WO2015046150A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2015046150A1
WO2015046150A1 PCT/JP2014/075096 JP2014075096W WO2015046150A1 WO 2015046150 A1 WO2015046150 A1 WO 2015046150A1 JP 2014075096 W JP2014075096 W JP 2014075096W WO 2015046150 A1 WO2015046150 A1 WO 2015046150A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
rotational speed
target
range
control device
Prior art date
Application number
PCT/JP2014/075096
Other languages
English (en)
French (fr)
Inventor
友宏 小野内
耕平 津田
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2015046150A1 publication Critical patent/WO2015046150A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for a vehicle drive device including a rotating electric machine and a speed change mechanism mounted on, for example, a hybrid vehicle or an electric vehicle, and more specifically, when the speed change mechanism is switched from a non-travel range to a travel range.
  • the present invention relates to a control device for a vehicle drive device that controls the rotation speed of an electric machine.
  • hybrid vehicles in which an internal combustion engine and a motor / generator (hereinafter simply referred to as “motor”) are combined as a power source has been underway.
  • a motor connected to an input shaft of a transmission mechanism and an internal combustion engine at a part of a general automatic transmission starter (for example, a torque converter).
  • An engine connecting shaft that is driven and connected to the engine and an engine connecting clutch that engages and disengages (engages or disengages) the input shaft are arranged to constitute a parallel hybrid vehicle driving device by simple replacement Has been proposed (see Patent Document 1).
  • the speed change mechanism for example, there is a stepped transmission that can form the sixth forward speed and the reverse speed by changing the speed stage by engaging / disengaging engagement elements such as a plurality of clutches and brakes. (See FIG. 2 of Patent Document 1).
  • this transmission mechanism only the C-1 clutch and the one-way clutch are engaged, so that the first forward speed is established.
  • the C-1 clutch and the one-way clutch are released, and, for example, the remaining battery capacity (SOC) is not less than a predetermined value.
  • the engine connecting clutch is released, and the connection between the internal combustion engine, the motor, and the transmission mechanism is disconnected.
  • the current vehicle speed (output shaft rotation speed of the speed change mechanism) and the corresponding target speed Control for synchronizing the rotational speed of the input shaft of the speed change mechanism that synchronizes with the current vehicle speed at the target gear stage and switching the motor to the synchronous rotational speed after switching to the D range.
  • the current vehicle speed output shaft rotation speed of the speed change mechanism
  • the corresponding target speed Control for synchronizing the rotational speed of the input shaft of the speed change mechanism that synchronizes with the current vehicle speed at the target gear stage and switching the motor to the synchronous rotational speed after switching to the D range.
  • the hybrid vehicle drive device disclosed in Patent Document 1 may cause the following problems.
  • the motor rotation speed may generate an amplitude based on, for example, the performance of the motor or the accuracy of the vehicle speed sensor. When such an amplitude occurs, the motor rotation speed becomes higher or lower than the target. Or these changes may occur alternately. For this reason, even if the motor rotational speed is set to coincide with the synchronous rotational speed during the operation from when the shift lever is switched from the N range to the D range until the C-1 clutch is completely engaged, the motor rotational speed is set. Depending on the amplitude that can pulsate, the motor rotation speed may be higher or lower than the synchronous rotation speed.
  • an object of the present invention is to provide a control device for a vehicle drive device that can suppress the occurrence of a sense of incongruity to the driver even if the rotational speed of the rotating electrical machine has an amplitude.
  • the control device (6) of the vehicle drive device (1) (see, for example, FIGS. 1 to 8) is on the transmission path between the rotating electrical machine (5) and the rotating electrical machine (5) and the wheels (10).
  • a plurality of engaging elements (C-1, C-2, C-3, B-1, B-2, F-1), and the plurality of engaging elements (C-1, C-2, C-3, B-1, B-2, F-1) are changed based on the engagement state to form a plurality of shift stages, and a travel range state and a non-travel range state
  • Vehicle drive device for controlling the vehicle drive device (1) comprising: a speed change mechanism (3) that can be switched between and a detection device (7) that can detect an output rotation speed of the speed change mechanism (3).
  • a synchronous speed calculation unit (62) to perform When there is a request to switch the speed change mechanism (3) from the non-traveling range state to the traveling range state, if it is determined that there is an acceleration request, the target rotational speed (N a ) of the rotating electrical machine (5) Is calculated to be higher than the synchronous rotational speed (N 0 ) by a predetermined rotational speed (N 2 ), and when it is determined that there is no acceleration request, the target rotational speed (N a ) of the rotating electrical machine (5) is calculated.
  • the target speed calculation unit can calculate whether the rotational speed of the rotating electrical machine is higher or lower by a predetermined rotational speed than the synchronous rotational speed in response to an acceleration request. it can.
  • the target speed calculation unit determines that there is an acceleration request, it calculates the rotational speed of the rotating electrical machine to be higher than the synchronous rotational speed by a predetermined rotational speed. For this reason, when there is a driver's acceleration request, a feeling of acceleration is generated, so that it is difficult for the driver to feel uncomfortable and the deterioration of riding comfort can be suppressed.
  • the target speed calculation unit determines that there is no acceleration request, it calculates the rotational speed of the rotating electrical machine to be lower than the synchronous rotational speed by a predetermined rotational speed. For this reason, when there is no acceleration request from the driver, a feeling of deceleration is generated, so that it is difficult for the driver to feel uncomfortable and the deterioration of riding comfort can be further suppressed.
  • FIG. 1 is a schematic diagram showing a hybrid vehicle to which a vehicle drive device according to the present embodiment is applied. It is a skeleton figure which shows the transmission mechanism of the vehicle drive device which concerns on this Embodiment. It is an action
  • the vehicle drive device 1 according to the present embodiment is mounted on an FF (front engine / front drive) type vehicle, and the present embodiment describes a case where the vehicle drive device 1 is mounted on a hybrid vehicle. .
  • FF front engine / front drive
  • a hybrid vehicle (hereinafter simply referred to as “vehicle”) 100 has, as a drive source, a motor generator (hereinafter simply referred to as “motor”) (rotary electric machine), in addition to the internal combustion engine 2. 5 is configured as a hybrid vehicle.
  • the vehicle 100 includes a vehicle drive device 1 that constitutes a power train, an internal combustion engine 2, and wheels 10.
  • the vehicle drive device 1 is disposed between a transmission mechanism 3 provided on a power transmission path between the internal combustion engine 2 and the wheel 10, and between the transmission mechanism 3 and the internal combustion engine 2.
  • An input unit 4 to which power is input and a control device 6 are provided.
  • the output shaft 20 of the internal combustion engine 2 is drivingly connected to the internal combustion engine 2 via a damper (not shown), and the damper transmits power to the input unit 4 while absorbing the pulsation of the internal combustion engine 2. ing.
  • the input unit 4 includes an engine connection clutch K0 that connects and disconnects power transmission between the output shaft 20 and the input shaft 30 of the speed change mechanism 3, and a motor 5 that is drivingly connected between the clutch K0 and the input shaft 30.
  • the clutch K0 includes a plurality of inner friction plates that rotate integrally with the output shaft 20, and a plurality of outer friction plates that are coupled to a clutch drum that rotates integrally with the rotor of the motor 5 and the input shaft 30 of the transmission mechanism 3. It is constituted by a plate clutch.
  • the motor 5 includes a rotor connected to a clutch drum, and a stator disposed to face the outer side in the radial direction of the rotor. Thus, the rotational speed of the input shaft 30 of the speed change mechanism 3, and the rotational speed N m of the motor 5 coincide.
  • the speed change mechanism 3 is composed of a speed change mechanism that can change the transmission path based on the engagement state of a plurality of engagement elements (multi-plate clutch, brake, one-way clutch) to achieve the sixth forward speed and the reverse speed. Yes.
  • the output shaft 31 of the speed change mechanism 3 is connected to the wheel 10 via a differential device D.
  • the output shaft 31 is provided with a rotation speed sensor (detection device) 7 that detects the output rotation speed.
  • the detailed configuration of the transmission mechanism 3 will be described later.
  • the input unit 4 and the speed change mechanism 3 including the clutch K0 and the motor 5 are sequentially arranged from the internal combustion engine 2 side to the wheel 10 side.
  • the control device 6 controls the hydraulic control device (not shown) to engage the clutch K0, while drivingly connected to the wheel 10 side.
  • the clutch K0 is released to disconnect the internal combustion engine 2 and the wheels 10.
  • the control device 6 is configured by a computer (ECU), for example, and based on the output rotational speed that is a signal from the rotational speed sensor 7 of the transmission mechanism 3 and the accelerator opening degree from the accelerator pedal 8, the target shift speed of the transmission mechanism 3 is set. Is calculated.
  • the computer constituting the control device 6 includes, for example, a CPU, a RAM that temporarily stores various data, a ROM that stores programs for executing various operations, and an input / output interface circuit.
  • the control device 6 is connected to each part of the vehicle 100 and controls each part.
  • the control device 6 is connected to an accelerator opening sensor (not shown) that detects the opening of the accelerator pedal 8, and can detect the accelerator opening (including ON / OFF) between 0 and 100%. In the present embodiment, the control device 6 determines that the accelerator pedal 8 is in an off state when the accelerator opening is 0%, while the accelerator pedal 8 is in an on state when the accelerator opening exceeds 0%. (See FIGS. 5, 7, and 8). However, the determination criterion of the control device 6 is not limited to this, and a threshold value (for example, 2%) of the accelerator opening is set in advance, and the accelerator pedal 8 is used when the accelerator opening is equal to or less than the threshold value.
  • a threshold value for example, 2%) of the accelerator opening is set in advance, and the accelerator pedal 8 is used when the accelerator opening is equal to or less than the threshold value.
  • the accelerator pedal 8 While it is determined that the accelerator pedal 8 is off, the accelerator pedal 8 may be determined to be on when the accelerator opening exceeds a threshold value. Further, the control device 6 is connected to a lever switch (not shown) that detects the position of the shift lever 9 so that the shift range of the shift lever 9 can be detected.
  • the shift range of the shift lever 9 includes a travel range (D range, etc.) and a non-travel range (N range, P range).
  • the control device 6 includes a target shift speed calculation unit 61, a synchronous speed calculation unit 62, a target speed calculation unit 63, and a speed control unit 64.
  • the target shift speed calculation unit 61 calculates the target shift speed of the speed change mechanism 3 based on the output rotation speed.
  • the synchronous speed calculation unit 62 calculates the synchronous rotational speed N 0 of the input shaft 30 of the transmission mechanism 3 that is synchronized with the output rotational speed at the target shift stage. It has become.
  • Target speed calculator 63 when the transmission mechanism 3 is switched from the D range (drive range) state to the N range (non-driving range) state, the target rotational speed N a of the motor 5, the synchronous rotational speed N 0 or less In addition, the calculation is performed so that the rotation speed is equal to or higher than the rotation speed N 1 lower than the synchronous rotation speed N 0 (see FIG. 5).
  • the predetermined rotational speed N 1 is intended to than the amplitude of the motor rotation speed N m generated based on at least one of the accuracy of the performance and the rotational speed sensor 7 of the motor 5 is set to a large speed, wherein the predetermined rotational speed N 1 is, for example, 50 rpm.
  • the target speed calculator 63 when there is a request to switch the running range state shift mechanism 3 from a non-running range state, if it is determined that the acceleration request is present, the synchronization target rotation speed N a of the motor 5 than the rotation speed N 0 is calculated to be higher by a predetermined rotational speed N 2 (see FIG. 7), if the acceleration request is judged that there is no predetermined than synchronous rotational speed N 0 of the target rotational speed N a of the motor 5 The calculation is performed so as to decrease by the rotational speed N 2 (see FIG. 8).
  • the predetermined rotational speed N 2 is intended to than the amplitude of the motor rotation speed N m generated based on at least one of the accuracy of the performance and the rotational speed sensor 7 of the motor 5 is set to a large speed, wherein the predetermined rotational speed N 2 is, for example, 50 rpm.
  • Speed control unit 64 is adapted to control the rotational speed N m of the motor 5 at the target rotation speed N a.
  • the request to switch the speed change mechanism 3 from the non-traveling range state to the traveling range state is to switch the shift range (shift position) of the shift lever 9 from the N range to the D range. That is, the target speed calculator 63, when the shift range of the shift lever 9 is switched from the N range to the D range (t4 in FIG. 7, t8 in FIG. 8) calculates the target rotational speed N a of the motor 5 It is like that. Thereby, after the shift range is switched from the N range to the D range, the speed controller 64 is engaged until the clutch C-1 is engaged and the transmission mechanism 3 is actually switched from the non-traveling range state to the traveling range state. There has been adapted to control the motor rotational speed N m the target rotation speed N a.
  • the acceleration request in the target speed calculation unit 63 is set, for example, according to the on / off state of the accelerator pedal 8, and in the present embodiment, the acceleration request is determined based on the accelerator opening. That is, for example, when the accelerator opening is 0%, the target speed calculation unit 63 determines that the accelerator pedal 8 is in an off state and no acceleration request is made, while the accelerator opening exceeds 0%. Determines that there is a request for acceleration when the accelerator pedal 8 is on. Alternatively, the target speed calculation unit 63 determines that the accelerator pedal 8 is in an off state and there is no acceleration request when the accelerator opening is equal to or smaller than the threshold value, while the accelerator pedal exceeds the threshold when the accelerator opening exceeds the threshold value. It is determined that there is an acceleration request when 8 is on.
  • a transmission mechanism 3 suitable for use in an FF type (front engine, front drive) vehicle is an input of the transmission mechanism 3 that can be connected to an internal combustion engine 2 (see FIG. 1) as a drive source. It has a shaft 30.
  • the transmission mechanism 3 includes a friction engagement element (clutch C-1, clutch C-2, clutch C-3, brake B-1, brake B-2) and a one-way clutch F-1 as a plurality of engagement elements.
  • the transmission path is changed based on the engagement state of the plurality of engagement elements to form a plurality of shift stages, and can be switched between the traveling range state and the non-traveling range state.
  • the speed change mechanism 3 includes a planetary gear SP and a planetary gear unit PU on the input shaft 30.
  • the planetary gear SP is a so-called single pinion planetary gear that includes a sun gear S1, a carrier CR1, and a ring gear R1, and the carrier CR1 has a pinion P1 that meshes with the sun gear S1 and the ring gear R1.
  • the planetary gear unit PU has a sun gear S2, a sun gear S3, a carrier CR2, and a ring gear R2 as four rotational elements.
  • the long pinion PL that meshes with the sun gear S2 and the ring gear R2 and the sun gear S3 mesh with the carrier CR2. It is a so-called Ravigneaux type planetary gear having a short pinion PS that meshes with each other.
  • the sun gear S1 of the planetary gear SP is connected to a boss portion that is integrally fixed to the mission case 32, and the rotation is fixed. Further, the ring gear R1 is in the same rotation as the rotation of the input shaft 30 (hereinafter referred to as “input rotation”). Further, the carrier CR1 is decelerated by the input rotation being decelerated by the fixed sun gear S1 and the ring gear R1 that rotates, and is connected to the clutch C-1 and the clutch C-3.
  • the sun gear S2 of the planetary gear unit PU is connected to the brake B-1, which is a band brake, so that it can be fixed to the transmission case, and is connected to the clutch C-3 via the clutch C-3.
  • the deceleration rotation of CR1 can be freely input.
  • the sun gear S3 is connected to the clutch C-1, so that the decelerated rotation of the carrier CR1 can be input.
  • the carrier CR2 is connected to a clutch C-2 to which the rotation of the input shaft 30 is input, and the input rotation can be freely input via the clutch C-2.
  • B-2 rotation in one direction with respect to the transmission case 32 is restricted via the one-way clutch F-1, and rotation can be fixed via the brake B-2.
  • the ring gear R2 is connected to a counter gear 33 having the same meaning as the output shaft 31, and the counter gear 11 is connected to the wheel 10 via the output shaft 31 and the differential device D.
  • the speed change mechanism 3 configured as described above includes the clutches C-1 to C-3 and the brakes B-1 to B1 at the first forward speed to the sixth forward speed and the reverse speed as shown in the operation table of FIG.
  • B-2 one-way clutch F-1
  • a gear ratio of the shift speed is formed with a good step ratio.
  • each shift control is executed by re-engaging these clutches C-1 to C-3 and brakes B-1 to B-2, and at the time of driving the first forward speed at each shift speed (for example, Except at the time of starting), two of the clutches C-1 to C-3 and the brakes B-1 to B-2 are engaged to achieve each gear stage.
  • the control device 6 determines whether or not the vehicle 100 is traveling based on the output from the rotational speed sensor 7 or the like (step S1). When the control device 6 determines that the vehicle 100 is not traveling, the determination is executed again. Incidentally, if at a stop, the rotational speed of the output shaft 31 is 0, since the synchronous rotational speed N 0 even becomes 0, the control device 6 of the motor rotational speed N m based on the synchronous rotational speed N 0 It does not have to be controlled.
  • control device 6 When the control device 6 detects that the output rotation speed of the output shaft 31 is greater than 0 by the rotation speed sensor 7 and determines that the vehicle 100 is traveling, the control device 6 determines the position of the shift lever 9. By detecting, it is determined whether or not the shift lever 9 is switched from the D range to the N range (step S2). When the control device 6 determines that the D range is not switched to the N range, the determination is performed again.
  • the control device 6 determines that the D range has been switched to the N range during traveling, and the control device 6 Based on the operation table (see FIG. 3), all the friction elements of the transmission mechanism 3 are released, and the clutch C-1 is also released (step S3). Further, the control device 6, in accordance with the switching from the D range of the shift range by the driver to the N range, so as to reduce the motor rotational speed N m as appropriate. Note that the transmission mechanism 3 is in the travel range state from the time (t1) when the shift lever 9 is switched from the D range to the N range by the driver until the time (t2) when the clutch C-1 is released. , it is not necessary to control the predetermined rotational speed N 1 becomes lower as than synchronous rotational speed N 0 of the motor rotational speed N m.
  • the control device 6 determines whether or not there is a differential rotation between the input side and the output side of the clutch C-1, that is, whether there is a difference in rotational speed (step S4).
  • the control device 6 the rotational speed of the input side of the clutch C-1 is obtained as the motor rotation speed N m.
  • the control device 6 determines that the rotational speed on the output side of the clutch C-1 is the rotational speed of the output shaft 31 detected by the rotational speed sensor 7 at that time and the speed of the shift stage when it was in the D range immediately before. Acquired as the synchronous rotation speed N 0 calculated from the gear ratio. That is, the differential rotation is a difference between the synchronous rotation speed N 0 and the motor rotation speed N m (see FIG. 5).
  • the control device 6 determines that there is no differential rotation, it determines that the clutch C-1 is completely engaged, and further proceeds to release the clutch C-1 (step S3).
  • the release of the clutch C-1 includes not only complete release but also slipping at least to the extent that differential rotation occurs.
  • the control device 6 determines that there is a differential rotation, and the speed change mechanism 3 switches to the non-traveling range state. calculating a synchronous rotational speed N 0 at this point (step S5).
  • the target shift speed calculation unit 61 constantly calculates the target shift speed of the speed change mechanism 3 based on the output rotation speed.
  • the synchronous speed calculation unit 62 also synchronizes the rotational speed N 0 of the input shaft 30 of the transmission mechanism 3 synchronized with the output rotational speed at the target shift stage based on the calculated gear ratio of the target shift stage and the output rotational speed. Is calculated.
  • synchronous rotational speed N 0 is a schematically constant value in FIG. 5, is actually a value that varies in response to changes in vehicle speed
  • synchronous speed computing unit 62 the synchronous rotational speed N 0 by computing all times, always enabled retrieve the current synchronous rotational speed N 0.
  • t2 see FIG. 5
  • the control device 6 when the clutch C-1 is determined to have been released, the control device 6 is the motor rotation speed N m is the target from the torque control method for controlling a motor 5 switching the rotational speed control for controlling so as to speed N a.
  • the target speed calculator 63 controls the rotational speed control of the motor 5, the motor rotational speed N m, calculates a predetermined rotational speed N 1 becomes lower as than synchronous rotational speed N 0, the speed control unit 64 is , it controls the rotational speed N m of the motor 5 at the target rotation speed N a (step S6).
  • the speed control unit 64 controls the rotational speed N m of the motor 5 at the target rotation speed N a (step S6).
  • the synchronous rotation speed N 0 -the predetermined rotation speed N 1 becomes less than 0 the motor rotation speed N m is set to 0 rpm.
  • the control method of the motor 5 by the control device 6 is adapted to the rotational speed control for controlling so that the motor rotational speed N m becomes equal to the target rotational speed N a.
  • the control device 6 determines whether or not the vehicle 100 is traveling based on the output from the rotation speed sensor 7 or the like (step S11). When the control device 6 determines that the vehicle 100 is not traveling, the determination is executed again. Incidentally, if at a stop, the rotational speed of the output shaft 31 is 0, since the synchronous rotational speed N 0 even becomes 0, the control device 6 of the motor rotational speed N m based on the synchronous rotational speed N 0 It does not have to be controlled.
  • the target speed calculation unit 63 determines that the shift lever 9 By detecting the position, it is determined whether or not the shift lever 9 has been switched from the N range to the D range (step S12). That is, the target speed calculation unit 63 has a request to switch the speed change mechanism 3 from the non-traveling range state to the traveling range state by determining whether or not the shift range of the shift lever 9 is switched from the N range to the D range. Determine whether or not. When the target speed calculation unit 63 determines that the shift range is not switched from the N range to the D range, the determination is performed again.
  • the control device 6 When the shift range is switched from the N range to the D range by the driver at t4 (see FIG. 7) or t8 (see FIG. 8), the control device 6 is switched from the N range to the D range during traveling. to decide. Thus, the control device 6 forms the target shift speed based on the target shift speed and the operation table (see FIG. 3) of the speed change mechanism 3 that is always calculated from the current output rotational speed of the output shaft 31. A command to engage a predetermined friction engagement element of the transmission mechanism 3 is transmitted, and control is performed so that, for example, the clutch C-1 is engaged (step S13). Accordingly, the engagement pressure of the clutch C-1 starts to gradually increase from t4 (see FIG. 7) or t8 (see FIG. 8).
  • the target speed calculation unit 63 determines whether or not the accelerator pedal 8 is in an on state (step S14).
  • the determination of the on / off state of the accelerator pedal 8 is executed after the determination of the shift range switching (step S12).
  • the determination is actually performed almost simultaneously, and the order is not limited to this. Instead, the determination of the on / off state of the accelerator pedal 8 may be executed almost at the same time immediately after the determination of the shift range switching.
  • Target speed calculator 63 the accelerator pedal 8 is if it is judged to be ON state, the predetermined rotational speed N 2 a positive value (e.g., + 50 rpm) is set to (step S15). On the other hand, the target speed calculator 63, the accelerator pedal 8 is if it is judged to be OFF state, and sets the predetermined rotational speed N 2 to a negative value (e.g., -50 rpm) (step S16).
  • a positive value e.g., + 50 rpm
  • the accelerator pedal 8 is if it is judged to be OFF state, and sets the predetermined rotational speed N 2 to a negative value (e.g., -50 rpm) (step S16).
  • the synchronous speed calculator 62 calculates the synchronous rotational speed N 0 at this time (step S17). Then, the target speed calculator 63 calculates so that the velocity obtained by adding the target rotational speed N a to the synchronous rotational speed N 0 of the predetermined rotational speed N 2 (N 0 + N 2 ), the speed controller 64, the motor rotation and controls the speed N m the target rotation speed N a is controlled by the rotational speed control of the motor 5 (step S18).
  • the target speed calculating unit 63 a predetermined rotational speed N 2 than the synchronous rotational speed N 0 of the target rotational speed N a becomes higher as computed (see N 2 in FIG. 7).
  • the target speed calculating unit 63 a predetermined rotational speed N 2 than the synchronous rotational speed N 0 of the target rotational speed N a so as to calculate low (see N 2 in FIG. 8).
  • the motor rotation speed N m (target rotational speed N a) before and after t8 (see Fig. 8) is not changed.
  • N 0 + N 2 becomes less than 0, the motor rotation speed N m is set to 0 rpm.
  • Step S20 While the motor rotational speed N m reaches N 0 + N 2 and is maintained at t5 to t6 (see FIG. 7) or t8 to t9 (see FIG. 8), the clutch C-1 is in a so-called half-clutch state. The engagement pressure is once maintained, and the preparation for complete engagement is completed (step S19). Then, at t6 (see FIG. 7) or t9 (see FIG. 8), the control device 6 switches the control method of the motor 5 to torque control and controls the clutch C-1 to be fully engaged (completion control). (Step S20).
  • the target speed calculating unit 63 the accelerator pedal 8 is if it is judged to be turned on is calculated to be higher by a predetermined rotational speed N 2 than the synchronous rotational speed N 0 of the motor rotational speed N m (Fig. 7). Therefore, when the clutch C-1 is completely engaged, the motor 5 acts so as to drag the clutch C-1 during the period from t6 to t7, so that a sense of acceleration is generated in the vehicle 100. Can hardly feel a sense of incongruity between the operation of depressing the accelerator pedal 8 and the actual acceleration feeling, and can suppress the deterioration of the ride comfort.
  • the target speed calculator 63, the accelerator pedal 8 is if it is judged to be turned off is calculated to be lower by a predetermined rotational speed N 2 than the synchronous rotational speed N 0 of the motor rotational speed N m (FIG. 8 reference). For this reason, when the clutch C-1 is completely engaged, the clutch C-1 acts to drag the motor 5 from t9 to t10, so that a feeling of deceleration occurs in the vehicle 100. Can hardly feel a sense of incongruity between the operation of not pressing the accelerator pedal 8 and the actual feeling of deceleration, and can suppress the deterioration of the ride comfort.
  • the control device 6 of the vehicle drive device 1 of this embodiment when the speed change mechanism 3 is switched from the N range to the D range, the motor rotation speed N m the speed change mechanism 3 Synchronization since the control in the vicinity of the rotational speed N 0, it is possible to increase the responsiveness of the engagement of the clutch C-1 as compared with the case of controlling away greatly from the synchronous rotational speed N 0.
  • the control device 6 of the vehicle drive device 1 of this embodiment since the control of the motor rotation speed N m near the synchronous rotational speed N 0 of the speed change mechanism 3, largely from the synchronous rotational speed N 0 The differential rotation becomes smaller than that in the case where the control is performed so as to be separated, the heat generated in the clutch C-1 engaged with the clutch can be reduced, and the durability of the clutch C-1 can be improved.
  • the accelerator pedal 8 It can be controlled according to the on / off state. For this reason, according to the driver's accelerator operation, it is possible to select whether to feel acceleration or deceleration, and to suppress the deterioration of the ride comfort by setting so as to make it difficult to remember the sense of incongruity it can.
  • the target speed calculating unit 63 if it is determined that the accelerator pedal 8 is in the ON state, the synchronous rotational speed N of the motor rotational speed N m Calculation is performed so as to be higher than 0 by a predetermined rotational speed N 2 (see FIG. 7). For this reason, when there is a driver's acceleration request, a feeling of acceleration is generated from t6 to t7 when the clutch C-1 is engaged, so it is difficult for the driver to feel uncomfortable and suppresses deterioration of the ride comfort. can do.
  • the target speed calculating unit 63 when the accelerator pedal 8 is determined to be turned off, the synchronous rotational speed N of the motor rotational speed N m Calculation is performed so as to be lower than 0 by a predetermined rotational speed N 2 (see FIG. 8). Therefore, when there is no acceleration request from the driver, a feeling of deceleration is generated at t9 to t10 when the clutch C-1 is engaged, so it is difficult for the driver to feel uncomfortable and suppresses deterioration of the ride comfort. can do.
  • the motor rotational speed N m for synchronous rotational speed N 0 is controlled by providing a difference between the predetermined rotational speed N 2. Therefore, as compared with the case where the motor rotational speed N m is equal to the synchronous rotational speed N 0, the clutch C-1 can be prevented from engaging in a shorter time than expected, the motor 5 is rotating speed control It is possible to prevent the clutch C-1 from being completely engaged during the operation. For this reason, the driving force of the motor 5 is not transmitted to the wheel 10, and it is possible to prevent an unintended output torque from being generated.
  • the target speed calculation unit 63 generates the predetermined rotation speed N 2 based on at least one of the performance of the motor 5 and the accuracy of the rotation speed sensor 7. is computed so that a large rotational speed than the amplitude of the motor rotation speed N m.
  • the amplitude of the motor rotation speed N m are generated, whether the motor rotation speed N m is always higher than the synchronous rotational speed N 0 at that time, or always low, is suppressed can replace with high and low . For this reason, since it is possible to make it difficult for the driver to feel uncomfortable, it is possible to further suppress deterioration in ride comfort.
  • the request to switch the speed change mechanism 3 from the non-traveling range state to the traveling range state is the switching of the shift range of the shift lever 9 from the N range to the D range. To be. For this reason, since the switching of the range state of the speed change mechanism 3 can be matched with the driver's intention, it is possible to realize traveling that makes it difficult for the driver to feel uncomfortable.
  • the predetermined rotational speed N 2 may be set to a speed larger than the pulsating amplitude of the motor rotational speed N m generated based on at least one of the performance of the motor 5 and the accuracy of the rotational speed sensor 7. And can vary depending on the requirements.
  • the predetermined rotational speed N 2 when higher than the synchronous rotational speed N 0 of the motor rotational speed N m if the acceleration request is present the motor rotation speed when there is no acceleration request N m
  • the absolute value of the predetermined rotational speed N 2 at the time of lower than the synchronous rotational speed N 0 in the same is not limited thereto. That is, in these cases, the absolute value of the predetermined rotational speed N 2 may be different.
  • the predetermined rotational speed N 2 when increasing the motor rotational speed N m is set to 50 rpm, while the motor rotational speed N 2 is increased.
  • the predetermined rotational speed N 2 at the time of low m may be -60Rpm.
  • the request for switching the speed change mechanism 3 from the non-traveling range state to the traveling range state has been described for the case where the shift range of the shift lever 9 is switched from the N range to the D range. It is not limited to.
  • the accelerator pedal 8 is turned off, and the clutch of the speed change mechanism 3 is released under the control of the control device 6 to enter the non-traveling range state.
  • the driver may turn on the accelerator pedal 8 as a request to switch the speed change mechanism 3 from the non-traveling range state to the traveling range state.
  • the target speed calculator 63 starts the operation of the target rotational speed N a at the time of a request to switch the running range state shift mechanism 3 from a non-running range state (t4 in FIG. 7, t8 in FIG. 8) at best, or it may initiate a calculation of the target rotation speed N a from the time for which the such a request after a predetermined time has elapsed.
  • the present invention in a state in which switching the shift range from the D range to the N range, the motor rotational speed N m than the synchronous rotational speed N 0 running to lower by the predetermined rotational speed N 1,
  • the present invention is not limited to this.
  • it can be applied even such a case where the motor rotational speed N m be the same as the synchronous rotational speed N 0, or there is only difference in height synchronous rotational speed N 0 and any size.
  • the speed control unit 64 is a part of a computer (ECU) constituting the control device 6
  • the speed control unit 64 is interposed between the ECU and the motor 5, and is a driver circuit for driving the motor 5
  • the control device 6 is a broad control device including the driver circuit and the ECU. You may do it.
  • ECU includes a target gear position calculation unit 61 and the synchronous speed calculator 62 and the target speed calculating unit 63 includes a speed control unit 64 obtains the target rotation speed N a a target speed calculator 63 controls the motor rotational speed N m.
  • the vehicle drive device 1 is applied to a hybrid vehicle.
  • the drive device according to the present invention is not limited to this, and can be applied to all vehicles equipped with a rotating electrical machine such as an electric vehicle.
  • the control device for the vehicle drive device can be used for a vehicle drive device mounted on a vehicle including a rotating electrical machine as a drive source, and particularly when the speed change mechanism is switched from the non-travel range state to the travel range state. It is suitable for use in those that are required to suppress a sense of discomfort to the driver.

Abstract

 出力回転速度に基づいて変速機構(3)の目標変速段を算出する目標変速段算出部(61)と、出力回転速度と目標変速段のギヤ比とに基づいて、目標変速段で出力回転速度に同期する変速機構(3)の入力軸(30)の同期回転速度(N)を演算する同期速度演算部(62)と、変速機構(3)を非走行レンジ状態から走行レンジ状態に切り換える要求があった場合に、加速要求が有ると判断した場合は、回転電機(5)の目標回転速度(N)を同期回転速度(N)よりも所定回転速度(N)だけ高くなるよう演算し、加速要求が無いと判断した場合は、回転電機(5)の目標回転速度(N)を同期回転速度(N)よりも所定回転速度(N)だけ低くなるよう演算する目標速度演算部(63)と、回転電機(5)の回転速度(N)を目標回転速度(N)に制御する速度制御部(64)と、を備える。

Description

車両用駆動装置の制御装置
 本発明は、例えばハイブリッド車両や電気車両等に搭載される回転電機及び変速機構を備える車両用駆動装置の制御装置に係り、詳しくは、変速機構を非走行レンジから走行レンジに切り換えた場合に回転電機の回転速度を制御する車両用駆動装置の制御装置に関する。
 近年、内燃エンジンとモータ・ジェネレータ(以下、単に「モータ」という)とを動力源として組合せたハイブリッド車両の開発が進められている。このようなハイブリッド車両に用いられるハイブリッド駆動装置の一形態として、一般的な自動変速機の発進装置(例えばトルクコンバータ等)の部分に、変速機構の入力軸に駆動連結されたモータと、内燃エンジンに駆動連結されるエンジン連結軸と該入力軸とを係脱(係合又は解放)するエンジン接続用クラッチと、を配置して、簡易な置換でパラレル式のハイブリッド車用駆動装置を構成するものが提案されている(特許文献1参照)。
 このハイブリッド車用駆動装置では、変速機構として、例えば、複数のクラッチやブレーキ等の係合要素の係脱により変速段が切り換えられて前進6速段及び後進段を形成し得る有段変速機が適用されている(特許文献1の図2参照)。この変速機構では、C-1クラッチとワンウェイクラッチのみが係合状態になることで、前進1速段が形成されるようになっている。このハイブリッド車用駆動装置では、走行中に変速機構がDレンジからNレンジに切り換えられるとC-1クラッチ及びワンウェイクラッチが解放され、更に、例えばバッテリの残容量(SOC)が所定値以上であればエンジン接続用クラッチが解放されて、内燃エンジンとモータと変速機構との連結が切り離される。
 この状態で、変速機構がNレンジから再度Dレンジに切り換えられる際のクラッチ係合の応答性を向上するために、現在の車速(変速機構の出力軸回転速度)と、それに対応する目標変速段のギヤ比とから、当該目標変速段で現在の車速に同期する変速機構の入力軸の同期回転速度を演算し、Dレンジに切り換えられてから、この同期回転速度にモータ回転速度を一致させる制御をすることが考えられる。
特開2013-155790号公報
 しかしながら、特許文献1のハイブリッド車用駆動装置では、以下のような問題を発生する可能性があった。まず、モータ回転速度には、例えばモータの性能や車速センサの精度等に基づいて振幅が発生する可能性があり、このような振幅が発生するとモータ回転速度が目標より高くなったり、あるいは低くなったり、それらの変化が交互に発生する場合がある。このため、シフトレバーがNレンジからDレンジに切り換えられてC-1クラッチが完全係合するまでの動作中に、モータ回転速度を同期回転速度に一致するように設定しても、モータ回転速度の脈動し得る振幅により、モータ回転速度が同期回転速度より高くなったり低くなったりする可能性がある。
 モータ回転速度が振幅により同期回転速度より高くなった場合は、運転者は加速感を得ることになる一方、モータ回転速度が振幅により同期回転速度より低くなった場合は、運転者は減速感を得ることになる。このため、モータ回転速度が同期回転速度を跨いで高低に変速する度に加速感と減速感が切り換わり、運転者には違和感を発生して乗り心地が悪化してしまう。
 そこで、回転電機の回転速度に振幅があっても運転者への違和感の発生を抑制できる車両用駆動装置の制御装置を提供することを目的とするものである。
 本車両用駆動装置(1)の制御装置(6)は(例えば図1乃至図8参照)、回転電機(5)と、前記回転電機(5)及び車輪(10)の間の伝達経路上に配置されると共に、複数の係合要素(C-1,C-2,C-3,B-1,B-2,F-1)を有し、前記複数の係合要素(C-1,C-2,C-3,B-1,B-2,F-1)の係合状態に基づき前記伝達経路を変更して複数の変速段を形成し、走行レンジ状態と非走行レンジ状態とに切り換え可能な変速機構(3)と、前記変速機構(3)の出力回転速度を検出可能な検出装置(7)と、を備える車両用駆動装置(1)を制御するための車両用駆動装置(1)の制御装置(6)であって、
 前記出力回転速度に基づいて前記変速機構(3)の目標変速段を算出する目標変速段算出部(61)と、
 前記出力回転速度と目標変速段のギヤ比とに基づいて、前記目標変速段で前記出力回転速度に同期する前記変速機構(3)の入力軸(30)の同期回転速度(N)を演算する同期速度演算部(62)と、
 前記変速機構(3)を前記非走行レンジ状態から前記走行レンジ状態に切り換える要求があった場合に、加速要求が有ると判断した場合は、前記回転電機(5)の目標回転速度(N)を前記同期回転速度(N)よりも所定回転速度(N)だけ高くなるよう演算し、前記加速要求が無いと判断した場合は、前記回転電機(5)の前記目標回転速度(N)を前記同期回転速度(N)よりも所定回転速度(N)だけ低くなるよう演算する目標速度演算部(63)と、
 前記回転電機(5)の回転速度(N)を前記目標回転速度(N)に制御する速度制御部(64)と、を備えることを特徴とする。
 本車両用駆動装置の制御装置によると、目標速度演算部は、回転電機の回転速度を同期回転速度よりも所定回転速度高くするか、あるいは低くするかを、加速要求に応じて演算することができる。
 また、本車両用駆動装置の制御装置によると、目標速度演算部が、加速要求が有ると判断した場合は、回転電機の回転速度を同期回転速度よりも所定回転速度だけ高くなるよう演算する。このため、運転者の加速要求が有る場合に、加速感が発生するようになるので、運転者にとっては違和感を覚え難くなり乗り心地の悪化を抑制することができる。
 更に、本車両用駆動装置の制御装置によると、目標速度演算部が、加速要求が無いと判断した場合は、回転電機の回転速度を同期回転速度よりも所定回転速度だけ低くなるよう演算する。このため、運転者の加速要求が無い場合に、減速感が発生するようになるので、運転者にとっては違和感を覚え難くなり乗り心地の悪化を更に抑制することができる。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、理解を容易にするための便宜的なものであり、請求の範囲の構成に何等影響を及ぼすものではない。
本実施の形態に係る車両用駆動装置を適用したハイブリッド車両を示す模式図である。 本実施の形態に係る車両用駆動装置の変速機構を示すスケルトン図である。 本実施の形態に係る車両用駆動装置の変速機構の作動表である。 本実施の形態に係る車両用駆動装置の走行レンジ状態から非走行レンジ状態に切り換えた際の動作手順を示すフローチャートである。 本実施の形態に係る車両用駆動装置の走行レンジ状態から非走行レンジ状態に切り換えた際の動作手順を示すタイムチャートである。 本実施の形態に係る車両用駆動装置の非走行レンジ状態から走行レンジ状態に切り換えた際の動作手順を示すフローチャートである。 本実施の形態に係る車両用駆動装置の非走行レンジ状態から走行レンジ状態に切り換え、かつアクセルペダルをオン操作した際の動作手順を示すタイムチャートである。 本実施の形態に係る車両用駆動装置の非走行レンジ状態から走行レンジ状態に切り換え、かつアクセルペダルをオン操作しなかった際の動作手順を示すタイムチャートである。
 以下、本発明の実施の形態に係る車両用駆動装置1を図1乃至図3に沿って説明する。尚、本実施の形態に係る車両用駆動装置1は、FF(フロントエンジン・フロントドライブ)タイプの車両に搭載されるものであり、本実施の形態ではハイブリッド車両に搭載した場合について説明している。
 図1に示すように、ハイブリッド車両(以下、単に「車両」という)100は、駆動源として、内燃エンジン2の他に、後述するモータ・ジェネレータ(以下、単に「モータ」という)(回転電機)5を備えたハイブリッド車両として構成されている。この車両100は、パワートレーンを構成する車両用駆動装置1と、内燃エンジン2と、車輪10とを備えている。車両用駆動装置1は、内燃エンジン2と車輪10との間の動力の伝達経路上に設けられる変速機構3と、該変速機構3と内燃エンジン2との間に配置され、内燃エンジン2からの動力が入力される入力部4と、制御装置6とを備えている。
 内燃エンジン2の出力軸20は、不図示のダンパを介して内燃エンジン2に駆動連結されており、該ダンパが、内燃エンジン2の脈動を吸収しつつ入力部4に動力を伝達するようになっている。
 入力部4は、出力軸20と変速機構3の入力軸30との間の動力伝達を断接するエンジン接続用のクラッチK0と、該クラッチK0と入力軸30との間に駆動連結されるモータ5と、を備えている。クラッチK0は、出力軸20と一体回転する複数の内摩擦板と、モータ5のロータ及び変速機構3の入力軸30と一体回転するクラッチドラムに連結される複数の外摩擦板とを備えた多板クラッチによって構成されている。モータ5は、クラッチドラムに連結されたロータと、該ロータの径方向外側に対向配置されたステータとを有して構成されている。従って、変速機構3の入力軸30の回転速度と、モータ5の回転速度Nとは一致する。
 変速機構3は、例えば複数の係合要素(多板クラッチ、ブレーキ、ワンウェイクラッチ)の係合状態に基づき伝達経路を変更して前進6速段及び後進段を達成し得る変速機構から構成されている。変速機構3の出力軸31は、ディファレンシャル装置Dを介して車輪10に接続されている。また、出力軸31には、出力回転速度を検出する回転速度センサ(検出装置)7が設けられている。変速機構3の詳細な構成については、後述する。
 以上のように、車両用駆動装置1は、内燃エンジン2側から車輪10側に向かって、クラッチK0とモータ5とからなる入力部4及び変速機構3が順次配置されており、内燃エンジン2及びモータ5の両方を駆動させて車両を走行させるハイブリッド走行の場合には、制御装置6によって油圧制御装置(不図示)を制御してクラッチK0を係合させる一方、車輪10側に駆動連結されたモータ5の駆動力だけで走行するEV走行の場合には、クラッチK0を解放して、内燃エンジン2と車輪10とを切り離すようになっている。
 制御装置6は、例えばコンピュータ(ECU)により構成され、変速機構3の回転速度センサ7からの信号である出力回転速度とアクセルペダル8からのアクセル開度とに基づいて変速機構3の目標変速段を算出するようになっている。制御装置6を構成するコンピュータは、例えばCPUと、各種データを一時的に記憶するRAMと、各種演算を実行するためのプログラムを記憶するROMと、入出力インターフェース回路と、を備えている。制御装置6は、車両100の各部に接続されており、各部を制御するようになっている。
 制御装置6は、アクセルペダル8の開度を検出する不図示のアクセル開度センサに接続され、アクセル開度(オンオフも含む)を0~100%の間で検出可能になっている。本実施の形態では、制御装置6は、アクセル開度が0%である場合にアクセルペダル8がオフ状態であると判断する一方、アクセル開度が0%を超える場合にアクセルペダル8がオン状態であると判断するようになっている(図5、図7、図8参照)。但し、制御装置6の判断基準としては、これには限られず、アクセル開度の閾値(例えば、2%等)を予め設定しておき、アクセル開度が閾値以下である場合にアクセルペダル8がオフ状態であると判断する一方、アクセル開度が閾値を超える場合にアクセルペダル8がオン状態であると判断するようにしてもよい。更に、制御装置6はシフトレバー9の位置を検出する不図示のレバースイッチに接続され、シフトレバー9のシフトレンジを検出可能になっている。シフトレバー9のシフトレンジとしては、走行レンジ(Dレンジ等)及び非走行レンジ(Nレンジ、Pレンジ)がある。
 制御装置6は、図1に示すように、目標変速段算出部61と、同期速度演算部62と、目標速度演算部63と、速度制御部64とを備えている。目標変速段算出部61は、出力回転速度に基づいて変速機構3の目標変速段を算出するようになっている。同期速度演算部62は、出力回転速度と目標変速段のギヤ比とに基づいて、目標変速段で出力回転速度に同期する変速機構3の入力軸30の同期回転速度Nを演算するようになっている。
 目標速度演算部63は、変速機構3がDレンジ(走行レンジ)状態からNレンジ(非走行レンジ)状態に切り換えられた場合に、モータ5の目標回転速度Nを、同期回転速度N以下、かつ同期回転速度Nより所定回転速度N低い回転速度以上になるよう演算するようになっている(図5参照)。尚、所定回転速度Nは、モータ5の性能及び回転速度センサ7の精度の少なくとも一方に基づき発生するモータ回転速度Nの振幅よりも大きな速度に設定するものとし、ここでは所定回転速度Nを、例えば50rpmとしている。
 また、目標速度演算部63は、変速機構3を非走行レンジ状態から走行レンジ状態に切り換える要求があった場合に、加速要求が有ると判断した場合は、モータ5の目標回転速度Nを同期回転速度Nよりも所定回転速度Nだけ高くなるよう演算し(図7参照)、加速要求が無いと判断した場合は、モータ5の目標回転速度Nを同期回転速度Nよりも所定回転速度Nだけ低くなるよう演算するようになっている(図8参照)。尚、所定回転速度Nは、モータ5の性能及び回転速度センサ7の精度の少なくとも一方に基づき発生するモータ回転速度Nの振幅よりも大きな速度に設定するものとし、ここでは所定回転速度Nを、例えば50rpmとしている。
 速度制御部64は、モータ5の回転速度Nを目標回転速度Nに制御するようになっている。
 目標速度演算部63では、変速機構3を非走行レンジ状態から走行レンジ状態に切り換える要求は、シフトレバー9のシフトレンジ(シフトポジション)のNレンジからDレンジへの切り換えとしている。即ち、目標速度演算部63は、シフトレバー9のシフトレンジがNレンジからDレンジに切り換えられた場合に(図7のt4、図8のt8)、モータ5の目標回転速度Nを演算するようになっている。これにより、シフトレンジがNレンジからDレンジに切り換えられてから、クラッチC-1が係合して変速機構3が実際に非走行レンジ状態から走行レンジ状態に切り換わるまでに、速度制御部64がモータ回転速度Nを目標回転速度Nに制御するようになっている。
 また、目標速度演算部63における加速要求は、例えばアクセルペダル8のオンオフの状態により設定され、本実施の形態ではアクセル開度に基づいて判断するようになっている。即ち、目標速度演算部63は、例えば、アクセル開度が0%である場合にはアクセルペダル8がオフ状態で加速要求が無いと判断する一方、アクセル開度が0%を超えている場合にはアクセルペダル8がオン状態で加速要求が有ると判断する。あるいは、目標速度演算部63は、アクセル開度が閾値以下である場合にはアクセルペダル8がオフ状態で加速要求が無いと判断する一方、アクセル開度が閾値を超えている場合にはアクセルペダル8がオン状態で加速要求が有ると判断する。
 次に、変速機構3の概略構成について図2に沿って説明する。図2に示すように、例えばFFタイプ(フロントエンジン、フロントドライブ)の車両に用いて好適な変速機構3は、駆動源としての内燃エンジン2(図1参照)に接続し得る変速機構3の入力軸30を有している。また、変速機構3は、複数の係合要素として、摩擦係合要素(クラッチC-1、クラッチC-2、クラッチC-3、ブレーキB-1、ブレーキB-2)及びワンウェイクラッチF-1を備え、複数の係合要素の係合状態に基づき伝達経路を変更して複数の変速段を形成し、走行レンジ状態と非走行レンジ状態とに切り換え可能になっている。
 変速機構3は、入力軸30上において、プラネタリギヤSPと、プラネタリギヤユニットPUとが備えられている。プラネタリギヤSPは、サンギヤS1、キャリヤCR1、及びリングギヤR1を備えており、該キャリヤCR1に、サンギヤS1及びリングギヤR1に噛合するピニオンP1を有している所謂シングルピニオンプラネタリギヤである。
 また、プラネタリギヤユニットPUは、4つの回転要素としてサンギヤS2、サンギヤS3、キャリヤCR2、及びリングギヤR2を有し、該キャリヤCR2に、サンギヤS2及びリングギヤR2に噛合するロングピニオンPLと、サンギヤS3に噛合するショートピニオンPSとを互いに噛合する形で有している所謂ラビニヨ型プラネタリギヤである。
 プラネタリギヤSPのサンギヤS1は、ミッションケース32に一体的に固定されているボス部に接続されて回転が固定されている。また、リングギヤR1は、入力軸30の回転と同回転(以下「入力回転」という。)になっている。更に、キャリヤCR1は、固定されたサンギヤS1と入力回転するリングギヤR1とにより、入力回転が減速された減速回転になると共に、クラッチC-1及びクラッチC-3に接続されている。
 プラネタリギヤユニットPUのサンギヤS2は、バンドブレーキからなるブレーキB-1に接続されてミッションケースに対して固定自在となっていると共に、クラッチC-3に接続され、該クラッチC-3を介してキャリヤCR1の減速回転が入力自在となっている。また、サンギヤS3は、クラッチC-1に接続されており、キャリヤCR1の減速回転が入力自在となっている。
 更に、キャリヤCR2は、入力軸30の回転が入力されるクラッチC-2に接続され、該クラッチC-2を介して入力回転が入力自在となっており、また、ワンウェイクラッチF-1及びブレーキB-2に接続されて、ワンウェイクラッチF-1を介してミッションケース32に対して一方向の回転が規制されると共に、ブレーキB-2を介して回転が固定自在となっている。そして、リングギヤR2は、出力軸31と同義となるカウンタギヤ33に接続されており、該カウンタギヤ11は、出力軸31及びディファレンシャル装置Dを介して車輪10に接続されている。
 上記のように構成された変速機構3は、図3に示す作動表のように前進1速段~前進6速段及び後進段において、各クラッチC-1~C-3、ブレーキB-1~B-2、ワンウェイクラッチF-1が作動することにより、良好なステップ比をもって変速段のギヤ比を形成する。また、これらの複数のクラッチC-1~C-3、ブレーキB-1~B-2同士を掴み換えすることで各変速制御が実行され、各変速段において前進1速段の駆動時(例えば発進時)を除き、各クラッチC-1~C-3、ブレーキB-1~B-2のうちの2つが係合されて各変速段が達成される。
 次に、本実施の形態の車両用駆動装置1において、車両100の走行中にシフトレンジがDレンジからNレンジに切り換えられた際の動作について、図4のフローチャート及び図5のタイムチャートに沿って説明する。
 図5に示すように、シフトレンジがDレンジにあり、アクセルペダル8がオン状態であり、モータ5が回転速度Nで回転することで、車両100が走行しており、t0においてアクセルペダル8が運転者によりオフ操作されたものとする。この時点では、制御装置6は、モータ5の制御方法はトルク制御になっている。
 図4に示すように、制御装置6は、回転速度センサ7からの出力等に基づいて、車両100が走行しているか否かを判断する(ステップS1)。制御装置6が、車両100が走行していないと判断した場合は、再度判断を実行する。尚、停車中であれば、出力軸31の回転速度は0であり、同期回転速度Nも0になってしまうので、制御装置6は同期回転速度Nに基づいてモータ回転速度Nを制御しなくてもよい。
 制御装置6が、回転速度センサ7により出力軸31の出力回転速度が0より大きいことを検出し、車両100が走行していると判断した場合は、制御装置6は、シフトレバー9の位置を検出することにより、シフトレバー9がDレンジからNレンジに切り換えられたか否かを判断する(ステップS2)。制御装置6が、DレンジからNレンジに切り換えられていないと判断した場合は、再度判断を実行する。
 そして、t1(図5参照)において、シフトレンジが運転者によりDレンジからNレンジに切り換えられると、制御装置6が、走行中にDレンジからNレンジに切り換えられたと判断し、制御装置6は、作動表(図3参照)に基づいて、変速機構3の摩擦要素を全て解放し、クラッチC-1をも解放する(ステップS3)。また、制御装置6は、運転者によるシフトレンジのDレンジからNレンジへの切り換えに応じて、モータ回転速度Nを適宜低下するようにする。尚、運転者によりシフトレバー9がDレンジからNレンジに切り換えられた時点(t1)からクラッチC-1が解放される時点(t2)までの間では、変速機構3は走行レンジ状態であるので、モータ回転速度Nを同期回転速度Nよりも所定回転速度N低くなるよう制御しなくてもよい。
 そして、制御装置6は、クラッチC-1の入力側と出力側との間で差回転、即ち回転速度に差があるか否かを判断する(ステップS4)。ここでは、制御装置6は、クラッチC-1の入力側の回転速度は、モータ回転速度Nとして取得する。また、制御装置6は、クラッチC-1の出力側の回転速度は、その時点で回転速度センサ7により検出された出力軸31の回転速度と、直前にDレンジにあった時の変速段のギヤ比と、から算出した同期回転速度Nとして取得する。即ち、差回転は、同期回転速度Nとモータ回転速度Nとの差となる(図5参照)。
 制御装置6が、差回転が無いと判断した場合は、クラッチC-1が完全係合していると判断し、クラッチC-1の解放動作を更に進める(ステップS3)。尚、ここでのクラッチC-1の解放とは、完全に解放するだけでなく、少なくとも差回転が生じる程度にスリップさせることも含む。t2(図5参照)において、クラッチC-1が解放されると、制御装置6が、差回転があると判断し、変速機構3は非走行レンジ状態に切り換わるので、同期速度演算部62がこの時点での同期回転速度Nを演算する(ステップS5)。尚、制御装置6では、目標変速段算出部61が、出力回転速度に基づいて変速機構3の目標変速段を常時算出している。また、同期速度演算部62は、算出された目標変速段のギヤ比と出力回転速度とに基づいて、目標変速段で出力回転速度に同期する変速機構3の入力軸30の同期回転速度Nを演算するようになっている。ここで、同期回転速度Nは、図5中では模式的に一定値であるが、実際には車速の変化に応じて変化する値であり、同期速度演算部62は同期回転速度Nを常時演算して、常に現在の同期回転速度Nを取得可能になっている。また、t2(図5参照)において、制御装置6が、クラッチC-1が解放されていると判断した場合は、制御装置6はモータ5の制御方法をトルク制御からモータ回転速度Nが目標回転速度Nになるように制御する回転速度制御に切り換える。
 そして、目標速度演算部63は、モータ5を回転速度制御により制御して、モータ回転速度Nを、同期回転速度Nよりも所定回転速度N低くなるよう演算し、速度制御部64が、モータ5の回転速度Nを目標回転速度Nに制御する(ステップS6)。ここで、同期回転速度N-所定回転速度Nが0未満になった場合は、モータ回転速度Nは0rpmとする。
 これにより、t3(図5参照)において、モータ回転速度Nが同期回転速度Nよりも所定回転速度N低くなる。よって、制御装置6は、モータ回転速度Nを変速機構3の同期回転速度Nの所定回転速度N=50rpmの僅差に制御しているので、シフトレバー9が再度Dレンジに切り換えられた際に、クラッチC-1の係合の応答性が高くなる。また、t3以降でクラッチC-1にオンフェールが発生したとしても、モータ回転速度Nは同期回転速度Nより低いので、モータ5の駆動力が車輪10に伝達されることはなく、意図しない出力トルクを発生させてしまうことはない。
 次に、本実施の形態の車両用駆動装置1において、車両100の惰性走行中にシフトレンジがNレンジからDレンジに切り換えられた時の動作について、図6のフローチャート、図7及び図8のタイムチャートに沿って説明する。
 ここでは、図7及び図8に示すように、シフトレンジがNレンジにあり、アクセルペダル8がオフ状態であり、車両100が惰性走行しているものとする。この時点では、制御装置6によるモータ5の制御方法は、モータ回転速度Nが目標回転速度Nになるように制御する回転速度制御になっている。
 図6に示すように、制御装置6は、回転速度センサ7からの出力等に基づいて、車両100が走行しているか否かを判断する(ステップS11)。制御装置6が、車両100が走行していないと判断した場合は、再度判断を実行する。尚、停車中であれば、出力軸31の回転速度は0であり、同期回転速度Nも0になってしまうので、制御装置6は同期回転速度Nに基づいてモータ回転速度Nを制御しなくてもよい。
 制御装置6が、回転速度センサ7により出力軸31の出力回転速度が0より大きいことを検出し、車両100が走行していると判断した場合は、目標速度演算部63は、シフトレバー9の位置を検出することにより、シフトレバー9がNレンジからDレンジに切り換えられたか否かを判断する(ステップS12)。即ち、目標速度演算部63は、シフトレバー9のシフトレンジがNレンジからDレンジに切り換えられたか否かを判断することで、変速機構3を非走行レンジ状態から走行レンジ状態に切り換える要求があるか否かを判断する。目標速度演算部63が、シフトレンジはNレンジからDレンジに切り換えられていないと判断した場合は、再度判断を実行する。
 そして、t4(図7参照)またはt8(図8参照)において、シフトレンジが運転者によりNレンジからDレンジに切り換えられると、制御装置6が、走行中にNレンジからDレンジに切り換えられたと判断する。これにより、制御装置6は、現在の出力軸31の出力回転速度から常時算出されている変速機構3の目標変速段及び作動表(図3参照)に基づいて、該目標変速段を形成するための変速機構3の所定の摩擦係合要素を係合するよう指令を発信し、例えばクラッチC-1が係合されるよう制御する(ステップS13)。これにより、t4(図7参照)またはt8(図8参照)から、クラッチC-1の係合圧が徐々に上がり始める。
 次いで、目標速度演算部63は、アクセルペダル8がオン状態であるか否かを判断する(ステップS14)。ここでは、シフトレンジの切り換わりの判断(ステップS12)の後にアクセルペダル8のオンオフ状態の判断を実行しているが、実際にはほぼ同時に行われており、また順序としては、これには限られず、シフトレンジの切り換わりの判断の直後にほぼ同時のタイミングでアクセルペダル8のオンオフ状態の判断を実行するようにしてもよい。
 目標速度演算部63が、アクセルペダル8がオン状態であると判断した場合は、所定回転速度Nを正の値(例えば、+50rpm)に設定する(ステップS15)。一方、目標速度演算部63が、アクセルペダル8がオフ状態であると判断した場合は、所定回転速度Nを負の値(例えば、-50rpm)に設定する(ステップS16)。
 続いて、同期速度演算部62は、この時点での同期回転速度Nを演算する(ステップS17)。そして、目標速度演算部63は、目標回転速度Nを同期回転速度Nに所定回転速度Nを加算した速度(N+N)になるよう演算し、速度制御部64が、モータ回転速度Nを目標回転速度Nに制御してモータ5を回転速度制御により制御する(ステップS18)。即ち、アクセルペダル8がオン状態であれば、所定回転速度Nは正の値であるので、目標速度演算部63は、目標回転速度Nを同期回転速度Nよりも所定回転速度N高くなるよう演算する(図7のN参照)。一方、アクセルペダル8がオフ状態であれば、所定回転速度Nは負の値であるので、目標速度演算部63は、目標回転速度Nを同期回転速度Nよりも所定回転速度N低くなるよう演算する(図8のN参照)。本実施の形態では、所定回転速度Nが50rpmであるので、t8(図8参照)の前後でモータ回転速度N(目標回転速度N)は変化していない。尚、N+Nが0未満になった場合は、モータ回転速度Nは0rpmとする。
 t5~t6(図7参照)またはt8~t9(図8参照)においてモータ回転速度NがN+Nに達して維持している間に、クラッチC-1が所謂半クラッチの状態になり、係合圧が一旦維持されて、完全係合のための準備が完了する(ステップS19)。そして、制御装置6は、t6(図7参照)またはt9(図8参照)において、モータ5の制御方法をトルク制御に切り換えると共に、クラッチC-1を完全係合するように制御(完了制御)する(ステップS20)。これにより、クラッチC-1の係合圧が更に上昇し、これに伴いモータ回転速度NがクラッチC-1により、あるいはクラッチC-1がモータ回転速度Nにより徐々に引き摺られて同期回転速度Nに接近する。更に、t7(図7参照)またはt10(図8参照)において、クラッチC-1が完全係合すると、モータ回転速度Nが同期回転速度Nに一致して通常の走行モードになる。
 ここで、目標速度演算部63は、アクセルペダル8がオン状態であると判断した場合は、モータ回転速度Nを同期回転速度Nよりも所定回転速度Nだけ高くなるよう演算する(図7参照)。このため、クラッチC-1が完全係合する際には、t6~t7においてモータ5がクラッチC-1を引き摺るように作用し、車両100に加速感が発生するようになるので、運転者にとってはアクセルペダル8を踏み込む操作と実際の加速感との間で違和感を覚え難くなり乗り心地の悪化を抑制することができる。
 また、目標速度演算部63は、アクセルペダル8がオフ状態であると判断した場合は、モータ回転速度Nを同期回転速度Nよりも所定回転速度Nだけ低くなるよう演算する(図8参照)。このため、クラッチC-1が完全係合する際には、t9~t10においてクラッチC-1がモータ5を引き摺るように作用し、車両100に減速感が発生するようになるので、運転者にとってはアクセルペダル8を踏まない操作と実際の減速感との間で違和感を覚え難くなり乗り心地の悪化を抑制することができる。
 以上説明したように、本実施の形態の車両用駆動装置1の制御装置6によると、変速機構3がNレンジからDレンジに切り換えられた際に、モータ回転速度Nを変速機構3の同期回転速度Nの近くに制御しているので、同期回転速度Nから大きく離れるように制御する場合に比べてクラッチC-1の係合の応答性を高くすることができる。また、本実施の形態の車両用駆動装置1の制御装置6によると、モータ回転速度Nを変速機構3の同期回転速度Nの近くに制御しているので、同期回転速度Nから大きく離れるように制御する場合に比べて差回転が小さくなり、クラッチ係合にかかるクラッチC-1に発生する発熱を低減することができ、クラッチC-1の耐久性を向上させることができる。
 また、本実施の形態の車両用駆動装置1の制御装置6によると、モータ回転速度Nを同期回転速度Nよりも所定回転速度N高くするか、あるいは低くするかを、アクセルペダル8のオンオフ状態に応じて制御することができる。このため、運転者のアクセル操作に合わせて、加速感と減速感とのいずれが発生するかを選択することができ、違和感を覚え難いように設定することで乗り心地の悪化を抑制することができる。
 また、本実施の形態の車両用駆動装置1の制御装置6によると、目標速度演算部63は、アクセルペダル8がオン状態であると判断した場合は、モータ回転速度Nを同期回転速度Nよりも所定回転速度Nだけ高くなるよう演算する(図7参照)。このため、運転者の加速要求が有る場合に、クラッチC-1が係合するt6~t7において加速感が発生するようになるので、運転者にとっては違和感を覚え難くなり乗り心地の悪化を抑制することができる。
 また、本実施の形態の車両用駆動装置1の制御装置6によると、目標速度演算部63は、アクセルペダル8がオフ状態であると判断した場合は、モータ回転速度Nを同期回転速度Nよりも所定回転速度Nだけ低くなるよう演算する(図8参照)。このため、運転者の加速要求が無い場合に、クラッチC-1が係合するt9~t10において減速感が発生するようになるので、運転者にとっては違和感を覚え難くなり乗り心地の悪化を抑制することができる。
 ところで、モータ回転速度Nに発生する振幅が小さい場合には、加速感や減速感も小さくなるものの、クラッチC-1の入力側と出力側とが同速度になるので、クラッチC-1は想定よりも短時間で完全係合することになる。クラッチC-1が解放されている間は、モータ5に変速機構3の負荷トルクが作用しないため、モータ5は回転速度制御されるのに対し、クラッチC-1が完全係合してからは、モータ5はトルク制御されるようになっている。そして、クラッチC-1が想定よりも早く完全係合してしまうことにより、モータ5が回転速度制御されている間にクラッチC-1が完全係合することになり、この場合はモータ5の駆動力が車輪10に伝達されて、意図しない出力トルクを発生させてしまう可能性がある。
 これに対し、本実施の形態の車両用駆動装置1の制御装置6によると、シフトレンジがNレンジからDレンジに切り換えられた際に、モータ回転速度Nを同期回転速度Nに対して所定回転速度Nの差分を設けて制御している。このため、モータ回転速度Nが同期回転速度Nに一致する場合に比べて、クラッチC-1が想定よりも短時間で係合することを抑制できるので、モータ5が回転速度制御されている間にクラッチC-1が完全係合することを防止できる。このため、モータ5の駆動力が車輪10に伝達されることはなく、意図しない出力トルクを発生させてしまうことを防止できる。
 また、本実施の形態の車両用駆動装置1の制御装置6では、目標速度演算部63は、所定回転速度Nを、モータ5の性能及び回転速度センサ7の精度の少なくとも一方に基づき発生するモータ回転速度Nの振幅よりも大きな回転速度になるよう演算している。これにより、モータ回転速度Nの振幅が発生しても、モータ回転速度Nはその時点での同期回転速度Nより常に高くなるか、あるいは常に低くなり、高低で入れ替わることが抑制される。このため、運転者が違和感を覚え難いようにできるので、乗り心地の悪化を更に抑制することができる。
 また、本実施の形態の車両用駆動装置1の制御装置6では、変速機構3を非走行レンジ状態から走行レンジ状態に切り換える要求は、シフトレバー9のシフトレンジのNレンジからDレンジへの切り換えであるようにしている。このため、変速機構3のレンジ状態の切り換えを運転者の意図と一致させることができるので、運転者に違和感を感じさせ難い走行を実現することができる。
 尚、以上説明した本実施の形態の車両用駆動装置1の制御装置6においては、所定回転速度Nの絶対値を50rpmにした場合について説明したが、これには限られない。この所定回転速度Nは、モータ5の性能及び回転速度センサ7の精度の少なくとも一方に基づき発生するモータ回転速度Nの脈動し得る振幅よりも大きな速度に設定すればよく、設定する車両100や要求される条件によって異ならせることができる。
 また、本実施の形態においては、加速要求が有る場合にモータ回転速度Nを同期回転速度Nよりも高くする際の所定回転速度Nと、加速要求が無い場合にモータ回転速度Nを同期回転速度Nよりも低くする際の所定回転速度Nとの絶対値を同じにした場合について説明したが、これには限られない。即ち、これらの場合で、それぞれ所定回転速度Nの絶対値を異ならせてもよく、例えば、モータ回転速度Nを高くする際の所定回転速度Nを50rpmとする一方、モータ回転速度Nを低くする際の所定回転速度Nを-60rpmとしてもよい。
 また、本実施の形態においては、変速機構3を非走行レンジ状態から走行レンジ状態に切り換える要求は、シフトレバー9のシフトレンジのNレンジからDレンジへの切り換えである場合について説明したが、これには限られない。例えば、シフトレバー9によりDレンジが選択されている状態で、アクセルペダル8がオフ状態にされ、制御装置6の制御により変速機構3のクラッチ等が解放されて非走行レンジ状態になって車両100が惰行走行している場合に、運転者によりアクセルペダル8がオン状態にされることを、変速機構3を非走行レンジ状態から走行レンジ状態に切り換える要求としてもよい。また、目標速度演算部63は、変速機構3を非走行レンジ状態から走行レンジ状態に切り換える要求があった時点(図7のt4、図8のt8)で目標回転速度Nの演算を開始してもよく、あるいは、そのような要求のあった時点から所定時間経過後に目標回転速度Nの演算を開始してもよい。
 また、本実施の形態においては、シフトレンジをDレンジからNレンジに切り換えて、モータ回転速度Nを同期回転速度Nよりも所定回転速度Nだけ低くして走行している状態で、シフトレンジをNレンジからDレンジに切り換えた場合について説明したが、これには限られない。例えば、モータ回転速度Nが同期回転速度Nと同じ場合、あるいは同期回転速度Nと任意の大きさだけ高低差がある場合等であっても適用することができる。
 また、本実施の形態においては、速度制御部64が、制御装置6を構成するコンピュータ(ECU)の一部である場合について説明したが、これには限られない。例えば、速度制御部64を、ECUとモータ5との間に介在され、モータ5を駆動するためのドライバ回路とし、制御装置6を、このドライバ回路とECUとを含めた広義の制御装置とするようにしてもよい。この場合、ECUは、目標変速段算出部61と同期速度演算部62と目標速度演算部63と、を備え、速度制御部64は、目標速度演算部63から目標回転速度Nを取得して、モータ回転速度Nを制御する。
 また、本実施の形態においては、変速機構3として前進6速段の機構を適用した場合について説明したが、これには限られず、前進8速段等に適用してもよい。
 また、本実施の形態においては、車両用駆動装置1をハイブリッド車両に適用する場合について説明した。しかしながら、本発明に係る駆動装置は、これに限られず、例えば、電気車両等、回転電機を備えた車両の全般に適用することができる。
 本車両用駆動装置の制御装置は、駆動源として回転電機を備える車両に搭載される車両用駆動装置に用いることが可能であり、特に変速機構が非走行レンジ状態から走行レンジ状態に切り換えられる場合の運転者への違和感を抑制することが求められるものに用いて好適である。
1   車両用駆動装置
3   変速機構
5   モータ(回転電機)
6   制御装置
7   回転速度センサ(検出装置)
9   シフトレバー
10  車輪
30  入力軸
61  目標変速段算出部
62  同期速度演算部
63  目標速度演算部
64  速度制御部
C-1 クラッチ(係合要素)
C-2 クラッチ(係合要素)
C-3 クラッチ(係合要素)
B-1 ブレーキ(係合要素)
B-2 ブレーキ(係合要素)
F-1 ワンウェイクラッチ(係合要素)
0   同期回転速度
2   所定回転速度
a   目標回転速度
m   モータ回転速度(回転電機の回転速度)

Claims (3)

  1.  回転電機と、前記回転電機及び車輪の間の伝達経路上に配置されると共に、複数の係合要素を有し、前記複数の係合要素の係合状態に基づき前記伝達経路を変更して複数の変速段を形成し、走行レンジ状態と非走行レンジ状態とに切り換え可能な変速機構と、前記変速機構の出力回転速度を検出可能な検出装置と、を備える車両用駆動装置を制御するための車両用駆動装置の制御装置であって、
     前記出力回転速度に基づいて前記変速機構の目標変速段を算出する目標変速段算出部と、
     前記出力回転速度と目標変速段のギヤ比とに基づいて、前記目標変速段で前記出力回転速度に同期する前記変速機構の入力軸の同期回転速度を演算する同期速度演算部と、
     前記変速機構を前記非走行レンジ状態から前記走行レンジ状態に切り換える要求があった場合に、加速要求が有ると判断した場合は、前記回転電機の目標回転速度を前記同期回転速度よりも所定回転速度だけ高くなるよう演算し、前記加速要求が無いと判断した場合は、前記回転電機の前記目標回転速度を前記同期回転速度よりも所定回転速度だけ低くなるよう演算する目標速度演算部と、
     前記回転電機の回転速度を前記目標回転速度に制御する速度制御部と、を備える、
     ことを特徴とする車両用駆動装置の制御装置。
  2.  前記目標速度演算部は、前記所定回転速度を、前記回転電機の性能及び前記検出装置の精度の少なくとも一方に基づき発生する前記回転電機の回転速度の振幅よりも大きな回転速度になるよう演算する、
     ことを特徴とする請求項1記載の車両用駆動装置の制御装置。
  3.  前記非走行レンジ状態から前記走行レンジ状態に切り換える前記要求は、シフトレバーのシフトレンジの非走行レンジから走行レンジへの切り換えである、
     ことを特徴とする請求項1または2に記載の車両用駆動装置の制御装置。
PCT/JP2014/075096 2013-09-30 2014-09-22 車両用駆動装置の制御装置 WO2015046150A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-205069 2013-09-30
JP2013205069 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046150A1 true WO2015046150A1 (ja) 2015-04-02

Family

ID=52743286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075096 WO2015046150A1 (ja) 2013-09-30 2014-09-22 車両用駆動装置の制御装置

Country Status (1)

Country Link
WO (1) WO2015046150A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319893B2 (ja) 2019-11-06 2023-08-02 株式会社Subaru 車両用制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147710A (ja) * 1993-11-22 1995-06-06 Aichi Mach Ind Co Ltd 電気自動車の電動機駆動制御装置
JPH07241004A (ja) * 1994-02-28 1995-09-12 Toyota Motor Corp 電気自動車用同期制御装置
JP2008174146A (ja) * 2007-01-19 2008-07-31 Toyota Motor Corp 車両、車両の制御方法および車両の制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2010018174A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2013155790A (ja) * 2012-01-27 2013-08-15 Aisin Aw Co Ltd 車両用駆動装置の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147710A (ja) * 1993-11-22 1995-06-06 Aichi Mach Ind Co Ltd 電気自動車の電動機駆動制御装置
JPH07241004A (ja) * 1994-02-28 1995-09-12 Toyota Motor Corp 電気自動車用同期制御装置
JP2008174146A (ja) * 2007-01-19 2008-07-31 Toyota Motor Corp 車両、車両の制御方法および車両の制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2010018174A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2013155790A (ja) * 2012-01-27 2013-08-15 Aisin Aw Co Ltd 車両用駆動装置の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319893B2 (ja) 2019-11-06 2023-08-02 株式会社Subaru 車両用制御装置

Similar Documents

Publication Publication Date Title
JP6096288B2 (ja) ハイブリッド車両の制御装置
JP5799873B2 (ja) ハイブリッド車両の制御装置
JP6156243B2 (ja) ハイブリッド車両の制御装置
JP5983756B2 (ja) 車輌用駆動装置の制御装置
JP5648698B2 (ja) ハイブリッド車両の制御装置
JP2004211600A (ja) ハイブリッド車輌の制御装置
JP5267738B2 (ja) 車両制御装置
JP2009166611A (ja) ハイブリッド車両
JP2012187962A (ja) 車両制御装置
WO2013065188A1 (ja) 車両の制御装置
KR20150052137A (ko) 뉴트럴 판정 장치 및 차량의 제어 장치
JP2012224132A (ja) ハイブリッド車両の変速制御システム
JP5327177B2 (ja) 車両の制御システム
WO2015046150A1 (ja) 車両用駆動装置の制御装置
WO2012131959A1 (ja) 車両の制御システム
WO2015046151A1 (ja) 車両用駆動装置の制御装置
JP2016078586A (ja) 車両
JP2012091696A (ja) 車両用走行制御装置
JP2021138289A (ja) ハイブリッド車両の駆動装置
JP5223903B2 (ja) ハイブリッド車両のアイドル制御装置
JP5338332B2 (ja) ハイブリッド車両の制御装置
JP5074758B2 (ja) 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体、車両用の駆動装置
JP5962799B2 (ja) 車両用走行制御装置
JP2014136539A (ja) 車輌用制御装置
JPWO2014136364A1 (ja) 車両の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP