WO2014132838A1 - 車両用変速機 - Google Patents

車両用変速機 Download PDF

Info

Publication number
WO2014132838A1
WO2014132838A1 PCT/JP2014/053728 JP2014053728W WO2014132838A1 WO 2014132838 A1 WO2014132838 A1 WO 2014132838A1 JP 2014053728 W JP2014053728 W JP 2014053728W WO 2014132838 A1 WO2014132838 A1 WO 2014132838A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
clutch member
output shaft
shaft
input shaft
Prior art date
Application number
PCT/JP2014/053728
Other languages
English (en)
French (fr)
Inventor
勇樹 枡井
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Priority to US14/770,611 priority Critical patent/US20160010726A1/en
Priority to CN201480010008.4A priority patent/CN105008771B/zh
Priority to EP14756315.9A priority patent/EP2963315A4/en
Publication of WO2014132838A1 publication Critical patent/WO2014132838A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • F16H3/126Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches using an electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/08Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
    • F16D11/10Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/14Clutches in which the members have interengaging parts with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/04Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
    • F16D23/06Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch and a blocking mechanism preventing the engagement of the main clutch prior to synchronisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H2003/0807Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with gear ratios in which the power is transferred by axially coupling idle gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0474Smoothing ratio shift by smoothing engagement or release of positive clutches; Methods or means for shock free engagement of dog clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/682Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive

Definitions

  • the present invention relates to a vehicle transmission.
  • JP 2010-510464 A discloses an example of a vehicle transmission.
  • one engagement member (engagement element set) that can be engaged with a first engaged member (drive structure) provided on the low-speed side gear and the high-speed side gear are provided.
  • the other engaging member (engaging element set) that can be engaged with the second engaged member (driving structure) is used, and each of these two engaging members (engaging element set)
  • the engagement member is configured to be independently driven in the axial direction by a dedicated drive member and actuator. According to this configuration, the drive of each engagement member is controlled by the actuator, so that the other engagement member is moved from the low-speed side gear stage in which one engagement member is engaged with the first engaged member. 2. It is possible to instantaneously change (acceleration shift) to the high speed side gear stage engaged with the engaged member, thereby achieving a so-called “seamless shift” in which the driving torque is not interrupted. Can do.
  • the present invention has been made in view of the above points, and in a vehicular transmission that changes a shift between a first gear and a second gear, torque shift shock of torque at the time of the shift change is achieved.
  • the aim is to provide technology that is effective in mitigating.
  • a vehicle transmission according to the present invention is interposed in a power transmission system that connects a drive output shaft of a drive source of a vehicle and a drive wheel of the vehicle, and any of a plurality of shift stages is provided.
  • a transmission that selectively achieves this is provided with an input shaft, an output shaft, a power transmission mechanism, and a control device.
  • the input shaft is an axis that forms a power transmission system with the drive output shaft.
  • the output shaft is a shaft that forms a power transmission system with the drive wheels.
  • the power transmission mechanism is interposed between the input shaft and the output shaft in order to transmit the torque of the input shaft to the output shaft, and includes a plurality of gear mechanisms corresponding to each of the plurality of shift stages.
  • the control device controls the power transmission mechanism to selectively achieve any one of the first control mode, the second control mode, and the third control mode. In the first control mode, when the first gear among the plurality of gears is selected, the torque of the input shaft is applied to the output shaft only through the first gear mechanism corresponding to the first gear. introduce.
  • the torque of the input shaft is applied to the output shaft only through the second gear mechanism corresponding to the second gear. introduce.
  • the third control mode when the shift is changed from the first gear to the second gear, the torque of the input shaft is transmitted to the output shaft through the second gear mechanism, and the first shaft from the output shaft. A specified amount of torque is circulated through the input shaft through the gear mechanism.
  • the first gear and the second gear may be continuous gears, or may be discontinuous gears.
  • the second gear may be a higher gear than the first gear, or the first gear may be a higher gear than the second gear. Good.
  • the control device controls the power transmission mechanism to the third control mode, whereby the second gear Circulating torque for canceling shock torque generated in the mechanism can be generated by the first gear mechanism. Thereby, the shift shock at the time of shift change can be relieved.
  • the power transmission mechanism includes a drive unit that is connected to one of the input shaft and the output shaft and rotationally drives the shaft.
  • the first gear mechanism includes a first fixed gear, a first idle gear, and a first clutch member
  • the second gear mechanism includes a second fixed gear, a second idle gear, and a second clutch member. It is preferable to provide.
  • the first fixed gear is provided coaxially and non-rotatably on one of the input shaft and the output shaft.
  • the first idler gear is provided coaxially and relatively rotatably on the other of the input shaft and the output shaft, and always meshes with the first fixed gear.
  • the first clutch member is provided coaxially with the shaft on which the first free-wheeling gear is provided, and the non-engagement position in which the first free-wheel gear is not engaged and the engagement position in which the first free-wheel gear is engaged. Can be moved in the axial direction of the axis.
  • the second fixed gear is provided coaxially and non-rotatably on one of the input shaft and the output shaft.
  • the second idler gear is provided coaxially and relatively rotatably on the other of the input shaft and the output shaft, and always meshes with the second fixed gear.
  • the second clutch member is provided coaxially with the shaft on which the second idle gear is provided, and is in an unengaged position where it is not engaged with the second idle gear and an engaged position where it is engaged with the second idle gear.
  • the control device controls the first clutch member to the engagement position of the first clutch member and controls the second clutch member to the non-engagement position of the second clutch member in the first control mode. .
  • the control device controls the first clutch member to the disengagement position of the first clutch member and controls the second clutch member to the engagement position of the second clutch member in the second control mode.
  • the control device controls both the first clutch member and the second clutch member to the engagement position of the clutch member in the third control mode, and circulates a predetermined amount of torque from the output shaft to the input shaft. To control the drive unit. Thereby, the shift shock at the time of shift change can be relieved by control of a drive unit.
  • the control device controls the output shaft after controlling both the first clutch member and the second clutch member to the engagement position of the clutch member in the third control mode. It is preferable to control the moving speed of the first clutch member from the engaged position to the non-engaged position so that a specified amount of torque is circulated from the forward force shaft to the front force shaft. Thereby, the shift shock at the time of shift change can be relieved by controlling the moving speed of the first clutch member.
  • the control device derives a prescribed amount of torque based on the respective rotational speeds of the output shaft and the input shaft in the third control mode, and derives the prescribed amount thus derived. It is preferable to control the drive unit or the first clutch member so as to circulate the torque from the output shaft to the input shaft. Thereby, the circulating torque corresponding to each rotation speed of an output shaft and an input shaft can be generated.
  • a transmission T / M (for a vehicle) according to an embodiment of the present invention is interposed in a power transmission system that connects a drive output shaft of an engine, which is a drive source of a vehicle, and a drive wheel of the vehicle, and is used for vehicle advancement.
  • the transmission T / M includes an input shaft A2 and an output shaft A3.
  • the input shaft A2 of the transmission T / M is connected to the drive output shaft A1 of the engine E / G via the clutch C / D and the flywheel F / W.
  • a power transmission system is formed between the input shaft A2 and the drive output shaft A1 of the engine E / G.
  • An output shaft A3 of the transmission T / M is connected to a drive wheel D / W of the vehicle via a differential D / F.
  • a power transmission system is formed between the output shaft A3 and the drive wheels D / W.
  • the input shaft A2 and the output shaft A3 correspond to the “input shaft” and the “output shaft” of the present invention, respectively.
  • the output shaft A3 is connected to a drive unit 104 for rotationally driving the output shaft A3.
  • the drive unit 104 is typically constituted by a motor generator. This drive unit 104 corresponds to the “drive unit” of the present invention.
  • the clutch C / D is a friction clutch disk having one of well-known configurations provided to rotate integrally with the input shaft A2 of the transmission T / M. More specifically, the clutch C / D (more precisely, the clutch disc) faces each other with respect to the flywheel F / W provided to rotate integrally with the output shaft A1 of the engine E / G. It is arranged coaxially. The axial position of the clutch C / D (more precisely, the clutch disc) with respect to the flywheel F / W can be adjusted. The axial position of the clutch C / D is adjusted by the clutch actuator ACT1.
  • the clutch C / D does not include a clutch pedal operated by the driver.
  • the transmission T / M includes a plurality of fixed gears (also referred to as “driving gears”) G1i, G2i, G3i, G4i, and G5i, and a plurality of idle gears (also referred to as “driven gears”) G1o, G2o, G3o, and G4o. , G5o.
  • the plurality of fixed gears G1i, G2i, G3i, G4i, and G5i are each fixed to the input shaft A2 coaxially and relatively unrotatably, and each fixed to the input shaft A2 so as not to move relative to each other. It corresponds to each of a plurality of forward gears.
  • these fixed gears G1i, G2i, G3i, G4i, and G5i correspond to first speed, second speed, third speed, fourth speed, and fifth speed, respectively.
  • Each of the plurality of idle gears G1o, G2o, G3o, G4o, G5o is provided coaxially with the output shaft A3 so as to be relatively rotatable, and each corresponds to each of the plurality of forward shift stages, Is always meshed with the fixed gear of the corresponding gear stage.
  • these idle gears G1o, G2o, G3o, G4o, and G5o correspond to the first speed, the second speed, the third speed, the fourth speed, and the fifth speed, respectively.
  • the transmission T / M includes power transmission mechanisms 101, 102, and 103, and the change and setting of the shift speed is performed by operating each of the power transmission mechanisms 101, 102, and 103 using the transmission actuator ACT2. Is done.
  • the reduction ratio ratio of the rotational speed of the input shaft A2 to the rotational speed of the output shaft A3 is adjusted.
  • the control device 150 includes an accelerator opening sensor S1, a shift position sensor S2, a brake sensor S3, a rotation speed sensor 105, a clutch member sensor 106, and an electronic control unit (ECU) 151.
  • the accelerator opening sensor S1 is a sensor that detects an operation amount (accelerator opening) of the accelerator pedal AP.
  • the shift position sensor S2 is a sensor that detects the position of the shift lever SF.
  • the brake sensor S3 is a sensor that detects whether or not the brake pedal BP is operated.
  • the rotation speed sensor 105 functions to detect the rotation speeds of the input shaft A2 and the output shaft A3.
  • the clutch member sensor 106 functions to detect the positions of a first clutch member 130 and a second clutch member 230 described later.
  • the electronic control unit 151 controls the actuators ACT1 and ACT2 based on the information from the sensors S1 to S3 and the other sensors, etc., so that the clutch stroke of the clutch C / D (accordingly, the clutch torque). ) And the gear stage of the transmission T / M is controlled.
  • the electronic control unit 151 controls the drive unit 104 based on the detection information of the rotation speed sensor 105. Further, the electronic control unit 151 controls the drive torque of the output shaft A1 of the engine E / G by controlling the fuel injection amount (the throttle valve opening) of the engine E / G.
  • power transmission mechanisms 101, 102, and 103 all have the same structure, only the structure of the power transmission mechanism 101 will be described here with reference to FIGS. These power transmission mechanisms 101, 102, and 103 correspond to the “power transmission mechanism” of the present invention.
  • the power transmission mechanism 101 has a first gear (first gear) that is a relatively low gear among a plurality of gears and a second gear (second gear) that is a gear that is faster than the first gear.
  • the first gear mechanism 101a and the second gear mechanism 101b provided on the output shaft A3 of the transmission T / M.
  • the first gear mechanism 101a and the second gear mechanism 101b are one of a plurality of gear mechanisms corresponding to each of the plurality of shift speeds of the power transmission mechanism 101. Both the first gear mechanism 101a and the second gear mechanism 101b are interposed between the input shaft A2 and the output shaft A3.
  • the first gear mechanism 101a corresponds to one of the “first gear mechanism” and the “second gear mechanism” of the present invention
  • the second gear mechanism 101b is the “first gear mechanism” of the present invention. It corresponds to the other of “mechanism” and “second gear mechanism”.
  • the first gear mechanism 101a includes a first idler gear G1o, a first clutch member 130, and a first hub member 140, which are all coaxial with the output shaft A3 and annular.
  • the second gear mechanism 101b includes an annular second idler gear G2o, a second clutch member 230, and a second hub member 240, all of which are coaxial with the output shaft A3.
  • a first clutch member 130 and a second idle gear G2o are arranged in this order from the first idle gear G1o side.
  • the arrow X1 indicates one axial direction of the output shaft A3
  • the arrow X2 indicates the opposite direction of the arrow X1.
  • An arrow Y1 indicates a direction around one axis (rotation direction) of the output shaft A3, and an arrow Y2 indicates a direction opposite to the arrow Y1.
  • the idle gears G1o and G2o are both prevented from moving in the axial directions X1 and X2 of the output shaft A3 by a fixing means such as a snap ring, and can rotate relative to the output shaft A3 in the rotational directions Y1 and Y2. It has become.
  • the first idle gear G1o includes a facing portion 110 that faces the first clutch member 130.
  • the opposing portion 110 is provided with a plurality of engagement pieces 112 on the outer peripheral surface of a cylindrical main body portion 111.
  • the plurality of engagement pieces 112 are arranged at equal intervals in the circumferential direction of the main body 111.
  • the second idle gear G2o includes a facing portion 210 that faces the second clutch member 230.
  • the opposing portion 210 is provided with a plurality of engaging pieces 212 on the outer peripheral surface of a cylindrical main body portion 211.
  • the plurality of engagement pieces 212 are arranged at equal intervals in the circumferential direction of the main body 211.
  • the first clutch member 130 constitutes a clutch related to transmission and interruption of torque in the first gear mechanism 101a.
  • the first clutch member 130 is movable in the axial directions X1 and X2 of the output shaft A3 with respect to the hub member 140 provided so as not to rotate relative to the output shaft A3.
  • a plurality of engaging pieces 133 provided in the portion 131.
  • the first clutch member 130 is disengaged in FIG. 2 with respect to the opposing portion 110 of the first idle gear G1o by the transmission actuator ACT2 and fork (not shown) controlled by the electronic control unit 151 described above. Driven in the axial direction X1 from the position toward the engagement position.
  • the engagement position of the first clutch member 130 a meshing state is formed in which the engagement piece 133 of the first clutch member 130 and the corresponding engagement piece 112 on the first idle gear G1o side are engaged with each other.
  • the disengagement position (disengagement position) of the first clutch member 130 the engagement state of the engagement piece 133 of the first clutch member 130 and the corresponding engagement piece 112 on the first idle gear G1o side. Is released.
  • the clutch member sensor 106 detects that the first clutch member 130 is in the disengaged position or the engaged position.
  • the second clutch member 230 constitutes a clutch related to transmission and interruption of torque in the second gear mechanism 101b.
  • the second clutch member 230 is movable in the axial directions X1 and X2 of the output shaft A3 with respect to the hub member 240 provided so as not to rotate relative to the output shaft A3.
  • a plurality of engagement pieces 233 provided in the portion 231.
  • This second clutch member 230 is disengaged in FIG. 2 with respect to the opposing portion 210 of the second idle gear G2o by the transmission actuator ACT2 and fork (not shown) controlled by the electronic control unit 151 described above. Driven in the axial direction X1 from the position toward the engagement position.
  • control mode of the power transmission mechanism 101 having the above-described configuration particularly a control mode when the gear stage of the transmission T / M is changed from the first speed to the second speed
  • This control is performed by the electronic control unit 151 of the control device 150 controlling the transmission actuator ACT2 and the drive unit 104, respectively.
  • the power transmission mechanism 101 selectively achieves at least one of the following low speed mode, high speed mode, and intermediate mode.
  • the “control device” of the present invention is configured by the control device 150 including the electronic control unit 151.
  • the rotation direction indicated by arrow Y1 is defined as the acceleration direction
  • the rotation direction indicated by arrow Y2 is defined as the deceleration direction.
  • the transmission T / M is set to the first speed. That is, in the first gear mechanism 101a, the electronic control unit 151 of the control device 150 controls the transmission actuator ACT2, so that the first clutch member 130 is set to the engaged position, and the second gear mechanism 101b has the first gear mechanism 101b.
  • One clutch member 230 is set to a non-engagement position. In this case, the engagement piece 133 of the first clutch member 130 and the engagement piece 112 on the first idle gear G1o side engage with each other, while the engagement piece 233 of the second clutch member 230 and the second idle rotation It does not engage with the engagement piece 212 on the gear G2o side.
  • the torque of the input shaft A2 is output only through the first gear mechanism 101a, that is, through the first fixed gear G1i, the first idle gear G1o, the first clutch member 130, and the first hub member 140.
  • the first gear mechanism 101a that is, through the first fixed gear G1i, the first idle gear G1o, the first clutch member 130, and the first hub member 140.
  • the first clutch member 130 is also rotationally driven in the acceleration direction Y1, and the first clutch member 130 has a first torque corresponding to the first gear. T1 acts.
  • the second idle gear G2o is rotationally driven in the acceleration direction Y1, the second clutch member 230 is not rotationally driven.
  • the first idle gear G1o rotates in the acceleration direction Y1 at a predetermined rotational speed (also referred to as “angular velocity”) ⁇ , and the second idle gear G2o in the acceleration direction Y1 at 2 ⁇ , which is twice the rotational speed.
  • the first clutch member 130 rotates in the acceleration direction Y1 at the same rotational speed ⁇ as that of the first idle gear G1o.
  • the rotational torque of the input shaft A2 is transmitted to the output shaft A3 only through the first idle gear G1o, and a power transmission system having a first speed reduction ratio is formed.
  • This low speed mode corresponds to the “first control mode” of the present invention.
  • the intermediate mode is formed in the process (transition state) in which the gear stage of the transmission T / M shifts from the first speed to the second speed.
  • the second clutch member 230 is disengaged (see FIG. 3) by controlling the transmission actuator ACT2 by the electronic control unit 151 of the control device 150 in the second gear mechanism 101b following the low speed mode described above. Is driven in the axial direction X1, and is set to the engagement position shown in FIG. Thereby, the engagement piece 233 of the second clutch member 230 and the engagement piece 212 on the second idle gear G2o side are engaged with each other.
  • the state where the engagement piece 133 of the first clutch member 130 and the engagement piece 112 on the first idle gear G1o side are engaged with each other is maintained. That is, in this intermediate mode, both the engagement state in which the first clutch member 130 and the first idle gear G1o mesh with each other and the engagement state in which the second clutch member 230 and the second idle gear G2o mesh with each other are formed simultaneously.
  • the so-called “double engagement state (also referred to as“ double meshing state ”)” occurs.
  • this intermediate mode the torque of the input shaft A2 is output to the output shaft through the second fixed gear G2i, the second idle gear G2o, the second clutch member 230, and the second hub member 240 of the second gear mechanism 101b. While being transmitted to A3, torque is circulated from the output shaft A3 to the input shaft A2 via the first gear mechanism 101a.
  • This intermediate mode corresponds to the “third control mode” of the present invention.
  • a predetermined amount of torque can be circulated through the input shaft A2 by maintaining the first clutch member 130 in the engaged position.
  • This torque becomes a circulating torque Tc (also referred to as “resistance torque” for the input) that cancels a part of the shock torque Ts.
  • the electronic control unit 151 executes the shift change control shown in FIG. 6 in this intermediate mode.
  • step S101 a control signal is output to the clutch actuator ACT1 so that the clutch torque of the clutch C / D matches the engine torque of the engine E / G in response to the shift change instruction.
  • step S102 a prescribed amount (required amount) of the circulating torque Tc necessary for reducing the shock torque Ts is calculated.
  • the prescribed amount of the circulating torque Tc is calculated using the respective rotational speeds of the input shaft A2 and the output shaft A3 detected by the rotational speed sensor 105.
  • step S103 the control condition of the drive unit 104 necessary for generating the specified amount of circulating torque Tc calculated in step S102 (typically, the magnitude of the output torque applied from the drive unit 104 to the output shaft A3). And phase (frequency)) are derived. Thereby, preparation for control of the drive unit 104 is made.
  • step S104 following step S103, a control signal is output to the transmission actuator ACT2 so as to set the second clutch member 230 from the disengaged position shown in FIG. 3 to the engaged position shown in FIG. As a result, the second clutch member 230 is driven to the engaged position.
  • step S105 based on the detection information by the clutch member sensor 106, it is determined whether or not the second clutch member 230 has actually reached the engagement position by the control in step S104.
  • the process proceeds to step S106.
  • the drive unit 104 is controlled based on the control condition derived in step S103, and a circulating torque Tc having a waveform opposite in phase to the shock torque Ts is output to the output shaft A3.
  • step S106 it is preferable to output to the clutch actuator ACT1 a control signal for increasing the clutch torque of the clutch C / D so that the rotational speed of the engine E / G matches the rotational speed of the input shaft A2.
  • the shift change process is completed by executing step S106. Note that the controls in steps S101 to S106 described above are not limited to the order shown in FIG. 6, and the order can be changed as necessary.
  • a prescribed amount of circulation for canceling the shock torque Ts is controlled by controlling the magnitude and phase of the output torque applied from the drive unit 104 to the output shaft A3.
  • Torque Tc can be generated, and a part of the shock torque Ts can be offset by the circulating torque Tc.
  • a composite torque that is smaller in torque variation than shock torque Ts is generated. It is possible to alleviate the shift shock at the time. In particular, the shift shock can be easily reduced by using the control of the drive unit 104.
  • the second gear mechanism 101b can relieve a shift shock when changing the shift from the second speed to the first speed by using the control of the drive unit 104.
  • the second clutch member 230 When the second idle gear G2o is rotationally driven in the acceleration direction Y1, the second clutch member 230 is also rotationally driven in the acceleration direction Y1, and the second clutch member 230 has a second torque corresponding to the second gear. T2 acts.
  • the first idle gear G1o when the first idle gear G1o is rotationally driven in the acceleration direction Y1, the first clutch member 130 is not rotationally driven. In this case, the rotation of the input shaft A2 is transmitted to the output shaft A3 only through the second idle gear G2o, and a power transmission system having a reduction gear ratio of 2nd speed is formed.
  • This high speed mode corresponds to the “second control mode” of the present invention.
  • the change from the first speed to the second speed (acceleration shift) can be performed instantaneously, thereby achieving a seamless shift without interruption of the driving torque.
  • the present invention is not limited to the above exemplary embodiment, and various applications and modifications are possible.
  • each of the following embodiments to which the above embodiment is applied can be implemented.
  • step S201 processing similar to step S101 in FIG. 6 is performed, and in step S202, processing similar to step S102 in FIG. 6 is performed.
  • step S203 the control condition of the first clutch member 130 necessary for generating the specified amount of circulating torque Tc calculated in step S202 (typically, the first clutch member 130 is disengaged from the engaged position). The movement speed of movement to the position) is derived. Thereby, preparation for control of the 1st clutch member 130 is made.
  • steps S204 and S205 processing similar to that in steps S104 and S105 in FIG. 6 is performed.
  • step S206 the first clutch member 130 is controlled based on the control condition derived in step S203.
  • step S207 based on the detection information by the clutch member sensor 106, it is determined whether or not the first clutch member 130 has actually reached the non-engagement position by the control in step S206.
  • the condition of step S207 is satisfied, that is, when the first clutch member 130 has actually reached the disengaged position, the shift changing process is finished as it is.
  • the condition of step S207 is not satisfied, that is, when the first clutch member 130 has not actually reached the non-engagement position, the process returns to step S206.
  • each control of the above steps S201 to S207 is not limited to the order shown in FIG. 8, and the order can be changed as necessary.
  • the drive unit 104 can be connected to the input shaft A2 instead of the output shaft A3.
  • the power transmission mechanisms 101, 102, and 103 are provided on the output shaft A3 .
  • the mechanisms corresponding to the power transmission mechanisms 101, 102, and 103 are referred to as the input shaft A2 and the output shaft, respectively. It can be provided on at least one of A3. That is, the power transmission mechanism of the present invention can be applied to the shaft on which the idle gear is provided.
  • the present invention can be applied to a vehicular transmission that shifts between two first gears and second gears.
  • the first gear stage and the second gear stage may be continuous gear stages such as the first speed and the second speed, the third speed and the fourth speed, or the first speed and the third speed, for example.
  • discontinuous shift speeds such as 2nd speed and 4th speed may be used.
  • the second gear may be a higher gear than the first gear, or the first gear may be a higher gear than the second gear. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Mechanical Operated Clutches (AREA)
  • Structure Of Transmissions (AREA)

Abstract

 本発明に係る車両用変速機は、入力軸のトルクを出力軸A3に伝達するために入力軸と出力軸A3との間に介装され、複数の変速段のそれぞれに対応する複数のギヤ機構を含む動力伝達機構101と、複数の変速段のうちの第1の変速段が選択されたときに入力軸のトルクを第1の変速段に対応する第1のギヤ機構101aのみを介して出力軸A3に伝達する第1の制御モードと、複数の変速段のうちの第2の変速段が選択されたときに入力軸のトルクを第2の変速段に対応する第2のギヤ機構101bのみを介して出力軸A3に伝達する第2の制御モードと、第1の変速段から第2の変速段へのシフト変更の際、入力軸のトルクを第2のギヤ機構101bを介して出力軸A3に伝達しつつ、出力軸A3から第1のギヤ機構101aを介して入力軸に規定量のトルクを循環させる第3の制御モードのうちのいずれかの制御モードを選択的に達成するように動力伝達機構101を制御する制御装置と、を含む。これにより、第1の変速段と第2の変速段との間でシフト変更を行う車両用変速機において、シフト変更時のトルクの変速ショックを緩和することが可能になる。

Description

車両用変速機
 本発明は、車両用変速機に関する。
 特表2010-510464号公報には、車両用変速機の一例が開示されている。この変速機では、低速側のギヤに設けられた第1被係合部材(駆動構造体)に係合可能な一方の係合部材(係合要素セット)と、高速側のギヤに設けられた第2被係合部材(駆動構造体)に係合可能な他方の係合部材(係合要素セット)が用いられており、これら2つの係合部材(係合要素セット)のそれぞれが、各係合部材に専用の駆動部材及びアクチュエータによって軸方向に独立して駆動されるように構成されている。本構成によれば、各係合部材の駆動をアクチュエータによって制御することで、一方の係合部材が第1被係合部材に係合した低速側の変速段から、他方の係合部材が第2被係合部材に係合した高速側の変速段への変更(加速シフト)を瞬時に行うことが可能であり、これにより駆動トルクの途切れのない変速、所謂「シームレスシフト」を達成することができる。
 ところで、特表2010-510464号公報に記載のような変速機では、一方の係合部材が第1被係合部材に係合し、且つ他方の係合部材が第2被係合部材に係合した状態、所謂「二重係合状態」が一時的に生じる。この二重係合状態が生じた場合、入力側の慣性と出力側の慣性との衝突によって、乗員が認識可能な過大な衝撃波が発生する。この場合、車両走行時の乗員に不快な感覚を与えることが懸念される。そこで、この種の変速機では、このような問題に対処するために、シフト変更時のトルクの変速ショックを緩和するための手段が必要になる。
 本発明は、上記の点に鑑みてなされたものであり、第1の変速段と第2の変速段との間でシフト変更を行う車両用変速機において、シフト変更時のトルクの変速ショックを緩和するのに有効な技術を提供することを目的としている。
 この目的を達成するために、本発明に係る車両用変速機は、車両の駆動源の駆動出力軸と車両の駆動輪とを結ぶ動力伝達系統に介装され、複数の変速段のうちのいずれかを選択的に達成する変速機であって、入力軸、出力軸、動力伝達機構及び制御装置を備えている。
 入力軸は、駆動出力軸との間で動力伝達系統が形成される軸である。出力軸は、駆動輪との間で動力伝達系統が形成される軸である。動力伝達機構は、入力軸のトルクを出力軸に伝達するために入力軸と出力軸との間に介装され、複数の変速段のそれぞれに対応する複数のギヤ機構を含む。制御装置は、第1の制御モード、第2の制御モード及び第3の制御モードのうちのいずれかの制御モードを選択的に達成するように動力伝達機構を制御する。第1の制御モードでは、複数の変速段のうちの第1の変速段が選択されたときに入力軸のトルクを第1の変速段に対応する第1のギヤ機構のみを介して出力軸に伝達する。第2の制御モードでは、複数の変速段のうちの第2の変速段が選択されたときに入力軸のトルクを第2の変速段に対応する第2のギヤ機構のみを介して出力軸に伝達する。第3の制御モードでは、第1の変速段から第2の変速段へのシフト変更の際、入力軸のトルクを第2のギヤ機構を介して出力軸に伝達しつつ、出力軸から第1のギヤ機構を介して入力軸に規定量のトルクを循環させる。この場合、第1の変速段及び第2の変速段は、互いに連続した変速段であってもよいし、或いは非連続の変速段であってもよい。また、第2の変速段が第1の変速段に比べて高速の変速段であってもよいし、或いは第1の変速段が第2の変速段に比べて高速の変速段であってもよい。上記構成の車両用変速機よれば、第1の変速段から第2の変速段へのシフト変更の際、制御装置が動力伝達機構を第3の制御モードに制御することによって、第2のギヤ機構に生じるショックトルクを打ち消すための循環トルクを第1のギヤ機構にて発生させることができる。これによりシフト変更の際の変速ショックを緩和することができる。
 本発明に係る更なる形態の車両用変速機では、動力伝達機構は、入力軸及び出力軸のいずれか一方の軸に接続され当該軸を回転駆動するための駆動ユニットを備えるのが好ましい。また、第1のギヤ機構は、第1固定ギヤ、第1遊転ギヤ及び第1クラッチ部材を備え、第2のギヤ機構は、第2固定ギヤ、第2遊転ギヤ及び第2クラッチ部材を備えるのが好ましい。第1固定ギヤは、入力軸及び出力軸のうちの一方に同軸的且つ相対回転不能に設けられる。第1遊転ギヤは、入力軸及び出力軸のうちの他方に同軸的且つ相対回転可能に設けられ、第1固定ギヤに常時噛合する。第1クラッチ部材は、第1遊転ギヤが設けられている軸に同軸的に設けられ、第1遊転ギヤに係合しない非係合位置と第1遊転ギヤに係合する係合位置との間を当該軸の軸方向に移動可能である。同様に、第2固定ギヤは、入力軸及び出力軸のうちの一方に同軸的且つ相対回転不能に設けられる。第2遊転ギヤは、入力軸及び出力軸のうちの他方に同軸的且つ相対回転可能に設けられ、第2固定ギヤに常時噛合する。第2クラッチ部材は、第2遊転ギヤが設けられている軸に同軸的に設けられ、第2遊転ギヤに係合しない非係合位置と第2遊転ギヤに係合する係合位置との間を当該軸の軸方向に移動可能である。この場合、制御装置は、第1の制御モードにおいて第1クラッチ部材を当該第1クラッチ部材の係合位置に制御し、且つ第2クラッチ部材を当該第2クラッチ部材の非係合位置に制御する。またこの制御装置は、第2の制御モードにおいて第1クラッチ部材を当該第1クラッチ部材の非係合位置に制御し、且つ第2クラッチ部材を当該第2クラッチ部材の係合位置に制御する。更にこの制御装置は、第3の制御モードにおいて第1クラッチ部材及び第2クラッチ部材の双方を当該クラッチ部材の係合位置に制御し、且つ出力軸から入力軸に規定量のトルクを循環させるように駆動ユニットを制御する。これにより、駆動ユニットの制御によってシフト変更の際の変速ショックを緩和することができる。
 本発明に係る更なる形態の車両用変速機では、制御装置は、第3の制御モードにおいて第1クラッチ部材及び第2クラッチ部材の双方を当該クラッチ部材の係合位置に制御した後、出力軸から前力軸に規定量のトルクを循環させるように第1クラッチ部材の係合位置から非係合位置への移動速度を制御するのが好ましい。これにより、第1クラッチ部材の移動速度の制御によってシフト変更の際の変速ショックを緩和することができる。
 本発明に係る更なる形態の車両用変速機では、制御装置は、第3の制御モードにおいて出力軸及び入力軸のそれぞれの回転数に基づいて規定量のトルクを導出し、導出した当該規定量のトルクを出力軸から入力軸に循環させるように駆動ユニット又は第1クラッチ部材を制御するのが好ましい。これにより、出力軸及び入力軸のそれぞれの回転数に対応した循環トルクを発生させることができる。
 以上のように、本発明によれば、第1の変速段と第2の変速段との間でシフト変更を行う車両用変速機において、シフト変更時のトルクの変速ショックを緩和することが可能になった。
本発明の実施形態に係る変速機T/Mの概略構成を示す図である。 図1中の動力伝達機構101の構造を模式的に示す図である。 変速機T/Mの変速段が1速の場合の動力伝達機構101の状態を模式的に示す図である。 変速機T/Mの変速段が1速から2速へと変更される過程の動力伝達機構101の状態を模式的に示す図である。 1速から2速へのシフト変更時のトルクの変速ショックを示す図である。 シフト変更制御のフローチャートを示す図である。 変速機T/Mの変速段が1速から2速に変更された後の動力伝達機構101の状態を模式的に示す図である。 別実施の形態のシフト変更制御のフローチャートを示す図である。
 以下、本発明の実施形態に係る車両用変速機について図面を参照しつつ説明する。本発明の実施形態に係る(車両用)変速機T/Mは、車両の駆動源であるエンジンの駆動出力軸と車両の駆動輪とを結ぶ動力伝達系統に介装され、車両前進用に5つ変速段(1速(1st)~5速(5th))、及び、車両後進用に1つの変速段(リバース)を備えている。
 図1に示すように、変速機T/Mは、入力軸A2及び出力軸A3を備えている。変速機T/Mの入力軸A2は、クラッチC/D及びフライホイールF/Wを介して、エンジンE/Gの駆動出力軸A1に接続されている。この入力軸A2とエンジンE/Gの駆動出力軸A1との間で動力伝達系統が形成される。変速機T/Mの出力軸A3は、ディファレンシャルD/Fを介して車両の駆動輪D/Wに接続されている。この出力軸A3と駆動輪D/Wとの間で動力伝達系統が形成される。これら入力軸A2及び出力軸A3がそれぞれ、本発明の「入力軸」及び「出力軸」に相当する。また、出力軸A3には、当該出力軸A3を回転駆動するための駆動ユニット104が接続されている。この駆動ユニット104は、典型的には、モータジェネレータによって構成される。この駆動ユニット104が本発明の「駆動ユニット」に相当する。
 クラッチC/Dは、変速機T/Mの入力軸A2に一体回転するように設けられた周知の構成の1つを有する摩擦クラッチディスクである。より具体的には、エンジンE/Gの出力軸A1に一体回転するように設けられたフライホイールF/Wに対して、クラッチC/D(より正確には、クラッチディスク)が互いに向き合うように同軸的に配置されている。フライホイールF/Wに対するクラッチC/D(より正確には、クラッチディスク)の軸方向の位置が調整可能になっている。クラッチC/Dの軸方向位置は、クラッチアクチュエータACT1により調整される。なお、このクラッチC/Dは、運転者によって操作されるクラッチペダルを備えていない。
 変速機T/Mは、複数の固定ギヤ(「駆動ギヤ」ともいう)G1i、G2i、G3i、G4i、G5iと、複数の遊転ギヤ(「被動ギヤ」ともいう)G1o、G2o、G3o、G4o、G5oを備えている。複数の固定ギヤG1i、G2i、G3i、G4i、G5iは、それぞれが入力軸A2に同軸的且つ相対回転不能に、且つそれぞれが入力軸A2の軸方向に相対移動不能に固定されるとともに、それぞれが前進用の複数の変速段のそれぞれに対応している。具体的には、これらの固定ギヤG1i、G2i、G3i、G4i、G5iがそれぞれ、1速、2速、3速、4速、5速に対応している。複数の遊転ギヤG1o、G2o、G3o、G4o、G5oは、それぞれが出力軸A3に同軸的且つ相対回転可能に設けられ、且つそれぞれが前進用の複数の変速段のそれぞれに対応するとともに、それぞれが対応する変速段の固定ギヤと常時噛合している。具体的には、これらの遊転ギヤG1o、G2o、G3o、G4o、G5oがそれぞれ、1速、2速、3速、4速、5速に対応している。
 変速機T/Mは、動力伝達機構101,102,103を含み、変速段の変更・設定は、変速機アクチュエータACT2を用いて、動力伝達機構101,102,103のそれぞれを作動させることによって実行される。変速段を変更することで、減速比(出力軸A3の回転速度に対する入力軸A2の回転速度の割合)が調整される。
 制御装置150は、アクセル開度センサS1、シフト位置センサS2、ブレーキセンサS3、回転数センサ105、クラッチ部材センサ106及び電子制御ユニット(ECU)151を備えている。アクセル開度センサS1は、アクセルペダルAPの操作量(アクセル開度)を検出するセンサである。シフト位置センサS2は、シフトレバーSFの位置を検出するセンサである。ブレーキセンサS3は、ブレーキペダルBPの操作の有無を検出するセンサである。回転数センサ105は、入力軸A2及び出力軸A3のそれぞれの回転数を検出する機能を果たす。クラッチ部材センサ106は、後述の第1クラッチ部材130及び第2クラッチ部材230のそれぞれの位置を検出する機能を果たす。電子制御ユニット151は、上述のセンサS1~S3、並びにその他のセンサ等からの情報等に基づいて、上述のアクチュエータACT1,ACT2を制御することで、クラッチC/Dのクラッチストローク(従って、クラッチトルク)、及び、変速機T/Mの変速段を制御する。また、この電子制御ユニット151は、回転数センサ105の検出情報に基づいて駆動ユニット104を制御する。更に、この電子制御ユニット151は、エンジンE/Gの燃料噴射量(スロットル弁の開度)を制御することで、エンジンE/Gの出力軸A1の駆動トルクを制御する。
 上記の動力伝達機構101,102,103はいずれも同様の構造を有するため、ここでは図2~図4を参照しつつ動力伝達機構101の構造についてのみ説明する。これら動力伝達機構101,102,103が本発明の「動力伝達機構」に相当する。
 動力伝達機構101は、複数の変速段のうち相対的に低速の変速段である1速(第1の変速段)と、1速に対して高速の変速段である2速(第2の変速段)とに対応しており、変速機T/Mの出力軸A3上にそれぞれ設けられた、第1のギヤ機構101a及び第2のギヤ機構101bを含む。第1のギヤ機構101a及び第2のギヤ機構101bは、動力伝達機構101の複数の変速段のそれぞれに対応する複数のギヤ機構のうちの1つである。これら第1のギヤ機構101a及び第2のギヤ機構101bはいずれも入力軸A2と出力軸A3との間に介装される。第1のギヤ機構101aは、本発明の「第1のギヤ機構」及び「第2のギヤ機構」のいずれか一方に相当し、第2のギヤ機構101bは、本発明の「第1のギヤ機構」及び「第2のギヤ機構」のいずれか他方に相当する。
 図2が参照されるように、第1のギヤ機構101aは、いずれも出力軸A3と同軸で円環状の第1遊転ギヤG1o、第1クラッチ部材130及び第1ハブ部材140を含む。同様に、第2のギヤ機構101bは、いずれも出力軸A3と同軸で円環状の第2遊転ギヤG2o、第2クラッチ部材230及び第2ハブ部材240を含む。第1遊転ギヤG1oと第2クラッチ部材230との間には、第1遊転ギヤG1o側から順に、第1クラッチ部材130及び第2遊転ギヤG2oが配置されている。なお、これらの図面及びその他の図面において、矢印X1は出力軸A3の一方の軸方向を示し、矢印X2は矢印X1の反対方向を示す。また、矢印Y1は出力軸A3の一方の軸周り方向(回転方向)を示し、矢印Y2は矢印Y1の反対方向を示す。
 遊転ギヤG1o,G2oはいずれも、スナップリング等の固定手段によって出力軸A3の軸方向X1,X2の移動が阻止されており、且つ出力軸A3との回転方向Y1,Y2の相対回転が可能になっている。第1遊転ギヤG1oは、第1クラッチ部材130に対向する対向部110を備えている。この対向部110には、円筒状の本体部111の外周面に複数の係合片112が設けられている。これら複数の係合片112は、本体部111の周方向に等間隔で配置されている。この第1遊転ギヤG1oと同様に、第2遊転ギヤG2oは、第2クラッチ部材230に対向する対向部210を備えている。この対向部210には、円筒状の本体部211の外周面に複数の係合片212が設けられている。これら複数の係合片212は、本体部211の周方向に等間隔で配置されている。
 第1クラッチ部材130は、第1のギヤ機構101aにおけるトルクの伝達及び遮断に関するクラッチを構成している。この第1クラッチ部材130は、出力軸A3に相対回転不能に設けられたハブ部材140に対して出力軸A3の軸方向X1,X2に移動可能であり、円筒状の本体部131と、この本体部131に設けられた複数の係合片133とを備えている。この第1クラッチ部材130は、上述の電子制御ユニット151で制御された変速機アクチュエータACT2及びフォーク(図示省略)によって、第1遊転ギヤG1oの対向部110に対して図2中の非係合位置から係合位置に向けて軸方向X1に駆動される。第1クラッチ部材130の係合位置では、第1クラッチ部材130の係合片133と第1遊転ギヤG1o側の対応する係合片112とが互いに係合した噛み合い状態が形成される。一方で、第1クラッチ部材130の非係合位置(係合解除位置)では、第1クラッチ部材130の係合片133と第1遊転ギヤG1o側の対応する係合片112との噛み合い状態が解除される。この場合、第1クラッチ部材130が非係合位置にあることや係合位置にあることがクラッチ部材センサ106によって検出される。
 この第1クラッチ部材130と同様に、第2クラッチ部材230は、第2のギヤ機構101bにおけるトルクの伝達及び遮断に関するクラッチを構成している。この第2クラッチ部材230は、出力軸A3に相対回転不能に設けられたハブ部材240に対して出力軸A3の軸方向X1,X2に移動可能であり、円筒状の本体部231と、この本体部231に設けられた複数の係合片233とを備えている。この第2クラッチ部材230は、上述の電子制御ユニット151で制御された変速機アクチュエータACT2及びフォーク(図示省略)によって、第2遊転ギヤG2oの対向部210に対して図2中の非係合位置から係合位置に向けて軸方向X1に駆動される。第2クラッチ部材230の係合位置では、第1クラッチ部材230の係合片233と第2遊転ギヤG1o側の対応する係合片212とが互いに係合した噛み合い状態が形成される。一方で、第2クラッチ部材230の非係合位置(係合解除位置)では、第2クラッチ部材130の係合片233と第2遊転ギヤG2o側の対応する係合片212との噛み合い状態が解除される。この場合、第2クラッチ部材230が非係合位置にあることや係合位置にあることがクラッチ部材センサ106によって検出される。
 以下、上記構成の動力伝達機構101の制御態様、特には変速機T/Mの変速段が1速から2速に変更される際の制御態様を、図3~図7を参照しつつ説明する。この制御は、制御装置150の電子制御ユニット151が変速機アクチュエータACT2及び駆動ユニット104をそれぞれ制御することによって遂行される。これにより、動力伝達機構101は、少なくとも下記の低速モード、高速モード及び中間モードのうちのいずれかのモードを選択的に達成する。この場合、電子制御ユニット151を含む制御装置150によって本発明の「制御装置」が構成される。なお、これらの図面において、矢印Y1で示す回転方向を加速方向とし、矢印Y2で示す回転方向を減速方向とする。
(低速モード)
 図3に示す低速モードでは、変速機T/Mが1速に設定されている。即ち、第1のギヤ機構101aでは制御装置150の電子制御ユニット151が変速機アクチュエータACT2を制御することによって、第1クラッチ部材130が係合位置に設定され、且つ第2のギヤ機構101bでは第1クラッチ部材230が非係合位置に設定されている。この場合、第1クラッチ部材130の係合片133と第1遊転ギヤG1o側の係合片112とは互いに係合する一方で、第2クラッチ部材230の係合片233と第2遊転ギヤG2o側の係合片212とは係合しない。従って、入力軸A2のトルクは、第1のギヤ機構101aのみを介して、即ち第1固定ギヤG1i、第1遊転ギヤG1o、第1クラッチ部材130及び第1ハブ部材140を介して出力軸A3に伝達する。第1遊転ギヤG1oが加速方向Y1に回転駆動される場合、第1クラッチ部材130も加速方向Y1に回転駆動され、第1クラッチ部材130には1速の変速段に対応する第1のトルクT1が作用する。一方で、第2遊転ギヤG2oが加速方向Y1に回転駆動される場合、第2クラッチ部材230は回転駆動されない。例えば、第1遊転ギヤG1oが所定の回転速度(「角速度」ともいう)ωで加速方向Y1に回転し、第2遊転ギヤG2oがその2倍の回転速度である2ωで加速方向Y1に回転している場合、第1クラッチ部材130は第1遊転ギヤG1oと同一の回転速度ωで加速方向Y1に回転している。この場合、入力軸A2の回転トルクは、第1遊転ギヤG1oのみを介して出力軸A3に伝達され、1速の減速比を有する動力伝達系統が形成される。この低速モードが本発明の「第1の制御モード」に相当する。
(中間モード)
 変速機T/Mの変速段が1速から2速に移行する過程(遷移状態)で中間モードが形成される。この中間モードでは、前述の低速モードに引き続き第2のギヤ機構101bでは制御装置150の電子制御ユニット151が変速機アクチュエータACT2を制御することによって第2クラッチ部材230が非係合位置(図3に示す位置)から軸方向X1に駆動され、図4に示す係合位置に設定される。これにより、第2クラッチ部材230の係合片233と第2遊転ギヤG2o側の係合片212とが互いに係合する。一方で、第1のギヤ機構101aでは第1クラッチ部材130の係合片133と第1遊転ギヤG1o側の係合片112とが互いに係合した状態が維持される。即ち、この中間モードでは、第1クラッチ部材130及び第1遊転ギヤG1oが互いに噛み合う係合状態と、第2クラッチ部材230及び第2遊転ギヤG2oが互いに噛み合う係合状態の双方が同時に形成された状態、所謂「二重係合状態(「二重噛み合い状態」ともいう)」が生じる。従って、この中間モードでは、入力軸A2のトルクを、第2のギヤ機構101bの第2固定ギヤG2i、第2遊転ギヤG2o、第2クラッチ部材230及び第2ハブ部材240を介して出力軸A3に伝達する一方で、出力軸A3から第1のギヤ機構101aを介して入力軸A2にトルクが循環される。この中間モードが本発明の「第3の制御モード」に相当する。
 この中間モードでは、第2クラッチ部材230及び第2遊転ギヤG2oが互いに係合した結果、これら第2クラッチ部材230及び第2遊転ギヤG2oの回転速度は2ωからωに半減する。このとき、第2クラッチ部材230には1速から2速へのシフト変更の際のショックトルクTs(「変速ショック」ともいう)が作用する。また、第2遊転ギヤG2oの回転が、固定ギヤG2i、入力軸A2及び固定ギヤG1iを経由して第1遊転ギヤG1oに伝達されることで、第1遊転ギヤG1oの回転速度はωから(1/2)ωに半減する。このとき、第1のギヤ機構101aでは、第1クラッチ部材130を係合位置に維持することで入力軸A2に規定量のトルクを循環させることができる。このトルクは、ショックトルクTsの一部を打ち消すような循環トルクTc(入力に対する「抵抗トルク」ともいう)となる。
 上述の二重係合状態が生じた場合、入力側の慣性と出力側の慣性との衝突によって、乗員が認識可能な過大な衝撃波が発生する。図5が参照されるように、1速の変速段に対応する第1のトルクT1が生じる時間t1と2速の変速段に対応する第2のトルクT2が生じる時間t2との間で、上述のショックトルクTsが発生する。この場合、車両走行時の乗員に不快な感覚を与えることが懸念される。そこで、このような問題に対処するためにシフト変更時のトルクの変速ショックを緩和するための手段が必要になる。
 そこで、本実施の形態では、電子制御ユニット151がこの中間モードにおいて図6に示されるシフト変更制御を実行する。ステップS101では、シフト変更の指示に応じて、クラッチC/DのクラッチトルクをエンジンE/Gのエンジントルクに合致させるようにクラッチアクチュエータACT1に制御信号が出力される。これにより、シフト変更後のエンジンイナーシャ(慣性)の入力が防止される。ステップS101に引き続きステップS102では、ショックトルクTsを緩和するのに必要な循環トルクTcの規定量(必要量)が算出される。この場合、回転数センサ105によって検出された入力軸A2及び出力軸A3のそれぞれの回転数を用いて循環トルクTcの規定量が算出される。ステップS103では、ステップS102で算出した、規定量の循環トルクTcを発生させるために必要な駆動ユニット104の制御条件(典型的には、駆動ユニット104から出力軸A3に付与される出力トルクの大きさ及び位相(周波数))が導出される。これにより、駆動ユニット104の制御のための準備がなされる。ステップS103に引き続きステップS104では、第2クラッチ部材230を図3に示す非係合位置から図4に示す係合位置に設定するように変速機アクチュエータACT2に制御信号が出力される。これにより、第2クラッチ部材230は係合位置へと駆動される。ステップS105では、クラッチ部材センサ106による検出情報に基づいて、ステップS104の制御によって第2クラッチ部材230が実際に係合位置に到達したか否かを判定する。ステップS105の条件を満足する場合、即ち第2クラッチ部材230が実際に係合位置に到達した場合にステップS106にすすむ。一方で、ステップS105の条件を満足しない場合、即ち第2クラッチ部材230が実際に係合位置に到達していない場合にステップS104に戻る。ステップS106では、ステップS103で導出の制御条件に基づいて駆動ユニット104が制御され、ショックトルクTsとは逆位相の波形の循環トルクTcが出力軸A3に対して出力される。このとき、エンジンE/Gの回転数と入力軸A2の回転数とが合致するようにクラッチC/Dのクラッチトルクを増加させるための制御信号をクラッチアクチュエータACT1に出力するのが好ましい。このステップS106の実行によって当該シフト変更処理が終了する。なお、上記のステップS101~S106の各制御は図6に示す順番に限定されるものではなく、必要に応じて当該順番を入れ替えることもできる。
 図6が参照される上記のシフト変更制御によれば、駆動ユニット104から出力軸A3に付与される出力トルクの大きさ及び位相を制御することによって、ショックトルクTsを打ち消すための規定量の循環トルクTcを発生させることができ、ショックトルクTsの一部をこの循環トルクTcによって相殺することができる。その結果、ショックトルクTsに比べてトルク変動が小さい合成トルク(図5中の合成トルクTt(トルクTaとトルクTbとの間の変動トルク))が生じるため、1速から2速へのシフト変更の際の変速ショックを緩和することができる。特に、この変速ショックの緩和を駆動ユニット104の制御を用いて簡便に行うことができる。同様にして、上記の第2のギヤ機構101bは、駆動ユニット104の制御を利用して、2速から1速へのシフト変更の際の変速ショックを緩和することができる。
(高速モード)
 図7に示す高速モードでは、制御装置150の電子制御ユニット151が変速機アクチュエータACT2を制御することによって第1クラッチ部材130が非係合位置に設定され、且つ第2クラッチ部材230は係合位置に維持される。これにより、第1クラッチ部材130の係合片133と第1遊転ギヤG1o側の係合片112との係合が完全に解除される。従って、入力軸A2のトルクは、第2のギヤ機構101bのみを介して、即ち第2固定ギヤG2i、第1遊転ギヤG2o、第2クラッチ部材230及び第2ハブ部材240を介して出力軸A3に伝達する。第2遊転ギヤG2oが加速方向Y1に回転駆動される場合、第2クラッチ部材230も加速方向Y1に回転駆動され、第2クラッチ部材230には2速の変速段に対応する第2のトルクT2が作用する。一方で、第1遊転ギヤG1oが加速方向Y1に回転駆動される場合、第1クラッチ部材130は回転駆動されない。この場合、入力軸A2の回転は、第2遊転ギヤG2oのみを介して出力軸A3に伝達され、2速の減速比を有する動力伝達系統が形成される。この高速モードが本発明の「第2の制御モード」に相当する。かくして、1速から2速への変更(加速シフト)を瞬時に行うことができ、これにより駆動トルクの途切れのないシームレスシフトが達成される。
 なお具体的に図示しないものの、2速から1速への変速段の変更(減速シフト)については、図3,4,7が参照される上述の制御態様が実質的に反対に実行されることによって、1速から2速への変速段の変更(加速シフト)と同様のシームレスシフトが達成される。
 本発明は、上記の典型的な実施形態のみに限定されるものではなく、種々の応用や変形が考えられる。例えば、上記実施の形態を応用した次の各形態を実施することもできる。
 上記の実施形態では、1速から2速へのシフト変更の際に出力軸A3から入力軸A2に循環するトルクを調整するためのシフト変更制御として、図7に示すような駆動ユニット104の制御について記載したが、本発明では駆動ユニット104以外の別の制御対象の制御によって、出力軸A3から入力軸A2に循環するトルクを調整する変更例を採用することもできる。この変更例については図8が参照される。
 図8に示すシフト変更制御によれば、ステップS201では、図6中のステップS101と同様の処理が行われ、更にステップS202では、図6中のステップS102と同様の処理が行われる。ステップS203では、ステップS202で算出した、規定量の循環トルクTcを発生させるために必要な第1クラッチ部材130の制御条件(典型的には、第1クラッチ部材130を係合位置から非係合位置へと移動させる移動速度)が導出される。これにより、第1クラッチ部材130の制御のための準備がなされる。ステップS204及びステップS205では、図6中のステップS104及びステップS105と同様の処理が行われる。ステップS206では、ステップS203で導出の制御条件に基づいて、第1クラッチ部材130が制御される。これにより、第1クラッチ部材130は、ステップS203で導出の移動速度で係合位置から非係合位置へと移動する。ステップS207では、クラッチ部材センサ106による検出情報に基づいて、ステップS206の制御によって第1クラッチ部材130が実際に非係合位置に到達したか否かを判定する。ステップS207の条件を満足する場合、即ち第1クラッチ部材130が実際に非係合位置に到達した場合にそのまま当該シフト変更処理が終了する。一方で、ステップS207の条件を満足しない場合、即ち第1クラッチ部材130が実際に非係合位置に到達していない場合にステップS206に戻る。なお、上記のステップS201~S207の各制御は図8に示す順番に限定されるものではなく、必要に応じて当該順番を入れ替えることもできる。
 図8が参照される上記のシフト変更制御によれば、第1クラッチ部材130の係合位置から非係合位置への移動速度を制御することによって、駆動ユニット104を制御する場合と同様に、ショックトルクTsを打ち消すための規定量の循環トルクTcを発生させることができ、ショックトルクTsの一部をこの循環トルクTcによって相殺することができる。その結果、1速から2速へのシフト変更の際の変速ショックを緩和することができる。特に、この変速ショックの緩和を第1クラッチ部材130の制御を用いて簡便に行うことができる。
 上記の実施形態では、出力軸A3に駆動ユニット104を接続する場合について記載したが、本発明では、この駆動ユニット104を出力軸A3に代えて入力軸A2に接続することもできる。
 上記の実施形態では、回転数センサ105によって検出された入力軸A2及び出力軸A3のそれぞれの回転数を用いて循環トルクTcの規定量が算出される場合について記載したが、本発明ではこの循環トルクTcの規定量を予め設定することもできる。
 上記の実施形態では、動力伝達機構101,102,103を出力軸A3に設ける場合について記載したが、本発明では、動力伝達機構101,102,103に相当する機構をそれぞれ入力軸A2及び出力軸A3の少なくとも一方に設けることができる。即ち、遊動ギヤが設けられている軸に対して、本発明の動力伝達機構を適用することができる。
 上記の実施形態では、一例として第1の変速段である1速と第2の変速段である2速との間で変速(シフト変更)が行われる車両用変速機について記載したが、少なくとも2つの第1の変速段と第2の変速段との間で変速を行う車両用変速機に対して本発明を適用することができる。この場合、第1の変速段及び第2の変速段は、例えば1速と2速や、3速と4速のように互いに連続した変速段であってもよいし、例えば1速と3速や、2速と4速のように非連続の変速段であってもよい。また、第2の変速段が第1の変速段に比べて高速の変速段であってもよいし、或いは第1の変速段が第2の変速段に比べて高速の変速段であってもよい。

Claims (4)

  1.  車両の駆動源の駆動出力軸と前記車両の駆動輪とを結ぶ動力伝達系統に介装され、複数の変速段のうちのいずれかを選択的に達成する車両用変速機であって、
     前記駆動出力軸との間で動力伝達系統が形成される入力軸と、
     前記駆動輪との間で動力伝達系統が形成される出力軸と、
     前記入力軸のトルクを前記出力軸に伝達するために前記入力軸と前記出力軸との間に介装され、前記複数の変速段のそれぞれに対応する複数のギヤ機構を含む動力伝達機構と、
     前記複数の変速段のうちの第1の変速段が選択されたときに前記入力軸のトルクを前記第1の変速段に対応する第1のギヤ機構のみを介して前記出力軸に伝達する第1の制御モードと、前記複数の変速段のうちの第2の変速段が選択されたときに前記入力軸のトルクを前記第2の変速段に対応する第2のギヤ機構のみを介して前記出力軸に伝達する第2の制御モードと、前記第1の変速段から前記第2の変速段へのシフト変更の際、前記入力軸のトルクを前記第2のギヤ機構を介して前記出力軸に伝達しつつ、前記出力軸から前記第1のギヤ機構を介して前記入力軸に規定量のトルクを循環させる第3の制御モードのうちのいずれかの制御モードを選択的に達成するように前記動力伝達機構を制御する制御装置と、を含む、車両用変速機。
  2.  請求項1に記載の車両用変速機であって、
     前記動力伝達機構は、前記入力軸及び前記出力軸のいずれか一方の軸に接続され当該軸を回転駆動するための駆動ユニットを備え、
     前記第1のギヤ機構は、前記入力軸及び前記出力軸のうちの一方に同軸的且つ相対回転不能に設けられた第1固定ギヤと、前記入力軸及び前記出力軸のうちの他方に同軸的且つ相対回転可能に設けられ、前記第1固定ギヤに常時噛合する第1遊転ギヤと、前記第1遊転ギヤが設けられている軸に同軸的に設けられ、前記第1遊転ギヤに係合しない非係合位置と前記第1遊転ギヤに係合する係合位置との間を前記軸の軸方向に移動可能な第1クラッチ部材と、を備え、
     前記第2のギヤ機構は、前記入力軸及び前記出力軸のうち前記第1固定ギヤが設けられている軸に同軸的且つ相対回転不能に設けられた第2固定ギヤと、前記入力軸及び前記出力軸のうち前記第1遊転ギヤが設けられている軸に同軸的且つ相対回転可能に設けられ、前記第2固定ギヤに常時噛合する第2遊転ギヤと、前記第1遊転ギヤが設けられている軸に同軸的に設けられ、前記第2遊転ギヤに係合しない非係合位置と前記第2遊転ギヤに係合する係合位置との間を前記軸の軸方向に移動可能な第2クラッチ部材と、を備え、
     前記制御装置は、前記第1の制御モードにおいて前記第1クラッチ部材を当該第1クラッチ部材の前記係合位置に制御し、且つ前記第2クラッチ部材を当該第2クラッチ部材の前記非係合位置に制御し、前記第2の制御モードにおいて前記第1クラッチ部材を当該第1クラッチ部材の前記非係合位置に制御し、且つ前記第2クラッチ部材を当該第2クラッチ部材の前記係合位置に制御し、前記第3の制御モードにおいて前記第1クラッチ部材及び前記第2クラッチ部材の双方を当該クラッチ部材の前記係合位置に制御し、且つ前記出力軸から前記入力軸に前記規定量のトルクを循環させるように前記駆動ユニットを制御する、車両用変速機。
  3.  請求項1に記載の車両用変速機であって、
     前記第1のギヤ機構は、前記入力軸及び前記出力軸のうちの一方に同軸的且つ相対回転不能に設けられた第1固定ギヤと、前記入力軸及び前記出力軸のうちの他方に同軸的且つ相対回転可能に設けられ、前記第1固定ギヤに常時噛合する第1遊転ギヤと、前記第1遊転ギヤが設けられている軸に同軸的に設けられ、前記第1遊転ギヤに係合しない非係合位置と前記第1遊転ギヤに係合する係合位置との間を前記軸の軸方向に移動可能な第1クラッチ部材と、を備え、
     前記第2のギヤ機構は、前記入力軸及び前記出力軸のうち前記第1固定ギヤが設けられている軸に同軸的且つ相対回転不能に設けられた第2固定ギヤと、前記入力軸及び前記出力軸のうち前記第1遊転ギヤが設けられている軸に同軸的且つ相対回転可能に設けられ、前記第2固定ギヤに常時噛合する第2遊転ギヤと、前記第1遊転ギヤが設けられている軸に同軸的に設けられ、前記第2遊転ギヤに係合しない非係合位置と前記第2遊転ギヤに係合する係合位置との間を前記軸の軸方向に移動可能な第2クラッチ部材と、を備え、
     前記制御装置は、前記第1の制御モードにおいて前記第1クラッチ部材を当該第1クラッチ部材の前記係合位置に制御し、且つ前記第2クラッチ部材を当該第2クラッチ部材の前記非係合位置に制御し、前記第2の制御モードにおいて前記第1クラッチ部材を当該第1クラッチ部材の前記非係合位置に制御し、且つ前記第2クラッチ部材を当該第2クラッチ部材の前記係合位置に制御し、前記第3の制御モードにおいて前記第1クラッチ部材及び前記第2クラッチ部材の双方を当該クラッチ部材の前記係合位置に制御した後、前記出力軸から前記入力軸に前記規定量のトルクを循環させるように前記第1クラッチ部材の前記係合位置から前記非係合位置への移動速度を制御する、車両用変速機。
  4.  請求項2又は3に記載の車両用変速機であって、
     前記制御装置は、前記第3の制御モードにおいて前記出力軸及び前記入力軸のそれぞれの回転数に基づいて前記規定量のトルクを導出し、導出した当該規定量のトルクを前記出力軸から前記入力軸に循環させるように前記駆動ユニット又は前記第1クラッチ部材を制御する、車両用変速機。
PCT/JP2014/053728 2013-02-26 2014-02-18 車両用変速機 WO2014132838A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/770,611 US20160010726A1 (en) 2013-02-26 2014-02-18 Transmission for a vehicle
CN201480010008.4A CN105008771B (zh) 2013-02-26 2014-02-18 车辆用变速器
EP14756315.9A EP2963315A4 (en) 2013-02-26 2014-02-18 VEHICLE TRANSMISSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-035317 2013-02-26
JP2013035317A JP6122658B2 (ja) 2013-02-26 2013-02-26 車両用変速機

Publications (1)

Publication Number Publication Date
WO2014132838A1 true WO2014132838A1 (ja) 2014-09-04

Family

ID=51428110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053728 WO2014132838A1 (ja) 2013-02-26 2014-02-18 車両用変速機

Country Status (5)

Country Link
US (1) US20160010726A1 (ja)
EP (1) EP2963315A4 (ja)
JP (1) JP6122658B2 (ja)
CN (1) CN105008771B (ja)
WO (1) WO2014132838A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605163A (zh) * 2016-03-11 2016-05-25 绍兴前进齿轮箱有限公司 一种机械式操纵船用齿轮箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098226A (ja) * 2000-09-20 2002-04-05 Aisin Ai Co Ltd 同期噛合式変速機の制御装置
JP2002250436A (ja) * 2001-02-21 2002-09-06 Nissan Motor Co Ltd 車両用駆動装置
JP2010510464A (ja) 2006-11-22 2010-04-02 ゼロシフト リミテッド 変速機
WO2012066740A1 (ja) * 2010-11-19 2012-05-24 株式会社イケヤフォーミュラ トランスミッション及び変速制御システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820654B1 (ja) * 1970-02-12 1973-06-22
US4517859A (en) * 1982-01-05 1985-05-21 Mazda Motor Corporation Shift up clutch control in a multiple clutch type gear transmission for automobile
DE19615742C1 (de) * 1996-04-20 1997-05-07 Daimler Benz Ag Kraftfahrzeugantrieb mit Schaltgetriebe
WO2000029765A1 (fr) * 1998-11-16 2000-05-25 Yanmar Diesel Engine Co., Ltd. Procede de regulation de la pression hydraulique dans un mecanisme de changement de vitesse avec un embrayage hydraulique
JP4108265B2 (ja) * 2000-11-22 2008-06-25 本田技研工業株式会社 車両用クラッチの接続状態判定装置およびこれを用いた変速制御装置
JP3715272B2 (ja) * 2002-11-21 2005-11-09 トヨタ自動車株式会社 車両の動力伝達装置
JP4081384B2 (ja) * 2003-02-10 2008-04-23 ジヤトコ株式会社 自動車用自動変速機の変速制御装置
KR100579259B1 (ko) * 2003-12-22 2006-05-11 현대자동차주식회사 자동변속기의 변속 제어방법 및 장치
JP4449713B2 (ja) * 2004-11-22 2010-04-14 トヨタ自動車株式会社 無段変速機の変速制御装置
JP2009248728A (ja) * 2008-04-04 2009-10-29 Aisin Ai Co Ltd ハイブリッド動力装置における制御方法
EP2359033A4 (en) * 2008-12-17 2012-05-02 Nt Consulting Int Pty Ltd AUTOMATED MANUAL GEARBOX WITH HYBRID DRIVE
DE102010018532B3 (de) * 2010-04-27 2011-07-07 GETRAG FORD Transmissions GmbH, 50735 Verfahren zum Schalten eines Doppelkupplungsgetriebes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098226A (ja) * 2000-09-20 2002-04-05 Aisin Ai Co Ltd 同期噛合式変速機の制御装置
JP2002250436A (ja) * 2001-02-21 2002-09-06 Nissan Motor Co Ltd 車両用駆動装置
JP2010510464A (ja) 2006-11-22 2010-04-02 ゼロシフト リミテッド 変速機
WO2012066740A1 (ja) * 2010-11-19 2012-05-24 株式会社イケヤフォーミュラ トランスミッション及び変速制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2963315A4 *

Also Published As

Publication number Publication date
EP2963315A1 (en) 2016-01-06
EP2963315A4 (en) 2016-12-07
CN105008771A (zh) 2015-10-28
JP6122658B2 (ja) 2017-04-26
JP2014163454A (ja) 2014-09-08
US20160010726A1 (en) 2016-01-14
CN105008771B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5017450B2 (ja) ハイブリッド動力装置
JP5942412B2 (ja) 車両駆動装置
JP6107824B2 (ja) 車両の走行制御装置
WO2012127655A1 (ja) 車両用駆動装置
JP6344030B2 (ja) ハイブリッド車両の制御装置
JP5918953B2 (ja) 車両の動力伝達制御装置
WO2013008858A1 (ja) 車両の動力伝達制御装置
WO2012118130A1 (ja) 手動変速機
US20170248197A1 (en) Automatic transmission and control method of automatic transmission
JP6133081B2 (ja) 車両用変速機
JP4952520B2 (ja) ハイブリッド車の駆動装置
JP6122658B2 (ja) 車両用変速機
JP2012056510A (ja) ハイブリッド車両の駆動装置
JP5821492B2 (ja) 車両の変速装置
JP2020138581A (ja) ハイブリッド車両の駆動装置
JP2013204758A (ja) 車両用変速機
JP6922802B2 (ja) ハイブリッド車両の制御装置
US8932173B2 (en) Automated manual transmission for vehicle
JP2017043312A (ja) ハイブリッド車両用駆動装置
JP6041493B2 (ja) 変速機
WO2015046151A1 (ja) 車両用駆動装置の制御装置
JP2018065512A (ja) ハイブリッド車両の駆動制御システム
WO2015046150A1 (ja) 車両用駆動装置の制御装置
JP2013204759A (ja) 車両用変速機
JP2007050776A (ja) ハイブリッド変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014756315

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14770611

Country of ref document: US