JP4134155B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP4134155B2
JP4134155B2 JP2005339183A JP2005339183A JP4134155B2 JP 4134155 B2 JP4134155 B2 JP 4134155B2 JP 2005339183 A JP2005339183 A JP 2005339183A JP 2005339183 A JP2005339183 A JP 2005339183A JP 4134155 B2 JP4134155 B2 JP 4134155B2
Authority
JP
Japan
Prior art keywords
light emitting
varistor
layer
reflective layer
multilayer chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005339183A
Other languages
English (en)
Other versions
JP2007149776A (ja
Inventor
實雄 金澤
洋 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005339183A priority Critical patent/JP4134155B2/ja
Priority to US11/515,195 priority patent/US7671468B2/en
Priority to TW095136324A priority patent/TWI311823B/zh
Publication of JP2007149776A publication Critical patent/JP2007149776A/ja
Application granted granted Critical
Publication of JP4134155B2 publication Critical patent/JP4134155B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、半導体発光素子と積層型チップバリスタとを備える発光装置に関する。
従来の発光装置として、半導体発光素子と、該半導体発光素子に並列接続されたバリスタとを備えるものが知られている(例えば、特許文献1参照)。特許文献1に記載された発光装置では、半導体発光素子の周囲に光反射板が配置されている。
特開2001−15815号公報
特許文献1記載の発光装置では、半導体発光素子の周囲に、光反射板を配置するためのスペースを確保しなければならない。そのため、発光装置全体の小型化を図ることが難しい。しかしながら、小型化を図るために光反射板を配置しないとした場合には、発光効率が低下してしまう。
そこで、本発明は、発光効率が高く、且つ、小型化が可能な発光装置を提供することを課題とする。
本発明に係る発光装置は、バリスタ層と、該バリスタ層を挟むように対向配置される複数の内部電極とを含むバリスタ素体と、を有する積層型チップバリスタと、積層型チップバリスタ上に配されると共に、該積層型チップバリスタに並列接続されるように複数の内部電極に電気的に接続された半導体発光素子と、積層型チップバリスタと半導体発光素子との間に配されると共に、半導体発光素子が発生した光を反射する反射部と、を備え、反射部が、入射した光を拡散反射する第1の反射層と、第1の反射層と積層型チップバリスタとの間に配されると共に、入射した光を正反射する第2の反射層と、を有する。
本発明に係る発光装置では、反射部を積層型チップバリスタと半導体発光素子との間に配置するので、反射部が、半導体発光素子が発生した光のうち積層型チップバリスタに向かって進む光を反射する。このとき、反射部が第1の反射層と第2の反射層とを有するので、半導体発光素子から積層型チップバリスタに向かって進む光は、第1の反射層に入射し、拡散反射される。そして、第1の反射層を通過した光は、第2の反射層で正反射される。したがって、反射部が第1の反射層と第2の反射層とを有することにより、極めて高い発光効率を得ることができる。また、反射部の配置位置が積層型チップバリスタと半導体発光素子との間であるので、半導体発光素子の周囲に特別なスペースを確保する必要がなくなる。したがって、発光装置全体の小型化が可能となる。
好ましくは、第1の反射層が、金属が分散されたガラス層である。この場合、第1の反射層が電気絶縁性を有することとなり、積層型チップバリスタでのショートの発生を抑制することができる。また、第1の反射層がガラス層であるので、第1の反射層を耐熱性に優れたものとすることができる。ガラス層には金属が分散されているので、入射した光を確実に拡散反射することができる。また、ガラス層に金属が分散されているので、第1の反射層の熱伝導率が比較的良好となり、半導体発光素子からの熱を効率よく放散することができる。
好ましくは、第1の反射層が、金属酸化物が分散されたガラス層である。この場合、第1の反射層が電気絶縁性を有することとなり、積層型チップバリスタでのショートの発生を抑制することができる。また、第1の反射層がガラス層であるので、第1の反射層を耐熱性に優れたものとすることができる。ガラス層には金属酸化物が分散されているので、入射した光を確実に拡散反射することができると共に、第1の反射層の電気絶縁性をより一層高めることができる。また、金属酸化物はガラス中での分散性が良いため、金属酸化物が均一に分散することとなり、第1の反射層の特性ばらつきが少なくなる。また、第1の反射層がガラスと金属酸化物とを含むことにより、熱膨張係数が比較的小さくなる。このため、第1の反射層をひずみや割れ、クラックが生じにくいものとすることができる。
好ましくは、第1の反射層が、金属酸化物で被覆された金属が分散されたガラス層である。この場合、第1の反射層が電気絶縁性を有することとなり、積層型チップバリスタでのショートの発生を抑制することができる。また、第1の反射層がガラス層であるので、第1の反射層を耐熱性に優れたものとすることができる。金属が金属酸化物で被覆されているので、ガラス中における金属の分散性を向上させることができると共に、反射効率を低下させずに第1の反射層の電気絶縁性をいっそう高めることができる。
好ましくは、金属が、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属である。Ag、Al、Ti、Niは他の一般的な金属と比較して反射率が高いため、第1の反射層の反射効率を向上させることができる。したがって、発光効率をより高めることができる。
好ましくは、金属酸化物が、Al、TiO、SiO、及びZrOからなる群より選ばれる一種以上の金属酸化物である。Al、TiO、SiO、及びZrOは他の一般的な金属酸化物と比較して反射率が高いため、第1の反射層の反射効率をより高めることができる。
好ましくは、第2の反射層は、金属層である。この場合、第1の反射層を通過した光を確実に正反射することができる。
好ましくは、金属層が、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属からなる。Ag、Al、Ti、Niは他の一般的な金属と比較して反射率が高いため、第2の反射層の反射効率を向上させることができる。したがって、発光効率をより高めることができる。
ところで、本発明者等の調査研究の結果、バリスタ層と当該バリスタ層を挟むように対向配置される複数の内部電極とを有するバリスタ素体の熱伝導率に関して、以下の事実が新たに判明した。上記バリスタ素体では、複数の内部電極の対向方向での熱伝導率よりも、該対向方向に直交する方向での熱伝導率が大きい。これは、各内部電極が、複数の内部電極の対向方向に直交する方向に伸びていることに起因するものと推測され、内部電極に平行な方向に熱が伝わり易い。従って、バリスタ素体の外表面のうち複数の内部電極の対向方向に平行な方向に伸びる外表面が、バリスタ素体の外表面のうち複数の内部電極の対向方向に交差する方向に伸びる外表面よりも多く熱を放散する。
かかる事実を踏まえ、好ましくは、第2の反射層が、バリスタ素体の外表面のうち複数の内部電極の対向方向に平行な方向に伸びる一の外表面に形成され、第1の反射層が、第2の反射層を覆うように該第2の反射層上に形成されている。この場合、半導体発光素子において発生した熱を効率よくバリスタ素体に伝え、放散することができる。この結果、半導体発光素子の特性劣化を抑制することができる。
好ましくは、第2の反射層が、互いに電気的に絶縁された複数の金属層からなり、複数の金属層が、複数の内部電極のうち対応する内部電極にそれぞれ接続されると共に、第1の反射層を貫通するように設けられた導体を通して該第1の反射層上に形成された複数のパッド電極にそれぞれ接続されている。この場合、第2の反射層が積層型チップバリスタと半導体発光素子との間の電流経路の一部を形成することとなる。この結果、反射部を積層型チップバリスタと半導体発光素子との間に配置した構成であっても、積層型チップバリスタと半導体発光素子との確実な電気的接続を極めて簡素な構成で実現することができる。
好ましくは、半導体発光素子が、複数のパッド電極に接続されている。
本発明によれば、発光効率が高く、且つ、小型化が可能な発光装置を提供することができる。
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
図1〜図4を参照して、本実施形態に係る発光装置LEの構成を説明する。図1は、本実施形態に係る発光装置を示す斜視図である。図2は、本実施形態に係る発光装置の断面構成を説明するための図である。図3は、本実施形態に係る発光装置に含まれる反射部及び積層型チップバリスタを示す上面図である。図4は、本実施形態に係る発光装置に含まれる積層型チップバリスタを示す下面図である。
発光装置LEは、図1及び図2に示されるように、半導体発光素子1と、積層型チップバリスタ11と、反射部51を備える。半導体発光素子1は、積層型チップバリスタ11の上方に配されている。反射部51は、半導体発光素子1と積層型チップバリスタ11との間に配されている。半導体発光素子1は、蛍光体微粒子入りのシリコーン樹脂によって覆われていてもよい。
まず、積層型チップバリスタ11の構成について説明する。積層型チップバリスタ11は、略直方体形状とされたバリスタ素体21と、複数(本実施形態においては、一対)の外部電極13,14と、を備えている。
バリスタ素体21は、電圧非直線特性(以下、「バリスタ特性」と称する)を発現する複数のバリスタ層と、それぞれ複数の第1の内部電極31及び第2の内部電極41とが積層された積層体として構成されている。第1の内部電極31と第2の内部電極41とは、バリスタ素体21内においてバリスタ層の積層方向(以下、単に「積層方向」と称する。)に沿って互い違いにそれぞれ複数層配置されている。
第1の内部電極31と第2の内部電極41とは、互いの間に少なくとも一層のバリスタ層を挟むように対向配置されている。バリスタ素体21の一対の主面(外表面)23,25は、バリスタ層の積層方向に平行な方向及びバリスタ層に平行な方向に伸びている。すなわち、一対の主面23,25は、第1及び第2の内部電極31,41の対向方向に平行な方向に伸びており、第1の内部電極31及び第2の内部電極41と直交する。第1の内部電極31と第2の内部電極41とは、バリスタ層の積層方向に沿って併置されている。実際の積層型チップバリスタ11では、複数のバリスタ層は、互いの間の境界が視認できない程度に一体化されている。
バリスタ層は、ZnO(酸化亜鉛)を主成分として含むと共に、副成分として、Co、希土類金属元素又はBiを含む素体からなる。更に、IIIb族元素(B、Al、Ga、In)、Si、Cr、Mo、アルカリ金属元素(K、Rb、Cs)及びアルカリ土類金属元素(Mg、Ca、Sr、Ba)等の金属単体やこれらの酸化物を含む。本実施形態において、バリスタ層は、副成分としてPr、Co、Cr、Ca、Si、K、Al等を含んでいる。
本実施形態では、希土類金属として、Prを用いている。Prは、バリスタ特性を発現させるための材料となる。Prを用いる理由は、電圧非直線性に優れ、また、量産時での特性ばらつきが少ないためである。バリスタ層におけるZnOの含有量は、特に限定されないが、バリスタ層を構成する全体の材料を100質量%とした場合に、通常、99.8〜69.0質量%である。バリスタ層の厚みは、例えば5〜60μm程度である。
一対の外部電極13,14は、図4にも示されるように、バリスタ素体21の他方の主面25にそれぞれ形成されている。バリスタ素体21は、例えば、縦が0.5〜2.0mm程度に設定され、横が0.5〜2.0mm程度に設定され、厚みが0.3mm程度に設定されている。外部電極13は、積層型チップバリスタ11の入力端子電極として機能し、外部電極14は、積層型チップバリスタ11の出力端子電極として機能する。
第1の内部電極31は、第1の電極部分32と、第2の電極部分33と、第3の電極部分34と、を含んでいる。第3の電極部分34は、積層方向から見て、後述する第2の内部電極41の第4の電極部分45と互いに重なり合う。第3の電極部分34は、略矩形状を呈している。
第2の電極部分33は、第3の電極部分34から他方の主面25に露出するように引き出されており、引き出し導体として機能する。第2の電極部分33は、外部電極13に物理的及び電気的に接続されている。第1の電極部分32は、第3の電極部分34から一方の主面23に露出するように引き出されており、引き出し導体として機能する。第3の電極部分34は、第2の電極部分33を通して外部電極13に電気的に接続されている。第1の電極部分32及び第2の電極部分33は、第3の電極部分34と一体に形成されている。
第2の内部電極41は、第1の電極部分42と、第2の電極部分43と、第3の電極部分44と、第4の電極部分45と、を含んでいる。第4の電極部分45は、積層方向から見て、第1の内部電極31の第3の電極部分34と互いに重なり合う。第4の電極部分45は、略矩形状を呈している。
第3の電極部分44は、第4の電極部分45から他方の主面25に露出するように引き出されており、引き出し導体として機能する。第3の電極部分44は、外部電極14に物理的及び電気的に接続されている。第1の電極部分42及び第2の電極部分43は、第4の電極部分45から一方の主面23に露出するように引き出されており、引き出し導体として機能する。第4の電極部分45は、第3の電極部分44を通して外部電極14に電気的に接続されている。第1の電極部分42、第2の電極部分43、及び第3の電極部分34は、第4の電極部分45と一体に形成されている。
第1及び第2の内部電極31,41は導電材を含んでいる。第1及び第2の内部電極31,41に含まれる導電材としては、特に限定されないが、PdまたはAg−Pd合金またはAgからなることが好ましい。第1及び第2の内部電極31,41の厚みは、例えば0.5〜5μm程度である。
外部電極13と外部電極14とは、他方の主面25上において、バリスタ層の積層方向に垂直且つ一方の主面23に平行な方向に所定の間隔を有して配されている。外部電極13,14は、矩形状を呈している。
第1の内部電極31の第3の電極部分34と、第2の内部電極41の第4の電極部分45とは、上述したように、隣り合う第1の内部電極31と第2の内部電極41との間において互いに重なり合う。したがって、バリスタ層における第3の電極部分34と第4の電極部分45とに重なる領域がバリスタ特性を発現する領域として機能する。上述した構成を有する積層型チップバリスタ11においては、第3の電極部分34と、第4の電極部分45と、バリスタ層における第3の電極部分34及び第4の電極部分45に重なる領域とにより、一つのバリスタ部が構成されることとなる。
バリスタ素体21の一方の主面23には、図5にも示されるように、反射部51が形成されている。反射部51は、半導体発光素子1が発生した光のうち、積層型チップバリスタ11に向かって進む光を反射する。反射部51は、第1の反射層53と、第2の反射層55,57とを有する。
第2の反射層55,57は、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属からなる金属層であり、入射した光を正反射する。本実施形態では、第2の反射層55,57をAgからなる金属層としている。Agを選択した理由は、Agが波長460nm付近の光に対して優れた反射特性を有することによる。また、Alも波長460nm付近の光に対して優れた反射特性を有するため、Agの代わりにAlを用いてもよい。第2の反射層55,57の厚みは、例えば0.1〜10μm程度である。
各第2の反射層55,57は、バリスタ素体21の一方の主面23を覆うように、該一方の主面23上にそれぞれ形成されている。各第2の反射層55,57は、一方の主面23上において、互いに電気的に絶縁されており、バリスタ層の積層方向に垂直且つ一方の主面23に平行な方向に所定の間隔を有して配されている。
第2の反射層55は、図3にも示されるように、矩形状を呈しており、第2の内部電極41の第1の電極部分42又は第2の電極部分43に物理的且つ電気的に接続されるように形成されている。これにより、第2の内部電極41の第4の電極部分45は、第1の電極部分42及び第2の電極部分43を通して一対の第2の反射層55に電気的に接続されることとなる。
第2の反射層57は、図3にも示されるように、矩形状を呈しており、第1の内部電極31の第1の電極部分32に物理的且つ電気的に接続されるように形成されている。これにより、第1の内部電極31の第3の電極部分34は、第1の電極部分32を通して第2の反射層57に電気的に接続されることとなる。
各第2の反射層55,57は、例えば、印刷法あるいはめっき法により形成することができる。印刷法を用いる場合は、上述した金属の粒子(例えば、Ag粒子あるいはAl粒子)を主成分とする金属粉末に、有機バインダ及び有機溶剤を混合した導電性ペーストを用意し、当該導電性ペーストをバリスタ素体21上に印刷し、焼付あるいは焼成することにより形成する。めっき法を用いる場合は、真空めっき法(真空蒸着法、スパッタリング法、イオンプレーティング法等)により、上述した金属を蒸着させることにより第2の反射層55,57を形成する。
第1の反射層53は、第2の反射層55,57を覆うように該第2の反射層55,57上に形成されている。第1の反射層53は、添加物Aが分散されたガラス層であり、入射した光を拡散反射する。添加物Aは、金属、金属酸化物、あるいは、金属酸化物で被覆された金属等を用いることができる。添加物Aは、微小な粉体とされて、ガラス層に分散されている。なお、カラス層を構成するガラス成分としては、SiO、B、ZnO、Al、BaO、SrO、CaO、Bi、KO、LiO等を用いることができる。第1の反射層53の厚みは、例えば0.1〜10μm程度である。
添加物Aとして金属を用いる場合、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属を用いることが好ましい。その中でも、添加物AとしてAgあるいはAlを用いることにより、第1の反射層53は、波長460nm付近の光に対して優れた反射特性を有することとなる。
添加物Aとして金属酸化物を用いる場合、Al、TiO、SiO、及びZrOからなる群より選ばれる一種以上の金属酸化物を用いることが好ましい。その中でも、添加物AとしてAlを用いることにより、第1の反射層53は、波長460nm付近の光に対して優れた反射特性を有することとなる。
添加物Aとして金属酸化物で被覆された金属を用いる場合、Al、TiO、SiO、及びZrOからなる群より選ばれる一種以上の金属酸化物で、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属を被覆したものを用いることが好ましい。その中でも、Alで被覆されたAgもしくはAlで被覆されたAlを用いることにより、第1の反射層53は、波長460nm付近の光に対して優れた反射特性を有することとなる。
本実施形態では、第1の反射層53を添加物AとしてAgが分散されたガラス層としている。Agが分散されたガラス層は、第2の反射層55,57上に、例えば印刷法により形成されている。印刷法を用いる場合は、ガラス粉末と、Ag粉末と、有機バインダ及び有機溶剤を混合したガラスペーストを用意し、当該ガラスペーストを第2の反射層55,57及びバリスタ素体21の主面23の上に印刷し、乾燥後、焼成することにより第1の反射層53を形成する。
各第2の反射層55は、第1の反射層53を貫通するように設けられた導体61を通して該第1の反射層53上に形成された複数のパッド電極63にそれぞれ物理的且つ機械的に接続されている。これにより、第1の内部電極31は、第2の反射層55及び導体61を通して複数のパッド電極63に電気的に接続されることとなる。
第2の反射層57は、第1の反射層53を貫通するように設けられた導体65を通して該第1の反射層53上に形成された複数のパッド電極67に物理的且つ機械的に接続されている。これにより、第2の内部電極41は、第2の反射層57及び導体65を通して複数のパッド電極67に電気的に接続されることとなる。
各パッド電極65,67は、例えば、印刷法あるいはめっき法により形成することができる。印刷法を用いる場合は、Au粒子あるいはPt粒子を主成分とする金属粉末に、有機バインダ及び有機溶剤を混合した導電性ペーストを用意し、当該導電性ペーストを第1の反射層53上に印刷し、焼付あるいは焼成することにより形成する。めっき法を用いる場合は、真空めっき法(真空蒸着法、スパッタリング法、イオンプレーティング法等)により、AuあるいはPtを蒸着させることによりパッド電極65,67を形成する。
導体61,65は、例えば、印刷法により形成することができる。印刷法を用いる場合は、金、銀、もしくは銀化合物を主成分とする金属粉末に、有機バインダ及び有機溶剤を混合した導電性ペーストを用意し、当該導電性ペーストを第2の反射層55,57上の所望の位置に印刷し、焼付あるいは焼成することにより形成する。
続いて、図6及び図7を参照して、上述した構成を有する積層型チップバリスタ11及び反射部51の製造過程について説明する。図6は、本実施形態に係る積層型チップバリスタ及び反射部の製造過程を説明するためのフロー図である。図7は、本実施形態に係る積層型チップバリスタ及び反射部の製造過程を説明するための図である。
まず、バリスタ層を構成する主成分であるZnOと、Pr、Co、Cr、Ca、Si、K及びAlの金属又は酸化物等の微量添加物とを所定の割合となるように各々秤量した後、各成分を混合してバリスタ材料を用意する(ステップS100)。その後、このバリスタ材料に有機バインダ、有機溶剤、有機可塑剤等を加えて、ボールミル等を用いて20時間程度混合・粉砕を行ってスラリーを得る。
このスラリーを、ドクターブレード法等の公知の方法により、例えばポリエチレンテレフタレートからなるフィルム上に塗布した後、乾燥して厚さ30μm程度の膜を形成する。こうして得られた膜をフィルムから剥離してグリーンシートを得る(ステップS101)。
次に、グリーンシートに、第1及び第2の内部電極31,41に対応する電極部分を複数(後述する分割チップ数に対応する数)形成する(ステップS102)。第1及び第2の内部電極31,41に対応する電極部分は、Ag−Pd合金粒子を主成分とする金属粉末、有機バインダ及び有機溶剤を混合した導電性ペーストをスクリーン印刷等の印刷法にて印刷し、乾燥させることにより形成する。
次に、電極部分が形成された各グリーンシートと、電極部分が形成されていないグリーンシートとを所定の順序で重ねてシート積層体を形成する(ステップS103)。こうして得られたシート積層体をチップ単位に切断して、分割された複数のグリーン体GL1(図7参照)を得る(ステップS104)。得られたグリーン体GL1では、第1の内部電極31に対応する電極部分EL1が形成されたグリーンシートGS1と、第2の内部電極41に対応する電極部分EL2が形成されたグリーンシートGS2と、電極部分EL1,EL2が形成されていないグリーンシートGS3とが順次積層されている。グリーンシートGS1とグリーンシートGS2との間に位置するグリーンシートGS3は、複数枚積層してもよく、また、無くてもよい。
次に、グリーン体GL1に、180〜400℃、0.5〜24時間程度の加熱処理を実施して脱バインダを行った後、さらに、850〜1400℃、0.5〜8時間程度の焼成を行い(ステップS105)、バリスタ素体21を得る。この焼成によって、グリーン体GL1におけるグリーンシートGS1〜GS3はバリスタ層となる。電極部分EL1は、第1の内部電極31となる。電極部分EL2は、第2の内部電極41となる。
次に、バリスタ素体21の外表面に、第2の反射層55,57を形成する(ステップS106)。まず、バリスタ素体21の外表面に、第2の反射層55,57用の導電性ペーストを付与する。ここでは、バリスタ素体21の主面上に、対応する電極部分EL1,EL2に接するように導電性ペーストをスクリーン印刷工法にて印刷することによって、第2の反射層55,57に対応する電極部分を形成する。その後に、第2の反射層55,57に対応する電極部分を形成されたバリスタ素体21を、所望の温度(500〜850℃)にて熱処理(例えば、焼付けや焼成等)する。これにより、バリスタ素体21の外表面に、第2の反射層55,57が形成されることとなる。第2の反射層55,57用の導電性ペーストには、銀もしくは銀化合物の粒子を主成分とする金属粉末に、有機バインダ及び有機溶剤を混合したものを用いることができる。
次に、第2の反射層55,57の上に、第1の反射層53を形成する(ステップS107)。まず、第2の反射層55,57の上に第1の反射層53用のガラスペーストを付与する。ここでは、Ag粉末、ガラス粉末、有機バインダ及び有機溶剤を混合したガラスペーストをスクリーン印刷等の印刷法にて印刷塗布する。ガラスペーストを印刷塗布後、乾燥させることによって、第1の反射層53に相当する層を形成する。このとき、導体61,65に対応する位置には、開口が形成されており、第2の反射層55,57が露出することとなる。そして、上記開口の位置に導体61,65用の導電性ペーストを付与する。その後に、上記ガラスペースト及び導電性ペーストが塗布されたバリスタ素体21を、所望の温度(500〜850℃)にて熱処理(例えば、焼付けや焼成等)する。これにより、第2の反射層55,57の上に、第1の反射層53及び導体61,65が形成されることとなる。導体61,65用の導電性ペーストには、銀もしくは銀化合物の粒子を主成分とする金属粉末に、有機バインダ及び有機溶剤を混合したものを用いることができる。
このようにして、バリスタ素体21及び反射部51を形成した後、導体61,65の上に複数のパッド電極63,67を形成する(ステップS108)。ここでは、真空めっき法を用いて、導体61,65及び第1の反射層53にAuを蒸着させることにより複数のパッド電極63,67を形成する。以上の過程により、反射部51が形成された積層型チップバリスタ11が得られることとなる。
再び図2を参照して、半導体発光素子1の構成について説明する。
半導体発光素子1は、GaN(窒化ガリウム)系半導体の発光ダイオード(LED:Light-Emitting Diode)であり、基板2と、当該基板2上に形成された層構造体LSとを備えている。GaN系の半導体LEDは、周知であり、その説明を簡略化する。基板2は、サファイアからなる光学的に透明且つ電気絶縁性を有する基板である。層構造体LSは、積層された、n型(第1導電型)の半導体領域3と、発光層4と、p型(第2導電型)の半導体領域5とを含んでいる。半導体発光素子1は、n型の半導体領域3とp型の半導体領域5との間に印加される電圧に応じて発光する。
n型の半導体領域3は、n型の窒化物半導体を含んで構成されている。本実施形態では、n型の半導体領域3は、基板2上にGaNがエピタキシャル成長されて成り、例えばSiといったn型ドーパントが添加されてn型の導電性を有している。また、n型の半導体領域3は、発光層4よりも屈折率が小さく且つバンドギャップが大きくなるような組成を有していてもよい。この場合、n型の半導体領域3は、発光層4に対して下部クラッドとしての役割を果たす。
発光層4は、n型の半導体領域3上に形成され、n型の半導体領域3及びp型の半導体領域5から供給されたキャリア(電子及び正孔)が再結合することにより発光領域において光を発生する。発光層4は、例えば、障壁層と井戸層とが複数周期にわたって交互に積層された多重量子井戸(MQW:Multiple Quantum Well)構造とすることができる。この場合、障壁層及び井戸層がInGaNからなり、In(インジウム)の組成を適宜選択することによって障壁層のバンドギャップが井戸層のバンドギャップより大きくなるように構成される。発光領域は、発光層4において、キャリアが注入される領域に生じる。
p型の半導体領域5は、p型の窒化物半導体を含んで構成されている。本実施形態では、p型の半導体領域5は、発光層4上にAlGaNがエピタキシャル成長されて成り、例えばMgといったp型ドーパントが添加されてp型の導電性を有している。また、p型の半導体領域5は、発光層4よりも屈折率が小さく且つバンドギャップが大きくなるような組成を有していてもよい。この場合、p型の半導体領域5は、発光層4に対して上部クラッドとしての役割を果たす。
n型の半導体領域3上には、カソード電極6が形成されている。カソード電極6は、導電性材料からなり、n型の半導体領域3との間にオーミック接触が実現されている。p型の半導体領域5上には、アノード電極7が形成されている。アノード電極7は、導電性材料からなり、p型の半導体領域5との間にオーミック接触が実現されている。カソード電極6及びアノード電極7には、バンプ電極8が形成されている。
上述した構成の半導体発光素子1では、アノード電極7(バンプ電極8)とカソード電極6(バンプ電極8)との間に所定の電圧が印加されて電流が流れると、発光層4の発光領域において発光が生じることとなる。発光領域で発生した光は、半導体発光素子1の外に放射される。半導体発光素子1の外に放射された光の一部は、反射部51によって反射される。
半導体発光素子1は、複数のパッド電極63,67にフリップチップ接続されている。すなわち、カソード電極6は、バンプ電極8を介して複数のパッド電極63に電気的且つ物理的に接続されている。アノード電極7は、バンプ電極8を介して複数のパッド電極67に電気的且つ物理的に接続されている。これにより、第3の電極部分34と、第4の電極部分45と、バリスタ層における第3の電極部分34及び第4の電極部分45に重なる領域とにより構成されるバリスタ部が半導体発光素子1に並列接続されることとなる。
以上のように、本実施形態によれば、反射部51を積層型チップバリスタ11と半導体発光素子1との間に配置するので、反射部51が、半導体発光素子1が発生した光のうち積層型チップバリスタ11に向かって進む光を反射する。このとき、反射部51が第1の反射層53と第2の反射層55,57とを有するので、半導体発光素子1から積層型チップバリスタ11に向かって進む光は、まず第1の反射層53に入射し、拡散反射される。そして、第1の反射層53を通過した光は、第2の反射層55,57で正反射される。これらの結果、反射部51から、第1の反射層53で拡散反射された光と、第2の反射層55,57で正反射された光とが反射光として反射される。したがって、反射部51が第1の反射層53と第2の反射層55,57とを有することにより、発光装置LEは極めて高い発光効率を得ることができる。また、反射光強度の面内分布も略均一となる。
また、本実施形態では、反射部51の配置位置が積層型チップバリスタ11と半導体発光素子1との間であるので、半導体発光素子1の周囲に特別なスペースを確保する必要がなくなる。したがって、発光装置LEの小型化が可能となる。
本実施形態では、第1の反射層53が、金属が分散されたガラス層である。これにより、第1の反射層53が電気絶縁性を有することとなり、積層型チップバリスタ11でのショートの発生を抑制することができる。第2の反射層55と第2の反射層57との間におけるショートの発生も抑制することができる。
本実施形態では、第1の反射層53がガラス層であるので、第1の反射層53を耐熱性に優れたものとすることができる。ガラス層には金属が分散されているので、入射した光を確実に拡散反射することができる。また、ガラス層に金属が分散されているので、第1の反射層53の熱伝導率が比較的良好となり、半導体発光素子1からの熱を効率よく放散することができる。
第1の反射層53が、金属酸化物が分散されたガラス層である場合も、第1の反射層53が電気絶縁性を有することとなり、積層型チップバリスタ11でのショートの発生を抑制することができる。また、第1の反射層53を耐熱性に優れたものとすることもできる。ガラス層には金属酸化物が分散されているので、入射した光を確実に拡散反射することができると共に、第1の反射層53の電気絶縁性をより一層高めることができる。また、金属酸化物はガラス中での分散性が良いため、金属酸化物が均一に分散することとなり、第1の反射層53の特性ばらつきが少なくなる。また、第1の反射層53がガラスと金属酸化物とを含むことにより、熱膨張係数が比較的小さくなる。このため、第1の反射層53をひずみや割れ、クラックが生じにくいものとすることができる。
第1の反射層53が、金属酸化物で被覆された金属が分散されたガラス層である場合も、第1の反射層53が電気絶縁性を有することとなり、積層型チップバリスタ11でのショートの発生を抑制することができる。また、第1の反射層53を耐熱性に優れたものとすることができる。金属が金属酸化物で被覆されているので、ガラス中における金属の分散性を向上させることができると共に、反射効率を低下させずに第1の反射層53の電気絶縁性をいっそう高めることができる。
本実施形態では、ガラス層に分散される金属が、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属である。Ag、Al、Ti、Niは他の一般的な金属と比較して反射率が高いため、第1の反射層53の反射効率を向上させることができる。したがって、発光装置LEの発光効率をより高めることができる。
ガラス層に金属酸化物を分散する、あるいは、金属に金属酸化物を被覆する場合、該金属酸化物は、Al、TiO、SiO、及びZrOからなる群より選ばれる一種以上の金属酸化物であることが好ましい。Al、TiO、SiO、及びZrOは他の一般的な金属酸化物と比較して反射率が高いため、第1の反射層53の反射効率をより高めることができる。
本実施形態では、第2の反射層55,57は、金属層である。これにより、第1の反射層53を通過した光を確実に正反射することができる。第2の反射層55,57を構成する金属層は、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属からなる。Ag、Al、Ti、Niは他の一般的な金属と比較して反射率が高いため、第2の反射層55,57の反射効率を向上させることができる。したがって、発光装置LEの発光効率をより高めることができる。
ところで、バリスタ素体21では、第1及び第2の内部電極31,41の対向方向での熱伝導率よりも、該対向方向に直交する方向での熱伝導率が大きい。これは、各内部電極31,41が、第1及び第2の内部電極31,41の対向方向に直交する方向に伸びていることに起因するものと推測され、第1及び第2の内部電極31,41に平行な方向に熱が伝わり易い。バリスタ素体21の外表面のうち第1及び第2の内部電極31,41の対向方向に平行な方向に伸びる外表面(例えば、主面23,25)が、バリスタ素体21の外表面のうち第1及び第2の内部電極31,41の対向方向に交差する方向に伸びる外表面よりも多く熱を放散する。
本実施形態では、第2の反射層55,57が、バリスタ素体21の一方の主面23に形成され、第1の反射層53が、第2の反射層55,57を覆うように該第2の反射層55,57上に形成されている。これにより、反射部51は、バリスタ素体21の一方の主面23に熱的にも結合し、半導体発光素子1において発生した熱は、反射部51を通してバリスタ素体21の一方の主面23からバリスタ素体21に効率よく伝わることとなる。バリスタ素体21に伝えられた熱は、主として、バリスタ素体21の外表面のうち第1及び第2の内部電極31,41の対向方向に平行な方向に伸びる外表面(例えば、主面25)から放散される。この結果、半導体発光素子1の特性劣化を抑制して、発光装置LEの発光効率をより高めることができる。
本実施形態では、第2の反射層55,57が、互いに電気的に絶縁された複数の金属層からなり、複数の金属層が、第1及び第2の内部電極31,41のうち対応する内部電極31,41にそれぞれ接続されると共に、第1の反射層53を貫通するように設けられた導体61,65を通して該第1の反射層53上に形成された複数のパッド電極63,67にそれぞれ接続されている。この場合、第2の反射層55,57が積層型チップバリスタ11と半導体発光素子1との間の電流経路の一部を形成することとなる。この結果、反射部51を積層型チップバリスタ11と半導体発光素子1との間に配置した構成であっても、積層型チップバリスタ11と半導体発光素子1との確実な電気的接続を極めて簡素な構成で実現することができる。
また、積層型チップバリスタ11と半導体発光素子1とでは、バンプ電極8、複数のパッド電極63,67、導体61,65、第2の反射層55,57及び第1及び第2の内部電極31,41が物理的に接続されている。これにより、半導体発光素子1において発生した熱は、主として、バンプ電極8、複数のパッド電極63,67、導体61,65、第2の反射層55,57及び第1及び第2の内部電極31,41を通して積層型チップバリスタ11に伝わる。この結果、半導体発光素子1において発生した熱の放熱パスが拡がり、半導体発光素子1において発生した熱を効率よく放散することができる。
本実施形態において、バリスタ層がZnOを主成分としている。ZnOは、放熱基板として通常用いられるアルミナ等と同等程度の熱伝導率を有しており、比較的良好な熱伝導率を有する。したがって、第1及び第2の内部電極31,41からの熱の放散がバリスタ層により阻害されるのを抑制することができる。
本実施形態においては、半導体発光素子1が、積層型チップバリスタ11と並列接続されるので、半導体発光素子1をESDサージから保護することができる。
以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
本実施形態では、第2の反射層55,57が積層型チップバリスタ11と半導体発光素子1との間の電流経路の一部を形成しているが、これに限られるものではない。例えば、第2の反射層55,57が積層型チップバリスタ11と半導体発光素子1との間の電流経路の一部を形成することなく、積層型チップバリスタ11及び半導体発光素子1と電気的に絶縁されていてもよい。この場合、第1の内部電極31同士を電気的に接続する接続導体と、第2の内部電極41同士を電気的に接続する接続導体とをバリスタ素体21の主面23にそれぞれ形成し、上記各接続導体と対応するパッド電極63,67とを電気的に接続する必要がある。第2の反射層55,57と各接続導体との電気的な絶縁は、第2の反射層55,57と接続導体との間に絶縁層(例えば、ガラス層等)を形成することにより実現することができる。また、第2の反射層55,57を、上記接続導体と電気的に絶縁されるように、バリスタ素体21の主面23上に形成してもよい。また、上記接続導体が、積層型チップバリスタ11と半導体発光素子1との間の電流経路の一部を形成してもよい。
本実施形態では、バリスタ素体21が第1の内部電極31及び第2の内部電極41をそれぞれ複数ずつ含んでいるが、これに限られない。例えば、バリスタ素体21が第1の内部電極31及び第2の内部電極41をそれぞれ一つずつ含んでいてもよい。
本実施形態では、半導体発光素子1としてGaN系の半導体LEDの発光ダイオードを用いているが、これに限られない。半導体発光素子1として、例えば、GaN系以外の窒化物系半導体LED(例えば、InGaNAs系の半導体LED等)や窒化物系以外の化合物半導体LEDやレーザーダイオード(LD:Laser Diode)を用いてもよい。
本実施形態では、半導体発光素子1が積層型チップバリスタ11上にフリップチップボンディングにより搭載されて該積層型チップバリスタ11と電気的に接続されているが、これに限られるものではない。例えば、半導体発光素子1を積層型チップバリスタ11上に金錫合金(Au−Sn)はんだや接着剤等により固定し、ワイヤボンディングにより積層型チップバリスタ11と電気的に接続してもよい。
本実施形態に係る発光装置を示す斜視図である。 本実施形態に係る発光装置の断面構成を説明するための図である。 本実施形態に係る発光装置に含まれる反射部及び積層型チップバリスタを示す上面図である。 本実施形態に係る発光装置に含まれる積層型チップバリスタを示す下面図である。 本実施形態に係る発光装置に含まれる反射部の構成を示す模式図である。 本実施形態に係る積層型チップバリスタ及び反射部の製造過程を説明するためのフロー図である。 本実施形態に係る積層型チップバリスタ及び反射部の製造過程を説明するための図である。
符号の説明
1…半導体発光素子、11…積層型チップバリスタ、13,14…外部電極、21…バリスタ素体、23,25…主面、31…第1の内部電極、41…第2の内部電極、51…反射部、53…第1の反射層、55,57…第2の反射層、61,65…導体、63,67…パッド電極、A…添加物、LE…発光装置。

Claims (10)

  1. バリスタ層と、該バリスタ層を挟むように対向配置される複数の内部電極とを含むバリスタ素体と、を有する積層型チップバリスタと、
    前記積層型チップバリスタ上に配されると共に、該積層型チップバリスタに並列接続されるように前記複数の内部電極に電気的に接続された半導体発光素子と、
    前記積層型チップバリスタと前記半導体発光素子との間に配されると共に、前記半導体発光素子が発生した光を反射する反射部と、を備え、
    前記反射部が、
    入射した光を拡散反射する第1の反射層と、
    前記第1の反射層と前記積層型チップバリスタとの間に配されると共に、入射した光を正反射する第2の反射層と、を有し、
    前記第1の反射層が、金属が分散されたガラス層であることを特徴とする発光装置。
  2. バリスタ層と、該バリスタ層を挟むように対向配置される複数の内部電極とを含むバリスタ素体と、を有する積層型チップバリスタと、
    前記積層型チップバリスタ上に配されると共に、該積層型チップバリスタに並列接続されるように前記複数の内部電極に電気的に接続された半導体発光素子と、
    前記積層型チップバリスタと前記半導体発光素子との間に配されると共に、前記半導体発光素子が発生した光を反射する反射部と、を備え、
    前記反射部が、
    入射した光を拡散反射する第1の反射層と、
    前記第1の反射層と前記積層型チップバリスタとの間に配されると共に、入射した光を正反射する第2の反射層と、を有し、
    前記第1の反射層が、金属酸化物が分散されたガラス層であることを特徴とする発光装置。
  3. バリスタ層と、該バリスタ層を挟むように対向配置される複数の内部電極とを含むバリスタ素体と、を有する積層型チップバリスタと、
    前記積層型チップバリスタ上に配されると共に、該積層型チップバリスタに並列接続されるように前記複数の内部電極に電気的に接続された半導体発光素子と、
    前記積層型チップバリスタと前記半導体発光素子との間に配されると共に、前記半導体発光素子が発生した光を反射する反射部と、を備え、
    前記反射部が、
    入射した光を拡散反射する第1の反射層と、
    前記第1の反射層と前記積層型チップバリスタとの間に配されると共に、入射した光を正反射する第2の反射層と、を有し、
    前記第1の反射層が、金属酸化物で被覆された金属が分散されたガラス層であることを特徴とする発光装置。
  4. 前記金属が、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属であることを特徴とする請求項又はに記載の発光装置。
  5. 前記金属酸化物が、Al、TiO、SiO、及びZrOからなる群より選ばれる一種以上の金属酸化物であることを特徴とする請求項又はに記載の発光装置。
  6. 前記第2の反射層は、金属層であることを特徴とする請求項1〜5のいずれか一項記載の発光装置。
  7. 前記金属層が、Ag、Al、Ti、及びNiからなる群より選ばれる一種以上の金属からなることを特徴とする請求項に記載の発光装置。
  8. 前記第2の反射層が、前記バリスタ素体の外表面のうち前記複数の内部電極の対向方向に平行な方向に伸びる一の外表面に形成され、
    前記第1の反射層が、前記第2の反射層を覆うように該第2の反射層上に形成されていることを特徴とする請求項1〜5のいずれか一項記載の発光装置。
  9. 前記第2の反射層が、互いに電気的に絶縁された複数の金属層からなり、
    前記複数の金属層が、前記複数の内部電極のうち対応する内部電極にそれぞれ接続されると共に、前記第1の反射層を貫通するように設けられた導体を通して該第1の反射層上に形成された複数のパッド電極にそれぞれ接続されていることを特徴とする請求項に記載の発光装置。
  10. 前記半導体発光素子が、前記複数のパッド電極に接続されていることを特徴とする請求項に記載の発光装置。
JP2005339183A 2005-09-30 2005-11-24 発光装置 Active JP4134155B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005339183A JP4134155B2 (ja) 2005-11-24 2005-11-24 発光装置
US11/515,195 US7671468B2 (en) 2005-09-30 2006-09-05 Light emitting apparatus
TW095136324A TWI311823B (en) 2005-09-30 2006-09-29 Light emitting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339183A JP4134155B2 (ja) 2005-11-24 2005-11-24 発光装置

Publications (2)

Publication Number Publication Date
JP2007149776A JP2007149776A (ja) 2007-06-14
JP4134155B2 true JP4134155B2 (ja) 2008-08-13

Family

ID=38210858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339183A Active JP4134155B2 (ja) 2005-09-30 2005-11-24 発光装置

Country Status (1)

Country Link
JP (1) JP4134155B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176303A (ja) * 2010-01-29 2011-09-08 Asahi Glass Co Ltd 発光素子搭載用基板およびその製造方法
JP5745784B2 (ja) * 2010-06-10 2015-07-08 シチズン電子株式会社 発光ダイオード
JP2011258866A (ja) * 2010-06-11 2011-12-22 Asahi Glass Co Ltd 発光素子搭載用基板および発光装置
KR101944411B1 (ko) * 2012-10-17 2019-01-31 엘지이노텍 주식회사 발광 소자
CN103968332B (zh) 2013-01-25 2015-10-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影系统

Also Published As

Publication number Publication date
JP2007149776A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
US7671468B2 (en) Light emitting apparatus
US7932806B2 (en) Varistor and light emitting device
US7505239B2 (en) Light emitting device
JP5634003B2 (ja) 発光装置
JP4134135B2 (ja) 発光装置
JP4867511B2 (ja) バリスタ及び発光装置
US7705709B2 (en) Varistor and light-emitting apparatus
JP4146849B2 (ja) 発光装置
JP4134155B2 (ja) 発光装置
JP4146464B2 (ja) 発光装置
JP4577250B2 (ja) バリスタ及び発光装置
JP4364865B2 (ja) 電子部品
JP4888225B2 (ja) バリスタ及び発光装置
JP4146450B2 (ja) 発光装置
KR100841916B1 (ko) 배리스터 및 발광장치
JP5983068B2 (ja) 半導体発光素子及び発光装置
JP5034723B2 (ja) サージ吸収素子及び発光装置
JP4479668B2 (ja) バリスタ及び発光装置
JP4978302B2 (ja) バリスタ及び発光装置
JP4730205B2 (ja) 集合基板

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4134155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250