WO2014136749A1 - 窒化物半導体結晶及びその作製方法 - Google Patents
窒化物半導体結晶及びその作製方法 Download PDFInfo
- Publication number
- WO2014136749A1 WO2014136749A1 PCT/JP2014/055391 JP2014055391W WO2014136749A1 WO 2014136749 A1 WO2014136749 A1 WO 2014136749A1 JP 2014055391 W JP2014055391 W JP 2014055391W WO 2014136749 A1 WO2014136749 A1 WO 2014136749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitride semiconductor
- layer
- film
- gan
- crystal
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 71
- 239000013078 crystal Substances 0.000 title claims abstract description 67
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 150000001875 compounds Chemical class 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 239000012808 vapor phase Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 2
- 238000001947 vapour-phase growth Methods 0.000 abstract description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 76
- 229910002601 GaN Inorganic materials 0.000 description 74
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 17
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 13
- 229910021529 ammonia Inorganic materials 0.000 description 12
- 239000012159 carrier gas Substances 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- 230000008021 deposition Effects 0.000 description 10
- 229910002704 AlGaN Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 6
- 239000010980 sapphire Substances 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 5
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 4
- 238000000089 atomic force micrograph Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- 238000000103 photoluminescence spectrum Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 2
- KKOFCVMVBJXDFP-UHFFFAOYSA-N triethylstibane Chemical compound CC[Sb](CC)CC KKOFCVMVBJXDFP-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- ZUSRFDBQZSPBDV-UHFFFAOYSA-N n-[bis(dimethylamino)stibanyl]-n-methylmethanamine Chemical compound CN(C)[Sb](N(C)C)N(C)C ZUSRFDBQZSPBDV-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 238000000241 photoluminescence detection Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- PORFVJURJXKREL-UHFFFAOYSA-N trimethylstibine Chemical compound C[Sb](C)C PORFVJURJXKREL-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02549—Antimonides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
Definitions
- the present invention relates to a nitride semiconductor crystal and a method of manufacturing the same.
- a nitride semiconductor represented by gallium nitride (GaN) is a direct transition semiconductor and has a wide band gap of 0.7 to 6.2 eV, so it is widely used for high efficiency blue light emitting diode (LED) etc. ing.
- LED blue light emitting diode
- Patent Document 1 discloses a method of making the interface between the p-type nitride semiconductor and the p-side electrode sharp and flat using a surfactant.
- the film formation temperature of the nitride semiconductor crystal in a general vapor phase growth method is relatively high at about 1000 ° C., the manufacturing cost is high, and the miniaturization of the film formation apparatus is also difficult.
- the film formation of the nitride semiconductor crystal is performed at a temperature lower than 1000 ° C., there is a problem that the flatness of the crystal surface and the interface between the crystals is significantly deteriorated.
- p-type GaN deposited at a low temperature does not exhibit sufficient p-type conductivity due to the decrease in the crystallinity.
- the present invention has been made in view of the above-mentioned conventional circumstances, and an object thereof is to produce high quality nitride semiconductor crystals under low temperature conditions.
- the nitride semiconductor crystal of the first invention is At least one or more nitride semiconductor films are vapor-phase grown on a substrate by supplying Group III elements and / or compounds thereof, nitrogen elements and / or compounds thereof, and Sb elements and / or compounds thereof as raw materials onto a substrate
- a nitride semiconductor crystal produced by The nitride semiconductor crystal film of at least one layer is characterized in that the supply ratio of the Sb element to the nitrogen element in the growth process is 0.004 or more.
- the nitride semiconductor crystal of the second invention is characterized in that the Sb composition in the crystal is 0.04% or more.
- these nitride semiconductor crystals have high surface flatness and high quality, they are useful as semiconductor device applications such as light emitting / receiving devices and electronic devices.
- the method for producing a nitride semiconductor of the third invention is At least one or more nitride semiconductor films are formed in the gas phase by supplying the raw material group III element and / or compound thereof, nitrogen element and / or compound thereof, and Sb element and / or compound thereof onto the substrate.
- a method for producing a nitride semiconductor crystal to be grown, comprising In the growth process of the at least one nitride semiconductor film, the supply ratio of the Sb element to the nitrogen element is 0.004 or more.
- This nitride semiconductor production method can produce a nitride semiconductor crystal having a high quality nitride semiconductor film at low temperature by setting the supply ratio of Sb element to nitrogen element to 0.004 or more.
- this method of production can also suppress the occurrence of phase separation due to heat when producing mixed crystals of nitride semiconductor crystals, so that control of the composition of the obtained crystals becomes easy.
- this manufacturing method when the nitride semiconductor film is sequentially laminated and grown, the characteristic deterioration of the base film due to heat can be prevented.
- FIG. 2 is a cross-sectional view of the nitride semiconductor crystal of Example 1; Similarly it is a surface SEM image of a low temperature film-forming GaN layer, Comprising: (a) is a sample without Sb supply, (b) is a figure which shows the sample with Sb supply. Similarly, it is an AFM image of the surface of the low temperature film-forming GaN layer, and (a) shows a sample without Sb supply, (b) shows a sample with Sb supply. Similarly, it is a graph showing the PL spectrum of the low temperature film formation GaN layer, wherein (a) is a sample formed at 950 ° C., and (b) is a graph showing a sample formed at 850 ° C.
- FIG. 10 is a cross-sectional view of the AlInN / GaN heterojunction structure of Example 2.
- FIG. 7 is a cross-sectional view of a nitride semiconductor light emitting diode element structure of Example 3;
- the nitride semiconductor crystal of the first invention or the second invention can be doped with acceptor impurities in the crystal.
- the nitride semiconductor crystal contains Sb at a composition of 0.04% or more, the upper end of the valence band of the nitride semiconductor is raised, and the energy difference with the acceptor impurity level is increased accordingly. Since it becomes smaller, a high hole concentration can be easily obtained.
- the nitride semiconductor film can be formed at a film forming temperature equal to or lower than the film forming temperature of the base film. In this case, thermal degradation of the base film can be prevented by forming the nitride semiconductor film, and the degree of freedom in device design / prototyping is improved.
- Example 1 A sample of a nitride semiconductor crystal having the structure shown in FIG. 1 was prepared by the following procedure by metal organic chemical vapor deposition (MOCVD). First, a 1 cm square c-plane sapphire substrate 101 was set in a reaction furnace of a metal organic chemical vapor deposition (MOCVD) apparatus. After that, the surface of the sapphire substrate 101 was thermally cleaned by raising the temperature while flowing hydrogen into the reaction furnace.
- MOCVD metal organic chemical vapor deposition
- the substrate temperature (film formation temperature) is set to 630 ° C.
- hydrogen as a carrier gas ammonia (nitrogen compound) and trimethylgallium (TMGa: group III compound) as raw materials are flowed into the reaction furnace
- a low-temperature buffer layer 102 of gallium nitride (GaN) was grown to 20 nm on a sapphire substrate 101.
- the substrate temperature is raised to 1130 ° C., and the same carrier gas and the above-mentioned raw materials are flowed, thereby growing the non-doped base GaN layer (i-GaN: base film) 103 to 3 ⁇ m.
- the sapphire substrate 101 to the base GaN layer 103 correspond to the substrate 105.
- the substrate temperature is lowered to a desired temperature, and low temperature film formation is performed on the base GaN layer 103 while supplying triethylantimony (TESb) as an Sb compound in addition to hydrogen as a carrier gas, TMGa as a raw material and ammonia.
- TESb triethylantimony
- the GaN layer 104 was grown (deposited) to 2 ⁇ m.
- the gas flow rates at the time of film formation of the low temperature film formation GaN layer (nitride semiconductor film) 104 are respectively 27 mmol / min for ammonia, 28 ⁇ mol / min for TMGa, and 98 ⁇ mol / min for TESb.
- the ratio of ammonia to TMGa (hereinafter referred to as N / Ga) is about 1000.
- the ratio of TESb to ammonia (hereinafter referred to as Sb / N) is about 0.004.
- Samples S0, S1, and S2 were prepared by forming low-temperature deposited GaN layers 104 at three substrate temperatures of 750 ° C., 850 ° C., and 950 ° C. while supplying TESb. Further, as a comparative example, samples C0, C1, and C2 were prepared in which the low temperature deposition GaN layer 104 was formed under the same substrate temperature conditions as the samples S0, S1, and S2 without supplying TESb.
- the samples S0, S1 and S2 and the samples C0, C1 and C2 will be referred to as a sample with Sb supply and a sample without Sb supply, respectively.
- FIG. 2 shows surface scanning electron microscope images (surface SEM images) of samples S0 and C0 deposited at 750 ° C., samples S1 and C1 deposited at 850 ° C., and samples S2 and C2 deposited at 950 ° C. It shows each.
- FIG. 2 (a) shows surface SEM images of the samples C0, C1, and C2 without Sb supply.
- FIG. 2B shows surface SEM images of the samples S0, S1, and S2 with Sb supply. In the sample C2 without Sb supply, a plurality of inverted hexagonal pyramidal pits are observed on the crystal surface.
- FIG. 3A shows AFM images of samples C0, C1, and C2 without Sb supply.
- FIG. 3 (b) shows AFM images of the samples S0, S1 and S2 with Sb supply.
- the surface roughness root mean square (RMS) values of the samples C0, C1, and C2 without Sb supply were all about 100 nm.
- the surface roughness RMS values of the samples S0, S1 and S2 with Sb supply are significantly improved as compared with the samples C0, C1 and C2 without Sb supply.
- Specific surface roughness RMS values were 1.56 nm for sample S2, 0.85 nm for sample S1, and 23 nm for sample S0.
- the surface roughness RMS values of the samples S1 and S2 fall within the value of about one atomic layer. This is comparable to the surface roughness RMS value of the GaN layer formed under the conventional film forming temperature condition of 1000 ° C. or more. Therefore, it can be confirmed microscopically that the surface flatness of the samples S0, S1 and S2 with Sb supply is extremely good.
- FIG. 4 is a graph showing the PL detection intensity with respect to the PL emission wavelength.
- FIG. 4 (a) shows the PL spectra of the samples S2 and C2 deposited at 950.degree.
- FIG. 4 (b) shows the PL spectra of the samples S1 and C1 deposited at 850.degree.
- the emission peak based on the band edge confirmed in the sample C2 can hardly be observed in the sample C1.
- the intensity of light emission based on the band edge is inferior to the sample S2, the peak itself can be observed. That is, the superiority of the samples S1 and S2 with Sb supply is also suggested from the viewpoint of the optical characteristics. Therefore, by increasing the gas flow ratio Sb / N to 0.004 or more, further improvement of the crystallinity and the optical characteristics of the low temperature film-forming GaN layer 104 can be expected.
- X-ray diffraction measurement (XRD: 2 ⁇ / ⁇ scan) of the samples S1 and S2 with Sb supply was performed.
- the horizontal axis is the rotation angle (2 ⁇ / ⁇ )
- the vertical axis is the detected intensity.
- a peak attributed to (0002) of GaN is observed in any of the samples S2 and S1 deposited at 950 ° C. and 850 ° C.
- a peak considered to be due to the incorporation of Sb indicated by the arrow was confirmed.
- the Sb composition in the low temperature deposition GaN layer 104 estimated from its peak position was found to be 0.2 to 0.4%.
- FIG. 6 is a graph showing the Sb concentration with respect to the depth of the laminated film. From the results of FIG. 6, the Sb composition contained in the crystal was calculated, and the values were 0.04% for sample S0, 0.4% for sample S1, and 0.2% for sample S2, respectively.
- the Sb composition in the crystal of the low-temperature deposited GaN layer 104 is increased to 0.04% or more.
- the surface flatness of the low temperature deposition GaN layer 104 is improved.
- the surface flatness and optical properties of the low-temperature deposited GaN layer 104 are comparable to those of the GaN layer deposited under high-temperature conditions. Will be improved.
- the film forming temperature (growth temperature) is about 750 ° C. by setting the gas flow ratio of TESb to ammonia to 0.004 or more. It is possible to lower the temperature to Therefore, the manufacturing cost and the film formation apparatus can be miniaturized.
- the low temperature deposition GaN layer 104 formed at low temperature by supplying Sb has crystallinity, surface flatness, and optical characteristics as compared with the low temperature deposition GaN layer 104 formed at low temperature without supplying Sb. Is useful for semiconductor device applications such as light emitting / receiving devices and electronic devices.
- the low temperature deposition GaN layer 104 having an Sb composition in the crystal of 0.04% or more is excellent in surface flatness even when deposited under low temperature conditions.
- the low-temperature deposited GaN layer 104 having an Sb composition of 0.2% or more in the crystal is confirmed to emit light based on the band edge, and the optical characteristics are also favorable. Therefore, it is particularly useful as a light emitting / receiving device application.
- the characteristics may be deteriorated by being exposed to the high temperature environment in the film formation process (growth process).
- the thermal history thermal budget
- the freedom in design / prototyping in device fabrication is also improved.
- Example 2 The AlInN / GaN heterojunction structure shown in FIG. 7 was fabricated by MOCVD according to the following procedure. The manufacturing steps up to the substrate 105 and the manufacturing conditions are the same as in Example 1, and thus the description is omitted.
- the substrate temperature is lowered to 850 ° C., and nitrogen as a carrier gas, trimethylindium (TMIn: Group III compound), trimethylaluminum (TMAl: Group III compound), ammonia, ammonia, and TESb as an Sb compound are reacted
- TMIn Group III compound
- TMAl trimethylaluminum
- ammonia ammonia
- TESb TESb
- the AlInN layer 201 was grown to 40 nm on the base GaN layer 103.
- the deposition rate was 0.2 ⁇ m / h, which is relatively high.
- the gas flow ratio was set so that Sb / N was about 0.004 as in the first embodiment.
- the In composition of the formed AlInN layer 201 was 0.17, and it was made to be substantially lattice matched with the GaN crystal.
- the substrate temperature was maintained at 850 ° C.
- TESb was supplied in addition to carrier gas and TMGa which is a source gas, and a 40 nm GaN layer 202 was grown on the AlInN layer 201.
- TMGa which is a source gas
- the thermal history is reduced by fabricating the AlInN / GaN heterojunction structure at a temperature lower than the deposition temperature of the underlayer GaN layer 103 which is the underlayer, thereby reducing the design / prototype freedom at the time of fabricating the device structure. improves.
- Example 3 The nitride semiconductor light emitting diode device structure shown in FIG. 8 was manufactured by the MOCVD method in the following procedure. The fabrication steps up to the low temperature buffer layer 102 and the fabrication conditions are the same as in Example 1, and thus the description thereof is omitted. Further, the gas flow ratio Sb / N under the following film forming conditions was all about 0.004.
- the substrate temperature is raised to 1080 ° C.
- the low temperature buffer layer is supplied into the reaction furnace by supplying hydrogen as a carrier gas, TMGa and ammonia as raw materials, and silane (SiH 4 ) as an impurity raw material gas.
- An n-type GaN layer 301 (n-GaN) was grown to 3 ⁇ m on 102. Si is doped at a concentration of 3 ⁇ 10 18 / cm 3 .
- the substrate temperature is lowered to 850 ° C., and nitrogen as a carrier gas, TMIn and TMGa as raw materials, ammonia, and TESb as an Sb compound are supplied into the reaction furnace to form an n-type GaN layer 301.
- the GaN barrier layer 302 and the GaInN quantum well layer 303 were sequentially laminated and grown.
- the film thickness of the GaN barrier layer 302 is 10 nm, and the film thickness of the GaInN quantum well layer 303 is 2.5 nm.
- the In composition of the GaInN quantum well layer 303 is 0.15.
- the substrate temperature is raised to 980 ° C., hydrogen as a carrier gas, TMGa and TMAl as raw materials, ammonia, TESb as an Sb compound, and cyclopentadienyl magnesium (CP 2 Mg as an impurity raw material gas)
- P-AlGaN electron blocking layer 305 (p-AlGaN) was grown on the GaN / GaInN active layer 304 by supplying the.
- the film thickness of the p-type AlGaN electron blocking layer 305 is 25 nm, and the Al composition is 0.15.
- Mg (acceptor impurity) is doped at a concentration of 3 ⁇ 10 19 / cm 3 .
- the substrate temperature is lowered to 850 ° C., and hydrogen as a carrier gas, TMGa as a raw material, TMGa, ammonia, TESb as an Sb compound, and CP 2 Mg as an impurity raw material gas are supplied into the reaction furnace.
- a p-type GaN layer (p-GaN) 306 and a p-type GaN contact layer (p ++ -GaN) 307 for contact formation were sequentially grown on the p-type AlGaN electron block layer 305.
- the film thickness of the p-type GaN layer 306 is 60 nm, and the film thickness of the p-type GaN contact layer 307 is 10 nm.
- the p-type GaN layer 306 is doped with Mg at a concentration of 3 ⁇ 10 19 / cm 3
- the p-type GaN contact layer 307 is doped with Mg at a concentration of 1 ⁇ 10 20 / cm 3 .
- high-quality crystals can be obtained at low temperature also for the n-type GaN layer 301 doped with Si.
- high-quality crystals can be obtained at a low temperature also for the Mg-doped p-type GaN layer 306, the p-type GaN contact layer 307, and the p-type AlGaN electron blocking layer 305.
- the film formation temperature of the p-type AlGaN electron block layer 305 formed on the GaN / GaInN active layer 304 can also be set to 980 ° C. or lower, which is lower than the conventional temperature, the thermal history for the GaN / GaInN active layer 304 is reduced. It is possible to improve design / prototype freedom in device fabrication.
- Sb is taken in with a composition of 0.2% or more with respect to GaN and AlGaN, so the upper end of the valence band of GaN and AlGaN rises, and the acceptor impurity (Mg) level Energy difference is reduced.
- Mg acceptor impurity
- Example 4 In the nitride semiconductor light emitting diode element structure similar to that of Example 3, the In composition can be raised to 0.3 or more by setting the substrate temperature of the GaInN quantum well layer 303 to 750 ° C. According to the fourth embodiment, it is possible to set the light emission from the GaN / InGaN active layer 304 to the long wavelength side, and it is possible to manufacture a green or yellow light emitting diode element.
- the raw materials of Group III element and / or compound thereof, nitrogen element and / or compound thereof and Sb element and / or compound thereof, which are raw materials are supplied onto the substrate 105.
- At least one nitride semiconductor film 104 was vapor-phase grown to fabricate a nitride semiconductor crystal. Then, by setting the supply ratio of Sb element to nitrogen element at this time to be 0.004 or more, it becomes possible to produce a high quality nitride semiconductor crystal at a low temperature.
- the obtained nitride semiconductor crystal is of high quality, it is useful for application to semiconductor devices such as light emitting / receiving devices and electronic devices.
- the present invention is not limited to the first to fourth embodiments described above with reference to the drawings.
- the following embodiments are also included in the technical scope of the present invention.
- the sapphire substrate is used in the above embodiment, the present invention is not limited thereto, and silicon (Si), zinc oxide (ZnO), silicon carbide (SiC), gallium arsenide (GaAs), gallium nitride (GaN), nitrided Aluminum (AlN) or the like may be used.
- silicon Si
- zinc oxide ZnO
- SiC silicon carbide
- GaAs gallium arsenide
- GaN gallium nitride
- AlN nitrided Aluminum
- MOCVD metal organic chemical vapor deposition
- HVPE hydride vapor growth
- MBE molecular beam epitaxy
- TMGa trimethylgallium
- TMAl trimethylaluminum
- TMIn trimethylindium
- triethylantimony was used as the Sb element and its compound, but trimethylantimony (TMSb), trisdimethylaminoantimony (TDMASb) or the like can be used.
- TMSb trimethylantimony
- TDMASb trisdimethylaminoantimony
- hydrogen or nitrogen is used as the carrier gas, but other active gas or other inert gas such as argon may be used, or they may be mixed and used.
- gallium nitride GaN is used for the low temperature buffer layer, but other materials such as aluminum nitride (AlN), indium nitride (InN), boron nitride (BN) and the like may be used.
- the base film of 3 ⁇ m is formed before the nitride semiconductor film is formed, but the base film may not be formed.
- the c-axis oriented nitride semiconductor crystal is fabricated on the c-plane sapphire substrate, but it can be applied to m-axis and a-axis oriented nitride semiconductor crystals.
- Si and Mg were used as the n-type and p-type GaN dopants, respectively.
- the present invention is not limited to this, and Ge, Zn, Be, etc. may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで少なくとも一層以上の窒化物半導体膜を気相成長させて作製した窒化物半導体結晶であって、
少なくとも一層以上の前記窒化物半導体結晶膜は、その成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする。
原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで、少なくとも一層以上の窒化物半導体膜を気相成長させる窒化物半導体結晶の作製方法であって、
少なくとも一層以上の前記窒化物半導体膜の成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする。
図1に示される構造の窒化物半導体結晶のサンプルを有機金属気相成長法(MOCVD法)により以下の手順で作製した。まず、1cm角のc面サファイア基板101を、有機金属気相成長(MOCVD)装置の反応炉内にセットした。その後、反応炉内に水素を流しながら昇温することで、サファイア基板101表面のサーマルクリーニングを行った。次に、基板温度(成膜温度)を630℃とし、キャリアガスである水素と、原料であるアンモニア(窒素化合物)及びトリメチルガリウム(TMGa:III族化合物)とを反応炉内に流す事で、サファイア基板101上に窒化ガリウム(GaN)の低温バッファ層102を20nm成長させた。その後、基板温度を1130℃に昇温し、同様のキャリアガスと上記原料を流す事で、ノンドープの下地GaN層(i-GaN:下地膜)103を3μm成長させた。尚、サファイア基板101から下地GaN層103までが基板105に相当する。
図7に示されるAlInN/GaNヘテロ接合構造をMOCVD法により以下の手順で作製した。基板105までの作製工程及び作製条件は実施例1と共通の為、説明を省略する。
図8に示される窒化物半導体発光ダイオード素子構造をMOCVD法により以下の手順で作製した。低温バッファ層102までの作製工程及び作製条件は実施例1と共通の為、説明を省略する。また、以下の成膜条件におけるガス流量比Sb/Nはすべて約0.004とした。
実施例3と同様の窒化物半導体発光ダイオード素子構造において、GaInN量子井戸層303の基板温度を750℃とすることで、In組成を0.3以上に上昇させることが可能となる。本実施例4によれば、GaN/InGaN活性層304からの発光を長波長側にすることが可能となり、緑色、更には黄色の発光ダイオード素子を作製可能となる。
(1)上記実施例では、サファイア基板を用いたが、これに限らず、シリコン(Si)、酸化亜鉛(ZnO)、炭化ケイ素(SiC)、ガリウムヒ素(GaAs)、窒化ガリウム(GaN)、窒化アルミニウム(AlN)などを用いても良い。また、結晶の多形(ポリタイプ)についても制限はない。
(2)上記実施例では、窒化物半導体結晶の成長手法として、有機金属気相成長法(MOCVD法)を用いたが、これに限らず、ハイドライド気相成長法(HVPE法)などの他の気相成長法にも適用できる。また、分子線エピタキシー法(MBE法)、スパッタリング法やレーザーアブレーション法などの成長法にも適用できる。
(3)上記実施例では、原料にトリメチルガリウム(TMGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)を用いたが、トリエチルガリウム(TEGa)、トリエチルインジウム(TEIn)、トリエチルアルミニウム(TEAl)などを用いることができる。
(4)上記実施例では、Sb元素およびその化合物に、トリエチルアンチモン(TESb)を用いたが、トリメチルアンチモン(TMSb)やトリスジメチルアミノアンチモン(TDMASb)などを用いることができる。
(5)上記実施例では、キャリアガスに水素や窒素を用いたが、他の活性ガスやアルゴンなどの他の不活性ガスを用いても良く、それらを混合して用いてもよい。
(6)上記実施例では、低温バッファ層に窒化ガリウム(GaN)を用いたが、窒化アルミニウム(AlN)、窒化インジウム(InN)、窒化ボロン(BN)などのその他の材料であってもよい。
(7)上記実施例では、窒化物半導体膜を形成する前に3μmの下地膜を成膜したが、下地膜を成膜しなくてもよい。
(8)上記実施例では、c面サファイア基板上にc軸配向した窒化物半導体結晶を作製したが、m軸、a軸配向の窒化物半導体結晶にも適用できる。
(9)上記実施例では、n型、p型GaNのドーパントにそれぞれSi、Mgを用いたが、これに限らず、GeやZn、Be等であってもよい。
104、201、202、302、303、305、306、307…窒化物半導体膜(104…低温成膜GaN層、201…AlInN層、202…GaN層、302…GaN障壁層、303…GaInN量子井戸層、305…p型AlGaN電子ブロック層、306…p型GaN層、307…p型GaNコンタクト層)
105…基板
Claims (5)
- 原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで少なくとも一層以上の窒化物半導体膜を気相成長させて作製した窒化物半導体結晶であって、
少なくとも一層以上の前記窒化物半導体結晶膜は、その成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする窒化物半導体結晶。 - 結晶中におけるSb組成が0.04%以上であることを特徴とする窒化物半導体結晶。
- 結晶中にアクセプタ不純物がドーピングされていることを特徴とする請求項1又は請求項2に記載の窒化物半導体結晶。
- 原料であるIII族元素および/またはその化合物と、窒素元素および/またはその化合物と、Sb元素および/またはその化合物とを基板上に供給することで、少なくとも一層以上の窒化物半導体膜を気相成長させる窒化物半導体結晶の作製方法であって、
少なくとも一層以上の前記窒化物半導体膜の成長過程における前記窒素元素に対する前記Sb元素の供給比が0.004以上であることを特徴とする窒化物半導体結晶の作製方法。 - 前記窒化物半導体膜は下地膜の成膜温度以下の成膜温度にて成膜することを特徴とする請求項4に記載の窒化物半導体結晶の作製方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015504315A JP6066530B2 (ja) | 2013-03-07 | 2014-03-04 | 窒化物半導体結晶の作製方法 |
CN201480012830.4A CN105027262B (zh) | 2013-03-07 | 2014-03-04 | 氮化物半导体晶体及其制备方法 |
US14/773,045 US20170155016A9 (en) | 2013-03-07 | 2014-03-04 | Nitride semiconductor crystal and method of fabricating the same |
US16/738,946 US20200144451A1 (en) | 2013-03-07 | 2020-01-09 | Nitride semiconductor crystal and method of fabricating the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013044869 | 2013-03-07 | ||
JP2013-044869 | 2013-03-07 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/773,045 A-371-Of-International US20170155016A9 (en) | 2013-03-07 | 2014-03-04 | Nitride semiconductor crystal and method of fabricating the same |
US16/738,946 Division US20200144451A1 (en) | 2013-03-07 | 2020-01-09 | Nitride semiconductor crystal and method of fabricating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014136749A1 true WO2014136749A1 (ja) | 2014-09-12 |
Family
ID=51491265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055391 WO2014136749A1 (ja) | 2013-03-07 | 2014-03-04 | 窒化物半導体結晶及びその作製方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US20170155016A9 (ja) |
JP (1) | JP6066530B2 (ja) |
CN (1) | CN105027262B (ja) |
WO (1) | WO2014136749A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016207734A (ja) * | 2015-04-17 | 2016-12-08 | 学校法人 名城大学 | 窒化物半導体発光素子及びその製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049465A (ja) * | 2010-08-30 | 2012-03-08 | Advanced Power Device Research Association | 窒化物系化合物半導体、窒化物系化合物半導体素子、およびその製造方法 |
JP2012101961A (ja) * | 2010-11-09 | 2012-05-31 | Nippon Telegr & Teleph Corp <Ntt> | Inを含むp型窒化物化合物半導体結晶の製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5689123A (en) * | 1994-04-07 | 1997-11-18 | Sdl, Inc. | III-V aresenide-nitride semiconductor materials and devices |
US6610144B2 (en) * | 2000-07-21 | 2003-08-26 | The Regents Of The University Of California | Method to reduce the dislocation density in group III-nitride films |
US6852161B2 (en) * | 2000-08-18 | 2005-02-08 | Showa Denko K.K. | Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device |
JP4416297B2 (ja) * | 2000-09-08 | 2010-02-17 | シャープ株式会社 | 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置 |
JP3863720B2 (ja) * | 2000-10-04 | 2006-12-27 | 三洋電機株式会社 | 窒化物系半導体素子および窒化物系半導体の形成方法 |
WO2002039555A1 (fr) * | 2000-11-10 | 2002-05-16 | Sharp Kabushiki Kaisha | Element lumineux semi-conducteur nitrure et dispositif optique equipe de cet element |
WO2002040752A2 (en) * | 2000-11-20 | 2002-05-23 | The Regents Of The University Of California | Process for producing iii-v compound films by chemical deposition |
WO2003038957A1 (en) * | 2001-10-29 | 2003-05-08 | Sharp Kabushiki Kaisha | Nitride semiconductor device, its manufacturing method, and semiconductor optical apparatus |
US7179731B2 (en) * | 2002-01-22 | 2007-02-20 | Eric Harmon | Hypercontacting |
FR2842832B1 (fr) * | 2002-07-24 | 2006-01-20 | Lumilog | Procede de realisation par epitaxie en phase vapeur d'un film de nitrure de gallium a faible densite de defaut |
US6927412B2 (en) * | 2002-11-21 | 2005-08-09 | Ricoh Company, Ltd. | Semiconductor light emitter |
US7462882B2 (en) * | 2003-04-24 | 2008-12-09 | Sharp Kabushiki Kaisha | Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus |
WO2005094271A2 (en) * | 2004-03-25 | 2005-10-13 | The Regents Of The University Of California | Colloidal quantum dot light emitting diodes |
US7445673B2 (en) * | 2004-05-18 | 2008-11-04 | Lumilog | Manufacturing gallium nitride substrates by lateral overgrowth through masks and devices fabricated thereof |
US7390360B2 (en) * | 2004-10-05 | 2008-06-24 | Rohm And Haas Electronic Materials Llc | Organometallic compounds |
JP2006193348A (ja) * | 2005-01-11 | 2006-07-27 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体基板およびその製造方法 |
US8304805B2 (en) * | 2009-01-09 | 2012-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor diodes fabricated by aspect ratio trapping with coalesced films |
JP4645622B2 (ja) * | 2007-06-01 | 2011-03-09 | 住友電気工業株式会社 | GaN結晶の成長方法 |
US8524581B2 (en) * | 2011-12-29 | 2013-09-03 | Intermolecular, Inc. | GaN epitaxy with migration enhancement and surface energy modification |
US9735008B2 (en) * | 2012-10-25 | 2017-08-15 | University Of Utah Research Foundation | Use of surfactants to control island size and density |
-
2014
- 2014-03-04 US US14/773,045 patent/US20170155016A9/en not_active Abandoned
- 2014-03-04 WO PCT/JP2014/055391 patent/WO2014136749A1/ja active Application Filing
- 2014-03-04 CN CN201480012830.4A patent/CN105027262B/zh active Active
- 2014-03-04 JP JP2015504315A patent/JP6066530B2/ja not_active Expired - Fee Related
-
2020
- 2020-01-09 US US16/738,946 patent/US20200144451A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049465A (ja) * | 2010-08-30 | 2012-03-08 | Advanced Power Device Research Association | 窒化物系化合物半導体、窒化物系化合物半導体素子、およびその製造方法 |
JP2012101961A (ja) * | 2010-11-09 | 2012-05-31 | Nippon Telegr & Teleph Corp <Ntt> | Inを含むp型窒化物化合物半導体結晶の製造方法 |
Non-Patent Citations (2)
Title |
---|
P. CRISTEA ET AL.: "Growth of GaN:Sb MBE-Layers", MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, vol. 693, 2002, pages 13.28.1 - I3.28.6 * |
SE-HOON MOON ET AL.: "Strong below-band gap absorption of N-rich side GaNSb by metal- organic chemical vapor deposition", JORNAL OF MATERALS RESEARCH, vol. 24, no. 12, December 2009 (2009-12-01), pages 3569 - 3572 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016207734A (ja) * | 2015-04-17 | 2016-12-08 | 学校法人 名城大学 | 窒化物半導体発光素子及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170155016A9 (en) | 2017-06-01 |
US20160020359A1 (en) | 2016-01-21 |
JPWO2014136749A1 (ja) | 2017-02-09 |
US20200144451A1 (en) | 2020-05-07 |
JP6066530B2 (ja) | 2017-01-25 |
CN105027262B (zh) | 2018-04-03 |
CN105027262A (zh) | 2015-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5117609B1 (ja) | 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法 | |
US20110254048A1 (en) | Group iii nitride semiconductor epitaxial substrate | |
US10008571B2 (en) | Semiconductor wafer, semiconductor device, and method for manufacturing nitride semiconductor layer | |
JP4991828B2 (ja) | 窒化ガリウム系化合物半導体の作製方法 | |
US9246055B2 (en) | Crystal growth method and semiconductor light emitting device | |
KR20070054722A (ko) | Ⅲ-ⅴ족 화합물 반도체 및 그 제조 방법 | |
TWI252599B (en) | N-type group III nitride semiconductor layered structure | |
US9899213B2 (en) | Group III nitride semiconductor, and method for producing same | |
CN104518062A (zh) | 制造半导体发光器件的方法 | |
JP5073624B2 (ja) | 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法 | |
JP6319975B2 (ja) | 窒化物半導体混晶の製造方法 | |
JP2012204540A (ja) | 半導体装置およびその製造方法 | |
JP2004356522A (ja) | 3−5族化合物半導体、その製造方法及びその用途 | |
US20200144451A1 (en) | Nitride semiconductor crystal and method of fabricating the same | |
JP6242238B2 (ja) | 窒化物半導体多元混晶の製造方法 | |
KR100935974B1 (ko) | 질화물 반도체 발광소자의 제조 방법 | |
JP2006128653A (ja) | 3−5族化合物半導体、その製造方法及びその用途 | |
KR102553985B1 (ko) | Ⅲ족 질화물 반도체 | |
TWI467635B (zh) | 凹孔缺陷縮減之三五族半導體構造及形成此等構造之方法 | |
JP5073623B2 (ja) | 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法 | |
KR101384071B1 (ko) | 질화물 반도체 기판, 이의 제조방법 및 질화물 반도체 기판을 구비하는 발광 다이오드 | |
JP6649693B2 (ja) | 窒化物半導体発光素子及びその製造方法 | |
KR100881053B1 (ko) | 질화물계 발광소자 | |
JP5705179B2 (ja) | 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法 | |
KR100892740B1 (ko) | 질화물 반도체 발광 소자 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480012830.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14759509 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015504315 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773045 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14759509 Country of ref document: EP Kind code of ref document: A1 |