及び作製条件は実施例1と共通の為、説明を省略する。また、以下の成膜条件におけるガス流量比Sb/Nはすべて約0.004とした。
 まず、基板温度を1080℃まで昇温し、キャリアガスである水素と、原料であるTMGa、アンモニアと、不純物原料ガスであるシラン(SiH)を反応炉内に供給することで、低温バッファ層102上に、n型GaN層301(n-GaN)を3μm成長させた。Siは3×1018/cmの濃度でドーピングされている。
 その後、基板温度を850℃まで降温し、キャリアガスである窒素と、原料であるTMIn及びTMGa、アンモニアと、Sb化合物としてTESbを反応炉内に供給することで、n型GaN層301上に、GaN障壁層302及びGaInN量子井戸層303を順次積層成長させた。GaN障壁層302の膜厚は10nmであり、GaInN量子井戸層303の膜厚は2.5nmである。また、GaInN量子井戸層303のIn組成は0.15である。このGaN障壁層302を4層、GaInN量子井戸層303を3層交互に成膜することで、図8に示すようなGaN/GaInN活性層304を形成した。
 更に、基板温度を980℃まで昇温し、キャリアガスである水素と、原料であるTMGa及びTMAl、アンモニアと、Sb化合物であるTESbと、不純物原料ガスであるシクロペンタジエニルマグネシウム(CPMg)を反応炉内に供給することで、GaN/GaInN活性層304上にp型AlGaN電子ブロック層305(p-AlGaN)を成長させた。p型AlGaN電子ブロック層305の膜厚は25nmであり、Al組成は0.15である。Mg(アクセプタ不純物)は3×1019/cmの濃度でドーピングされている。
 更に、基板温度を850℃まで降温し、キャリアガスである水素と、原料であるTMGa、アンモニアと、Sb化合物であるTESbと、不純物原料ガスであるCPMgを反応炉内に供給することで、p型AlGaN電子ブロック層305上に、p型GaN層(p-GaN)306及びコンタクト形成用のp型GaNコンタクト層(p++-GaN)307を順次積層成長させた。p型GaN層306の膜厚は60nmであり、p型GaNコンタクト層307の膜厚は10nmである。また、p型GaN層306には3×1019/cmの濃度でMgがドーピングされており、p型GaNコンタクト層307には1×1020/cmの濃度でMgがドーピングされている。
 本実施例3によれば、TESbを成膜時に供給することで、Siをドーピングしたn型GaN層301についても低温で高品質な結晶が得られる。また、Mgをドーピングしたp型GaN層306、p型GaNコンタクト層307及びp型AlGaN電子ブロック層305についても低温で高品質な結晶が得られる。また、Inが十分に取り込まれる770℃という低温条件で、GaInN量子井戸層303を成膜することも可能となる。
 更に、GaN/GaInN活性層304上に成膜したp型AlGaN電子ブロック層305の成膜温度も、従来よりも低温である980℃以下にできる為、GaN/GaInN活性層304に対する熱履歴を低減させることが可能となり、デバイス作製の際の設計/試作自由度が向上する。
 更にp型層成膜時には、GaN及びAlGaNに対して0.2%以上の組成でSbが取り込まれるので、GaN及びAlGaNの価電子帯の上端が上昇し、アクセプタ不純物(Mg)準位とのエネルギー差が小さくなる。よって、その活性化エネルギーが減少し、高濃度の正孔(ホール)が形成可能となる。これにより、GaN/GaInN活性層304に対する正孔の注入効率が改善し、電子のオーバーフローが抑制され、発光ダイオード素子の発光特性を向上させる事が可能となる。
 <実施例4>
 実施例3と同様の窒化物半導体発光ダイオード素子構造において、GaInN量子井戸層303の基板温度を750℃とすることで、In組成を0.3以上に上昇させることが可能となる。本実施例4によれば、GaN/InGaN活性層304からの発光を長波長側にすることが可能となり、緑色、更には黄色の発光ダイオード素子を作製可能となる。
 以上、本発明によれば、原料であるIII族元素および/またはその化合物と窒素元素および/またはその化合物と、Sb元素および/またはその化合物を基板105上に供給することで、基板105上に少なくとも一層以上の窒化物半導体膜104を気相成長させて窒化物半導体結晶を作製した。そして、この時の窒素元素に対するSb元素の供給比を0.004以上とすることにより、低温で高品質な窒化物半導体結晶を作製することが可能となる。また、得られる窒化物半導体結晶は高品質であるから、発光/受光デバイスや電子デバイス等の半導体デバイスへの応用に有用である。
 本発明は上記記述及び図面によって説明した実施例1~4に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 (1)上記実施例では、サファイア基板を用いたが、これに限らず、シリコン(Si)、酸化亜鉛(ZnO)、炭化ケイ素(SiC)、ガリウムヒ素(GaAs)、窒化ガリウム(GaN)、窒化アルミニウム(AlN)などを用いても良い。また、結晶の多形(ポリタイプ)についても制限はない。
 (2)上記実施例では、窒化物半導体結晶の成長手法として、有機金属気相成長法(MOCVD法)を用いたが、これに限らず、ハイドライド気相成長法(HVPE法)などの他の気相成長法にも適用できる。また、分子線エピタキシー法(MBE法)、スパッタリング法やレーザーアブレーション法などの成長法にも適用できる。
 (3)上記実施例では、原料にトリメチルガリウム(TMGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)を用いたが、トリエチルガリウム(TEGa)、トリエチルインジウム(TEIn)、トリエチルアルミニウム(TEAl)などを用いることができる。
 (4)上記実施例では、Sb元素およびその化合物に、トリエチルアンチモン(TESb)を用いたが、トリメチルアンチモン(TMSb)やトリスジメチルアミノアンチモン(TDMASb)などを用いることができる。
 (5)上記実施例では、キャリアガスに水素や窒素を用いたが、他の活性ガスやアルゴンなどの他の不活性ガスを用いても良く、それらを混合して用いてもよい。
 (6)上記実施例では、低温バッファ層に窒化ガリウム(GaN)を用いたが、窒化アルミニウム(AlN)、窒化インジウム(InN)、窒化ボロン(BN)などのその他の材料であってもよい。
 (7)上記実施例では、窒化物半導体膜を形成する前に3μmの下地膜を成膜したが、下地膜を成膜しなくてもよい。
 (8)上記実施例では、c面サファイア基板上にc軸配向した窒化物半導体結晶を作製したが、m軸、a軸配向の窒化物半導体結晶にも適用できる。
 (9)上記実施例では、n型、p型GaNのドーパントにそれぞれSi、Mgを用いたが、これに限らず、GeやZn、Be等であってもよい。
 103…下地GaN層(下地膜)
 104、201、202、302、303、305、306、307…窒化物半導体膜(104…低温成膜GaN層、201…AlInN層、202…GaN層、302…GaN障壁層、303…GaInN量子井戸層、305…p型AlGaN電子ブロック層、306…p型GaN層、307…p型GaNコンタクト層)
 105…基板

Claims (5)

  1.  原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで少なくとも一層以上の窒化物半導体膜を気相成長させて作製した窒化物半導体結晶であって、
     少なくとも一層以上の前記窒化物半導体結晶膜は、その成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする窒化物半導体結晶。
  2.  結晶中におけるSb組成が0.04%以上であることを特徴とする窒化物半導体結晶。
  3.  結晶中にアクセプタ不純物がドーピングされていることを特徴とする請求項1又は請求項2に記載の窒化物半導体結晶。
  4.  原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで、少なくとも一層以上の窒化物半導体膜を気相成長させる窒化物半導体結晶の作製方法であって、
     少なくとも一層以上の前記窒化物半導体膜の成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする窒化物半導体結晶の作製方法。
  5.  前記窒化物半導体膜は下地膜の成膜温度以下の成膜温度にて成膜することを特徴とする請求項4に記載の窒化物半導体結晶の作製方法。
PCT/JP2014/055391 2013-03-07 2014-03-04 窒化物半導体結晶及びその作製方法 WO2014136749A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015504315A JP6066530B2 (ja) 2013-03-07 2014-03-04 窒化物半導体結晶の作製方法
CN201480012830.4A CN105027262B (zh) 2013-03-07 2014-03-04 氮化物半导体晶体及其制备方法
US14/773,045 US20170155016A9 (en) 2013-03-07 2014-03-04 Nitride semiconductor crystal and method of fabricating the same
US16/738,946 US20200144451A1 (en) 2013-03-07 2020-01-09 Nitride semiconductor crystal and method of fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013044869 2013-03-07
JP2013-044869 2013-03-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/773,045 A-371-Of-International US20170155016A9 (en) 2013-03-07 2014-03-04 Nitride semiconductor crystal and method of fabricating the same
US16/738,946 Division US20200144451A1 (en) 2013-03-07 2020-01-09 Nitride semiconductor crystal and method of fabricating the same

Publications (1)

Publication Number Publication Date
WO2014136749A1 true WO2014136749A1 (ja) 2014-09-12

Family

ID=51491265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055391 WO2014136749A1 (ja) 2013-03-07 2014-03-04 窒化物半導体結晶及びその作製方法

Country Status (4)

Country Link
US (2) US20170155016A9 (ja)
JP (1) JP6066530B2 (ja)
CN (1) CN105027262B (ja)
WO (1) WO2014136749A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207734A (ja) * 2015-04-17 2016-12-08 学校法人 名城大学 窒化物半導体発光素子及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049465A (ja) * 2010-08-30 2012-03-08 Advanced Power Device Research Association 窒化物系化合物半導体、窒化物系化合物半導体素子、およびその製造方法
JP2012101961A (ja) * 2010-11-09 2012-05-31 Nippon Telegr & Teleph Corp <Ntt> Inを含むp型窒化物化合物半導体結晶の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689123A (en) * 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
US6610144B2 (en) * 2000-07-21 2003-08-26 The Regents Of The University Of California Method to reduce the dislocation density in group III-nitride films
US6852161B2 (en) * 2000-08-18 2005-02-08 Showa Denko K.K. Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JP4416297B2 (ja) * 2000-09-08 2010-02-17 シャープ株式会社 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置
JP3863720B2 (ja) * 2000-10-04 2006-12-27 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
WO2002039555A1 (fr) * 2000-11-10 2002-05-16 Sharp Kabushiki Kaisha Element lumineux semi-conducteur nitrure et dispositif optique equipe de cet element
WO2002040752A2 (en) * 2000-11-20 2002-05-23 The Regents Of The University Of California Process for producing iii-v compound films by chemical deposition
WO2003038957A1 (en) * 2001-10-29 2003-05-08 Sharp Kabushiki Kaisha Nitride semiconductor device, its manufacturing method, and semiconductor optical apparatus
US7179731B2 (en) * 2002-01-22 2007-02-20 Eric Harmon Hypercontacting
FR2842832B1 (fr) * 2002-07-24 2006-01-20 Lumilog Procede de realisation par epitaxie en phase vapeur d'un film de nitrure de gallium a faible densite de defaut
US6927412B2 (en) * 2002-11-21 2005-08-09 Ricoh Company, Ltd. Semiconductor light emitter
US7462882B2 (en) * 2003-04-24 2008-12-09 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus
WO2005094271A2 (en) * 2004-03-25 2005-10-13 The Regents Of The University Of California Colloidal quantum dot light emitting diodes
US7445673B2 (en) * 2004-05-18 2008-11-04 Lumilog Manufacturing gallium nitride substrates by lateral overgrowth through masks and devices fabricated thereof
US7390360B2 (en) * 2004-10-05 2008-06-24 Rohm And Haas Electronic Materials Llc Organometallic compounds
JP2006193348A (ja) * 2005-01-11 2006-07-27 Sumitomo Electric Ind Ltd Iii族窒化物半導体基板およびその製造方法
US8304805B2 (en) * 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
JP4645622B2 (ja) * 2007-06-01 2011-03-09 住友電気工業株式会社 GaN結晶の成長方法
US8524581B2 (en) * 2011-12-29 2013-09-03 Intermolecular, Inc. GaN epitaxy with migration enhancement and surface energy modification
US9735008B2 (en) * 2012-10-25 2017-08-15 University Of Utah Research Foundation Use of surfactants to control island size and density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049465A (ja) * 2010-08-30 2012-03-08 Advanced Power Device Research Association 窒化物系化合物半導体、窒化物系化合物半導体素子、およびその製造方法
JP2012101961A (ja) * 2010-11-09 2012-05-31 Nippon Telegr & Teleph Corp <Ntt> Inを含むp型窒化物化合物半導体結晶の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. CRISTEA ET AL.: "Growth of GaN:Sb MBE-Layers", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, vol. 693, 2002, pages 13.28.1 - I3.28.6 *
SE-HOON MOON ET AL.: "Strong below-band gap absorption of N-rich side GaNSb by metal- organic chemical vapor deposition", JORNAL OF MATERALS RESEARCH, vol. 24, no. 12, December 2009 (2009-12-01), pages 3569 - 3572 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207734A (ja) * 2015-04-17 2016-12-08 学校法人 名城大学 窒化物半導体発光素子及びその製造方法

Also Published As

Publication number Publication date
US20170155016A9 (en) 2017-06-01
US20160020359A1 (en) 2016-01-21
JPWO2014136749A1 (ja) 2017-02-09
US20200144451A1 (en) 2020-05-07
JP6066530B2 (ja) 2017-01-25
CN105027262B (zh) 2018-04-03
CN105027262A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5117609B1 (ja) 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法
US20110254048A1 (en) Group iii nitride semiconductor epitaxial substrate
US10008571B2 (en) Semiconductor wafer, semiconductor device, and method for manufacturing nitride semiconductor layer
JP4991828B2 (ja) 窒化ガリウム系化合物半導体の作製方法
US9246055B2 (en) Crystal growth method and semiconductor light emitting device
KR20070054722A (ko) Ⅲ-ⅴ족 화합물 반도체 및 그 제조 방법
TWI252599B (en) N-type group III nitride semiconductor layered structure
US9899213B2 (en) Group III nitride semiconductor, and method for producing same
CN104518062A (zh) 制造半导体发光器件的方法
JP5073624B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP6319975B2 (ja) 窒化物半導体混晶の製造方法
JP2012204540A (ja) 半導体装置およびその製造方法
JP2004356522A (ja) 3−5族化合物半導体、その製造方法及びその用途
US20200144451A1 (en) Nitride semiconductor crystal and method of fabricating the same
JP6242238B2 (ja) 窒化物半導体多元混晶の製造方法
KR100935974B1 (ko) 질화물 반도체 발광소자의 제조 방법
JP2006128653A (ja) 3−5族化合物半導体、その製造方法及びその用途
KR102553985B1 (ko) Ⅲ족 질화물 반도체
TWI467635B (zh) 凹孔缺陷縮減之三五族半導體構造及形成此等構造之方法
JP5073623B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
KR101384071B1 (ko) 질화물 반도체 기판, 이의 제조방법 및 질화물 반도체 기판을 구비하는 발광 다이오드
JP6649693B2 (ja) 窒化物半導体発光素子及びその製造方法
KR100881053B1 (ko) 질화물계 발광소자
JP5705179B2 (ja) 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法
KR100892740B1 (ko) 질화물 반도체 발광 소자 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012830.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504315

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773045

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759509

Country of ref document: EP

Kind code of ref document: A1