WO2014136251A1 - 回転電機システム及び風力発電システム - Google Patents

回転電機システム及び風力発電システム Download PDF

Info

Publication number
WO2014136251A1
WO2014136251A1 PCT/JP2013/056397 JP2013056397W WO2014136251A1 WO 2014136251 A1 WO2014136251 A1 WO 2014136251A1 JP 2013056397 W JP2013056397 W JP 2013056397W WO 2014136251 A1 WO2014136251 A1 WO 2014136251A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating electrical
electrical machine
rotor
stator
rotating
Prior art date
Application number
PCT/JP2013/056397
Other languages
English (en)
French (fr)
Inventor
雅寛 堀
守 木村
順弘 楠野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015504079A priority Critical patent/JP5908646B2/ja
Priority to GB1512808.5A priority patent/GB2526213B/en
Priority to DE112013006792.7T priority patent/DE112013006792T5/de
Priority to PCT/JP2013/056397 priority patent/WO2014136251A1/ja
Priority to TW103102943A priority patent/TWI516001B/zh
Publication of WO2014136251A1 publication Critical patent/WO2014136251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a rotating electrical machine system and a wind power generation system, and more particularly to a rotating electrical machine system and a wind power generation suitable for those having a first rotating electrical machine (main generator) and a second rotating electrical machine (auxiliary generator). It is about the system.
  • the AC excitation type rotating electric machine is installed in the nacelle on the tower of the windmill, and it is necessary to perform regular maintenance in a limited space in the nacelle. There was a need to reduce maintenance.
  • Patent Document 1 As a brushless AC excitation type rotating electrical machine, for example, there is a technique described in Patent Document 1.
  • a rotary exciter and a power converter are provided coaxially with an AC excitation synchronous generator to rectify the power of the system to DC, and energize the stator of the rotary exciter. It describes that after power is supplied to the rotor, the power is converted to voltage and frequency by the power converter, and the power is supplied to the rotor of the AC excitation synchronous generator to perform power generation operation.
  • the power of the system is supplied to the rotor through the power converter when the speed is lower than the synchronous speed, and the power of the rotor is supplied through the power converter when the speed is higher than the synchronous speed. To supply.
  • Patent Document 1 power can be supplied from the system to the AC excitation synchronous generator, but the voltage of the system is rectified by the rectifier and then supplied to the rotary exciter, so that the rectifier is installed. For this reason, power cannot be supplied to the system from the AC excitation synchronous generator. Therefore, the operation range becomes narrower than that of a conventional general AC excitation synchronous generator.
  • Patent Document 1 since the rotary exciter is provided in addition to the generator, the total physique of the generator is increased by providing the rotary exciter, and a wide arrangement space is required.
  • the present invention has been made in view of the above points, and the object of the present invention is to make the rotating electrical machine brushless even if it includes the first rotating electrical machine and the second rotating electrical machine.
  • An object of the present invention is to provide a rotating electrical machine system and a wind power generation system that can prevent an increase in the size of the entire rotating electrical machine and a reduction in the operating range.
  • a rotating electrical machine system of the present invention has a first stator having a first stator winding, a first rotor winding, and an inner diameter of the first stator.
  • a first rotating electric machine composed of a first rotor arranged on the side with a predetermined gap, a second stator having a second stator winding, and a second rotor winding
  • a second rotating electrical machine comprising a second rotor disposed on the inner diameter side of the second stator via a predetermined gap, and the first and second rotor windings electrically
  • the first and second rotors and the power converter are mechanically connected to a rotating shaft, and always generate electric power out of the two rotating electric machines. If the number of poles p 1 of the rotary electrical machine has a driving, which of the other rotary electric machine the number of poles and the p 2, p 1 / p 2 > 1. Characterized in that it comprises a.
  • the wind power generation system of the present invention includes a rotor that rotates by receiving wind, a rotating electrical machine system configured as described above that is connected to the rotor via a main shaft, and the rotating electrical machine system.
  • a nacelle housed inside and a tower that supports the nacelle are provided, and the first and second rotating electric machines are rotated by the rotational force of the rotor, and the stators of the first and second rotating electric machines are rotated.
  • the winding is connected to the power system side.
  • Example 1 of the rotary electric machine system of this invention It is a schematic block diagram which shows Example 1 of the rotary electric machine system of this invention. It is a figure for demonstrating the flow of energy when the rotational speed of the rotating shaft in Example 1 of the rotary electric machine system of this invention is smaller than the synchronous speed of a main generator. It is a figure for demonstrating the flow of energy when the rotational speed of the rotating shaft in Example 1 of the rotary electric machine system of this invention is larger than the rotational speed of a main generator. It is a characteristic view which shows the relationship between the main generator slip in the case of condition 1, a main generator output, an auxiliary generator output, and a system output. It is a figure showing the relationship between the main generator slip in the case of condition 2, and an auxiliary generator slip.
  • FIG. 6 is a characteristic diagram showing the relationship between the main generator slip, the main generator output, and the auxiliary generator output in the case of condition 4. It is sectional drawing which shows Example 2 of the rotary electric machine system of this invention. It is sectional drawing which shows Example 3 of the rotary electric machine system of this invention. It is sectional drawing which shows Example 4 of the rotary electric machine system of this invention. It is a schematic block diagram which shows the wind power generation system which employ
  • FIG. 1 shows a first embodiment of the rotating electrical machine system of the present invention.
  • the main generator and the auxiliary generator described below are radial gap type rotating electrical machines in which the gap between the stator and the rotor is formed in the radial direction.
  • a rotating electrical machine system 1 of this embodiment includes a main generator 2 that is a first rotating electrical machine that functions as a generator for sending generated power to an electric power system, an exciter and a generator depending on operating conditions.
  • the main generator 2 is provided in the main generator stator 6, the main generator rotor 5 disposed with a predetermined gap on the inner diameter side of the main generator stator 6, and the main generator stator 6.
  • a three-phase main generator rotor winding 8 wound in two layers.
  • the three-phase main generator stator winding 7 and the three-phase main generator rotor winding 8 are electrically arranged at 120 ° intervals.
  • the auxiliary generator 3 also includes an auxiliary generator stator 9, an auxiliary generator rotor 10 disposed with a predetermined gap on the inner diameter side of the auxiliary generator stator 9, and an auxiliary generator fixed.
  • a three-phase auxiliary generator stator winding 11 wound in two layers with a short-pitch winding in a slot provided in the child 9 and in a slot provided in the auxiliary generator rotor 10 It is composed of a three-phase auxiliary generator rotor winding 12 wound in two layers in a full-pitch winding.
  • the three-phase auxiliary generator stator winding 11 and the three-phase auxiliary generator rotor winding 12 are electrically arranged at 120 ° intervals.
  • the main generator 2 and the auxiliary generator 3 described above have different operation modes as described later. Specifically, although the main generator 2 always performs a power generation operation, the auxiliary generator 3 may operate as an exciter or a generator depending on the rotational speed. Further, the output of the main generator 2 is equal to or higher than the output of the auxiliary generator 3.
  • the power converter 4 includes a power converter 13 that is electrically connected to the main generator 2 and a power converter 14 that is electrically connected to the auxiliary generator 3. Moreover, the power converter 13 and the power converter 14 are electrically connected by direct current. In the case where the power converter 13 and the power converter 14 are AC-connected, the power converter 13 and the power converter 14 are each required to include an AC ⁇ DC ⁇ AC power converter. By connecting the converter 14 with a direct current, the power converters 13 and 14 only need to convert AC and DC, respectively, and the functions of the power converters 13 and 14 can be reduced by half.
  • main generator 2 the auxiliary generator 3, and the power converter 4 described above are mechanically connected to the rotary shaft 15.
  • the main generator stator 6 and the auxiliary generator stator 9 are connected to the rotating electrical machine frame 16 via a plurality of arms 17, but the main generator rotor 5 is internally connected to the power converter 13. , 14 is connected to the outside of the power converter frame 18 through a plurality of arms 19, and the inside of the power converter frame 18 is mechanically connected to the rotary shaft 15 so as to be rotatable.
  • the power converter frame 18 in which the power converters 13 and 14 are arranged is arranged inside the main generator rotor 5. This is because the main generator 2 has a larger output than the auxiliary generator 3, and thus has a large physique and can secure a wide space for incorporating the power converter 4.
  • the above-described configuration means that when the rotating shaft 15 rotates, the main generator 2, the auxiliary generator 3, and the power converter 4 simultaneously rotate at the same rotation speed. Thereby, problems, such as a twist by the wiring which connects the main generator 2 and the power converter 13, the power converter 13, the power converter 14, and the power converter 14 and the auxiliary generator 3, do not occur.
  • the power converter 4 needs to receive command information from the outside or transmit information on the driving status. Therefore, in this embodiment, since the power converter 4 is rotating, wireless communication is effective for information transmission, and a device capable of transmitting and receiving information wirelessly is connected to the power converter 4. Is preferred.
  • FIG. 2 shows the flow of energy when the rotational speed of the rotary shaft 15 is smaller than the synchronous speed of the main generator 2.
  • the main generator stator winding 7 and the auxiliary generator stator winding 11 are electrically connected to the power system. Since an alternating current having a commercial frequency flows in the power system, the voltage changes with time, and the auxiliary generator rotor 10 rotates, so that a magnetic pole is formed in the auxiliary generator rotor winding 12. An induced current is generated according to the number and rotation speed.
  • the auxiliary generator rotor winding 12 is electrically connected to the main generator rotor winding 8 via the power converter 4, and induced current generated by the rotation of the auxiliary generator rotor winding 12.
  • the exciting current of the main generator 2 can be covered.
  • the auxiliary generator 3 is operating as an exciter.
  • the rotational speed of the rotating shaft 15 and the synchronous speed of the main generator 2 coincide, it is necessary to pass a direct current through the main generator rotor winding 8, but a direct current voltage is applied by the power converter 4. Therefore, driving is possible.
  • FIG. 3 shows the flow of energy when the rotational speed of the rotary shaft 15 is higher than the rotational speed of the main generator 2.
  • the induced current generated in the main generator rotor winding 8 flows to the auxiliary generator rotor winding 12 via the power converter 4, and further from this auxiliary generator rotor winding 12 to auxiliary power generation.
  • the power flows to the machine stator winding 11 and power is supplied from the auxiliary generator stator winding 11 to the power system.
  • the auxiliary generator 3 operates as a generator under the condition that the rotation speed of the rotary shaft 15 is higher than the rotation speed of the main generator 2.
  • the exciting current can be passed through the main generator rotor winding 8 and the auxiliary generator rotor winding 12 without using a slip ring and a brush (brushless). Maintenance is not required.
  • N 0 is the synchronization speed and N is the rotation speed.
  • the brushless AC excitation type rotating electrical machine is composed of two AC excitation type rotating electrical machines, that is, a main generator and an auxiliary generator
  • the brushless AC excitation type rotating electrical machine has a slip s 1 of the main generator and an auxiliary.
  • the characteristics are determined by two slips s 2 of the generator slip.
  • the synchronization speed N 0 is determined by the number of poles. Therefore, it is necessary to appropriately select the number of poles p 1 of the main generator and the number of poles p 2 of the auxiliary generator according to the generator specifications.
  • the slip s 2 of the main generator of the slip s 1 and the auxiliary generator following relationship.
  • FIG. 4 shows the relationship between the slip s 1 under condition 1 and the main generator output, auxiliary generator output, and overall output.
  • the auxiliary generator output is negative in the high output region, so that the main generator output becomes larger than the overall output. Therefore, since it is necessary to arrange the main generator in accordance with the output of the main generator, the physique is increased in size.
  • FIG. 9 shows the relationship between the main generator maximum output and the auxiliary generator maximum output with respect to the pole number ratio in Condition 4.
  • the output surplus in FIG. 9 is defined as follows.
  • Output surplus (maximum output of main generator + maximum output of auxiliary generator)-1
  • a generator with an output larger than the total output is required, and it can be said that the size is increased.
  • FIG. 9 shows that an output surplus occurs when the pole number ratio p 1 / p 2 is smaller than 1.8.
  • FIG. 10 shows a second embodiment of the rotating electrical machine system of the present invention.
  • the power converter 4 is disposed inside the main generator rotor 5, but in this embodiment, the power converter 4 is replaced with the main generator rotor 5 as shown in FIG. And the auxiliary generator rotor 10 are arranged so as to straddle both insides.
  • the main generator stator 6 and the auxiliary generator stator 9 are connected to the rotating electrical machine frame 16 via a plurality of arms 17, and the main generator rotor 5 and the auxiliary generator rotor 10 are connected to each other inside.
  • the same effect as in the first embodiment can be obtained, and since the power converter 4 can be arranged on the inner peripheral side, the centrifugal force applied to the power converter 4 can be reduced. is there.
  • FIG. 11 shows a third embodiment of the rotating electrical machine system of the present invention.
  • the main generator stator winding 7 and the main generator rotor winding 8, the auxiliary generator stator winding 11 and the auxiliary generator stator winding 12 are overlapped in the radial direction. It is arranged.
  • p 1 when the number of poles of the main generator 2 that is always generating is p 1 and the number of poles of the other auxiliary generator 3 is p 2 , p 1 / p 2 > 1.8.
  • the same effect as in the first embodiment can be obtained, and the shaft length of the generator system can be reduced, so that the physique of the generator system can be reduced.
  • FIG. 12 shows a fourth embodiment of the rotating electrical machine system of the present invention.
  • a stepped frame 21 that matches the outer diameters of the main generator 2 and the auxiliary generator 3 is used in the configuration of the embodiment 1 shown in FIG. That is, the stepped frame 21 is configured such that the diameter of the portion where the main generator 2 is disposed is different from the diameter of the portion where the auxiliary generator 3 is disposed, so that a step is formed.
  • the number of poles of the main generator 2 that is always generating is p 1 and the number of poles of the other auxiliary generator 3 is p 2 , p 1 / p 2 > 1.8.
  • the same effects as those of the first embodiment can be obtained, and there is an effect that there is no extra space, further space saving can be achieved, and the weight can be reduced. .
  • FIG. 13 shows a fifth embodiment in which the rotating electrical machine system of the present invention is applied to a wind power generation system.
  • the wind power generation system of the present embodiment includes a rotor 24 that rotates by receiving wind, a rotating electrical machine system 22 of the present invention that is connected to the rotor 24 via a speed increaser 23, and this rotation. It is composed of a nacelle (not shown) that houses the electrical system 22 inside, and a tower (not shown) that supports the nacelle.
  • the main generator 25 and the auxiliary generator 26 are rotated by the rotational force of the rotor 24.
  • the main generator stator winding and the auxiliary generator stator winding are connected to the power system 27 side.
  • the wind energy received by the rotor 24 can be converted into electrical energy by the rotating electrical machine system 22 and transmitted to the power system 27.
  • the apparatus can be prevented from being enlarged and the nacelle can be reduced in size.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 本発明は、回転電機トータルの体格の大型化や運転範囲の縮小を防ぐことができる回転電機システムを提供する。 本発明による回転電機システムは、第1の固定子巻線を有する第1の固定子、第1の回転子巻線を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線を有する第2の固定子、第2の回転子巻線を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2の回転子から成る第2の回転電機と、前記第1及び第2の回転電機と電気的に接続されている電力変換器とを備え、前記第1及び第2の回転電機と前記電力変換器が機械的に回転軸に接続されて成り、かつ、前記2つの回転電機のうち、常に発電運転をしている回転電機の極数をp、もう一方の回転電機の極数をpとした場合、p/p>1.8となることを特徴とする。

Description

回転電機システム及び風力発電システム
 本発明は回転電機システム及び風力発電システムに係り、特に、第1の回転電機(主発電機)と第2の回転電機(補助発電機)を備えているものに好適な回転電機システム及び風力発電システムに関するものである。
 近年、地球温暖化防止のため風力発電或いは太陽光発電等のような自然エネルギーを利用した発電システムが注目を浴びている。この中で、風力を利用した風力発電システムでは、発電装置として交流励磁式回転電機を使用する例が多い。
 風力発電システムの発電装置として交流励磁式回転電機を使用する場合、運転中は、回転している回転子内の回転子巻線に励磁電力を供給する必要がある。通常は、回転子巻線に電力を供給するために、スリップリング及びブラシを設け、回転するスリップリングにブラシを接触させて通電するようにしている。
 しかし、風力発電システムにおいて発電運転を行うためのエネルギーは大きく、発電運転を行う上での励磁電力供給用にスリップリング及びブラシを設けると、ブラシの摩耗が進んでしまうため、定期的なメンテナンスが必要となる。
 ところが、風力発電システムでは、交流励磁式回転電機は風車のタワー上にあるナセル内に設置されており、定期的なメンテナンスは、ナセル内という限られた空間内で行う必要があり、ブラシレス化などのメンテナンス軽減が求められていた。
 ブラシレスの交流励磁式回転電機として、例えば、特許文献1に記載された技術がある。この特許文献1には、交流励磁同期発電機と同軸に回転励磁機と電力変換器を設けて系統の電力を直流に整流し、回転励磁機の固定子に通電させ、同期発電機の原理により回転子に電力を供給した後、電力変換器により、電圧、周波数を変換した電力を交流励磁同期発電機の回転子に電力を供給し、発電運転を行うことが記載されている。
特開2002-136191号公報
 従来の一般的な交流励磁同期発電機では、同期速度以下の場合は、系統の電力を電力変換器を通して回転子に供給し、同期速度以上の場合は、回転子の電力を電力変換器を通して系統に供給している。
 しかしながら、特許文献1では、系統から交流励磁同期発電機に電力を供給することができるが、系統の電圧を整流器で整流した後、回転励磁機に供給しているため、整流器が設置されていることから、交流励磁同期発電機から系統に電力を供給することができない。よって、従来の一般的な交流励磁同期発電機に比べ、動作範囲が狭くなってしまう。
 加えて、特許文献1では,発電機の他に回転励磁機を設けているため、発電機のトータルの体格が、回転励磁機を設けることで大きくなり、広い配置スペースが必要となる。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、第1の回転電機と第2の回転電機を備えたものであっても、回転電機をブラシレス化することは勿論、回転電機トータルの体格の大型化や運転範囲の縮小を防ぐことができる回転電機システム及び風力発電システムを提供することにある。
 本発明の回転電機システムは、上記目的を達成するために、第1の固定子巻線を有する第1の固定子、第1の回転子巻線を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線を有する第2の固定子、第2の回転子巻線を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2の回転子から成る第2の回転電機と、前記第1及び第2の回転子巻線と電気的に接続されている電力変換器とを備え、前記第1及び第2の回転子と前記電力変換器が機械的に回転軸に接続されて成り、かつ、前記2つの回転電機のうち、常に発電運転をしている回転電機の極数p、もう一方の回転電機の極数をpとした場合、p/p>1.8となることを特徴とする。
 また、本発明の風力発電システムは、上記目的を達成するために、風を受けて回転するロータと、該ロータに主軸を介して接続される上記構成の回転電機システムと、該回転電機システムを内部に収納するナセルと、該ナセルを支持するタワーとを備え、前記第1及び第2の回転電機は、前記ロータの回転力により回転すると共に、前記第1及び第2の回転電機の固定子巻線は、電力系統側に接続されていることを特徴とする。
本発明の回転電機システムの実施例1を示す概略構成図である。 本発明の回転電機システムの実施例1における回転軸の回転速度が主発電機の同期速度より小さい場合のエネルギーの流れを説明するための図である。 本発明の回転電機システムの実施例1における回転軸の回転速度が主発電機の回転速度より大きい場合のエネルギーの流れを説明するための図である。 条件1の場合の主発電機すべりと主発電機出力、補助発電機出力、システム出力の関係を示す特性図である。 条件2の場合の主発電機すべりと補助発電機すべりとの関係を表した図である。 条件2の場合の回転軸の回転速度が主発電機の同期速度より小さい場合のエネルギーの流れを説明するための図である。 条件3の場合の主発電機すべりと補助発電機すべりとの関係を表した図である。 条件3の場合の回転軸の回転速度が主発電機の回転速度より大きい場合のエネルギーの流れを説明するための図である。 条件4の場合の主発電機すべりと主発電機出力、補助発電機出力の関係を示した特性図である。 本発明の回転電機システムの実施例2を示す断面図である。 本発明の回転電機システムの実施例3を示す断面図である。 本発明の回転電機システムの実施例4を示す断面図である。 本発明の回転電機システムを採用した風力発電システムを示す概略構成図である。(実施例5)
 以下、図示した実施例に基づいて本発明の回転電機システム及び風力発電システムを説明する。なお、各実施例において、同一構成部品には同符号を用いて説明する。
 図1に、本発明の回転電機システムの実施例1を示す。なお、以下に説明する主発電機と補助発電機は、いずれもその固定子と回転子の間隙が径方向に形成されるラジアルギャップ方式の回転電機である。
 該図に示す如く、本実施例の回転電機システム1は、電力系統に発電電力を送るための発電機として働く第1の回転電機である主発電機2と、運転条件により励磁機と発電機の2つの働きをする第2の回転電機である補助発電機3と、主発電機2及び補助発電機3と電気的に接続される電力変換器4とを備え、これらは同一の回転電機フレーム16内に配置されている。
 主発電機2は、主発電機固定子6と、この主発電機固定子6の内径側に所定の間隙を設けて配置される主発電機回転子5と、主発電機固定子6に設けられているスロット内に短節巻にて二層に巻回される三相の主発電機固定子巻線7と、主発電機回転子5内に設けられているスロット内に全節巻にて二層に巻回される三相の主発電機回転子巻線8とから構成されている。なお、三相の主発電機固定子巻線7及び三相の主発電機回転子巻線8は、電気的に120°間隔で配置されている。
 また、補助発電機3も同様に、補助発電機固定子9と、この補助発電機固定子9の内径側に所定の間隙を設けて配置される補助発電機回転子10と、補助発電機固定子9に設けられているスロット内に短節巻にて二層に巻回される三相の補助発電機固定子巻線11と、補助発電機回転子10内に設けられているスロット内に全節巻にて二層に巻回される三相の補助発電機回転子巻線12とから構成されている。なお、三相の補助発電機固定子巻線11及び三相の補助発電機回転子巻線12は、電気的に120°間隔で配置されている。
 上述した主発電機2と補助発電機3は、後述するが運転モードが異なる。具体的には、主発電機2は常に発電運転をするが、補助発電機3は回転速度により、励磁機として運転する場合と、発電機として運転する場合がある。また、主発電機2の出力は、補助発電機3の出力と同等以上である。
 一方、上記電力変換器4は、主発電機2に電気的に接続されている電力変換器13と、補助発電機3に電気的に接続されている電力変換器14とにより構成されている。また、電力変換器13と電力変換器14は、電気的に直流で接続されている。電力変換器13と電力変換器14を交流接続する場合、電力変換器13と電力変換器14は、それぞれAC→DC→ACの電力変換器を備える必要があるが、電力変換器13と電力変換器14を直流接続することで、各電力変換器13、14は、それぞれACとDCを変換するだけで足り、各電力変換器13、14が備える機能を半分に削減できる。
 また、上述した主発電機2と補助発電機3及び電力変換器4は、回転軸15に機械的に接続されている。
 即ち、主発電機固定子6と補助発電機固定子9は、回転電機フレーム16に複数本のアーム17を介して接続されているが、主発電機回転子5は、内部に電力変換器13、14が配置されている電力変換器フレーム18の外側に複数本のアーム19を介して接続され、電力変換器フレーム18の内側が回転軸15に回転可能に機械的に接続されている。しかも、電力変換器13、14が配置されている電力変換器フレーム18は、主発電機回転子5の内側に配置されている。これは、補助発電機3に比べ、主発電機2の方が出力が大きいため、体格も大きく、電力変換器4を内蔵するスペースを広く確保できるためである。
 上述した構成を言い換えれば、回転軸15が回転することにより、主発電機2と補助発電機3及び電力変換器4も同時に同様の回転数で回転することを意味する。これにより、主発電機2と電力変換器13、電力変換器13と電力変換器14、電力変換器14と補助発電機3とを繋ぐ配線によじれ等の問題が発生しない。
 また、運転条件に合わせ制御するために、電力変換器4は外部から指令情報を受信したり、運転状況の情報を送信する必要がある。そこで、本実施例では、電力変換器4が回転しているため、情報の伝達に無線による通信が有効であり、電力変換器4には、無線による情報の送受信が可能な装置を接続することが好ましい。
 次に、この回転電機システムのエネルギーの流れを説明する。
 まず、図2に、回転軸15の回転速度が、主発電機2の同期速度より小さい場合のエネルギーの流れを示す。
 該図において、主発電機固定子巻線7と補助発電機固定子巻線11は、電力系統と電気的に接続されている。電力系統は商用周波数を持った交流電流が流れていることから、電圧が時間的に変化し、補助発電機回転子10が回転することにより、補助発電機回転子巻線12内には、磁極数及び回転速度に応じた誘導電流が発生する。補助発電機回転子巻線12は、電力変換器4を経由して主発電機回転子巻線8と電気的に接続されており、補助発電機回転子巻線12の回転により発生した誘導電流により主発電機2の励磁電流を賄うことができる。
 従って、回転軸15の回転速度が、主発電機2の同期速度より小さい条件では、補助発電機3は励磁機として運転していることになる。なお、回転軸15の回転速度と主発電機2の同期速度が一致した場合、主発電機回転子巻線8には直流電流を流す必要があるが、電力変換器4により直流電圧を印加することで、運転が可能である。
 次に、図3に、回転軸15の回転速度が、主発電機2の回転速度より大きい場合のエネルギーの流れを示す。
 該図において、主発電機回転子巻線8に発生した誘導電流が、電力変換器4を介して補助発電機回転子巻線12に流れ、この補助発電機回転子巻線12から更に補助発電機固定子巻線11に流れ、この補助発電機固定子巻線11から電力系統に電力を供給することになる。
 従って、回転軸15の回転速度が、主発電機2の回転速度より大きい条件では、補助発電機3は発電機として運転することになる。
 このようなことより、スリップリング及びブラシを用いずとも(ブラシレス化)励磁電流を、主発電機回転子巻線8及び補助発電機回転子巻線12に流すことができるため、ブラシの摩耗によるメンテナンスが不要となる。
 なお、本実施例では、電力変換器13、14への情報の伝達には無線を用いた例について説明したが、情報の伝達のためのエネルギーは大きくないため、ブラシを用いても摩耗が少ない。従って、電力変換器13、14の情報伝達のためのブラシ、スリップリングを設けても良い。また、同様に、アースのためのブラシ、スリップリングを設けても良い。
 ところで、交流励磁式回転電機の特性は、式1で表されるすべりsにより特性が決定される。
Figure JPOXMLDOC01-appb-M000001
ここで、N0:同期速度、N:回転速度。
 また、ブラシレスの交流励磁式回転電機は、主発電機と補助発電機の2つの交流励磁式回転電機により構成されるため、ブラシレスの交流励磁式回転電機は、主発電機のすべりsと補助発電機のすべりsの2つのすべりにより特性が決定される。さらに、同期速度Nは、極数によって決定する。よって、発電機仕様に合わせ、主発電機の極数pと補助発電機の極数pを適切に選択する必要がある。ここで、主発電機のすべりsと補助発電機のすべりsには以下の関係がある。
Figure JPOXMLDOC01-appb-M000002
 以下では、p/pに対する特性を、場合分けをして説明する。なお、交流励磁式回転電機は、可変速範囲を持つため、その下限値のすべりをs、上限値のすべりをSとしている。また、主発電機、補助発電機が電力系統に電気的に接続しており、出力が負の場合は、電力系統からエネルギーが供給されている場合を示す。
 条件1:p<p2、/p/>(1-s
 図4に、条件1でのすべりsと主発電機出力、補助発電機出力、全体出力の関係を示す。図4から明らかな如く、条件1では、高出力領域で補助発電機出力が負となるため、この分、全体出力に対し、主発電機出力が大きくなってしまう。よって、この主発電機出力に合わせた主発電機を配置する必要があるため、体格が大型化する。
 条件2:p<p2、/p/<(1-s
 図5に、条件2での式2のグラフを直線Aとして示す。なお、グラフの横軸はs、縦軸はsである。図5からs=0が、運転範囲内に存在することがわかる。s=0では、補助発電機が同期運転している状態であるため、回転子に磁束が鎖交せず、固定子からエネルギーを供給できない(この状態を図6に示す)。このため、主発電機の回転子にエネルギーを供給できず、運転することができない。
 よって、s=0付近の回転速度を避けるように運転する必要があるため、図5に示すように、運転範囲内に運転不能範囲が存在し、その分、運転範囲が縮小することになる。
 条件3:p>p2、/p<(1-S
 図7に、条件3での式2のグラフを直線Bとして示す。なお、グラフの横軸はs、縦軸はsである。図7からs=0が、運転範囲内に存在することがわかる。s=0では、補助発電機が同期運転している状態であるため、電力変換器から回転子への直流のエネルギーを供給することになる(この状態を図8に示す)。しかし、電力変換器は直流を出力すると高温になる可能性がある。
 よって、s=0付近の回転速度を避けるように運転する必要があるため、図中に示すように、運転範囲内に運転困難範囲が存在し、その分、運転範囲が縮小することになる。
 条件4:p>p2、/p<1.8
 図9に、条件4での極数比に対する主発電機最大出力と補助発電機最大出力の関係を示す。なお、図9中の出力余剰分とは、以下のように定義している。
 出力余剰分 = (主発電機の最大出力+補助発電機の最大出力)-1
 つまり、出力余剰分≠0では、全体出力より大きい出力の発電機が必要になり、体格が大型化すると言える。また、図9から極数比p/pが1.8より小さい場合は、出力余剰分が生じることがわかる。
 以上のことから、極数比p/pを1.8より大きくする(p/p>1.8)と、出力余剰分が生じないことから(運転困難範囲を避けて運転できる)、大きい出力の発電機は必要なくなり、ブラシレスの交流励磁式回転電機の体格の大型化や運転範囲の縮小を防ぐことができる。
 図10に、本発明の回転電機システムの実施例2を示す。
 上述した実施例1では、電力変換器4が、主発電機回転子5の内側に配置されているが、本実施例では、図10示すように、電力変換器4を主発電機回転子5と補助発電機回転子10との両方の内側に跨いで配置されている。また、主発電機固定子6と補助発電機固定子9は、回転電機フレーム16に複数のアーム17を介して接続され、かつ、主発電機回転子5と補助発電機回転子10は、内部に電力変換器4が配置されている電力変換器フレーム18の外側に複数のアーム19、20を介して接続されていると共に、電力変換器フレーム18の内側は、回転軸15に接続されている。そして、本実施例でも実施例1と同様に、常に発電運転をしている主発電機2の極数をp、もう一方の補助発電機3の極数をpとした場合、p/p>1.8としたものである。
 このような実施例によれば、実施例1と同様な効果が得られることは勿論、電力変換器4をより内周側に配置できるため、電力変換器4に加わる遠心力を低減できる効果がある。
 図11に、本発明の回転電機システムの実施例3を示す。
 該図に示す本実施例では、主発電機固定子巻線7及び主発電機回転子巻線8と補助発電機固定子巻線11及び補助発電機固定子巻線12を径方向に重ねて配置している。そして、本実施例でも実施例1と同様に、常に発電運転をしている主発電機2の極数をp、もう一方の補助発電機3の極数をpとした場合、p/p>1.8としたものである。
 このような実施例によれば、実施例1と同様の効果が得られることは勿論、発電機システムの軸長を縮小できるため、発電機システムの体格を縮小できる効果がある。
 図12に、本発明の回転電機システムの実施例4を示す。
 該図に示す実施例では、図1に示した実施例1の構成において、主発電機2と補助発電機3の外径に合わせた段付きフレーム21を用いている。即ち、段付きフレーム21は、主発電機2が配置されている部分と補助発電機3が配置されている部分の径が異なり、段になるように構成されているものである。そして、本実施例でも実施例1と同様に、常に発電運転をしている主発電機2の極数をp、もう一方の補助発電機3の極数をpとした場合、p/p>1.8としたものである。
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、余分なスペースが無くなり、更なる省スペース化が図れ、軽量化が可能となる効果がある効果がある。
 図13に、本発明の回転電機システムを風力発電システムに適応した実施例5を示す。
 該図に示す如く、本実施例の風力発電システムは、風を受けて回転するロータ24と、このロータ24に増速機23を介して接続される本発明の回転電機システム22と、この回転電機システム22を内部に収納するナセル(図示せず)と、ナセルを支持するタワー(図示せず)とから構成され、主発電機25と補助発電機26は、ロータ24の回転力により回転すると共に、主発電機固定子巻線と補助発電機固定子巻線は、電力系統27側に接続されているものである。
 これにより、ロータ24が受けた風のエネルギーを回転電機システム22が電気エネルギーに変換し、電力系統27に送電することができる。
 このような本実施例によれば、上述した実施例の回転電機システムを採用しているので、装置の大型化が防止でき、ナセルの小型化に寄与することができる。
 また、電力変換器28と並列に遮断器29を設けることにより、系統故障時に加わる過大な電力から、電力変換器28を保護できる。更に、増速機23を失くしたギアレスシステムに本発明を適用しても良い。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1、22…回転電機システム、2、25…主発電機、3、26…補助発電機、4、13、14、28…電力変換器、5…主発電機回転子、6…主発電機固定子、7…主発電機固定子巻線、8…主発電機回転子巻線、9…補助発電機固定子、10…補助発電機回転子、11…補助発電機固定子巻線、12…補助発電機回転子巻線、15…回転軸、16…回転電機フレーム、17、19、20…アーム、18…電力変換器フレーム、21…段付きフレーム、23…増速機、24…ロータ、27…電力系統、29…遮断器。

Claims (11)

  1.  第1の固定子巻線を有する第1の固定子、第1の回転子巻線を有すると共に、前記第1の固定子の内径側に所定の間隙を介して配置されている第1の回転子から成る第1の回転電機と、第2の固定子巻線を有する第2の固定子、第2の回転子巻線を有すると共に、前記第2の固定子の内径側に所定の間隙を介して配置されている第2の回転子から成る第2の回転電機と、前記第1及び第2の回転電機と電気的に接続されている電力変換器とを備え、前記第1及び第2の回転電機と前記電力変換器が機械的に回転軸に接続されて成り、かつ、前記2つの回転電機のうち、常に発電運転をしている回転電機の極数をp、もう一方の回転電機の極数をpとした場合、p/p>1.8となることを特徴とする回転電機システム。
  2.  請求項1に記載の回転電機システムにおいて、
     前記第1の固定子と前記第2の固定子は、電力系統に電気的に接続されていることを特徴とする回転電機システム。
  3.  請求項1又は2に記載の回転電機システムにおいて、
     前記第1の回転電機と前記第2の回転電機及び前記電力変換器は、同一の回転電機フレーム内に配置されていることを特徴とする回転電機システム。
  4.  請求項1乃至3のいずれか1項に記載の回転電機システムにおいて、
     前記電力変換器が配置されている電力変換器フレームは、前記第1の回転電機の内径側に配置されていることを特徴とする回転電機システム。
  5.  請求項4に記載の回転電機システムにおいて、
     前記第1の回転電機の固定子と第2の回転電機の固定子は、前記回転電機フレームに複数のアームを介して接続され、かつ、前記第1の回転電機の回転子は、前記電力変換器フレームの一端に複数のアームを介して接続されていると共に、前記電力変換器フレームの他端は、前記回転軸に接続され、更に、前記第2の回転電機の回転子は、前記回転軸に複数のアームを介して接続されていることを特徴とする回転電機システム。
  6.  請求項1乃至3のいずれか1項に記載の回転電機システムにおいて、
     前記電力変換器フレームは、前記第1の回転電機の回転子と第2の回転電機の回転子の両方の内径側に跨いで配置されていることを特徴とする回転電機システム。
  7.  請求項6に記載の回転電機システムにおいて、
     前記第1の回転電機の固定子と第2の回転電機の固定子は、前記回転電機フレームに複数のアームを介して接続され、かつ、前記第1の回転電機の回転子と第2の回転電機の回転子は、内部に前記電力変換器が配置されている電力変換器フレームの外側に複数のアームを介して接続されていると共に、前記電力変換器フレームの内側は、前記回転軸に接続されていることを特徴とする回転電機システム。
  8.  請求項1乃至7のいずれか1項に記載の回転電機システムにおいて、
    前記第1の回転電機の固定子巻線と回転子巻線と前記第2の回転電機の固定子巻線と回転子巻線が径方向に重なるように配置されていることを特徴とする回転電機システム。
  9.  請求項3乃至8のいずれか1項に記載の回転電機システムにおいて、
     前記回転電機フレームは、前記第1の回転電機が配置されている部分と前記第2の回転電機が配置されている部分の径が異なり、段になるように構成されていることを特徴とする回転電機システム。
  10.  風を受けて回転するロータと、該ロータに主軸を介して接続される請求項1乃至9のいずれか1項に記載の回転電機システムと、該回転電機システムを内部に収納するナセルと、該ナセルを支持するタワーとを備え、
     前記第1及び第2の回転電機は、前記ロータの回転力により回転すると共に、前記第1及び第2の回転電機の固定子巻線は、電力系統側に接続されていることを特徴とする風力発電システム。
  11.  請求項10に記載の風力発電システムにおいて、
     前記回転電機システムの電力変換器と並列に遮断器が設置されていることを特徴とする風力発電システム。
PCT/JP2013/056397 2013-03-08 2013-03-08 回転電機システム及び風力発電システム WO2014136251A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015504079A JP5908646B2 (ja) 2013-03-08 2013-03-08 回転電機システム及び風力発電システム
GB1512808.5A GB2526213B (en) 2013-03-08 2013-03-08 Rotating electrical machine system and wind power generation system
DE112013006792.7T DE112013006792T5 (de) 2013-03-08 2013-03-08 Sich drehendes, elektrisches Maschinensystem und Windenergieerzeugungssystem
PCT/JP2013/056397 WO2014136251A1 (ja) 2013-03-08 2013-03-08 回転電機システム及び風力発電システム
TW103102943A TWI516001B (zh) 2013-03-08 2014-01-27 Rotating electrical systems and wind power generation systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056397 WO2014136251A1 (ja) 2013-03-08 2013-03-08 回転電機システム及び風力発電システム

Publications (1)

Publication Number Publication Date
WO2014136251A1 true WO2014136251A1 (ja) 2014-09-12

Family

ID=51490809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056397 WO2014136251A1 (ja) 2013-03-08 2013-03-08 回転電機システム及び風力発電システム

Country Status (5)

Country Link
JP (1) JP5908646B2 (ja)
DE (1) DE112013006792T5 (ja)
GB (1) GB2526213B (ja)
TW (1) TWI516001B (ja)
WO (1) WO2014136251A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647708C1 (ru) * 2017-04-17 2018-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Синхронизированная аксиальная двухвходовая генераторная установка
RU2685424C1 (ru) * 2018-08-03 2019-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Стабилизированная двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор
RU2707963C1 (ru) * 2019-06-06 2019-12-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Трехвходовая двухмерная ветро-солнечная аксиально-радиальная электрическая машина-генератор
RU2759598C1 (ru) * 2021-04-01 2021-11-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Стабилизированная трехвходовая аксиально-радиальная электрическая машина-генератор

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851762A (ja) * 1981-09-24 1983-03-26 Hitachi Ltd ブラシレス充電発電機
JPH01298933A (ja) * 1988-05-25 1989-12-01 Toshiba Corp バルブ水車用可変速発電機
JP2010093998A (ja) * 2008-10-10 2010-04-22 Denso Corp 回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851762A (ja) * 1981-09-24 1983-03-26 Hitachi Ltd ブラシレス充電発電機
JPH01298933A (ja) * 1988-05-25 1989-12-01 Toshiba Corp バルブ水車用可変速発電機
JP2010093998A (ja) * 2008-10-10 2010-04-22 Denso Corp 回転電機

Also Published As

Publication number Publication date
TW201507323A (zh) 2015-02-16
DE112013006792T5 (de) 2015-11-19
JPWO2014136251A1 (ja) 2017-02-09
GB201512808D0 (en) 2015-09-02
JP5908646B2 (ja) 2016-04-26
GB2526213B (en) 2020-08-26
TWI516001B (zh) 2016-01-01
GB2526213A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5942393B2 (ja) 回転電機システムまたは風力発電システム。
CN110971095B (zh) 一种双定子风力发电机及发电系统
US20120007459A1 (en) Rotating Electric Machine for Generating a Constant Frequency AC Power Supply from a Variable Speed Primemover
JP5908646B2 (ja) 回転電機システム及び風力発電システム
JP2011004545A (ja) 回転電機
CN107317457B (zh) 一种永磁耦合调速电机
WO2015136632A1 (ja) 回転電機
CN110601479B (zh) 一种双转子感应风力发电机及其工作方法
JP6424729B2 (ja) 回転電機
JP5913618B2 (ja) 回転電機システム及び風力発電システム
WO2014005554A1 (zh) 一种直接并网变速恒频发电机
JP5918760B2 (ja) 回転電機
JP5852750B2 (ja) 回転電機システム及び風力発電システム
JP5752365B2 (ja) 発電システム
CN102111045A (zh) 多层绕组永磁同步风力发电机
JP5933123B1 (ja) 回転電機システムまたは風力発電システム
JP2014045649A (ja) 電気機械、および、電気機械の動作方法
CN200994097Y (zh) 大功率双枢双馈无刷风力发电机
JP2020022279A (ja) 自然力発電装置
CN112636539B (zh) 一种励磁装置及电机
JP2016116304A (ja) 発電機システムまたは風力発電システム
JP2011062029A (ja) 発電機
CN106451970B (zh) 磁阻转子双定子四电气端口无刷双馈电机
JP2017200302A (ja) 発電機システムまたは風力発電システム
KR20110054387A (ko) 비접촉 변압기를 이용한 피치시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504079

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1512808

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130308

WWE Wipo information: entry into national phase

Ref document number: 1512808.5

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 112013006792

Country of ref document: DE

Ref document number: 1120130067927

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877297

Country of ref document: EP

Kind code of ref document: A1