WO2019144545A1 - 一种波长转换装置、发光组件及照明装置 - Google Patents

一种波长转换装置、发光组件及照明装置 Download PDF

Info

Publication number
WO2019144545A1
WO2019144545A1 PCT/CN2018/088521 CN2018088521W WO2019144545A1 WO 2019144545 A1 WO2019144545 A1 WO 2019144545A1 CN 2018088521 W CN2018088521 W CN 2018088521W WO 2019144545 A1 WO2019144545 A1 WO 2019144545A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
conversion device
diffusion layer
layer
Prior art date
Application number
PCT/CN2018/088521
Other languages
English (en)
French (fr)
Inventor
徐梦梦
余新
胡飞
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019144545A1 publication Critical patent/WO2019144545A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to the field of illumination technologies, and in particular, to a wavelength conversion device, a light emitting component, and a lighting device.
  • LED lighting Compared with traditional light sources, LED lighting has the advantages of energy saving, environmental protection, long service life, small size, light weight, firm structure and low working voltage. It is known as incandescent lamp, fluorescent lamp and high intensity gas lamp. After the fourth generation of lighting fixtures, but currently LEDs have problems such as low brightness and sudden drop in efficiency. Laser diodes act as excitation light sources to excite fluorescent materials for white light illumination, which have the advantages of high electro-optical conversion efficiency, high brightness, inefficiency, and small volume.
  • the commonly used laser as an excitation light source to generate illumination white light is to use a laser fluorescence scheme: a blue laser is used as an excitation light source to excite a yellow fluorescent material, and the converted yellow light and the unconverted blue light are mixed to obtain white light.
  • a blue laser is used as an excitation light source to excite a yellow fluorescent material, and the converted yellow light and the unconverted blue light are mixed to obtain white light.
  • the current common solution is to rotate or vibrate the fluorescent material to make the excitation light power density or The heat is dispersed, but the method includes moving parts, and there are problems in reliability and the like.
  • the invention provides a wavelength conversion device, a light-emitting component and a lighting device, which can solve the problem of low conversion and/or low synthesis efficiency of the wavelength conversion device in the prior art.
  • the present invention adopts a technical solution to provide a wavelength conversion device including a diffusion layer and a conversion layer, and the diffusion layer and the conversion layer are stacked and dispersed in the thickness direction of the wavelength conversion device.
  • the layer serves to diffuse and enter the excitation light entering its interior into the conversion layer, which is used to convert the excitation light entering its interior into and/or to synthesize the desired light.
  • another technical solution adopted by the present invention is to provide a light-emitting assembly including a laser light source, a coupling element, and the above-mentioned wavelength conversion device, the laser light source for generating excitation light, and the coupling element for The excitation light is coupled into the diffusion layer of the wavelength conversion device.
  • another technical solution adopted by the present invention is to provide a lighting device including the above-described lighting assembly.
  • the wavelength conversion device provided by the present invention can efficiently convert light entering and into the interior thereof for the purpose of light.
  • FIG. 1 is a schematic diagram of a simplified structure of a light emitting assembly according to an embodiment of the invention
  • FIG. 2 is a schematic structural diagram of a light emitting assembly according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a light emitting assembly according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a light emitting assembly according to another embodiment of the present invention.
  • FIG. 5 is a simplified schematic diagram of a lighting device according to an embodiment of the invention.
  • first and second in this application are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise. All directional indications (such as up, down, left, right, front, back, ...) in the embodiments of the present application are only used to explain the relative positional relationship between components in a certain posture (as shown in the drawing).
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the present application.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • FIG. 1 is a schematic diagram of a simplified structure of a light-emitting assembly according to an embodiment of the invention.
  • a light-emitting assembly 10 provided by the present invention includes a laser light source 120, a coupling element 140, and a wavelength conversion device 160.
  • the laser light source 120, the coupling element 140, and the wavelength conversion device 160 may be sequentially disposed in the longitudinal direction of the wavelength conversion device 160, and the coupling element 140 is configured to couple the excitation light emitted by the laser light source 120 into the wavelength conversion device 160, and the wavelength conversion The device 160 is for converting and/or synthesizing the excitation light emitted by the laser light source 120.
  • the laser light source 120, the coupling element 140, and the wavelength conversion device 160 may be arranged in the thickness direction of the wavelength conversion device 160, which is not limited herein.
  • the laser light source 120, the coupling element 140 and the wavelength conversion device 160 are arranged in the wavelength conversion device 160 to achieve the purpose of separating the laser light source 120 and the wavelength conversion device 160, and avoid excessive heat generated by the laser light source 120. Ground conduction to the wavelength conversion device 160, heat affects the conversion efficiency of the wavelength conversion device 160, and severely causes the wavelength conversion device 160 to be thermally quenched.
  • the light of the laser light source 120 is coupled into the wavelength conversion device 160 in the length direction of the wavelength conversion device 160, so that the point source can be converted into a surface or line source, thereby increasing the illumination area and uniformity of the light entering the wavelength conversion device 160. .
  • the laser light source 120 can be a solid state light source, such as a light emitting diode or a laser diode.
  • the laser source 120 may be one, and the laser source 120 may also be an array of multiple or more laser sources, such as 2, 3, or 4, and the like.
  • the main function of the coupling element 140 is to collect the light emitted by the laser source 120 and concentrate the illumination into the wavelength conversion device 160.
  • the coupling element 140 can be a convex lens, and the coupling element 140 can also be an optical fiber, and the light is introduced into the wavelength conversion device 160 through the optical fiber.
  • the coupling element 140 can also be any other optical device having a collecting function, such as a light collecting film or a convex mirror integration. The lens group and the like are not listed here.
  • the wavelength conversion device 160 may have a flat shape, the wavelength conversion device 160 may also be curved, and the wavelength conversion device 160 may also be other shapes.
  • the main function of the wavelength conversion device 160 is to convert the light that is incident into the wavelength conversion device 160 into a purpose.
  • the target light can be white light, the target light can also be yellow light, and the target light can also be other colors of light.
  • the wavelength conversion device 160 may include a diffusion layer 162 and a conversion layer 164 which are stacked in the thickness direction of the diffusion layer 162, and light coupled from the coupling element 140 is incident from the incident surface 161 of the diffusion layer 162.
  • the diffused light After entering the diffusion layer 162, the diffused light enters the conversion layer 164 from the incident surface 163 of the conversion layer 164 (the incident surface 163 is also the exit surface of the diffusion layer 162), and is processed by the conversion layer 164 from the exit surface 165 of the conversion layer 164.
  • the incident surface 163 is also the exit surface of the diffusion layer 162
  • the diffusion layer 162 is made of a ceramic material, and specifically, the diffusion layer 162 may be a ceramic material having a grain boundary birefringence phenomenon.
  • the diffusion layer 162 can be Ceramic due to It belongs to the trigonal system and has birefringence, so There is grain boundary birefringence in the ceramic, birefringence can generate additional light scattering, and the diffusion layer 162 utilizes The characteristics of the ceramic grain boundary birefringence uniformly scatter the light and then enter the conversion layer 164; and, Ceramics do not absorb light, have good transmittance, and can achieve extremely high light efficiency.
  • other ceramics having grain boundary birefringence can also be applied.
  • FIG. 2 is a schematic diagram of a simplified structure of a light-emitting assembly 10 according to another embodiment of the present invention.
  • the diffusion layer 162 may also be a common ceramic or glass, by adding the pores 166 in the diffusion layer 162, or by adding scattering particles 168 having a scattering function in the diffusion layer 162, or simultaneously increasing the pores 166 and the scattering particles 168 in the diffusion layer 162, The diffusion effect of the diffusion layer 162 on the light is increased, so that the illumination area of the light irradiated into the conversion layer 164 is increased, and in addition, the uniformity of the light irradiation is also improved.
  • the diffusion layer 162 may also be The ceramic is provided with pores 166 and/or scattering particles 168 in the diffusion layer 162.
  • the distribution of grain boundaries, pores 166, or scattering particle content in the diffusion layer 162 can be adjusted to achieve spot size and uniformity of control of light incident into the conversion layer 164.
  • the scattering particles 168 can also be such as Ti , Or BaS Equal particles.
  • all the faces of the diffusion layer 162 except the incident surface 161 and the exit surface 163 are polished, and the light is totally reflected when the light is irradiated onto the polishing surface at an angle (ie, a critical angle), thereby avoiding the light from being non-
  • the incident surface and the non-exit surface are emitted to improve the light extraction efficiency of the laser light source 120.
  • the material of the conversion layer 164 is fluorescent ceramic or fluorescent glass.
  • the conversion layer 164 may be a YAG ceramic.
  • the conversion layer 164 is doped with different substances to achieve different fluorescence effects. Taking the laser light source 120 as blue light and the target light as white light, the conversion layer 164 is correspondingly doped with Ce, and the blue light is irradiated into the Ce-doped YAG ceramic to obtain yellow light, and the yellow light and the unconverted blue light are mixed to obtain the target light.
  • White light is correspondingly doped with Ce, and the blue light is irradiated into the Ce-doped YAG ceramic to obtain yellow light, and the yellow light and the unconverted blue light are mixed to obtain the target light.
  • the corresponding fluorescent ceramic material such as a red fluorescent ceramic material or a green fluorescent ceramic material
  • the YAG ceramic may be doped correspondingly.
  • the doping element is used to emit light of a corresponding color, which is not enumerated here.
  • a fluorescent material required for packaging a ceramic material is used to obtain a corresponding fluorescent ceramic.
  • Illustrative, such as YAG:Ce fluorescent ceramics can be composed of a phosphor phase YAG:Ce and an alumina phase, wherein the alumina achieves encapsulation of the YAG:Ce phosphor.
  • the ceramic material used for packaging may be at least one of undoped YAG (yttrium aluminum garnet), aluminum oxide, and aluminum nitride.
  • the fluorescent ceramic may also be a single crystal of a phosphor, a eutectic or the like; an exemplary one such as a YAG:Ce single crystal fluorescent ceramic, and a YAG:Ce-Al 2 O 3 eutectic fluorescent ceramic.
  • the conversion layer 164 may increase the pores 167, and the conversion layer 164 may also increase the scattering particles 169 having a scattering function.
  • the conversion layer 164 may also simultaneously increase the pores 167 and the scattering particles 169 to increase the diffusion effect of the conversion layer 164 on light. Thereby, the light is irradiated out of the conversion layer 164, and in addition, the uniformity of light emission is also improved.
  • the distribution of the pores 167 or the scattering particles 169 in the conversion layer 164 can be adjusted to achieve spot size and uniformity of the control target light.
  • the scattering particles 169 can also be such as Ti , Or BaS Equal particles.
  • all the faces of the conversion layer 164 except the incident surface 163 and the exit surface 165 are polished, and specular reflection occurs when the light is irradiated onto the polishing surface, thereby preventing the light from being emitted from the non-incident surface and the non-exit surface.
  • specular reflection occurs when the light is irradiated onto the polishing surface, thereby preventing the light from being emitted from the non-incident surface and the non-exit surface.
  • the conversion layer 164 and the diffusion layer 162 of the wavelength conversion device 160 may be a unitary structure. Specifically, the conversion layer 164 and the diffusion layer 162 may be integrally formed by a process of preparing a multilayer composite ceramic by a casting method. The conversion layer 164 and the diffusion layer 162 of the wavelength conversion device 160 may also be an assembled structure.
  • FIG. 3 is a schematic diagram of a simplified structure of a light-emitting assembly 10 according to another embodiment of the present invention.
  • the light emitted by the laser light source 120 is coupled into the diffusion layer 162 of the wavelength conversion device 160 via the coupling element 140. After the diffusion of the diffusion layer 162, the light enters the conversion layer 164 and is converted into the desired light that is required for illumination to achieve illumination and the like.
  • the embodiment is different from the above embodiment in that the light-emitting assembly 10 further includes a reflecting member 180.
  • the reflecting member 180 has a function of reflecting light, and the reflecting member 180 is disposed at at least a portion of the non-incident surface and the non-exit surface of the diffusion layer 162.
  • the reflector 180 is also disposed at at least a portion of the non-incident surface and the non-exit surface of the conversion layer 164.
  • the reflective member 180 may be a reflective film, the reflective member 180 may also be a lens, and the reflective member 180 may be any other device having a reflective effect.
  • a dichroic color patch 110 is disposed on one side of the incident surface 161 of the diffusion layer 162.
  • the dichroic color patch 110 can transmit almost completely light of a certain wavelength, and almost completely reflect light of other wavelengths.
  • the color patch 110 is prevented from emitting a part of the excited light (the wavelength of the excited light is different from the excitation light) from the light incident surface 161, thereby reducing the loss of the target light, and further improving the light extraction efficiency of the laser light source 120.
  • the dichroic color film 110 can transmit blue light and reflect other wavelengths of light.
  • an anti-reflection film 130 is disposed on one side of the exit surface 165 of the conversion layer 164.
  • the anti-reflection film 130 utilizes the interference principle of light, and the front surface of the anti-reflection film 130 interferes with the light reflected by the rear surface, and the peak and the peak The peak contacts, the valleys are in contact with the troughs, thereby increasing the intensity of the exit of the exit surface 165 of the conversion layer 164.
  • FIG. 4 is a schematic diagram of a simplified structure of a light-emitting assembly 10 according to another embodiment of the present invention.
  • the light emitted by the laser light source 120 is coupled into the diffusion layer 162 of the wavelength conversion device 160 via the coupling element 140. After the diffusion of the diffusion layer 162, the light enters the conversion layer 164 and is converted into the desired light that is required for illumination to achieve illumination and the like.
  • This embodiment differs from the above embodiment in that the exit surface 165 of the conversion layer 164 is one side in the longitudinal direction. By reducing the area of the exit surface 165 of the conversion layer 164, a smaller amount of optical expansion of the target light is obtained, thereby increasing the brightness of the target light.
  • the light-emitting assembly 10 includes a laser light source 120, a coupling element 140, and a wavelength conversion device 160.
  • the laser light source 120, the coupling element 140, and the wavelength conversion device 160 are sequentially in the wavelength conversion device.
  • the lengthwise arrangement of 160 is arranged to avoid direct contact of the laser source 120 with the wavelength conversion device 160, greatly reducing the amount of heat that the laser source 120 conducts to the wavelength conversion device 160.
  • the wavelength conversion device 160 includes a diffusion layer 162 and a conversion layer 164 which are stacked in the thickness direction of the wavelength conversion device 160, and a diffusion layer 162 for diffusing light emitted from the laser light source 120, the conversion layer 164 For converting the diffused laser light into the desired light, the diffusion layer 162 and the conversion layer 164 are integrally formed by a multilayer ceramic preparation process, and the thermal conductivity and heat resistance of the wavelength conversion device 160 are further improved.
  • FIG. 5 is a schematic diagram of a simplified structure of a lighting device according to an embodiment of the present invention.
  • the lighting device includes a lamp cover 20, a lamp body 30, and the light-emitting assembly 10 described in all of the above embodiments.
  • the light-emitting assembly 10 is disposed on the lamp body 30, and the lamp cover 20 is disposed on the lamp body 30 to cover the light-emitting assembly 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供一种波长转换装置、发光组件及照明装置,该波长转换装置包括扩散层和转换层,扩散层和转换层在波长转换装置的厚度方向上层叠设置,扩散层用于将进入其内部的激发光扩散并入射进转换层,转换层用于将进入其内部的激发光转换和/或合成目的光。本发明提供的波长转换装置可以高效地将进入其内部的光转换和/或合成目的光。

Description

一种波长转换装置、发光组件及照明装置 技术领域
本发明涉及照明技术领域,特别涉及一种波长转换装置、发光组件及照明装置。
背景技术
LED照明作为一种与传统光源相比,LED灯具有节能环保、使用寿命长、体积小、重量轻、结构坚固、工作电压低等优点,被誉为是继白炽灯、荧光灯、高强度气体灯之后的第四代照明灯具,但目前LED存在亮度较低、效率骤降等问题。激光二极管作为激发光源激发荧光材料进行白光照明具有电光转换效率高、亮度高、无效率骤降现象和体积小等优势。
技术问题
目前常用的激光作为激发光源产生照明白光的方案是使用激光荧光方案:蓝色激光作为激发光源,激发黄色荧光材料,转换得到的黄光和未被转换的蓝光混合得到白光。激光荧光方案中由于激光光斑面积小,激发光功率密度过高,造成荧光转换材料发光效率较低,局部过热等问题,目前常用的解决方法是使荧光材料转动或振动,使得激发光功率密度或热量分散,但该方法包含活动部件,存在可靠性等方面的问题。
技术解决方案
本发明提供一种波长转换装置、发光组件及照明装置,能够解决现有技术中波长转换装置的转换和/或合成效率低的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种波长转换装置,该波长转换装置包括扩散层和转换层,扩散层和转换层在波长转换装置的厚度方向上层叠设置,扩散层用于将进入其内部的激发光扩散并入射进转换层,转换层用于将进入其内部的激发光转换和/或合成目的光。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种发光组件,该发光组件包括激光光源、耦合元件和上述波长转换装置,激光光源用于产生激发光,耦合元件用于将激发光耦合进入波长转换装置的扩散层。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种照明装置,该照明装置包括上述发光组件。
有益效果
本发明的有益效果是:区别于现有技术的情况,本发明提供的波长转换装置可以高效地将进入其内部的光转换和/或合成目的光。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明一实施例提供的一种发光组件的简化结构示意图;
图2是本发明另一实施例提供的一种发光组件的简化结构示意图;
图3是本发明另一实施例提供的一种发光组件的简化结构示意图;
图4是本发明另一实施例提供的一种发光组件的简化结构示意图;
图5是本发明一实施例提供的一种照明装置的简化结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、 后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位 置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或部件的过程、方法、系统、产品或设备,没有限定于已列出的步骤或部件,而是可选地还包括没有列出的步骤或部件,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或部件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,图1是本发明一实施例提供的一种发光组件的简化结构示意图。
如图1所示,本发明提供的一种发光组件10包括激光光源120、耦合元件140和波长转换装置160。
激光光源120、耦合元件140和波长转换装置160可以在波长转换装置160的长度方向上依次排开设置,耦合元件140用于将激光光源120所发出的激发光耦合进入波长转换装置160,波长转换装置160用于将激光光源120所发出的激发光转换和/或合成目的光。当然,激光光源120、耦合元件140和波长转换装置160也可以在波长转换装置160的厚度方向上依次排开设置,在此不做限定。
其中,激光光源120、耦合元件140和波长转换装置160在波长转换装置160排开设置可以达到将激光光源120和波长转换装置160隔开设置的目的,避免激光光源120所产生的大量热过多地传导到波长转换装置160上,热量会影响波长转换装置160的转化效率,严重时会导致波长转换装置160热淬灭。此外,在波长转换装置160的长度方向上将激光光源120的光耦合进入波长转换装置160,这样可以实现点光源转换为面或线光源,进而增加光进入波长转换装置160的光照面积和均匀度。
其中,激光光源120可以是固态光源,例如发光二极管或者激光二极管等。激光光源120可以是一个,激光光源120也可以是多个或多个激光光源组成的阵列,例如2、3、或者4等。
耦合元件140的主要作用是将激光光源120所发出的光收集起来,集中照射进入波长转换装置160。耦合元件140可以是凸透镜,耦合元件140也可以是光纤,通过光纤将光线导入波长转换装置160中,耦合元件140还可以是其它具有聚光作用的任何光学器件,例如聚光膜或者凸镜集成的透镜组等等,在此不一一列举。
波长转换装置160可以具有平坦形状,波长转换装置160也可以为弯曲状,波长转换装置160还可以是其他形状造型,波长转换装置160的主要作用是将照射进入波长转换装置160的光转换成目的光,目的光可以是白光,目的光也可以是黄光,目的光还可以是其他颜色的光。
具体地,波长转换装置160可以包括扩散层162和转换层164,扩散层162和转换层164在扩散层162的厚度方向上层叠设置,从耦合元件140耦合的光从扩散层162的入射面161进入扩散层162,经过扩散处理后的光从转换层164的入射面163(入射面163也是扩散层162的出射面)进入转换层164,经过转换层164处理后从转换层164的出射面165射出得到我们需要的目的光。
扩散层162是陶瓷材料制成,具体地,扩散层162可以为具有晶界双折射现象的陶瓷材料。优选的,扩散层162可以是
Figure 146982dest_path_image001
陶瓷,由于
Figure 842406dest_path_image001
属于三方晶系,存在双折射现象,所以
Figure 552873dest_path_image001
陶瓷中存在着晶界双折射,双折射可产生额外光散射,扩散层162利用
Figure 421472dest_path_image001
陶瓷晶界双折射的特性将光线均匀打散后射入转换层164中;并且,
Figure 533784dest_path_image001
陶瓷对光不吸收,具有良好的透射率,能够实现极高的光效率。当然,其他具有晶界双折射现象的陶瓷也可以适用。
请参阅图2,图2是本发明另一实施例提供的一种发光组件10的简化结构示意图。
扩散层162也可以是普通陶瓷或者玻璃,通过在扩散层162增加气孔166,或者在扩散层162中增加具有散射功能的散射粒子168,或者在扩散层162中同时增加气孔166和散射粒子168,以增加扩散层162对光的扩散作用,从而使光照射进入转换层164的光照面积增加,此外,也提高了光照射的均匀度。当然,在一些实施例中,扩散层162还可以是
Figure 213158dest_path_image001
陶瓷,且在扩散层162中设置气孔166和/或者散射粒子168。
在一些情况下,可以调控扩散层162中的晶界、气孔166或者散射粒子含量的分布,来达到控制入射至转换层164中的光的光斑尺寸和均匀性。散射粒子168还可以是诸如Ti
Figure 410921dest_path_image002
Figure 83211dest_path_image001
或者BaS
Figure 50030dest_path_image003
等颗粒。
可选地,扩散层162所有面中除入射面161和出射面163外部分或者都做抛光处理,光线以一定角度(即临界角)照射到抛光面上时发生全反射,从而避免光线从非入射面和非出射面射出,以提高激光光源120的出光效率。
转换层164的材质为荧光陶瓷或者荧光玻璃,例如,转换层164可以是YAG陶瓷,当需要得到不同波长的光时,转换层164对应的掺杂不同的物质,以实现不同的荧光的效果。以激光光源120为蓝光,目的光为白光为例,转换层164对应地掺杂Ce,蓝光照射到掺杂Ce的YAG陶瓷中得到黄光,黄光和未被转换的蓝光混合得到目的光即白光。在其他实施例中,可以根据激光光源120的种类,目的光的种类,去选择对应的荧光陶瓷材料,如红色荧光陶瓷材料、绿色荧光陶瓷材料;具体地,也可以在YAG陶瓷中掺杂对应的掺杂元素,用于发出对应颜色的光,在此不做一一列举。
需要说明的是,一般而言,采用陶瓷材料封装所需要的荧光粉制得对应荧光陶瓷。示例性的,如YAG:Ce荧光陶瓷可以由荧光粉相YAG:Ce和氧化铝相构成,其中氧化铝实现对YAG:Ce荧光粉的封装。当然,用于封装的陶瓷材料可以为没有掺杂的YAG(钇铝石榴石)、氧化铝、氮化铝中的至少一种。荧光陶瓷还可以为荧光体单晶、共晶等;示例性的如YAG:Ce单晶荧光陶瓷,YAG:Ce-Al 2O 3共晶荧光陶瓷。
进一步地,转换层164可以增加气孔167,转换层164也可以增加具有散射功能的散射粒子169,转换层164还可以同时增加气孔167和散射粒子169,以增加转换层164对光的扩散作用,从而使光照射出转换层164,此外,也提高了光出射的均匀度。在一些情况下,可以调控转换层164中的气孔167或者散射粒子169含量的分布,来达到控制目的光的光斑尺寸和均匀性。散射粒子169还可以是诸如Ti
Figure 667350dest_path_image002
Figure 86830dest_path_image001
或者BaS
Figure 562810dest_path_image003
等颗粒。
可选地,转换层164所有面中除入射面163和出射面165外部分或者都做抛光处理,光线照射到抛光面上时发生镜面反射,从而避免光线从非入射面和非出射面射出,以提高激光光源120的出光效率。
波长转换装置160的转换层164和扩散层162可以为一体结构,具体地,转换层164和扩散层162可使用流延法制备多层复合陶瓷的工艺一体制作。波长转换装置160的转换层164和扩散层162还可以是组装结构。
请参阅图3,图3是本发明另一实施例提供的一种发光组件10的简化结构示意图。
激光光源120发出的光经过耦合元件140耦合进入波长转换装置160的扩散层162,光在扩散层162扩散后进入转换层164,转换成我们需要的目的光射出,以实现照明等目的。本实施例与上述实施例的区别在于,发光组件10进一步包括反射件180,反射件180具有反射光线的作用,反射件180设置于扩散层162的非入射面和非出射面的至少部分位置,且反射件180也设置于转换层164的非入射面和非出射面的至少部分位置,当光线从扩散层162或者转换层164的非入射面和非出射面射出时,光达到反射件180上,被反射件180重新发射进入扩散层162或者转换层164中,从而避免不必要的光损失,提高了激光光源120的出光效率。反射件180可以是反射膜,反射件180也可以是镜片,反射件180还可以是其他任何具有反射效果的器件。
进一步地,在扩散层162的入射面161的一侧设置有二向色片110,二向色片110可以对一定波长的光几乎完全透过,而对另一些波长的光几乎完全反射,二向色片110防止部分受激发光(受激发光波长不同于激发光)从入光面161出射,从而减小了目的光的损失,进一步地提升激光光源120的出光效率。具体地,以激光光源120为蓝光,目的光为白光为例,二向色片110可以透过蓝光激光而反射其它波长的光。
进一步地,在转换层164的出射面165的一侧设置有增透膜130,增透膜130是利用光的干涉原理,增透膜130的前表面与后表面反射的光发生干涉,波峰与波峰接触,波谷与波谷接触,从而增加转换层164的出射面165的出光强度。
请参阅图4,图4是本发明另一实施例提供的一种发光组件10的简化结构示意图。
激光光源120发出的光经过耦合元件140耦合进入波长转换装置160的扩散层162,光在扩散层162扩散后进入转换层164,转换成我们需要的目的光射出,以实现照明等目的。本实施例与上述实施例的区别在于,转换层164的出射面165为其长度方向的一侧。通过减小转换层164的出射面165的面积,以得到较小的光学扩展量的目的光,从而提高目的光的亮度。
综上所述,本领域技术人员容易理解,本发明提供的发光组件10包括激光光源120、耦合元件140和波长转换装置160,激光光源120、耦合元件140和波长转换装置160依次在波长转换装置160的长度方向上排开设置,从而避免激光光源120与波长转换装置160的直接接触,极大地减少了激光光源120传导到波长转换装置160上的热量。此外,波长转换装置160包括扩散层162和转换层164,扩散层162和转换层164在波长转换装置160的厚度方向上层叠设置,扩散层162用于扩散激光光源120发出的光,转换层164用于将扩散后的激光转换成我们需要的目的光,扩散层162和转换层164采用多层陶瓷制备工艺一体化制备,使波长转换装置160热导率和耐热性能进一步提升。
请参阅图5,图5是本发明一实施例提供的一种照明装置的简化结构示意图。
该照明装置包括灯罩20、灯体30和上述所有实施例所述的发光组件10,发光组件10设置在灯体30上,灯罩20罩设在灯体30上,以罩住发光组件10。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。
 

Claims (11)

1、一种波长转换装置,其特征在于,包括:
扩散层和转换层,所述扩散层和所述转换层在所述波长转换装置的厚度方向上层叠设置,所述扩散层用于将进入其内部的激发光扩散并入射进所述转换层,所述转换层用于将进入其内部的所述激发光转换和/或合成目的光。
2、根据权利要求1所述的波长转换装置,其特征在于,包括:
所述扩散层的材质为陶瓷或玻璃;
所述转换层的材质为荧光陶瓷或者荧光玻璃。
3、根据权利要求2所述的波长转换装置,其特征在于,所述转换层和所述扩散层为一体结构。
4、根据权利要求2所述的波长转换装置,其特征在于,包括:
所述扩散层为具有晶界双折射现象的陶瓷材料。
5、根据权利要求1至4任一项所述的波长转换装置,其特征在于,包括:
所述转换层和/或所述扩散层中设置有气孔或者散射粒子。
6、一种发光组件,其特征在于,包括:
激光光源,用于产生激发光;
如权利要求1至5任一项所述的波长转换装置;
耦合元件,用于将所述激发光耦合进入所述波长转换装置的扩散层。
7、根据权利要求6所述的发光组件,其特征在于,所述耦合元件为透镜、透镜组或者光纤。
8、根据权利要求6所述的发光组件,其特征在于,
所述波长转换装置的至少部分非入射面和非出射面做抛光处理;或者
所述发光组件进一步包括反射件,所述反射件设置于所述波长转换装置的至少部分所述非入射面和所述非出射面的侧面。
9、根据权利要求6所述的发光组件,其特征在于,
所述发光组件进一步包括二向色片,所述二向色片设置于所述耦合元件和所述波长转换装置之间;或者
所述发光组件进一步包括增透膜,所述增透膜设置于所述转换层的出射面一侧。
10、根据权利要求6所述的发光组件,其特征在于,
所述波长转换装置的入射面为其厚度方向的至少一个侧面。
11、一种照明装置,其特征在于,包括:权利要求5至9任一项所述的发光组件。
 
 
PCT/CN2018/088521 2018-01-29 2018-05-25 一种波长转换装置、发光组件及照明装置 WO2019144545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810094793.6A CN110094647A (zh) 2018-01-29 2018-01-29 一种波长转换装置、发光组件及照明装置
CN201810094793.6 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019144545A1 true WO2019144545A1 (zh) 2019-08-01

Family

ID=67395118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088521 WO2019144545A1 (zh) 2018-01-29 2018-05-25 一种波长转换装置、发光组件及照明装置

Country Status (2)

Country Link
CN (1) CN110094647A (zh)
WO (1) WO2019144545A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095849A (ja) * 2011-11-01 2013-05-20 Nippon Electric Glass Co Ltd 波長変換部材およびそれを用いてなる発光デバイス
CN103715340A (zh) * 2013-12-16 2014-04-09 常州市武进区半导体照明应用技术研究院 一种 led封装单元及其封装方法和阵列面光源
CN105118913A (zh) * 2011-02-02 2015-12-02 奥斯兰姆奥普托半导体有限责任公司 陶瓷变换元件、具有它的半导体芯片及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384391A (zh) * 2002-05-27 2002-12-11 胜华科技股份有限公司 背光模块之结构
CN101467266A (zh) * 2006-06-08 2009-06-24 皇家飞利浦电子股份有限公司 发光器件
JP2010287555A (ja) * 2009-05-15 2010-12-24 Toshiba Lighting & Technology Corp 高圧放電ランプ
JP5572013B2 (ja) * 2010-06-16 2014-08-13 スタンレー電気株式会社 発光装置およびその製造方法
KR101251815B1 (ko) * 2011-11-07 2013-04-09 엘지이노텍 주식회사 광학 시트 및 이를 포함하는 표시장치
CN103367614A (zh) * 2012-03-26 2013-10-23 台达电子工业股份有限公司 发光二极管的封装结构与其制法
CN102627450A (zh) * 2012-04-20 2012-08-08 苏州珂玛材料技术有限公司 一种细晶透明氧化铝陶瓷材料及制备方法
CN104583363B (zh) * 2012-08-23 2018-09-21 飞利浦灯具控股公司 稳定化波长转换元件
US10364963B2 (en) * 2014-12-12 2019-07-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device
CN205787204U (zh) * 2016-05-31 2016-12-07 苏州星烁纳米科技有限公司 一种背光模组和显示装置
CN107479310B (zh) * 2016-06-07 2021-06-25 海信集团有限公司 波长转换装置及投影光源
KR102600473B1 (ko) * 2016-06-09 2023-11-13 삼성디스플레이 주식회사 조명장치
CN205910483U (zh) * 2016-08-04 2017-01-25 青岛蓝之虹光电技术有限公司 应用波长转换原理的新型直下式背光光源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118913A (zh) * 2011-02-02 2015-12-02 奥斯兰姆奥普托半导体有限责任公司 陶瓷变换元件、具有它的半导体芯片及其制造方法
JP2013095849A (ja) * 2011-11-01 2013-05-20 Nippon Electric Glass Co Ltd 波長変換部材およびそれを用いてなる発光デバイス
CN103715340A (zh) * 2013-12-16 2014-04-09 常州市武进区半导体照明应用技术研究院 一种 led封装单元及其封装方法和阵列面光源

Also Published As

Publication number Publication date
CN110094647A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP5788194B2 (ja) 発光装置、照明装置、及び車両用前照灯
US10386559B2 (en) Light emitting device comprising wavelength converter
CN102252169B (zh) 高亮度激发方法及基于光波长转换的发光装置
TWI710802B (zh) 用於產生高亮度光的光學裝置
JP6045079B2 (ja) 照明装置
KR102114607B1 (ko) 레이저 광원장치
WO2014203484A1 (ja) 波長変換部材、光源、及び自動車用ヘッドランプ
CN105738994B (zh) 波长转换装置及相关照明装置、荧光色轮和投影装置
WO2017077739A1 (ja) 発光体、発光装置、照明装置、および発光体の製造方法
JP2014505982A5 (zh)
TW200923244A (en) Semiconductor source of light with a source of primary rays and a luminescence conversion element
JP6588564B2 (ja) 高輝度発光装置
CN204879969U (zh) 波长转换装置、光源系统和投影系统
CN207049630U (zh) 一种荧光模块及光源系统
WO2018137312A1 (zh) 一种荧光模块及相关光源
CN106922178B (zh) 发光设备
TW202032202A (zh) 白光光源系統
WO2019144545A1 (zh) 一种波长转换装置、发光组件及照明装置
CN110207025A (zh) 光源系统及照明装置
JP5842041B2 (ja) 発光装置
CN206850218U (zh) 小角度激光光源获得装置
CN207316491U (zh) 高显色指数激光白光获得装置
CN109578824A (zh) 一种基于抛物面反光杯的白光均匀照明装置
JP6085204B2 (ja) 発光装置
CN109798489B (zh) 一种照明装置和汽车照明灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901834

Country of ref document: EP

Kind code of ref document: A1