WO2014135041A1 - 一种波长转换装置、发光装置及投影系统 - Google Patents

一种波长转换装置、发光装置及投影系统 Download PDF

Info

Publication number
WO2014135041A1
WO2014135041A1 PCT/CN2014/072789 CN2014072789W WO2014135041A1 WO 2014135041 A1 WO2014135041 A1 WO 2014135041A1 CN 2014072789 W CN2014072789 W CN 2014072789W WO 2014135041 A1 WO2014135041 A1 WO 2014135041A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
scattering
color
laser
Prior art date
Application number
PCT/CN2014/072789
Other languages
English (en)
French (fr)
Inventor
胡飞
杨佳翼
杨毅
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to JP2015560534A priority Critical patent/JP6317373B2/ja
Priority to KR1020157023551A priority patent/KR20150113144A/ko
Priority to KR1020177019360A priority patent/KR102066153B1/ko
Priority to EP14760724.6A priority patent/EP2966698B1/en
Priority to US14/770,027 priority patent/US10203591B2/en
Publication of WO2014135041A1 publication Critical patent/WO2014135041A1/zh
Priority to US16/273,142 priority patent/US10670951B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Definitions

  • the present invention relates to the field of illumination and display technologies, and in particular, to a wavelength conversion device, a light-emitting device, and a projection system.
  • the equal light source excites the phosphor to obtain predetermined monochromatic light or multi-color light, which is a technical solution widely used in the fields of illumination light source, projection display and the like. This technical solution often uses laser or LED The exiting light is incident on the fluorescent pink wheel to achieve good heat dissipation.
  • FIG. 1 As a schematic structural view of a reflective color wheel in the prior art, as shown in FIG. 1, a phosphor layer 110 is disposed on the substrate 120.
  • the substrate 120 includes a substrate 121 for raising the substrate 120.
  • the surface of the substrate 121 of the current reflective color wheel is subjected to a silver plating process to reflect light incident on the surface thereof.
  • the substrate 121 A surface such as a glass or aluminum plate is usually provided with a silver-plated layer 122, and a transparent material (such as alumina) film 123 is applied as an anti-oxidation protective layer for silver.
  • a transparent material (such as alumina) film 123 is applied as an anti-oxidation protective layer for silver.
  • the reflective surface of the silver-plated layer 122 has a very high reflectivity and can be reached. 99%, in the application of reflective fluorescent pink wheels, can also meet the general needs.
  • the technical problem to be solved by the present invention is to provide a high-reflectivity, high-reflectance reflective wavelength conversion device, an associated light-emitting device, and a projection system.
  • the embodiment of the invention provides a wavelength conversion device, comprising:
  • a wavelength conversion layer comprising an opposite first surface for receiving excitation light, a wavelength conversion layer for absorbing the excitation light to generate a laser light, and the laser or the laser light and excitation The mixed light of light exits from the first surface and the second surface;
  • the scattering reflective substrate disposed in a layer with a wavelength conversion layer, the scattering reflective substrate comprising a white porous ceramic or white scattering material, the white scattering material being a salt or an oxide; the white porous ceramic and the white scattering material used to scatter the incident light
  • the scattering reflective substrate includes a third surface facing the second surface, the scattering reflective substrate for emitting at least a portion of the incident light of the third surface from the third surface to the second surface.
  • the wavelength conversion device further includes a driving device for driving the wavelength conversion layer and the scattering reflection substrate to move such that a spot on which the excitation light is incident on the wavelength conversion layer acts on the wavelength conversion layer along a predetermined path.
  • a driving device for driving the wavelength conversion layer and the scattering reflection substrate to move such that a spot on which the excitation light is incident on the wavelength conversion layer acts on the wavelength conversion layer along a predetermined path.
  • the scattering reflective substrate comprises a white porous ceramic plate.
  • the white porous ceramic plate has a pore diameter of 1 ⁇ m or less.
  • the scattering reflective substrate further comprises a metal plate located on a surface of the white porous ceramic plate facing away from the wavelength conversion layer and in intimate contact with the surface.
  • the scattering reflective substrate comprises a stacked scattering reflective layer and a substrate
  • the scattering reflective layer comprises a white scattering material
  • the scattering reflective layer comprises a white scattering material
  • the scattering reflection layer facing the wavelength conversion layer is scattered
  • a third surface of the reflective substrate is used to scatter all of the incident light of the third surface and to illuminate all of the scattered light from the third surface.
  • the scattering reflective substrate comprises a stacked reflective reflective layer and a substrate
  • the scattering reflective layer comprises a white scattering material between the substrate and the wavelength conversion layer and is fixed on the substrate.
  • the surface of the scattering reflection layer near the wavelength conversion layer is a third surface of the scattering reflection substrate, and the scattering reflection layer is opposite to the third surface.
  • the surface is a fourth surface, the scattering reflective layer is for partially scattering the incident light of the third surface and emitting the scattered light from the third surface and the fourth surface, and the remaining portion of the incident light of the third surface is Transmitting the fourth surface;
  • the substrate is a specular reflector for reflecting light incident on the reflective plate from the fourth surface of the scattering reflective layer back to the fourth surface.
  • the reflectivity of the specular reflector is R a scattering reflective layer for partially scattering incident light of the third surface and emitting the scattered light from the third surface and the fourth surface, and the light that is scattered and emitted from the third surface occupies the incident light of the third surface
  • the ratio is P and ( 1 ⁇ R ) ( 1 ⁇ P ) ⁇ 10% , where R ⁇ 50%.
  • the wavelength conversion layer comprises a first glass material and a wavelength conversion material
  • the scattering reflection layer comprises a second glass material and a white scattering material
  • the melting point of the first glass material is lower than the melting point of the second glass material
  • the wavelength converting layer comprises a wavelength converting material and an inorganic binder for bonding the wavelength converting material into one body.
  • the present invention also provides a light-emitting device comprising the above-described wavelength conversion device, the excitation light received by the first surface of the wavelength conversion device being derived from the first light source.
  • the first light source is a laser light source for emitting laser excitation light to a first surface of the wavelength conversion device
  • the wavelength conversion device is configured to receive the laser excitation light, and convert the laser excitation light portion into a laser light and The laser light that is not absorbed is scattered and reflected, and is emitted from the first surface by the laser and the remaining portion of the laser excitation light.
  • the light emitting device further comprises a second light source and a light combining device;
  • the first light source is a laser light source for emitting the first color light
  • the second light source is a laser light source for emitting the second color light
  • the first color light is the excitation light
  • the light combining device includes a first area and a second area surrounding the first area, and the first color light and the second color light are incident from the same direction to the first area of the light combining device;
  • the first region has an optical property of transmitting the first color light and the second color light
  • the second region has optical properties of the reflected laser light and the second color light, the first color light and the second color light being transmitted to the first region to a first surface of the wavelength conversion device;
  • the first region has an optical property of reflecting the first color light and the second color light
  • the second region has an optical property of transmitting the laser light and the second color light, the first color light and the second color light being reflected by the first region to a first surface of the wavelength conversion device;
  • the light mixed by the laser or the laser and the unabsorbed first color light is emitted from the first surface to the light combining device; the wavelength conversion device does not absorb the second color light, and the second color light is scattered and reflected from the first surface Exit to the light combining device.
  • the light emitting device further comprises a second light source and a light combining device;
  • the first light source surrounds the second light source; the first light source is used to emit the first color light; the second light source is a laser light source for emitting the second color light; and the first color light is the excitation light;
  • the light combining device includes a first area and a second area surrounding the first area, the first color light and the second color light are respectively incident from the same direction to the second area and the first area of the light combining device;
  • the first region has optical properties that reflect light of the second color
  • the second region has optical properties that reflect the first color light while transmitting the second color light and the received laser light, the first color light and the second color light being respectively separated by the second region Reflecting with the first region to the first surface of the wavelength conversion device;
  • the first region has optical properties for transmitting light of the second color
  • the second region has optical properties of transmitting the first color light and reflecting the second color light and the received laser light, the first color light and the second color light being respectively separated by the second region Transmitting to the first surface of the wavelength conversion device with the first region
  • the laser light or the mixed light of the laser and the unabsorbed first color light is emitted from the first surface to the light combining device, the wavelength conversion device does not absorb the second color light, and the second color light is scattered and reflected from the first surface Exit to the light combining device.
  • the present invention also provides a projection system including the above-described illumination device.
  • the embodiment of the invention has the following beneficial effects:
  • the exiting light of the second surface of the wavelength conversion layer is incident on the third surface of the scattering reflective substrate, and is scattered by the scattering reflective substrate and then returned from the third surface to the second surface of the second wavelength conversion layer. Eventually all of the light will exit from the first surface of the wavelength conversion layer. Scattering reflection replaces at least part of the specular reflection. Even at high temperatures, the efficiency of specular reflection decreases, the scattering effect of the white scattering material does not change, and the efficiency of scattering reflection of the scattering reflection substrate does not decrease, so the overall reflectivity is also There is no significant reduction, so that the light utilization efficiency of the wavelength conversion device is high.
  • FIG. 1 is a schematic structural view of a reflective color wheel in the prior art
  • FIG. 2 is a structural exploded view of an embodiment of a wavelength conversion device of the present invention
  • FIG. 3 is a schematic structural view of still another embodiment of a wavelength conversion device according to the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of a light emitting device of the present invention.
  • FIG. 5 is a schematic structural view of still another embodiment of a light emitting device of the present invention.
  • Figure 6 is a schematic view showing the structure of still another embodiment of the light-emitting device of the present invention.
  • Reflective wavelength conversion devices of the prior art all include a metal plate coated with a highly reflective layer, such as a silver plated layer or an aluminized layer, which are reflective by specular reflection of incident light using a highly reflective layer.
  • a metal plate coated with a highly reflective layer such as a silver plated layer or an aluminized layer, which are reflective by specular reflection of incident light using a highly reflective layer.
  • an aluminum reflector which can be a polished aluminum plate, can be coated with a transparent oxide film to shield the air in order to delay the oxidation of its surface.
  • the aluminum reflector can also be coated with a high-purity aluminum film (aluminized layer) on the surface of the polished aluminum plate, and then a transparent oxide film is applied, and the reflectance of the aluminum reflector can be achieve more than 90 percent.
  • the metal plate coated with the highly reflective layer is widely used.
  • the light follows the law of reflection, so the specular reflection can control the light in the optical and does not change the light distribution of the incident light.
  • the control of light is an essential requirement of optical design. For example, it is necessary to control the directional emission of light in a projection light source.
  • the back plate since the wavelength conversion layer generates a large amount of heat while generating the laser light, the back plate must have good thermal conductivity, and the metal plate has good thermal conductivity, which can lower the temperature of the wavelength conversion layer.
  • the inventors have found through experiments that in the case where the optical power of the excitation light is large, the phosphor layer may be blackened, and the light-emitting rate of the wavelength conversion device is greatly lowered. After further analysis, it is found that when the power of the excitation light is gradually increased, the temperature of the phosphor is getting higher and higher, and may even reach 100 Above the degree. At this time, the silver plating layer will oxidize and blacken under long-term high temperature operation, resulting in a decrease in reflectance.
  • the efficiency of the aluminized film is obviously low, and although it does not turn black under long-term high-temperature work, it will oxidize and become "black", and the reflectance will drop to 80% or less. therefore Both the silver-plated layer and the aluminized layer are easily oxidized, so that the reflectance to incident light is lowered, which affects the utilization efficiency of light.
  • it is currently difficult to find a reflective material that is more suitable than a silver-plated layer and an aluminized layer and the general technical process is also difficult to solve the problem of oxidation.
  • the present invention solves this problem by adopting a completely new idea: instead of specular reflection by scattering reflection, that is, using a scattering material (for example, white oxide) instead of the high reflection layer to achieve reflection, and avoiding problems caused by oxidation of the high reflection layer, Moreover, the scattering material does not substantially absorb incident light and does not cause loss of light. Specifically, the scattering material can scatter the incident light, and the scattered light is a Lambertian distribution, wherein 50% of the light will travel in the opposite direction to the incident, with 50% remaining The light will travel in the incident direction. However, in the case where the scattering material is sufficiently thick, the incident light is scattered multiple times and eventually is totally reflected. Further, the light scattered by the scattering material is a Lambertian distribution which is the same as the distribution of the outgoing light of the wavelength converting material, and therefore does not affect the light distribution of the outgoing light of the wavelength conversion device.
  • a scattering material for example, white oxide
  • the wavelength conversion device includes a wavelength conversion layer 210 and a scattering reflection substrate 220 which are stacked.
  • the wavelength conversion layer 210 includes opposing first and second surfaces 210a, 210b, a first surface 210a Used to receive excitation light.
  • the wavelength conversion layer 210 is provided with a wavelength converting material which can absorb the excitation light and generate a laser light.
  • the laser is distributed by the Lambertian and will be from the first surface 210a and the second surface 210b is out.
  • the wavelength converting material herein is specifically a phosphor.
  • the wavelength converting material may also be a material having a wavelength converting ability such as a quantum dot or a fluorescent dye, and is not limited to a phosphor.
  • the wavelength converting materials are generally bonded together by a bonding agent, and the most commonly used ones are silicone adhesives, which are chemically stable and have high mechanical strength.
  • the silicone adhesive can withstand a lower temperature, generally at 300 Celsius to 500 degrees Celsius .
  • an inorganic binder to bond the wavelength converting material into a whole, such as water glass or glass frit, to realize a high-temperature resistant reflective phosphor wheel.
  • phosphor and glass powder melt and mix under a certain inert atmosphere to re-form.
  • the scattering reflective substrate 220 includes a stacked reflective reflective layer 222 and a substrate 221. Scattering reflective layer 222 Located between the substrate 221 and the wavelength conversion layer 210. The surface of the scattering reflection layer 222 near the wavelength conversion layer 210 is the third surface 222a.
  • White scattering materials including salts or oxides, such as barium sulfate powder, alumina powder or silicon oxide powder, do not substantially absorb light, and the properties of the white scattering material are stable and do not oxidize at high temperatures.
  • the scattering reflective layer 222 is used to totally scatter the incident light of the third surface 222a and to scatter all of the scattered light from the third surface 222a. Exit. For this reason, the thickness of the scattering reflection layer 222 in this embodiment needs to be sufficiently thick so that the second surface 210b is not considered in consideration of the loss caused by the slight absorption of light by the scattering material.
  • the scattered reflection of the emitted light through the scattering reflection layer 222 is returned to the wavelength conversion layer 210, and finally exits from the first surface 210a of the wavelength conversion layer 210.
  • the scattering reflective substrate 220 is also provided with a substrate 222.
  • the substrate 222 can also be omitted.
  • the wavelength conversion device in this embodiment utilizes the scattering reflection substrate 220.
  • the scattering reflection replaces the specular reflection of the conventional wavelength conversion device to realize the reflective scattering device, and the scattering reflection layer composed of the stable white scattering material replaces the easily oxidized reflective layer, thereby avoiding the oxidation of the reflective layer and causing the reflectivity.
  • the light utilization efficiency is improved, and the wavelength conversion device can also be used in a high-power light-emitting device such as an ultra-high power laser phosphor.
  • the above-described stacked wavelength conversion layer 210 and scattering reflective substrate 220 There is close contact between them to enhance the bonding force between the wavelength conversion layer 210 and the scattering reflection substrate 220.
  • the close contact between the two can reduce the light exit surface and the scattering reflective substrate 220 The distance between them reduces the degree of diffusion of light in the wavelength conversion layer 210.
  • the relationship between the scattering reflective layer 222 and the substrate 221 in the scattering reflective substrate 220 is also the same.
  • the wavelength conversion device in the illustrated embodiment may employ a method of first coating a scattering material on the substrate 221, the scattering material constituting the scattering reflection layer 222, and coating the phosphor layer on the scattering reflection layer 222. 210 .
  • This process is simple to operate and easy to implement.
  • the scattering reflection layer can be sprayed on the substrate using a scattering material mixed colloid, and the bonding strength in this manner is relatively large.
  • the scattering material may also be mixed and bonded to the substrate with an inorganic glue such as water glass. On the 221, this method, although not very adhesive, can withstand higher temperatures.
  • a mixed powder of the second glass material and the white scattering material is coated on the substrate 221 a surface, and sintering the mixed powder of the second glass material and the white scattering material at a temperature higher than a melting point of the second glass material to obtain a scattering reflection layer 222
  • a mixed powder of the first glass material and the wavelength converting material is coated on the scattering reflective layer 222 a surface, and sintering the mixed powder of the first glass material and the wavelength converting material at a temperature higher than a melting point of the first glass material to obtain a wavelength conversion layer.
  • the second glass material is melted, and the melting point of the first glass material is lower than the melting point of the second glass material, as long as the sintering temperature is higher than the melting point of the first glass material and lower than the melting point of the second glass material.
  • a wavelength conversion layer including a wavelength conversion material and a first glass material, a scattering reflection layer including a white scattering material and a second glass material can be obtained. Since the glass has a higher melting point than a conventional adhesive such as silica gel, it can withstand higher temperatures, so that the wavelength conversion device has better high temperature resistance.
  • the wavelength conversion layer and the scattering reflection layer, the scattering reflection layer, and the substrate may have a higher bonding force.
  • the thickness of the scattering reflective layer in order to achieve complete scattering reflection of the incident light, the thickness of the scattering reflective layer must be very thick. This is because The scattering material is prone to agglomeration, so there is always a local area with little scattering in the scattering reflection layer and even a pin hole. The incident laser light can be transmitted through the scattering material with little or no scattering (directly through the pinhole), so the thickness of the scattering reflection layer must be increased to completely eliminate the occurrence of pinholes to achieve scattering reflection.
  • the thicker the thickness of the scattering reflection layer the more easily the scattering material falls off, which makes the preparation of the scattering reflection layer difficult; on the other hand, the greater the thickness of the scattering reflection layer, the higher the thermal resistance between the wavelength conversion layer and the substrate. Larger, the heat of the wavelength conversion layer is more difficult to conduct to the substrate for dissipation, which is disadvantageous for heat dissipation of the wavelength conversion layer.
  • the substrate 221 of the medium wavelength conversion device is provided as a specular reflection plate, and specifically, the specular reflection plate is an aluminum reflection plate.
  • the scattering material of the scattering reflective layer 222 can be made relatively thin, only to the third surface 222a.
  • the incident light is partially scattered, and the scattered light is emitted from the third surface 222a and the surface 222b opposite to the third surface 222a, that is, the fourth surface.
  • Third surface 222a The portion of the incident light that is not scattered transmits the diffuse reflection layer 222 from the fourth surface 222b to the specular reflector 221 .
  • Scattering reflective layer 222 Part of the scattered light is reflected back in the form of scattered reflection, and the remaining portion of the scattered light and the unscattered light emitted from the fourth surface 222b are all subjected to the specular reflector 221 Reflected back in the form of specular reflection, the light incident on the scattering reflective substrate 220 will eventually exit from the third surface 222a.
  • an aluminum reflector can be used as the specular reflector.
  • the surface of the aluminum reflector is oxidized even under long-term high temperature operation, and the reflectance of the aluminum reflector is reduced to 70 to 80%.
  • the thickness was set on the aluminum reflector.
  • the reflectance of the aluminum reflector is 80%, and about 90% of the incident light is reflected by the scattering layer and is about 10%.
  • the incident light is reflected by the aluminum reflector, and the efficiency of the wavelength conversion device at this time is experimentally measured to be only a slight decrease of 1% to 2% with respect to the silver-plated substrate without oxidation; when the barium sulfate scattering material layer is used Thickness is reduced to At 0.12mm, approximately 75% of the incident light is reflected by the diffuse reflection layer at approximately 25% The incident light is reflected by the aluminum reflector.
  • the efficiency of the wavelength conversion device measured at this time is 5% lower than that of the silver-plated substrate without oxidation, but the thickness is reduced by 40%. the above. Experiments have found that 50% is guaranteed to maintain the overall reflectivity of the wavelength conversion device above 90%.
  • the above incident light is reflected by the scattering material layer. In fact, the scattering material layer is unlikely to be very thin, and for most scattering material layers, reflections of more than 50% are guaranteed.
  • the wavelength conversion device can also reduce the difficulty of preparation of the scattering reflection layer and facilitate heat dissipation of the wavelength conversion layer. It can be said that this solution takes into consideration efficiency, heat dissipation and processability, and is a preferred solution.
  • the aluminum reflector can also be replaced by other specular reflectors that can achieve specular reflection, and similar effects can be achieved.
  • the wavelength conversion device further includes a driving device 230.
  • the driving device 230 is configured to drive the wavelength conversion layer 210 and the scattering reflection substrate 220 to move, so that a spot formed by the excitation light on the wavelength conversion layer 210 acts on the wavelength conversion layer along a predetermined path.
  • the wavelength conversion layer 210 to avoid the excitation light from acting on the same position of the wavelength conversion layer 210 for a long time, the wavelength conversion layer 210 The problem of excessive local temperature increases the heat dissipation capability of the wavelength conversion layer and reduces the effects of the scattering reflection layer.
  • the driving device 230 is configured to drive the wavelength conversion layer 210.
  • the scattering reflective substrate 220 has a disk shape, and the wavelength conversion layer 210 In a ring shape concentric with the disk, the driving device 230 is a motor having a cylindrical shape, and the driving device 230 and the wavelength conversion layer 210, the scattering reflection substrate 220 Coaxial fixed.
  • the drive means may also drive the wavelength conversion layer to move in other manners, such as horizontal reciprocating motion or the like.
  • the scattering reflective substrate 220 will have a third surface 222a
  • the incident light is at least partially scattered and then exits from the third surface 222a to the wavelength conversion layer 210 to at least partially replace the specular reflection by the scattering reflection, thereby improving the light utilization efficiency.
  • image 3 A schematic structural view of still another embodiment of the wavelength conversion device of the present invention, as shown in FIG. 3, is different from the wavelength conversion device shown in FIG. 2, in order to solve these problems, in the present embodiment, the scattering reflection substrate 320 Set to a white porous ceramic plate.
  • Porous ceramics have the advantages of good chemical stability, low density, high strength, non-toxicity, corrosion resistance, high temperature resistance, etc., and can be applied to various fields, such as catalyst carriers, food and drug filtration, burners, sound absorbing materials, Aviation materials, etc.
  • the white porous ceramic also has the property of not absorbing light, and the porous property of the porous ceramic can bring about scattering and reflection of light.
  • porous ceramic plate 320 is directly in contact with the wavelength conversion layer 310, and the heat of the wavelength conversion layer 310 can also be conducted to dissipate heat.
  • the white porous ceramic For pure ceramics, such as glass, it does not have a scattering effect on the incident light, while the inside of the porous ceramic has many pores, the arrangement of the lattice at the pores is irregular, and the orientation of the crystal faces of different crystal lattices is different. Larger. When the light is incident on the lattice at the vent, it will be refracted or totally reflected, and the light of different lattices incident on the same vent will be refracted or the direction after total reflection will be different, so it looks like a macro A beam of light scatters at the pores. When the thickness of the white porous ceramic is sufficiently thick, similar to the action of the aforementioned scattering reflection layer, the white porous ceramic can totally reflect the incident light back.
  • the experimental results show that the reflectivity of white porous ceramics can be as high as 99%.
  • the white porous ceramic can directly replace the scattering reflection layer and the substrate in the embodiment shown in Fig. 2 as a whole, thereby avoiding the problem that the scattering reflection layer is easily detached from the substrate.
  • the scattering effect of the white porous ceramic is more controllable than the scattering material such as barium sulfate, because the pores in the white porous ceramic can be distributed more uniformly, and the size can be controlled by selecting a process method and adjusting the process parameters, and barium sulfate.
  • the iso-scattering material is prone to agglomeration and uneven distribution, so that the incident light can be transmitted through a partial region without being scattered, and a thicker scattering material must be provided to ensure the scattering reflection effect. Therefore, the white porous ceramic plate can be made thinner with respect to the scattering reflection layer composed of the scattering material.
  • the white porous ceramic plate 320 in this embodiment Specifically, it is an alumina porous ceramic, and the process is relatively mature and the performance is relatively reliable.
  • the white porous ceramic may be made of aluminum nitride, silicon oxide, silicon nitride, silicon carbide, etc., and these materials, like the alumina porous ceramics, can withstand scattering reflection. at least High temperatures above 1000 degrees Celsius can be used in ultra-high power lighting applications.
  • a method of manufacturing a wavelength conversion device in which a white porous ceramic plate is a scattering reflection substrate is similar to the foregoing embodiment, and a wavelength converting material can be coated on a white porous ceramic plate 320 to prepare a wavelength conversion layer 310.
  • the process is greatly simplified with respect to the manufacturing process of the wavelength conversion device in the foregoing embodiment.
  • the wavelength converting material or the adhesive penetrates into the pores of the porous ceramic plate.
  • the pore diameter of the white porous ceramic is less than or equal to 1 Micron.
  • a white porous ceramic plate can be prepared by a sol-gel method. The white porous ceramic plate prepared by this method can have a pore diameter of 2 nm to 100 nm. Between.
  • the problem of the porous ceramic plate is that the thermal conductivity is not high, and when the power of the excitation light is particularly high, the wavelength conversion layer 310 The heat is not easily exported in time, so the temperature of the wavelength conversion layer is higher.
  • the temperature of the porous ceramic plate at the excitation light spot is high, and the surrounding temperature is relatively low, so the position of the porous ceramic plate may cause a large thermal stress due to thermal expansion, which may cause cracking of the porous ceramic plate. . Therefore in order to reduce the white porous ceramic plate
  • the thermal stress of 320 may be such that a metal plate (not shown) may be disposed on the surface of the white porous ceramic plate 320 facing away from the wavelength conversion layer 310 and in close contact with the surface to accelerate the porous ceramic substrate. The heat dissipation of 320 indirectly accelerates the heat dissipation of the wavelength conversion layer 310 to lower its temperature, thereby reducing the thermal stress of the porous ceramic plate.
  • the specific process may be: plating a layer of solder on the porous ceramic plate by evaporation or sputtering, such as gold tin solder, gold tin copper solder, etc., plating a layer of silver on the metal plate, and then plating the porous ceramic plate One side of the solder is closely attached to the silver-plated side of the metal plate and pressed, and then heated to melt the solder layer. After cooling, the porous ceramic plate is soldered together with the metal plate, and excellent thermal contact is achieved. Of course, it is also possible to bond the two directly together using a thermally conductive silver paste.
  • the white porous ceramic plate 320 can also be thinned to reduce the wavelength conversion layer 310.
  • the thermal resistance between the metal plate and the metal plate accelerates heat dissipation.
  • the thickness of the white porous ceramic plate is too thin, light incident on the white porous ceramic plate may not be totally reflected, and some portions may be transmitted.
  • it is possible to improve the overall reflectance by providing a reflective layer on the surface of the metal plate, the principle of which is similar to the principle of the scattering reflective substrate composed of the aforementioned scattering reflective layer and the reflecting plate.
  • it can also be achieved by reducing the pore diameter of the white porous ceramic. This is because the smaller the pore diameter of the white porous ceramic, the better the scattering effect of the white porous ceramic.
  • the wavelength conversion device in the present embodiment can also be provided with the driving device 330 similarly to the case where the front wavelength conversion device includes the scattering reflection layer.
  • the heat is evenly distributed by the area swept by the laser spot, which lowers the maximum temperature of the surface of the wavelength conversion device and reduces the thermal stress. It is easy to understand that the method of dissipating heat by the metal plate and the method of setting the driving device can be used together, and the heat dissipation effect is better.
  • the wavelength conversion device in the above embodiment has good high temperature resistance, can be used in a high power light emitting device, and the incident light can be sufficiently scattered to form a Lambertian distribution due to the presence of the scattering reflective substrate, which is related to the phosphor The distribution of the outgoing light is the same, so that the wavelength conversion device can be applied to the light-emitting device to obtain uniform mixed light.
  • the light emitting device includes a first light source 410. And a light combining device 420, a collecting lens 430, and a wavelength converting device 440.
  • the first light source 410 can emit laser excitation light L1, which is coupled to the light combining device 420. Reflected to the first surface 441 of the wavelength conversion device 440.
  • the light combining device here is specifically a mirror, and the wavelength conversion device 440 It may be the wavelength conversion device of any of the foregoing embodiments and variations thereof.
  • the wavelength conversion device 440 converts the portion of the laser excitation light L1 into a laser beam, and the remaining portion of the laser excitation light L1
  • the mixed light L2 which is absorbed and scattered without being absorbed, is emitted from the first surface 441 by the laser and the remaining portion of the laser excitation light.
  • the light-emitting device further includes a collecting lens 430, and the collecting lens 430 is located at the mirror.
  • the optical path between the 420 and the wavelength conversion device 440 can collimate the outgoing light L2 of the wavelength conversion device 440 and then exit to the mirror 420. .
  • the first source 410 may also be obliquely incident to the wavelength conversion device 440 such that the mirror 420 need not be provided.
  • the laser excitation light is still Gaussian after the specular reflection of the highly reflective layer, although the phosphor layer is excited by the laser.
  • Light has a certain scattering effect, but the scattering effect of the phosphor layer is not enough to cause the laser excitation light to be scattered into the same Lambertian distribution as the laser beam. Therefore, the laser excitation light and the laser light in the light emitted from the wavelength conversion device are not mixed. Evenly.
  • part of the laser excitation light that is not absorbed is scattered by the scattering reflection substrate into a Lambertian distribution, so that the mixing with the laser light is relatively uniform.
  • the light combining device 420 in the light emitting device may also be a mirror with a through hole, in which case the laser is arranged to be incident perpendicular to the wavelength conversion device such that the laser excitation light is incident through the through hole to the wavelength conversion device, and the outgoing light of the wavelength conversion device is mostly mirrored. The area around the through hole is reflected and utilized, and a small portion is transmitted through the through hole to the first light source and lost.
  • the illuminating device of the embodiment can be used in a white light source.
  • the excitation light is a blue laser
  • the wavelength conversion device includes a yellow phosphor.
  • the blue laser can excite the yellow phosphor to generate yellow light, yellow light and remaining blue light. They are all Lambertian distributions that can be mixed into a more uniform white light.
  • both the laser source and the wavelength converting material can be designed as needed, and are not limited to the examples herein.
  • FIG. 5 is a schematic structural view of still another embodiment of a light emitting device according to the present invention.
  • the light emitting device includes a first light source 510 and a second light source. 520, filter 530, light combining device, collecting lens 560, wavelength conversion device 560.
  • the first light source 510 can emit the first color light L1.
  • the first light source is a blue laser light source, and the first color light L1
  • the second light source 520 can emit the second color light L2.
  • the second light source 520 is a red laser light source, and the second color light L2 is a red light laser.
  • the light combining device includes a first area and a second area surrounding the first area.
  • the first area is specifically a mirror 540.
  • the second area is an area surrounding the mirror (not shown).
  • the first color light L1 and the second color light L2 may be merged into the same optical path via the filter 530 and incident on the mirror 540 (ie the first area of the light combining device).
  • the filter 530 is combined by the difference in wavelengths of the first color light L1 and the second color light L2, which can transmit red light and reflect blue light.
  • the first color light L1 And the second color light L2 can also be combined in other ways, for example, the filter 530 is replaced with a polarizer, and the first color light L1 and the second color light L2 are simultaneously set.
  • the polarization states are different and can be reflected and transmitted by the polarizing plate, respectively; even the light-emitting device may not be provided with the filter 530 and the light combining device, so that the first color light L1 and the second color light L2
  • the first surface 561 of the wavelength conversion device 560 is obliquely incident directly at different angles.
  • the mixed light L3 of the first color light L1 and the second color light L2 is reflected by the mirror 540 to the wavelength conversion device 560 The first surface of the 561.
  • the wavelength conversion device 560 includes a yellow phosphor that partially absorbs and converts the first color light L1 into a laser light, which is yellow light, and the unabsorbed first color light L1 After being scattered and reflected, it is emitted from the first surface 561 together with the laser light; the wavelength conversion device 560 cannot absorb the second color light, but also scatters and reflects it from the first surface 561.
  • the outgoing light L4 of the wavelength conversion device 560 will also pass through the collimator 550, and most of it will pass through the mirror 540.
  • the surrounding area i.e., the second area of the light combining means
  • the surrounding area is slightly reflected by the mirror 540 (the first area of the light combining means), and the light emitting means is uniformly mixed with white light.
  • the red laser light is not absorbed by the yellow phosphor when passing through the wavelength conversion layer of the wavelength conversion device, and a small portion is scattered by the phosphor and then emitted from the first surface of the wavelength conversion device, and most of the light is incident on the scattering.
  • the reflective substrate is also diffused and reflected and finally emerges from the first surface of the wavelength conversion device, and the red laser light emitted from the first surface is converted into a Lambertian distribution by a Gaussian distribution, and the reflected red light is reflected with respect to the highly reflective layer.
  • the light distribution of the approximate Gaussian distribution of the laser is closer to the same as the light distribution of the laser, and the mixture is more uniform.
  • the light emitting device emits white light mixed with blue light, yellow light, and red light.
  • the blue laser may be substantially absorbed by the wavelength conversion device, or the second region of the illuminating device may be a filter, and the filter may be transmitted by the laser and the second color light to reflect One color of light can be.
  • the mirror 540 The first color light and the second color light can be reflected, but at the same time, the laser light is reflected, causing this portion to be lost by the laser light.
  • a filter that transmits the laser light and reflects the first color light and the second color light may be used instead of the mirror.
  • the light combining device may also be a filter with a through hole, which is a first region of the light combining device, and can transmit the first color light and the second color light and the laser light, except for the through hole of the filter.
  • the region is the second region, and the received laser light, the first color light, and the second color light are reflected, and the first color light and the second color light are incident from the through hole to the wavelength conversion device.
  • the through hole may further cover a filter that transmits the first color light and the second color light to reflect the laser light.
  • the second region may be provided to reflect the received laser light and the second color light to transmit the first color light.
  • FIG. 6 A schematic structural view of still another embodiment of the light-emitting device of the present invention.
  • the light-emitting device includes a first light source 610, a second light source 620, a light combining device 630, and a collecting lens 640. , wavelength conversion device 650.
  • the illuminating device in this embodiment is different from the illuminating device shown in FIG. 5 in that:
  • the first light source 610 is a blue laser light source
  • the second light source 620 is a red laser light source
  • the first light source 610 The surround is arranged on the periphery of the second light source 620.
  • the first color light L1 emitted from the first light source 610 is a blue laser light
  • the second color light L2 emitted from the second light source 620 is a red laser light.
  • the light combining means 630 in the light emitting device A reflective element 632 and a filter 631 are disposed in a stacked manner, and the reflective element 632 is located at an intermediate position of the filter 631 near the surface of the wavelength conversion device 650.
  • Reflective element 632 The area is the first area, and the area where the filter 631 is not covered by the reflective element 632 is the second area.
  • the filter 631 reflects blue light and transmits yellow and red light.
  • the second color light L2 is incident on the reflective element 632 is reflected by the reflective element 632.
  • the number of laser diodes included in the red laser source is relatively small, and the area of the reflective element 632 can be relative to the filter 631. A lot smaller.
  • the first color light L1 is incident on the filter 631.
  • the area not covered by the reflective element 632 is the second area and is reflected by the filter 631.
  • First color light L1 and second color light L2 Both are reflected by the light combining device 630 to the collecting lens 640 and focused to the first surface 651 of the wavelength conversion device 650.
  • the blue laser L1 is used by the wavelength conversion device 650.
  • L3 is a case where the substrate of the wavelength conversion device is provided with a highly reflective layer and the scattering reflection layer is not provided, and the mixed light L3 emitted from the wavelength conversion device 650 in the present embodiment is more uniform.
  • the mixed light L3 Most of the areas of the filter 631 of the light combining device that are not covered by the reflective element 632 are transmitted, and a small portion is reflected by the reflective element 632 and lost.
  • the reflective element 632 in the light combining device 630 instead of using a filter that reflects red light to transmit yellow light, the utilization of the yellow laser light can be improved, and the filter can also be designed to transmit or reflect unabsorbed first color light as needed.
  • the light combining device 630 It can also be realized in the form of a zone coating, but the process is more complicated and more expensive than the two-component stacking arrangement in the present embodiment (for example, bonding with a light glue).
  • a through-hole filter can be used, and the through-hole is a first region, and can transmit first color light (blue light), second color light (red light), and yellow light receiving laser.
  • the area other than the second area can transmit blue light and reflect red light and yellow light.
  • the first color light and the second color light are disposed to be incident perpendicular to the wavelength conversion device, and the second color light is incident into the wavelength conversion device through the through hole, and the first color light is transmitted through the second region to the wavelength conversion Device.
  • the outgoing light of the wavelength conversion device is mostly utilized by being reflected by the area around the through hole of the filter, and a small portion is transmitted through the through hole and lost.
  • the through-hole region may be provided with a filter that transmits the second color light and reflects the yellow laser light to improve the utilization of the laser.
  • the filter may also be designed to transmit or reflect as needed. The first color light absorbed.
  • the light emitting device may further be provided with a first light source 610. Blue light sources of different wavelengths (not shown) are combined with yellow light.
  • a blue light source may be disposed on a side opposite to the first light source 610 and the second light source 620, and the outgoing light of the blue light source is along with the first color light L1 and the second color light L2 are incident on the filter 631 of the spectroscopic device in a direction opposite to the incident direction of the second color light L2.
  • the filter 631 The optical property of reflecting the blue light source and the blue light emitted by the first light source to transmit the red light and the yellow light receiving laser, thereby combining the yellow laser light, the unabsorbed red light, and the blue light source to form the same light path.
  • Embodiments of the present invention also provide a projection system including a light emitting device, which may have the structure and function in the above embodiments.
  • the projection system can employ various projection technologies, such as a liquid crystal display (LCD, Liquid Crystal Display) Projection technology, DLP (Digital Light Processor) projection technology.
  • LCD liquid crystal display
  • DLP Digital Light Processor

Abstract

一种波长转换装置、发光装置及投影系统,包括波长转换层(210),包括相对的第一表面(210a)和第二表面(210b),第一表面(210a)用于接收激发光,波长转换层(210)用于吸收激发光以产生受激光,并将受激光与激发光的混合光从第一表面(210a)和第二表面(210b)出射,与波长转换层(210)层叠设置的散射反射基底(220),散射反射基底(220)包括用于对入射光进行散射的白色多孔陶瓷或白色散射材料,白色散射材料为盐类或者氧化物类;散射反射基底(220)包括面向第二表面(210b)的第三表面(222a),散射反射基底(220)用于将第三表面(222a)的入射光至少部分散射后全部从第三表面(222a)出射至第二表面(210b)。提供了一种耐高温的高反射率的反射式波长转换装置及其相关发光装置、投影装置。

Description

一种波长转换装置、发光装置及投影系统 技术领域
本发明涉及照明及显示技术领域,特别是涉及一种波长转换装置、发光装置及投影系统。
背景技术
利用激光或者 LED 等光源激发荧光粉以获得预定单色光或者多色光,是一种广泛应用于照明光源、投影显示等领域的技术方案。这种技术方案往往是利用激光或者 LED 出射光入射到荧光粉色轮上,以实现良好的散热。
由于反射式色轮对光的利用效率比较高,因此反射式色轮在上述方案中应用更加广泛。例如,图 1 为现有技术中一种反射式色轮的结构示意图,如图 1 所示,荧光粉层 110 设置在基底 120 上。基底 120 包括基板 121 ,为了提高基底 120 对荧光粉层 110 出射光的反射率,目前的反射式色轮的基板 121 表面均采用镀银工艺,以对入射到其表面的光进行反射。具体地,基板 121 (如玻璃或铝板)表面一般会设置一层镀银层 122 ,再镀一层透明材料(如氧化铝)膜 123 作为银的抗氧化保护层。镀银层 122 的反射面反射率极高,可以达到 99% ,在反射式荧光粉色轮的应用中作用重大,也可以满足一般的需求。
但是,当激发光的光功率逐渐增大时,传统反射式的色轮的出光率会大大下降。
技术问题
本发明主要解决的技术问题是提供一种耐高温的高反射率的反射式波长转换装置及相关发光装置、投影系统。
本发明实施例提供了一种波长转换装置,包括:
波长转换层,包括相对的第一表面和第二表面,该第一表面用于接收激发光,波长转换层用于吸收该激发光以产生受激光,并将该受激光或者该受激光与激发光的混合光从第一表面和第二表面出射;
与波长转换层层叠设置的散射反射基底,该散射反射基底包括白色多孔陶瓷或白色散射材料,该白色散射材料为盐类或者氧化物类;白色多孔陶瓷和白色散射材料用于对入射光进行散射,散射反射基底包括面向第二表面的第三表面,散射反射基底用于将第三表面的入射光至少部分散射后全部从第三表面出射至第二表面。
优选地,波长转换装置还包括驱动装置,该驱动装置用于驱动波长转换层与散射反射基底运动,以使得激发光入射在波长转换层上的光斑沿预定路径作用于该波长转换层。
优选地,散射反射基底包括白色多孔陶瓷板。
优选地,白色多孔陶瓷板的气孔孔径小于等于 1 微米。
优选地,散射反射基底还包括金属板,该金属板位于白色多孔陶瓷板背向波长转换层的表面并与该表面紧密接触。
优选地,散射反射基底包括层叠设置的散射反射层和基板,散射反射层包括白色散射材料,位于基板和波长转换层之间,且固定在基板上,散射反射层面向波长转换层的表面为散射反射基底的第三表面,散射反射层用于将该第三表面的入射光全部散射并将散射后的光全部从第三表面出射。
优选地,散射反射基底包括层叠设置的散射反射层和基板;
散射反射层包括白色散射材料,位于基板和波长转换层之间,且固定在基板上,散射反射层靠近波长转换层的表面为散射反射基底的第三表面,散射反射层与该第三表面相对的表面为第四表面,散射反射层用于将该第三表面的入射光部分散射并将散射后的光从第三表面和第四表面出射,且将第三表面的入射光的剩余部分从第四表面透射;
基板为一镜面反射板,用于将从散射反射层的第四表面入射至该反射板的光反射回该第四表面。
优选地, 镜面反射板的反射率为 R ,散射反射层用于将第三表面的入射光部分散射并将散射后的光从第三表面和第四表面出射,且散射后并从第三表面出射的光占第三表面的入射光的比例为 P ,且( 1−R )( 1−P ) ≤ 10% ,其中 R ≥ 50% 。
优选地,波长转换层包括第一玻璃材料和波长转换材料,散射反射层包括第二玻璃材料和白色散射材料,且第一玻璃材料的熔点低于第二玻璃材料的熔点。
优选地,波长转换层包括波长转换材料和无机粘接剂,无机粘接剂用于将波长转换材料粘接成一体。
本发明还提供了一种发光装置,该发光装置包括上述波长转换装置,波长转换装置的第一表面接收的激发光来自于第一光源。
优选地,第一光源为激光光源,该激光光源用于出射激光激发光至波长转换装置的第一表面,波长转换装置用于接收激光激发光,并将该激光激发光部分转换为受激光且将未被吸收的激光激发光散射反射,受激光与剩余部分激光激发光从第一表面出射。
优选地,发光装置还包括第二光源和合光装置;
第一光源为激光光源,用于出射第一颜色光;第二光源为激光光源,用于出射第二颜色光;第一颜色光为激发光;
合光装置包括第一区域和环绕在第一区域周围的第二区域,第一颜色光和第二颜色光从同一方向入射至合光装置的第一区域;
第一区域具有透射第一颜色光和第二颜色光的光学性质,且第二区域具有反射受激光和第二颜色光的光学性质,第一颜色光和第二颜色光被第一区域透射至波长转换装置的第一表面;或者,
第一区域具有反射第一颜色光和第二颜色光的光学性质,且第二区域具有透射受激光和第二颜色光的光学性质,第一颜色光和第二颜色光被第一区域反射至波长转换装置的第一表面;
受激光或者受激光与未被吸收的第一颜色光的混合光从第一表面出射至合光装置;波长转换装置不吸收第二颜色光,并将第二颜色光散射反射后从第一表面出射至合光装置。
优选地,发光装置还包括第二光源和合光装置;
第一光源环绕在第二光源的周围;第一光源用于出射第一颜色光;第二光源为激光光源,用于出射第二颜色光;第一颜色光为激发光;
合光装置包括第一区域和环绕在第一区域周围的第二区域,第一颜色光和第二颜色光从同一方向分别入射至合光装置的第二区域和第一区域;
第一区域具有反射第二颜色光的光学性质,且第二区域具有反射第一颜色光而透射第二颜色光和受激光的光学性质,第一颜色光和第二颜色光分别被第二区域与第一区域反射至波长转换装置的第一表面;或者,
第一区域具有透射第二颜色光的光学性质,且第二区域具有透射第一颜色光而反射第二颜色光和受激光的光学性质,第一颜色光和第二颜色光分别被第二区域与第一区域透射至波长转换装置的第一表面;
受激光或者受激光与未被吸收的第一颜色光的混合光从第一表面出射至合光装置,波长转换装置不吸收第二颜色光,并将第二颜色光散射反射后从第一表面出射至合光装置。
本发明还提供了一种投影系统,该投影系统包括上述发光装置。
与现有技术相比,本发明实施例具有如下有益效果:
本发明实施例中,波长转换层第二表面的出射光入射至散射反射基底的第三表面,并被散射反射基底散射后又从第三表面返回第二波长转换层的第二表面。最终全部光都将从波长转换层的第一表面出射。散射反射代替至少部分的镜面反射,即使在高温下,镜面反射的效率下降了,白色散射材料的散射作用不会改变,散射反射基底的散射反射的效率也不会降低,因此整体的反射率也不会有较大降低,使得波长转换装置的光利用率较高。
附图说明
图 1 为现有技术中一种反射式色轮的结构示意图;
图 2 为本发明的波长转换装置的一个实施例的结构爆炸图;
图 3 为本发明的波长转换装置的又一个实施例的结构示意图;
图 4 为本发明的发光装置的一个实施例的结构示意图;
图 5 为本发明的发光装置的又一个实施例的结构示意图;
图 6 为本发明的发光装置的又一个实施例的结构示意图。
本发明的实施方式
现有技术中的反射式波长转换装置都包括镀有高反射层的金属板,例如镀银层或镀铝层,它们都是利用高反射层对入射光进行镜面反射来实现反射式的。例如铝反射板,它可以是抛光的铝板,为了延缓其表面的氧化'发乌',可以在其表面镀一层透明的氧化物薄膜以隔绝空气。为了进一步提高反射率,铝反射板还可以在抛光的铝板的表面镀一层高纯度的铝膜(镀铝层),然后再镀一层透明氧化膜,此时的铝反射板的反射率可以达到 90% 以上。
镀有高反射层的金属板之所以应用比较广泛,是由于在镜面反射中,光线遵循反射定律,因此镜面反射在光学中对光可控制,并不会改变入射光的光分布。而对光线的控制是光学设计的本质要求,例如,在投影光源中必须控制光定向发射。另一方面,由于波长转换层在产生受激光的同时,会产生大量的热量,背板必须具有良好的导热性能,而金属板具有良好的导热能力,可以降低波长转换层的温度。
但是本发明人通过实验发现,在激发光的光功率很大的情况下,荧光粉层会有发黑的现象,同时波长转换装置的出光率会大大下降。经进一步分析发现,当激发光光功率逐渐增大时,荧光粉温度越来越高,甚至可能达到 100 度以上。此时镀银层在长期高温工作下会氧化发黑,导致反射率下降。虽然可以采用镀铝膜来替代镀银膜,但是镀铝膜的效率明显偏低,而且在长期高温工作下虽然不会变黑,但是会氧化而'发乌',反射率会下降至 80% 以下。因此 镀银层和镀铝层都容易氧化,使得对入射光的反射率下降,影响了光的利用效率。但是目前也难以找到比镀银层和镀铝层更加合适的反射材料,一般的技术工艺也难以解决氧化的问题。
本发明利用全新的思路来解决这个问题:以散射反射替代镜面反射,也就是利用散射材料(例如白色氧化物)来替代高反射层实现反射作用,避免了高反射层的氧化带来的问题,并且散射材料基本不会对入射光进行吸收,不会造成光的损失。具体来说,散射材料可以对入射光进行散射,散射后的光为朗伯分布,其中大约 50% 的光会沿与入射方向相反的方向传播,剩余 50% 的光会沿入射方向传播。但是在散射材料足够厚的情况下,入射光经过多次散射,最终会全部被反射。另外,被散射材料散射后的光为朗伯分布,与波长转换材料的出射光的分布相同,因此并不会影响波长转换装置的出射光的光分布。
下面结合附图及实施方式来对本发明的实施例进行详细分析。
图 2 为本发明的波长转换装置的一个实施例的结构爆炸图,如图 2 所示,波长转换装置包括层叠设置的波长转换层 210 、散射反射基底 220 。
波长转换层 210 包括相对的第一表面 210a和第二表面 210b,第一表面 210a 用以接收激发光。波长转换层 210 设置有波长转换材料,波长转换材料可以吸收激发光并产生受激光。受激光为朗伯分布,且会从第一表面 210a和第二表面 210b出射。这里的波长转换材料具体为荧光粉,在本发明其它实施方式中,波长转换材料还可能是量子点、荧光染料等具有波长转换能力的材料,并不限于荧光粉。
在实际应用中,波长转换材料一般会用粘接剂粘接成一个整体,最常用的是硅胶粘接剂,其化学性质稳定、有较高的机械强度。但是硅胶粘接剂的可耐受温度较低,一般在 300 摄氏度 至 500 摄氏度 。为了应用于大功率的发光装置中,优选地,可以用无机粘接剂来将波长转换材料粘接成一个整体,例如水玻璃或者玻璃粉,以实现耐高温的反射式荧光粉轮。例如将荧光粉与玻璃粉(若温度要求低,可以使用低温玻璃粉)在一定的惰性气氛保护下融化混合再成型。
散射反射基底 220 包括层叠设置的散射反射层 222 和基板 221 。散射反射层 222 位于基板 221 和波长转换层 210 之间。散射反射层 222 靠近波长转换层 210 的表面为第三表面 222a 。
散射反射层 222 包括盐类或者氧化物类的白色散射材料,例如硫酸钡粉末、氧化铝粉末或者氧化硅粉末等,基本上不会对光进行吸收,并且白色散射材料的性质稳定,不会在高温下氧化。
散射反射层 222 用于将第三表面 222a的入射光全部散射并将散射后的光全部从第三表面 222a 出射。为此,本实施例中的散射反射层 222 的厚度需要足够厚,以使得在不考虑散射材料对光轻微的吸收作用所造成的损耗的情况下,从第二表面 210b 出射的光经散射反射层 222 的散射反射又全部回到了波长转换层 210 ,最终都从波长转换层 210 的第一表面 210a 出射。
为了固定散射反射层 222 ,散射反射基底 220 还设置了基板 222 以支撑散射反射层。但是在散射反射层自身刚性足够时 ( 例如通过将散射材料掺杂在透明玻璃中形成的 ) ,基板 222 也是可以省略的。
从上述描述可知,本实施例中的波长转换装置利用散射反射基底 220 的散射反射代替了传统波长转换装置的镜面反射来实现反射式散射装置,利用性质稳定的白色散射材料组成的散射反射层代替了易氧化的反射层,从而避免了反射层氧化而造成反射率的降低,提高了光的利用效率,并且该波长转换装置还可以用于超高功率的激光荧光粉等大功率发光装置中。
值得指出的是,上述层叠设置的波长转换层 210 和散射反射基底 220 之间是紧密接触的,以增强波长转换层 210 和散射反射基底 220 之间的结合力。另外,二者紧密接触可以减小光出射面与散射反射基底 220 之间的距离,减小光在波长转换层 210 中的扩散程度。类似地,对于散射反射基底 220 中的散射反射层 222 和基板 221 之间的关系也是如此。
当波长转换层 210 、散射反射层 222 、基板 221 依次层叠且紧密接触时,制造图 2 所示实施例中的波长转换装置可以采用以下方法:先在基板 221 上涂覆散射材料,这些散射材料构成了散射反射层 222 ,再在散射反射层 222 上涂覆荧光粉层 210 。这种工艺操作简单,易于实现。散射反射层可以使用散射材料混合胶体在基板上喷涂而成,这种方式的粘接强度比较大。散射材料还可以是与水玻璃等无机胶水混合粘接在基板 221 上,这种方式虽然粘接性不强,但是可以耐受较高的温度。
为了提高波长转换装置的耐热性,还可以采用另外一种方法。首先将第二玻璃材料与白色散射材料的混合粉末涂覆在基板 221 的表面,并将该第二玻璃材料与白色散射材料的混合粉末在高于第二玻璃材料的熔点温度下烧结成型,得到散射反射层 222 ;然后将第一玻璃材料与波长转换材料的混合粉末涂覆在散射反射层 222 的表面,并将该第一玻璃材料与波长转换材料的混合粉末在高于第一玻璃材料的熔点的温度下烧结成型,得到波长转换层。其中,为了防止在第一玻璃材料与波长转换材料的混合粉末的烧结过程中,散射反射层 222 中的第二玻璃材料熔化,第一玻璃材料的熔点要低于第二玻璃材料的熔点,此时只要烧结温度高于第一玻璃材料的熔点且低于第二玻璃材料的熔点即可。通过上述方法,可以得到包括波长转换材料和第一玻璃材料的波长转换层、包括白色散射材料和第二玻璃材料的散射反射层。由于玻璃相对于硅胶等传统的粘接剂,熔点较高,可以耐受更高温度,使得波长转换装置具有更好的耐高温性能。另外,由于是烧结成型,波长转换层与散射反射层、散射反射层与基板之间可以具有更高的结合力。
在图 2 所示的实施例中,为了实现对入射光的完全散射反射,散射反射层厚度必须很厚。这是由于 散射材料容易发生团聚,因此散射反射层中总是存在散射很小的局部区域甚至存在针孔 (pin hole) 使得入射的激光可以经过很少的散射甚至没有散射(直接穿过针孔)而透过散射材料,因此必须增大散射反射层的厚度来完全杜绝针孔的出现,以实现散射反射。但是 一方面,散射反射层厚度越厚,散射材料就越容易脱落,这样就使得散射反射层的制备比较困难;另一方面,散射反射层的厚度越大,波长转换层与基板之间热阻越大,波长转换层的热量就越难以传导至基板进行散失,不利于波长转换层的散热。
为了实现对入射光的完全散射同时克服上面两方面的困难,一种优选的解决方案是将图 2 中波长转换装置的基板 221 设置为镜面反射板,具体地,该镜面反射板为铝反射板。此时,散射反射层 222 的散射材料可以做得比较薄,只需对从第三表面 222a 入射的光进行部分散射,散射后光会从第三表面 222a 和与该第三表面 222a 相对的表面 222b 即第四表面出射。第三表面 222a 的入射光中未被散射的部分会透射散射反射层 222 从第四表面 222b 出射至镜面反射板 221 。散射反射层 222 将部分散射光以散射反射的形式反射回去,而上述从第四表面 222b 出射的散射光剩余部分和未被散射的光都会被镜面反射板 221 以镜面反射形式反射回去,最终入射到散射反射基底 220 的光都将从第三表面 222a 出射。
相对于完全使用镜面反射的形式,由于大部分的光是通过散射反射的形式反射出去的,即使镜面反射板的反射率下降,也不会对整体的反射率有较大的影响。
例如,可以使用铝反射板作为镜面反射板。铝反射板的表面即使在长期高温工作下发生氧化,铝反射板的反射率降低至 70~80% 。在实验中,在铝反射板上设置厚度为 0.22mm 的某种硫酸钡散射材料层时,其中该铝反射板的反射率为 80% ,此时大约有 90% 的入射光会被散射反射层反射而大约 10% 的入射光会被铝反射板反射,实验测得此时的波长转换装置的效率相对于使用没有氧化的镀银基板来说只有 1% 至 2% 的轻微下降;当把该硫酸钡散射材料层的厚度减薄至 0.12mm 时,此时大约有 75% 的入射光会被散射反射层反射而大约 25% 的入射光会被铝反射板反射,实验测得此时的波长转换装置的效率相对于使用没有氧化的镀银基板来说有 5% 的下降,但是厚度降低了 40% 以上。实验发现,为了保持波长转换装置具有 90% 以上的整体反射率,要保证 50% 以上的入射光被散射材料层反射。实际上,散射材料层不可能做的非常地薄,对于绝大多数的散射材料层来说,都可以保证反射 50% 以上的反射率。
当然对于其它的镜面反射板来说,要保持波长转换装置具有 90% 以上的整体反射率,允许入射到镜面反射板的光占波长转换装置的总体入射光的比例也是不同,在不考虑白色散射材料对光的吸收的情况下,所有光的损失都是由镜面反射板对光的吸收引起的,因此被散射反射层反射的光所占波长转换装置的入射光的比例需要满足:( 1−R )( 1−P ) ≤ 10% ,其中 R 为镜面反射板的反射率, P 为被散射反射层反射的光的比例。
同时,这种波长转换装置还可以降低散射反射层制备的难度,有利于波长转换层的散热。可以说,该方案兼顾了效率、散热和工艺性,是一个优选的方案。当然,铝反射板也可以用其它可以实现镜面反射的镜面反射板替代,同样可以实现类似的效果。
在实际应用中,为了实现更好的波长转换层的散热,优选的,波长转换装置还包括有驱动装置 230 ,该驱动装置 230 用于驱动波长转换层 210 和散射反射基底 220 运动,以使激发光在该波长转换层 210 上形成的光斑沿预定路径作用于该波长转换层 210 ,以避免激发光长时间作用于波长转换层 210 的同一位置导致的该波长转换层 210 局部温度过高的问题,进而提高波长转换层的散热能力,减小散射反射层带来的影响 。具体地,本实施例中, 驱动装置 230 用于驱动波长转换层 210 转动,以使激发光在该波长转换层 210 上形成的光斑沿预定的圆形路径作用于该波长转换层。优选地,散射反射基底 220 呈圆盘状,波长转换层 210 呈与该圆盘同心的环状,驱动装置 230 为呈圆柱形的马达,并且驱动装置 230 与波长转换层 210 、散射反射基底 220 同轴固定。在本发明其它实施方式中,驱动装置也可以驱动波长转换层以其它方式运动,例如水平往复运动等。
容易理解的是,上述两种改善的波长转换层的散热问题的方案是可以结合使用的,并且可以达到更好的散热效果。
从上述两个实施例可以看出,散射反射基底 220 将第三表面 222a 的入射光至少部分散射后全部从第三表面 222a 出射至波长转换层 210 ,以利用散射反射至少部分替代镜面反射,可以提高光的利用效率。
在上述实施例中,尽管通过将基板设置为反射板降低了散射反射层的厚度,但是并没有彻底解决散射反射层有可能脱落的问题。图 3 为本发明的波长转换装置的又一实施例的结构示意图,如图 3 所示,与图 2 所示波长转换装置不同的是,为了解决这些问题,本实施例中,散射反射基底 320 设置为白色多孔陶瓷板。
多孔陶瓷具有化学稳定性好、密度低、强度高、无毒、耐腐蚀、耐高温等优点,可以应用于多个领域,例如可以用于催化剂载体、食品药品过滤、燃烧器、吸声材料、航空材料等。而白色多孔陶瓷还具有不吸光的特性,同时多孔陶瓷的多孔特性又可以带来对光的散射和反射。另外,多孔陶瓷板 320 直接与波长转换层 310 接触,还可以将波长转换层 310 的热量传导出来进行散热。
对于纯净的陶瓷来说,例如玻璃,其不会对入射光具有散射作用,而多孔陶瓷的内部具有很多气孔,气孔处的晶格的排列是不规则的,不同晶格的晶面的朝向差异较大。当光入射到气孔处的晶格会发生折射或者全反射,而入射到同一气孔处的不同晶格的光发生折射或者全反射后的方向变得不同,因此从宏观上看起来,就像是一束光在气孔处发生了散射。而当白色多孔陶瓷的厚度足够厚的时候,与前述散射反射层的作用相类似,白色多孔陶瓷可以将入射光全部反射回去。而经实验验证,白色多孔陶瓷的反射率可以高达 99% 。这样,白色多孔陶瓷可以直接替代图 2 所示实施例中的散射反射层和基底,其为一个整体,从而避免了带来的散射反射层容易从基板脱落的问题。
另外,相对于硫酸钡等散射材料,白色多孔陶瓷的散射作用更加可控,这是由于白色多孔陶瓷内的气孔可以分布比较均匀,并且大小可以通过选择工艺方法和调节工艺参数控制,而硫酸钡等散射材料很容易发生团聚而分布不均匀,使得入射光可以透过部分区域未被散射而必须设置较厚的散射材料来保证散射反射效果。因此,白色多孔陶瓷板相对于散射材料构成的散射反射层可以做的厚度更薄。
本实施例中的白色多孔陶瓷板 320 具体为氧化铝多孔陶瓷,其工艺比较成熟,性能比较可靠。但在本发明其它实施方式中,白色多孔陶瓷还可以是氮化铝、氧化硅、氮化硅、碳化硅等材质,这些材料与氧化铝多孔陶瓷一样,在实现散射反射的同时,可以耐受至少 1000 摄氏度 以上的高温,可以在超高功率的发光装置中应用。
以白色多孔陶瓷板为散射反射基底的波长转换装置的制造方法,与前述实施例类似,可以将波长转换材料涂覆在白色多孔陶瓷板 320 上,以制备波长转换层 310 ,相对于前述实施例中的波长转换装置的制造工艺,工艺大大简化了。
为了防止波长转换层 310 的波长转换材料或者粘接剂渗入多孔陶瓷板的气孔中,优选地,白色多孔陶瓷的气孔孔径小于等于 1 微米。为了实现较小的气孔孔径,可以利用溶胶凝胶法来制备白色多孔陶瓷板,这种方法制备出的白色多孔陶瓷板的气孔孔径可以在 2 nm 至 100 nm 之间。
但是多孔陶瓷板的问题在于导热能力不高,当激发光的功率特别高,波长转换层 310 的热量不容易及时导出,因而波长转换层的温度较高。另外,多孔陶瓷板位于激发光光斑处的温度很高,而周围的温度相对较低,因此多孔陶瓷板的该位置会由于热膨胀而产生一个较大的热应力,有可能造成多孔陶瓷板的开裂。因此为了降低白色多孔陶瓷板 320 的热应力,一种方法是可以设置金属板(图中未画出)位于白色多孔陶瓷板 320 背向波长转换层 310 的表面并与该表面紧密接触,可以加快多孔陶瓷基板 320 的散热,从而间接加快波长转换层 310 的散热,以降低其温度,使得多孔陶瓷板的热应力降低。
具体的工艺可以是,在多孔陶瓷板上用蒸发或溅射的方法镀一层焊料,如金锡焊料、金锡铜焊料等,在金属板上镀一层银,然后将多孔陶瓷板镀有焊料的一面与金属板上镀银的一面紧密贴合并压紧,然后加热使得焊料层融化,冷却后多孔陶瓷板就与金属板焊接在了一起,同时实现了优良的热接触。当然,也可以使用导热银胶将两者直接粘接在一起。
另一方面,白色多孔陶瓷板 320 还可以进行减薄,以减小波长转换层 310 和金属板之间的热阻,加快散热。但是白色多孔陶瓷板的厚度过薄的话会导致入射到该白色多孔陶瓷板的光不能全部被反射,而有部分会透射。这时一方面可以通过在金属板表面设置反射层来对提高整体的反射率,其原理与前述散射反射层和反射板组成的散射反射基底的原理相类似。另一方面,还可以通过减小白色多孔陶瓷的气孔孔径来实现。这是由于白色多孔陶瓷的气孔孔径越小,白色多孔陶瓷的散射效果越好。
另一种降低白色多孔陶瓷的热应力的方法是,与前面波长转换装置包括散射反射层时的情况相类似,本实施例中的波长转换装置也可以设置驱动装置 330 来提高波长转换层的散热能力,这时热量会被激光光斑所扫过的区域均摊,而降低了波长转换装置表面的最高温度,减小了热应力。容易理解,将利用金属板散热的方法与设置驱动装置的方法可以配合使用,其散热效果更佳。
在上述实施例中的波长转换装置具有良好抗高温性能,可以用于大功率的发光装置中,并且由于散射反射基底的存在可以使得入射光可以得到充分散射而成朗伯分布,这与荧光粉的出射光的分布是相同的,因此波长转换装置应用于发光装置中还可以得到均匀的混合光。
图 4 为本发明的发光装置的一个实施例的结构示意图,如图 4 所示,发光装置包括第一光源 410 、合光装置 420 ,收集透镜 430 、波长转换装置 440 。
第一光源 410 可以出射激光激发光 L1 ,该激光激发光 L1 经合光装置 420 反射至波长转换装置 440 的第一表面 441 。这里的合光装置具体为反射镜,而波长转换装置 440 可以是前述任一实施例中的波长转换装置及其变形。波长转换装置 440 将激光激发光 L1 部分转换为受激光,将剩余部分激光激发光 L1 未被吸收而被散射反射,受激光与剩余部分激光激发光的混合光 L2 将从第一表面 441 出射。
由于朗伯分布的光学扩展量较大,经过一段距离后光束会扩散的比较严重而难以收集,因此本实施例中,发光装置还包括收集透镜 430 ,该收集透镜 430 位于反射镜 420 与波长转换装置 440 之间的光路上,可以将波长转换装置 440 的出射光 L2 准直后出射至反射镜 420 。当然,在只考虑降低成本或者减小光学尺寸而不考虑光利用效率的情况下,也可以不使用收集透镜。
由于激光的光学扩展较小,光束截面积较小,反射镜 420 的面积较小就可以对激光进行反射,而波长转换装置 420 出射的混合光 L2 为朗伯分布,即使经过准直透镜 430 的准直,其截面积也较大,因此大部分的混合光 L2 会从反射镜 420 的周围区域穿过而被后续光学装置利用,而小部分会被反射镜 420 反射至第一光源 410 方向而损失。在本发明的其它实施方式中,第一光源 410 也可以是斜入射至波长转换装置 440 ,这样就不需要设置反射镜 420 。
由于荧光粉产生的受激光是朗伯分布,而激光是高斯分布,因此在传统的波长转换装置中,激光激发光经过高反射层的镜面反射后依然是高斯分布,尽管荧光粉层对激光激发光有一定的散射作用,但是荧光粉层的散射作用不足以使得激光激发光被散射成与受激光相同的朗伯分布,因此波长转换装置出射光中的激光激发光和受激光的混合并不均匀。而本实施例中的波长转换装置由于散射反射层的存在,未被吸收的部分激光激发光会被散射反射基底散射成朗伯分布,因此其与受激光的混合较均匀。
另外,发光装置中的合光装置 420 还可以是带通孔的反射镜,此时激光设置为垂直于波长转换装置入射,使得激光激发光透过通孔入射至波长转换装置,而波长转换装置的出射光将大部分被反射镜的通孔周围的区域反射而被利用,小部分透射通孔至第一光源而损失掉。
本实施例发光装置可以用于白光光源中,例如,激发光为蓝光激光,波长转换装置中包括黄光荧光粉,蓝光激光可以激发黄光荧光粉而产生黄光,黄光和剩余的蓝光由于都是朗伯分布,可以混合成较均匀的白光。当然,激光光源和波长转换材料都可以根据需要进行设计,并不仅限于这里的举例。
由于黄光中的红光波段的比例一般比较低,如果直接用于投影显示中,导致投影的画面中的红光成分的亮度比例偏低,显示效果较差,因此为了提高投影系统画面质量,可以在图 4 所示的实施例的发光装置中进行补充红光。图 5 为本发明的发光装置的又一个实施例的结构示意图,如图 5 所示,发光装置包括第一光源 510 、第二光源 520 、滤光片 530 、合光装置、收集透镜 560 ,波长转换装置 560 。
第一光源 510 可以出射第一颜色光 L1 ,具体地,第一光源为蓝光激光光源,第一颜色光 L1 为蓝光激光;第二光源 520 可以出射第二颜色光 L2 ,具体地,第二光源 520 为红光激光光源,第二颜色光 L2 为红光激光。
合光装置包括第一区域和环绕在第一区域周围的第二区域。在本实施例中,第一区域具体为反射镜 540 ,第二区域为环绕在反射镜周围的区域(图中未标示)。
第一颜色光 L1 和第二颜色光 L2 可以经过滤光片 530 合并成同一光路并入射至反射镜 540 (即合光装置的第一区域)。这里滤光片 530 利用第一颜色光 L1 和第二颜色光 L2 的波长不同进行合光,其可以透射红光而反射蓝光。当然,第一颜色光 L1 和第二颜色光 L2 还可以用其它方式合光,例如将滤光片 530 替换成偏振片,而同时设置第一颜色光 L1 和第二颜色光 L2 的偏振态不同,可以分别被偏振片反射和透射;甚至发光装置还可以不设置该滤光片 530 以及合光装置,而使得第一颜色光 L1 和第二颜色光 L2 直接以不同角度倾斜入射到波长转换装置 560 的第一表面 561 。
第一颜色光 L1 和第二颜色光 L2 的混合光 L3 被反射镜 540 反射至波长转换装置 560 的第一表面 561 。波长转换装置 560 包括黄光荧光粉,可以将第一颜色光 L1 部分吸收并转换为受激光,该受激光为黄光,未吸收的第一颜色光 L1 被散射反射后与受激光一同从第一表面 561 出射;波长转换装置 560 不能吸收第二颜色光,而将其散射反射后也从第一表面 561 出射。
波长转换装置 560 的出射光 L4 也将经过收集透镜 550 的准直后,大部分穿过反射镜 540 周围的区域(即合光装置的第二区域),小部分被反射镜 540 (合光装置的第一区域)反射而损失,发光装置得到混合比较均匀的白光。
本实施例中,红光激光经过波长转换装置的波长转换层时不会被黄色荧光粉吸收,小部分被荧光粉散射后从波长转换装置的第一表面出射,而绝大部分会入射到散射反射基底,被散射反射后也最终从波长转换装置的第一表面出射,而从第一表面出射的红光激光由高斯分布被转换为朗伯分布,相对于高反射层的反射后的红光激光的近似高斯分布的光分布,其与受激光的光分布相同更接近,二者混合地更加均匀。
值得说明的是,本实施例中,发光装置出射蓝光、黄光以及红光混合而成的白光。而当发光装置需要出射黄光时,可以设置蓝光激光基本全部被波长转换装置吸收,或者合光装置的第二区域为滤光片,并使得滤光片可以透射受激光和第二颜色光而反射第一颜色光即可。
本实施例中,反射镜 540 可以反射第一颜色光和第二颜色光,但同时也会反射受激光,造成这部分受激光的损失。为了提高受激光的出射效率,可以用透射受激光而反射第一颜色光和第二颜色光的滤光片替代反射镜。
另外,合光装置还可以是带通孔的滤光片,通孔为合光装置的第一区域,可以透射第一颜色光和第二颜色光以及受激光,滤光片的通孔以外的区域为第二区域,可以反射受激光、第一颜色光和第二颜色光,此时第一颜色光和第二颜色光从通孔入射至波长转换装置。为了,提高受激光的利用效率,通孔还可以覆盖一滤光片,该滤光片可以透射第一颜色光和第二颜色光而反射受激光。在出射光不需要第一颜色光出射的时候,也可以设置第二区域反射受激光和第二颜色光而透射第一颜色光。
实际上,在图 5 所示的发光装置中,发光装置中所需要补充的红光的比例较小,并不一定要先将红光和蓝光激光进行波长合光,而可以利用其它的合光方式以节省空间。图 6 为本发明的发光装置又一个实施例的结构示意图,如图 6 所示,发光装置包括第一光源 610 、第二光源 620 、合光装置 630 、收集透镜 640 、波长转换装置 650 。
本实施例中的发光装置与图 5 所示的发光装置的不同之处在于:
( 1 )第一光源 610 为蓝光激光光源,第二光源 620 为红光激光光源,并且第一光源 610 环绕排布在第二光源 620 的外围。第一光源 610 出射的第一颜色光 L1 为蓝光激光,第二光源 620 出射的第二颜色光 L2 为红光激光。
( 2 )与第一光源 610 和第二光源 620 的排布方式相对应地,发光装置中的合光装置 630 包括层叠设置的反射元件 632 和滤光片 631 ,反射元件 632 位于滤光片 631 的靠近波长转换装置 650 的表面的中间位置。反射元件 632 为第一区域,而滤光片 631 未被反射元件 632 覆盖的区域为第二区域。滤光片 631 可以反射蓝光而透射黄光和红光。第二颜色光 L2 入射至反射元件 632 并被反射元件 632 反射,由于需要补充的红光较少,红光激光光源中所包含的激光二极管的数量相对较少,反射元件 632 的面积可以相对滤光片 631 小很多。第一颜色光 L1 入射至滤光片 631 未被反射元件 632 覆盖的区域即第二区域,并被滤光片 631 反射。第一颜色光 L1 和第二颜色光 L2 都被合光装置 630 反射至收集透镜 640 并被聚焦至波长转换装置 650 的第一表面 651 。
与图 5 所示实施例中类似,蓝光激光 L1 会被波长转换装置 650 转换为朗伯分布的黄色受激光,红光激光 L2 会被波长转换装置 650 散射反射成朗伯分布,且黄色受激光和红光激光从第一表面 651 出射并形成均匀的混合光 L3 ,相对于波长转换装置的基板设置有高反射层而未设置散射反射层的情况,本实施例中的波长转换装置 650 出射的混合光 L3 更加均匀。而该混合光 L3 大部分将从合光装置的滤光片 631 上未被反射元件 632 覆盖的区域透射,小部分被反射元件 632 反射而损失掉。
这里的合光装置 630 中的反射元件 632 也可以用反射红光透射黄光的滤光片代替,可以提高对黄色受激光的利用率,该滤光片还可以根据需要设计透射或者反射未被吸收的第一颜色光。另外,合光装置 630 也可以采用区域镀膜形式实现,但是相对于本实施例中的两个元件层叠设置(例如利用光胶进行粘接)来说,工艺更加复杂,价格更高。
当然,容易理解的是,本实施例中的合光装置 632 也可以用带通孔的滤光片来代替,则通孔为第一区域,可以透射第一颜色光(蓝光)、第二颜色光(红光)以及黄色受激光,该滤光片通孔以外的区域为第二区域,可以透射蓝光而反射红光和黄光。此时第一颜色光和第二颜色光设置为垂直于波长转换装置入射,且使得第二颜色光透过通孔入射至波长转换装置,而第一颜色光将透过第二区域至波长转换装置。波长转换装置的出射光将大部分被滤光片的通孔周围的区域反射而被利用,小部分透射通孔至而损失掉。类似地,通孔区域可以设置一滤光片,该滤光片可以透射第二颜色光而反射黄色受激光以提高受激光的利用率,该滤光片还可以根据需要设计透射或者反射未被吸收的第一颜色光。
值得说明的是,相对于图 5 所示的实施例中的发光装置,本实施例中即使有未被吸收的蓝光从波长转换装置 650 出射,也不能透射合光装置 630 出射,因此发光装置出射的是黄光。为了实现了出射白光,发光装置还可以设置一与第一光源 610 波长不同的蓝光光源(图中未画出)与黄光进行合光。例如蓝光光源可以设置在与第一光源 610 和第二光源 620 相对的一侧,并使得蓝光光源的出射光沿与第一颜色光 L1 和第二颜色光 L2 的入射方向相反的方向入射至分光装置的滤光片 631 。该滤光片 631 具有反射蓝光光源出射光和第一光源出射的蓝光而透射红光和黄色受激光的光学性质,从而将黄色受激光、未被吸收的红光以及蓝光光源出射光合并成同一光路出射。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本发明实施例还提供一种投影系统,包括发光装置,该发光装置可以具有上述各实施例中的结构与功能。该投影系统可以采用各种投影技术,例如液晶显示器( LCD , Liquid Crystal Display )投影技术、数码光路处理器( DLP , Digital Light Processor )投影技术。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种波长转换装置,其特征在于,包括:
    波长转换层,包括相对的第一表面和第二表面,该第一表面用于接收激发光,所述波长转换层用于吸收该激发光以产生受激光,并将该受激光或者该受激光与激发光的混合光从所述第一表面和第二表面出射;
    与所述波长转换层层叠设置的散射反射基底,该散射反射基底包括白色多孔陶瓷或白色散射材料,该白色散射材料为盐类或者氧化物类;所述白色多孔陶瓷和白色散射材料用于对入射光进行散射,所述散射反射基底包括面向第二表面的第三表面,所述散射反射基底用于将所述第三表面的入射光至少部分散射后全部从所述第三表面出射至所述第二表面。
  2. 根据权利要求 1 所述的波长转换装置,其特征在于:所述波长转换装置还包括驱动装置,该驱动装置用于驱动所述波长转换层与散射反射基底运动,以使得所述激发光入射在所述波长转换层上的光斑沿预定路径作用于该波长转换层。
  3. 根据权利要求 1 所述的波长转换装置,其特征在于:所述散射反射基底包括白色多孔陶瓷板。
  4. 根据权利要求 3 所述的波长转换装置,其特征在于:所述白色多孔陶瓷板的气孔孔径小于等于 1 微米。
  5. 根据权利要求 3 所述的波长转换装置,其特征在于:所述散射反射基底还包括金属板,该金属板位于所述白色多孔陶瓷板背向所述波长转换层的表面并与该表面紧密接触。
  6. 根据权利要求 1 所述的波长转换装置,其特征在于:所述散射反射基底包括层叠设置的散射反射层和基板,所述散射反射层包括白色散射材料,位于所述基板和波长转换层之间,且固定在所述基板上,所述散射反射层面向所述波长转换层的表面为所述散射反射基底的第三表面,所述散射反射层用于将该第三表面的入射光全部散射并将散射后的光全部从所述第三表面出射。
  7. 根据权利要求 1 所述的波长转换装置,其特征在于:所述散射反射基底包括层叠设置的散射反射层和基板;
    所述散射反射层包括白色散射材料,位于所述基板和波长转换层之间,且固定在所述基板上,所述散射反射层靠近所述波长转换层的表面为所述散射反射基底的第三表面,所述散射反射层与该第三表面相对的表面为第四表面,所述散射反射层用于将该第三表面的入射光部分散射并将散射后的光从所述第三表面和第四表面出射,且将所述第三表面的入射光的剩余部分从所述第四表面透射;
    所述基板为一镜面反射板,用于将从所述散射反射层的第四表面入射至该反射板的光反射回该第四表面。
  8. 根据权利要求 7 所述的波长转换装置,其特征在于:所述镜面反射板的反射率为 R ,所述散射反射层用于将所述第三表面的入射光部分散射并将散射后的光从所述第三表面和第四表面出射,且散射后并从所述第三表面出射的光占所述第三表面的入射光的比例为 P ,且( 1−R )( 1−P ) ≤ 10% ,其中 R ≥ 50% 。
  9. 根据权利要求 6 或者 7 所述的波长转换装置,其特征在于:所述波长转换层包括第一玻璃材料和波长转换材料,所述散射反射层包括第二玻璃材料和白色散射材料,且所述第一玻璃材料的熔点低于所述第二玻璃材料的熔点。
  10. 根据权利要求 1 所述的波长转换装置,其特征在于:所述波长转换层包括波长转换材料和无机粘接剂,所述无机粘接剂用于将所述波长转换材料粘接成一体。
  11. 一种发光装置,其特征在于,包括第一光源和如权利要求 1 至 10 任一项所述的波长转换装置,所述波长转换装置的第一表面接收的所述激发光来自于第一光源。
  12. 根据权利要求 11 所述的发光装置,其特征在于,所述第一光源为激光光源,该激光光源用于出射激光激发光至所述波长转换装置的第一表面,所述波长转换装置用于接收所述激光激发光,并将该激光激发光部分转换为受激光且将未被吸收的激光激发光散射反射,所述受激光与所述剩余部分激光激发光从所述第一表面出射。
  13. 根据权利要求 11 所述的发光装置,其特征在于,所述发光装置还包括第二光源和合光装置;
    所述第一光源为激光光源,用于出射第一颜色光;所述第二光源为激光光源,用于出射第二颜色光;所述第一颜色光为所述激发光;
    所述合光装置包括第一区域和环绕在第一区域周围的第二区域,所述第一颜色光和第二颜色光从同一方向入射至所述合光装置的第一区域;
    所述第一区域具有透射第一颜色光和第二颜色光的光学性质,且所述第二区域具有反射所述受激光和第二颜色光的光学性质,所述第一颜色光和第二颜色光被第一区域透射至所述波长转换装置的第一表面;或者,
    所述第一区域具有反射第一颜色光和第二颜色光的光学性质,且所述第二区域具有透射所述受激光和第二颜色光的光学性质,所述第一颜色光和第二颜色光被第一区域反射至所述波长转换装置的第一表面;
    所述受激光或者受激光与未被吸收的第一颜色光的混合光从所述第一表面出射至所述合光装置;所述波长转换装置不吸收所述第二颜色光,并将所述第二颜色光散射反射后从所述第一表面出射至所述合光装置。
  14. 根据权利要求 11 所述的发光装置,其特征在于,发光装置还包括第二光源和合光装置;
    所述第一光源环绕在所述第二光源的周围;所述第一光源用于出射第一颜色光;所述第二光源为激光光源,用于出射第二颜色光;所述第一颜色光为所述激发光;
    所述合光装置包括第一区域和环绕在所述第一区域周围的第二区域,所述第一颜色光和第二颜色光从同一方向分别入射至所述合光装置的第二区域和第一区域;
    所述第一区域具有反射第二颜色光的光学性质,且所述第二区域具有反射第一颜色光而透射第二颜色光和受激光的光学性质,所述第一颜色光和第二颜色光分别被第二区域与第一区域反射至所述波长转换装置的第一表面;或者,
    所述第一区域具有透射第二颜色光的光学性质,且所述第二区域具有透射第一颜色光而反射第二颜色光和受激光的光学性质,所述第一颜色光和第二颜色光分别被第二区域与第一区域透射至所述波长转换装置的第一表面;
    所述受激光或者受激光与未被吸收的第一颜色光的混合光从所述第一表面出射至所述合光装置,所述波长转换装置不吸收所述第二颜色光,并将所述第二颜色光散射反射后从所述第一表面出射至所述合光装置。
  15. 一种投影系统,其特征在于,包括如权利要求 11 至 14 任一项所述的发光装置。
PCT/CN2014/072789 2013-03-05 2014-03-03 一种波长转换装置、发光装置及投影系统 WO2014135041A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015560534A JP6317373B2 (ja) 2013-03-05 2014-03-03 波長変換装置、発光装置及び投影システム
KR1020157023551A KR20150113144A (ko) 2013-03-05 2014-03-03 파장 변환 장치, 발광 장치 및 프로젝션 시스템
KR1020177019360A KR102066153B1 (ko) 2013-03-05 2014-03-03 파장 변환 장치, 발광 장치 및 프로젝션 시스템
EP14760724.6A EP2966698B1 (en) 2013-03-05 2014-03-03 Wavelength conversion device, light-emitting device and projection system
US14/770,027 US10203591B2 (en) 2013-03-05 2014-03-03 Wavelength conversion device, light-emitting device and projection system
US16/273,142 US10670951B2 (en) 2013-03-05 2019-02-11 Wavelength conversion device, light-emitting device and projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310069688.4 2013-03-05
CN201310069688.4A CN103968332B (zh) 2013-01-25 2013-03-05 一种波长转换装置、发光装置及投影系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/770,027 A-371-Of-International US10203591B2 (en) 2013-03-05 2014-03-03 Wavelength conversion device, light-emitting device and projection system
US16/273,142 Continuation US10670951B2 (en) 2013-03-05 2019-02-11 Wavelength conversion device, light-emitting device and projection system

Publications (1)

Publication Number Publication Date
WO2014135041A1 true WO2014135041A1 (zh) 2014-09-12

Family

ID=51490701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072789 WO2014135041A1 (zh) 2013-03-05 2014-03-03 一种波长转换装置、发光装置及投影系统

Country Status (7)

Country Link
US (2) US10203591B2 (zh)
EP (1) EP2966698B1 (zh)
JP (2) JP6317373B2 (zh)
KR (2) KR102066153B1 (zh)
CN (1) CN103968332B (zh)
TW (1) TWI515506B (zh)
WO (1) WO2014135041A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121586A (ja) * 2013-12-20 2015-07-02 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
EP3280952A4 (en) * 2015-04-07 2018-11-07 Materion Corporation Optically enhanced solid-state light converters
CN110737086A (zh) * 2018-07-19 2020-01-31 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法以及投影装置

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104100933B (zh) * 2013-04-04 2016-08-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置及其制作方法、相关发光装置
TWI547750B (zh) * 2014-10-13 2016-09-01 台達電子工業股份有限公司 光波長轉換裝置及其適用之光源系統
JP2016081054A (ja) * 2014-10-13 2016-05-16 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. 光波長変換デバイス及びこれを用いた照明システム
JP2016099558A (ja) * 2014-11-25 2016-05-30 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクターおよび波長変換素子の製造方法
KR102294317B1 (ko) * 2015-01-30 2021-08-26 엘지이노텍 주식회사 발광 장치
JP6613583B2 (ja) * 2015-03-13 2019-12-04 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
CN204694983U (zh) * 2015-04-29 2015-10-07 深圳市光峰光电技术有限公司 波长转化装置、光源系统和投影设备
CN106287580A (zh) * 2015-06-02 2017-01-04 深圳市光峰光电技术有限公司 波长转换装置及其制备方法、相关发光装置和投影系统
CN106371272B (zh) * 2015-07-20 2019-04-23 深圳光峰科技股份有限公司 合光的控制系统及投影机
CN106449947A (zh) * 2015-08-11 2017-02-22 台达电子工业股份有限公司 波长转换装置
JP6680868B2 (ja) 2015-08-17 2020-04-15 インフィニット アースロスコピー インコーポレーテッド, リミテッド 光源
TWI584044B (zh) * 2015-08-21 2017-05-21 台達電子工業股份有限公司 螢光色輪與應用其的波長轉換裝置
CN105090894B (zh) * 2015-08-21 2017-03-01 杨毅 波长转换装置和发光装置
TWI579589B (zh) * 2015-08-31 2017-04-21 中強光電股份有限公司 波長轉換裝置及投影機
TWI661151B (zh) * 2015-10-09 2019-06-01 日商松下知識產權經營股份有限公司 波長轉換裝置及照明裝置
US10840420B2 (en) * 2015-10-30 2020-11-17 Nichia Corporation Method for manufacturing light emitting device
US11330963B2 (en) 2015-11-16 2022-05-17 Lazurite Holdings Llc Wireless medical imaging system
TWI557483B (zh) * 2015-11-18 2016-11-11 友達光電股份有限公司 顯示裝置
TWI605295B (zh) 2015-12-02 2017-11-11 中強光電股份有限公司 投影機及波長轉換裝置
CN107203088B (zh) * 2016-03-18 2019-10-22 中强光电股份有限公司 波长转换结构与投影装置
CN205720746U (zh) * 2016-04-22 2016-11-23 深圳市绎立锐光科技开发有限公司 一种反射装置及相关波长转换装置、色轮和光源系统
KR102525592B1 (ko) * 2016-04-25 2023-05-03 엘지이노텍 주식회사 조명장치
CN106704866A (zh) * 2016-07-11 2017-05-24 广州市新晶瓷材料科技有限公司 受激光激发转化成白光的方法、装置及其应用
JP2018013670A (ja) * 2016-07-22 2018-01-25 日本電気硝子株式会社 波長変換部材及びそれを用いた発光デバイス
CN108267914B (zh) * 2016-12-30 2022-01-11 中强光电股份有限公司 波长转换装置及其投影机
CN110168418B (zh) * 2017-01-18 2021-12-14 日本碍子株式会社 光学部件以及照明装置
ES2955917T3 (es) 2017-02-15 2023-12-11 Lazurite Holdings Llc Sistema médico inalámbrico de formación de imágenes que comprende unidad de cabezal y cable de luz que comprende fuente luminosa integrada
CN108535943B (zh) * 2017-03-03 2021-07-06 深圳光峰科技股份有限公司 一种光源装置及其投影显示系统
CN108730922B (zh) * 2017-04-14 2024-03-19 广东中晶激光照明技术有限公司 一种激光发生装置及其实现方法
CN108803213B (zh) 2017-04-27 2021-03-19 中强光电股份有限公司 波长转换滤光模块以及照明系统
CN107255865A (zh) * 2017-06-03 2017-10-17 上海午井光电科技有限公司 荧光色轮
CN107166179A (zh) * 2017-06-14 2017-09-15 杨毅 灯具
CN206946178U (zh) * 2017-06-29 2018-01-30 深圳市光峰光电技术有限公司 波长转换装置及光源系统
CN109217100B (zh) * 2017-07-05 2021-03-05 深圳光峰科技股份有限公司 荧光芯片及其制造方法
CN109424941B (zh) * 2017-07-05 2020-10-16 深圳光峰科技股份有限公司 波长转换装置和激光荧光转换型光源
CN109298585A (zh) * 2017-07-24 2019-02-01 无锡视美乐激光显示科技有限公司 一种光波长转换设备及方法
JP7107319B2 (ja) * 2017-08-17 2022-07-27 ソニーグループ株式会社 光源装置および投射型表示装置
CN107315312B (zh) * 2017-08-18 2020-10-09 广景视睿科技(深圳)有限公司 一种投影激光光源
JP7271516B2 (ja) 2017-09-20 2023-05-11 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド 無機結合剤を伴う蛍光体ホイール
CN109782516B (zh) 2017-11-15 2021-10-22 中强光电股份有限公司 投影机及波长转换元件
CN109991798B (zh) * 2017-12-29 2022-01-25 中强光电股份有限公司 投影装置以及光源装置
CN110017434A (zh) * 2018-01-10 2019-07-16 深圳光峰科技股份有限公司 波长转换装置及其光源
JP2019133080A (ja) 2018-02-02 2019-08-08 マクセル株式会社 プロジェクタ
CN108761981B (zh) * 2018-04-28 2020-10-20 苏州佳世达光电有限公司 投影机
CN110440150A (zh) * 2018-05-04 2019-11-12 上海午井光电科技有限公司 设有双光源的反射式激光照明系统
CN110471244A (zh) 2018-05-10 2019-11-19 中强光电股份有限公司 照明系统及投影装置
CN112585240A (zh) * 2018-07-27 2021-03-30 美题隆公司 用于荧光体照明系统的反射颜色校正
US11131433B2 (en) 2018-08-20 2021-09-28 Nichia Corporation Fluorescent module and illumination device
CN111089231B (zh) * 2018-10-23 2022-08-19 深圳市绎立锐光科技开发有限公司 光源装置
CN111103748A (zh) * 2018-10-29 2020-05-05 深圳光峰科技股份有限公司 波长转换装置及光源系统
CN111722465A (zh) * 2019-03-20 2020-09-29 株式会社理光 光源装置、图像投影装置和光源光学系统
JP2022529878A (ja) * 2019-04-19 2022-06-27 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド 波長変換装置用の高温耐性反射層
JP6954329B2 (ja) * 2019-06-25 2021-10-27 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター
CN112180661B (zh) * 2019-07-04 2022-08-02 无锡视美乐激光显示科技有限公司 一种散射调整装置、光源及投影系统
CN110376835B (zh) * 2019-07-19 2021-01-26 四川长虹电器股份有限公司 一种激光投影光源
CN112443818B (zh) * 2019-08-30 2023-04-28 深圳市中光工业技术研究院 光源系统及照明装置
CN112578552A (zh) * 2019-09-30 2021-03-30 台达电子工业股份有限公司 波长转换装置
WO2021106495A1 (ja) 2019-11-28 2021-06-03 工機ホールディングス株式会社 打込機
USD938584S1 (en) 2020-03-30 2021-12-14 Lazurite Holdings Llc Hand piece
USD972176S1 (en) 2020-08-06 2022-12-06 Lazurite Holdings Llc Light source
CN112178591A (zh) * 2020-09-18 2021-01-05 广州光联电子科技有限公司 一种激光用波长转换装置的制备方法及波长转换装置
CN114563906B (zh) * 2020-11-27 2024-03-01 株式会社理光 光源光学系统,光源单元,光源装置以及图像显示装置
CN113204159A (zh) * 2021-05-17 2021-08-03 扬州吉新光电有限公司 一种红绿光增强的激光光源装置及波长转换层材料
CN113603462B (zh) * 2021-07-20 2022-08-26 中国计量大学 一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084440A1 (de) * 2010-12-21 2012-06-28 Osram Ag Herstellung von leuchtstoffschichten unter verwendung von alkalisilikaten
CN202351606U (zh) * 2011-11-21 2012-07-25 深圳市光峰光电技术有限公司 光源系统及投影装置
CN102645826A (zh) * 2011-11-10 2012-08-22 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN102709449A (zh) * 2011-10-25 2012-10-03 深圳市光峰光电技术有限公司 荧光粉片层、荧光粉色轮及使用该荧光粉片层的光源
CN102782089A (zh) * 2010-02-04 2012-11-14 日东电工株式会社 发光陶瓷层压制件及其制造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273798A (ja) * 2003-03-10 2004-09-30 Toyoda Gosei Co Ltd 発光デバイス
JP4134155B2 (ja) * 2005-11-24 2008-08-13 Tdk株式会社 発光装置
JP4688633B2 (ja) * 2005-10-27 2011-05-25 京セラ株式会社 光反射体、発光素子搭載用配線基板、および発光装置
KR100891824B1 (ko) * 2007-12-06 2009-04-07 삼성전기주식회사 적층 세라믹 패키지
RU2481672C2 (ru) 2007-12-11 2013-05-10 Конинклейке Филипс Электроникс Н.В. Устройство для бокового излучения с гибридным верхним отражателем
WO2009082011A1 (ja) * 2007-12-26 2009-07-02 Kyocera Corporation 発光装置および照明装置
JP5670745B2 (ja) * 2008-01-15 2015-02-18 コーニンクレッカ フィリップス エヌ ヴェ Led用の光学セラミックにおける、制御された多孔による光の散乱
RU2010143026A (ru) * 2008-03-21 2012-04-27 Конинклейке Филипс Элкектроникс Н.В. (Nl) Светящееся устройство
ES2667009T3 (es) * 2008-07-22 2018-05-09 Philips Lighting Holding B.V. Un elemento óptico para un dispositivo de emisión de luz y un método de fabricación del mismo
WO2010021089A1 (ja) * 2008-08-21 2010-02-25 パナソニック株式会社 照明用光源
JP4900736B2 (ja) 2009-03-31 2012-03-21 カシオ計算機株式会社 光源装置及びプロジェクタ
US9067604B2 (en) 2009-08-18 2015-06-30 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP5530165B2 (ja) * 2009-12-17 2014-06-25 スタンレー電気株式会社 光源装置および照明装置
JP5671666B2 (ja) * 2010-02-12 2015-02-18 日立マクセル株式会社 固体光源装置及び投射型表示装置
JP5510646B2 (ja) * 2010-03-18 2014-06-04 スタンレー電気株式会社 車両用灯具
JP2012008177A (ja) * 2010-06-22 2012-01-12 Seiko Epson Corp 蛍光体ホイールおよびプロジェクター
US9062853B2 (en) * 2010-07-12 2015-06-23 National University Corporation Nagoya University Broadband infrared light emitting device
JP2012108486A (ja) 2010-10-21 2012-06-07 Panasonic Corp 光源装置および画像表示装置
JP5700522B2 (ja) * 2010-12-28 2015-04-15 三ツ星ベルト株式会社 反射性基板の製造方法
JP2012185980A (ja) * 2011-03-04 2012-09-27 Nippon Electric Glass Co Ltd 波長変換素子、それを備える光源およびその製造方法
KR20120113115A (ko) 2011-04-04 2012-10-12 엘지전자 주식회사 광원 장치 및 그 제조 방법
JP2012243624A (ja) * 2011-05-20 2012-12-10 Stanley Electric Co Ltd 光源装置および照明装置
JP5261543B2 (ja) * 2011-06-30 2013-08-14 シャープ株式会社 レーザ光利用装置および車両用前照灯
CN102563410B (zh) * 2011-12-04 2014-08-06 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置
JP2013130605A (ja) * 2011-12-20 2013-07-04 Panasonic Corp 光源装置及びプロジェクタ
JP6063126B2 (ja) * 2012-01-10 2017-01-18 日本電気硝子株式会社 波長変換部材、発光デバイス及び波長変換部材の製造方法
CN102606980A (zh) * 2012-03-05 2012-07-25 昆山市诚泰电气股份有限公司 反射板
CN102606981A (zh) * 2012-03-30 2012-07-25 昆山市诚泰电气股份有限公司 反射片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782089A (zh) * 2010-02-04 2012-11-14 日东电工株式会社 发光陶瓷层压制件及其制造方法
WO2012084440A1 (de) * 2010-12-21 2012-06-28 Osram Ag Herstellung von leuchtstoffschichten unter verwendung von alkalisilikaten
CN102709449A (zh) * 2011-10-25 2012-10-03 深圳市光峰光电技术有限公司 荧光粉片层、荧光粉色轮及使用该荧光粉片层的光源
CN102645826A (zh) * 2011-11-10 2012-08-22 深圳市光峰光电技术有限公司 一种光源系统、照明装置及投影装置
CN202351606U (zh) * 2011-11-21 2012-07-25 深圳市光峰光电技术有限公司 光源系统及投影装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121586A (ja) * 2013-12-20 2015-07-02 日本電気硝子株式会社 プロジェクター用蛍光ホイール、その製造方法及びプロジェクター用発光デバイス
EP3280952A4 (en) * 2015-04-07 2018-11-07 Materion Corporation Optically enhanced solid-state light converters
US10353280B2 (en) 2015-04-07 2019-07-16 Materion Corporation Optically enhanced solid-state light converters
CN110737086A (zh) * 2018-07-19 2020-01-31 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法以及投影装置
CN110737086B (zh) * 2018-07-19 2022-11-22 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法以及投影装置

Also Published As

Publication number Publication date
US20160004147A1 (en) 2016-01-07
TW201435469A (zh) 2014-09-16
KR20170085605A (ko) 2017-07-24
CN103968332A (zh) 2014-08-06
JP6786546B2 (ja) 2020-11-18
TWI515506B (zh) 2016-01-01
CN103968332B (zh) 2015-10-07
US10203591B2 (en) 2019-02-12
EP2966698B1 (en) 2020-04-01
US20190258147A1 (en) 2019-08-22
JP2018141986A (ja) 2018-09-13
JP6317373B2 (ja) 2018-04-25
JP2016512340A (ja) 2016-04-25
KR20150113144A (ko) 2015-10-07
KR102066153B1 (ko) 2020-01-14
US10670951B2 (en) 2020-06-02
EP2966698A4 (en) 2016-10-05
EP2966698A1 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2014135041A1 (zh) 一种波长转换装置、发光装置及投影系统
TWI632323B (zh) 波長轉換裝置及其製備方法
US9028106B2 (en) Light-emitting device, illuminating device, vehicle headlamp, and method for producing light-emitting device
TWI546499B (zh) 一種波長轉換裝置
WO2014135040A1 (zh) 发光装置及相关投影系统
CN105738994B (zh) 波长转换装置及相关照明装置、荧光色轮和投影装置
CN204879969U (zh) 波长转换装置、光源系统和投影系统
JP2012089316A (ja) 光源装置および照明装置
TWI697728B (zh) 投影機及波長轉換裝置
WO2020015363A1 (zh) 波长转换装置
WO2019136830A1 (zh) 波长转换装置
JP2012129135A (ja) 光源装置、照明装置、蛍光体層作製方法
JP2011171504A (ja) 発光装置
TWI634380B (zh) 色輪模組與光源模組
WO2016173526A1 (zh) 波长转化装置、光源系统和投影设备
CN113701125A (zh) 透射式波长转换装置及其发光装置
CN111367139A (zh) 荧光组件以及激光投影仪
CN111338168A (zh) 光源装置、光源装置的驱动方法以及投影仪
WO2021208668A1 (zh) 光源装置、光源装置的驱动方法以及投影仪
CN103836349B (zh) 发光装置
WO2019205737A1 (zh) 光源系统
WO2019136831A1 (zh) 波长转换装置及其光源
JP2011134485A (ja) 発光装置
CN110837198A (zh) 波长转换部件及激光光源
WO2019144545A1 (zh) 一种波长转换装置、发光组件及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14770027

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157023551

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014760724

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015560534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE