WO2014132374A1 - 電力系統制御システムおよびそれに用いる分散コントローラ - Google Patents

電力系統制御システムおよびそれに用いる分散コントローラ Download PDF

Info

Publication number
WO2014132374A1
WO2014132374A1 PCT/JP2013/055286 JP2013055286W WO2014132374A1 WO 2014132374 A1 WO2014132374 A1 WO 2014132374A1 JP 2013055286 W JP2013055286 W JP 2013055286W WO 2014132374 A1 WO2014132374 A1 WO 2014132374A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
node
power system
control
equation
Prior art date
Application number
PCT/JP2013/055286
Other languages
English (en)
French (fr)
Inventor
正俊 熊谷
翔太 逢見
山根 憲一郎
泰志 原田
渡辺 雅浩
佐藤 康生
冨田 泰志
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP13876590.4A priority Critical patent/EP2963757B1/en
Priority to US14/768,938 priority patent/US9780563B2/en
Priority to PCT/JP2013/055286 priority patent/WO2014132374A1/ja
Priority to JP2015502639A priority patent/JP5872732B2/ja
Priority to CN201380072311.2A priority patent/CN104981954A/zh
Publication of WO2014132374A1 publication Critical patent/WO2014132374A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a power system control system and a distributed controller used therefor.
  • Patent Document 1 the estimated value of the measurement error and the correction amount of the system state by the power flow calculation are calculated from the measured values such as voltage and current by sensors installed in the distribution system and the power flow calculation based on the system configuration data A technique for accurately estimating the true value of the system state is disclosed.
  • Patent Document 1 correction of the system state by estimated value of measurement error and power flow calculation from measured values such as voltage and current by sensors installed in the power system and power flow calculation based on system configuration data The quantity can be calculated and the true value of the system state can be accurately estimated.
  • this technology presupposes centralized control which can acquire measurement values of all the sensors on the system, and there is a problem that it can not be applied to state estimation of distributed control in which acquisition of measurement values is limited due to restrictions of communication lines.
  • the present invention solves such a problem, and the object of the present invention is to reduce the voltage deviation of the entire power system even when the acquisition of the measurement value is limited by the restriction of the communication line. It is.
  • a power system control system is a power system control system for controlling a voltage in a power system in which a load and a voltage control device are connected via a node, and a distributed controller that issues control commands to a plurality of voltage control devices.
  • the distributed controller is configured to include a measurement value data collection function unit, a state estimation function unit, and an optimum control function unit, and the measurement value data collection function unit is a unit to which the distributed controller belongs.
  • Measurement value data from a sensor that measures voltage and current at a node, and measurement value data from a sensor that measures voltage and current at another node to which the node does not belong are collected, and the state estimation function unit With the measured values of voltage and current and the measured values of voltage and current of the other node as inputs, the other node can not collect the measured value data.
  • Voltage and current which are state quantities of the power system of the power supply are estimated and output, and the optimum control function unit is set to each of the measured value data and the estimated value which is the output of the state estimation function unit.
  • the voltage target value is input and output as a control command based on the operation amounts distributed to the voltage control devices of the plurality of nodes including the own node, and the power control is performed by overlapping the voltage control amounts by the plurality of voltage control devices. Control system voltage.
  • other means will be described in the form for carrying out the invention.
  • FIGS. 1 to 6 A power system control system according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.
  • the items and the order in which they are described will be organized and shown first. And each item is explained in order.
  • a power equation (equation 8) in which the power equations established in each node are aggregated over the entire power system, and a measurement equation (equation 9) based on measured values of voltage and current of nodes acquired at each node will be described.
  • a state estimation function provided in the distributed controller causes the integrated power equation and the measurement equation to be simultaneous to solve the least squares problem, and finds a matrix for obtaining an error for the power equation and an approximate solution that minimizes the error for the measurement.
  • the equation (Equation 10) will be described.
  • a reliability matrix (Equation 11 and Expression 12) corresponding to the measurement accuracy is defined, and is further composed of a diagonalization reliability matrix according to the reliability.
  • Equation 13 Define a weighting factor matrix (Equation 13). Then, the weight coefficient matrix is further introduced into the least-squares problem in which the power equation and the measurement equation described above are simultaneously established (Equation 14), whereby estimated values regarding voltages and currents of the entire system with smaller errors can be obtained ( Formula 15).
  • the voltage target value can be obtained by solving the least-squares problem with respect to the deviation equation for voltage deviation (Equation 16) and the constraint equation for restricting the operation amount (Equation 17). It will be described that the approximate solution that minimizes the deviation and the error with respect to the constraint value is obtained from the matrix equation (equation 18). The deviation equation and the constraint equation are also described.
  • weighting by the priority matrix (Eq. 19 and E. 20) is applied to the deviation equation. Explain what to do.
  • a constraint degree matrix (Expression 21) of values according to the strength of the constraint is set according to the control device to which the constraint is applied.
  • the diagonalization constraint matrix (formula 22) is extracted from this constraint degree matrix, and combined with the diagonalization priority matrix (formula 20) obtained from the above priority matrix to construct a weighting coefficient matrix (formula 23) .
  • this weighting coefficient matrix is introduced into the least squares problem in which the deviation equation and the constraint equation are simultaneously established (Equation 24) to obtain a more realistic solution (Equation 25).
  • the operation amount related to the own node is obtained from this solution, and this operation amount is output and distributed as a control command to the voltage control device, thereby realizing control to reduce the voltage deviation of the entire power system.
  • a reliability matrix, a priority matrix, and a constraint matrix (Equation 26, Eq. 27, Eq. 28) are introduced, and by selecting the elements of these matrices, seamless among local control, distributed cooperative control, and centralized control Explain that it is possible to make a transition.
  • system control system in the above control, and the data structure of a measurement value table are also demonstrated.
  • FIG. 1 is a diagram showing a configuration example of a power system control system 100 according to an embodiment of the present invention.
  • a power system control system 100 includes a plurality of loads 101 and a voltage control device 102 such as an SVR (Step Voltage Regulator, automatic voltage regulator) or an SVC (Static Var Compensator, reactive power compensation device).
  • the power system control system 100 is provided with a power system 104 in which a plurality of the loads and the voltage control device are connected via a plurality of nodes 103, and a voltage installed in all or some of the plurality of nodes.
  • a plurality of sensors 105 for measuring current, a communication line 106 for collecting data from each of the sensors 105, and a plurality of distributed controllers 107 for controlling the respective voltage control devices are provided.
  • load 101 is connected to power system 104 via node 103 in units of a single customer on a high voltage / low voltage system or a pole transformer in which a plurality of low voltage users are integrated.
  • the voltage control device 102 uses, for example, a DMS (Distribution Management System) as a device on the high voltage / low voltage system in addition to a dedicated voltage control device such as SVR or SVC. It is also conceivable to control and to control the output power of the solar cell using a PCS (Power Conditioning System).
  • DMS Distribution Management System
  • PCS Power Conditioning System
  • a DVR Dynamic Voltage Restorer, instantaneous voltage compensation device
  • UPS Uninterruptible Power Supply, uninterruptible power supply
  • a pole transformer with voltage adjustment function are also included in the voltage control device.
  • HEMS Home Energy Management System, home energy management system
  • Each of the plurality of distributed controllers 107 includes a measurement value table (measurement value data collection function unit) 108, a state estimation function (state estimation function unit) 109, an optimum control function (optimum control function unit) 110, and a system topology. And a system parameter 111 for setting the circuit impedance as known information.
  • the own node measurement value 112 obtained by measurement at the own node and the other node measurement value 113 obtained limitedly via the communication line 106 are stored in the measurement value table 108.
  • the state estimation function 109 inputs the measured value stored in the measured value table 108, and estimates each node voltage and each node current, which are state quantities of the power system, using the grid parameter 111.
  • the optimal control function 110 uses the estimated value 114 which is the output of the state estimation function 109 and the system parameter 111 and further inputs and refers to the target value 115 for voltage control and the constraint value 116 for setting constraints on the operation amount.
  • the operation amount of each voltage control device is distributed so as to eliminate the voltage deviation between the estimated value 114 and the target value 115. Then, the optimum control function 110 outputs the operation amount related to the own node to the voltage control device 102 as the control command 117.
  • the mathematical model of the power system control system 100 is shown below.
  • the grid topology set in the grid parameter 111 in the mathematical model is defined as follows. First, set the node number of each element of the power system, and the connection relationship between the nodes is an adjacency matrix (upstream adjacency matrix U, downstream adjacency matrix D) and a hierarchy matrix (C U , C D , C O , C E ) Express in These will be described in order below.
  • FIG. 2 is a diagram showing a configuration example of each element of the power system control system according to the embodiment of the present invention and a setting example of node numbers attached to each element.
  • a state is shown in which the voltage V S is transmitted from the power transmission end 201 to the distribution line 211 of the power system control system 200.
  • Voltage V S is a voltage vector of alternating current (complex number), and as shown in FIG. The dot is omitted and written.
  • this distribution line 211 first has a load end 202 to which a load 212 is connected, and next has a branch end 203. At the branch end 203, it branches to the first distribution system 234 and the second distribution system 237.
  • the SVR 245 is connected to the first distribution system 234, and there are an SVR end 204 and an SVR end 205 on the input side and the output side of the SVR 245, respectively. Then, prior to the output of the SVR end 205, there is a load end 206 to which the load 216 is connected.
  • the second distribution system 237 branched from the branch end 203 first, there is a load end 207 to which the load 217 is connected. Next, there is an SVC end 208 to which the SVC 218 is connected. Furthermore, there is a load end 209 to which a load 219 is connected.
  • the node numbers are 1 for the transmitting end 201, the load end 202, the branch end 203, the SVR end 204, the SVR end 205, the load end 206, the load end 207, the SVC end 208, and the load end 209 respectively as shown in FIG.
  • the numbers of to 9 are exclusively set as node numbers.
  • connection relationship between nodes is expressed by an adjacency matrix and a hierarchy matrix described next.
  • the adjacency matrix will be described, and then the hierarchical matrix will be described.
  • Adjacency matrix The adjacency matrix will be described.
  • the adjacency matrix is defined as a mathematical expression of the adjacency relation of the node upstream and downstream (the one closer to the transmission end is upstream and the one farther to the transmission end).
  • an upstream adjacency matrix U and a downstream adjacency matrix D are defined by the upstream and the downstream, respectively. Next, it will be described in order.
  • Upstream adjacency matrix U An element u p of the upstream adjacency matrix U is an upstream adjacent node (node number) of the node p. If this definition is written down from the left side from the node 1 sequentially from the node 1 along the example of FIG. However, 0 indicates that there is no corresponding node.
  • Each element d np of the downstream adjacency matrix D is defined as the downstream adjacent node (node number) of the node p in the path leading to the node n. However, 0 indicates that there is no corresponding node. Further, while the upstream adjacent node is unique, the downstream adjacent node has a branch, so in the example of FIG. 2, the downstream adjacent node of node 3 differs in the path leading to node 5 and the path leading to node 8.
  • downstream adjacency matrix components d 8 , 3 and d 8 , 7 corresponding to the node number 3 (denoted as 7) and the node number 7 (denoted as 8)
  • d 9 , 3 and d 9 , 7 originally corresponds to the node numbers 4, 5, 6, but in FIG. Since there is no node (4, 5, 6) in the path to be reached, it is written as 0, 0, 0. This is defined as such for convenience of mathematical processing of this method. According to this definition, it is the matrix of the following formula 2 that writes down all the elements about the example of FIG.
  • Hierarchy matrix There are four types of hierarchical matrices C U , C D , C O , and C E as described later, and are defined by the matrices of the expressions 4A to 4D based on the relational expressions of the expressions 3A to 3D described later, respectively. Do.
  • the hierarchical matrices C U , C D , C O , and C E are defined as mathematical expressions representing the connection relationship between upstream and downstream, regardless of whether they are adjacent or indirect.
  • Each of the elements C Unp, C Dnp, C Onp , C Enp depending on the connection relation, takes the values defining (formula 3A ⁇ formula 3D).
  • the cocurrent node in C Enp defined by the equation 3D is a node in a connection relation in parallel via a branch end, and in the example of FIG. 2, the node 5 viewed from the node 8 is a cocurrent node is there.
  • Each element C UNP hierarchy matrix, C Dnp, C Onp, C Enp Each element C UNP hierarchy matrix, C Dnp, C Onp, for C Enp, will be described in detail.
  • Each element C Unp, C Dnp, C Onp details of the following formulas 3A ⁇ type 3D define C Enp is as follows.
  • the downstream adjacency matrix and the hierarchical matrix are redundant representations of the upstream adjacency matrix, but are a notation frequently used in describing mathematical models, and are invariant constants as long as the topology of the distribution system does not change. Therefore, when the distributed controller 107 (FIG. 1) is equipped in the power system control system 100, the upstream adjacency matrix, the downstream adjacency matrix, and each hierarchical matrix can be generated in advance.
  • Measurement value by relation between observation source node and observation target node >> Due to the presence or absence of the communication line and the restriction of the bandwidth, the measurement value of the sensor 105 obtained via the communication line 106 (FIG. 1) varies in update period and resolution depending on the arrangement of the nodes 103.
  • V ip and I ip in vector notation of alternating current are the node voltage and node current of the node p viewed from the node i (where 1 ⁇ i ⁇ N, 1 ⁇ p ⁇ N).
  • V ip and I ip are internal states of the node p held by the distributed controller 107 of the node i.
  • the node current I ip is not the total current passing through the node, but refers to the current flowing into or out of the load or SVC of the node (see FIG. 3 described later).
  • N is the number of all nodes.
  • the reason “stated from the viewpoint” is written is that the node voltage at the node p is necessarily limited to the same information for each node as described above It is because there is not. That is, although the node voltage at node p is measured at node p itself is a roughly accurate value at the measurement time point, the information on the node voltage at node p possessed by other nodes is via communication line 106 Information that depends on the communication line. That is, as described above, it may be information of a past time, may have a discretization error, may be substituted by a statistical value or a rated value, or may not have information in the first place. That is, "the node voltage of the node p viewed from the node i" corresponds to the meaning of "the information of the node voltage of the node p possessed by the node i".
  • FIG. 3 is a diagram showing notations of SVR and SVC related parameters of the power system control system according to the embodiment of the present invention.
  • an SVR 345 is provided between a node p and its adjacent upper node u (p).
  • the tap ratio of the voltage adjustment of this SVR 345 viewed from the node i is denoted as ⁇ ip .
  • the resistance component of the impedance of the branch between the node u (p) and the node p is denoted by ru (p) ⁇ p
  • the reactance component is denoted by xu (p) ⁇ p
  • the load 319 and the SVC 318 are connected to the node p
  • the current flowing into or out of the load 319 or SVC 318 of the node p viewed from the node i is denoted as I ip .
  • the SVC 318 is represented by a symbol of a general capacitor, the SVC 318 has not only a lead current of the capacitor but also a function capable of flowing a delay current.
  • a branch (corresponding to a distribution line) from the adjacent node u (p) to the node p is suffixed u (p) ⁇ p Notation. That is, the resistance component and the reactance component of the impedance are respectively described as r u (p) ⁇ p and x u (p) ⁇ p , and the impedance is expressed as (r u (p) ⁇ p + j x u (p) ⁇ p ) Do. Also, ⁇ ip is the SVR tap ratio of node p viewed from node i as described above.
  • each node is set exclusively at the SVR end, SVC end, load end, and branch end, but when they are generalized as shown in FIG. 3 described above, the branch u (p) ⁇ p seen from the node i
  • the following equation 6A and equation 6B are obtained from the relationship among voltage, current, and impedance.
  • it is possible to describe a pole transformer between high voltage / low voltage systems.
  • Equation 6A the term including the coefficient ⁇ ip relates to the SVR and the pole transformer, and the term including I ′ in (p) relates to the SVC and the load.
  • Equation 6B d (n, p) suffixed to ⁇ is the element d np of the downstream adjacent matrix D as described above, and d (n, d (n, p)) is It shows the relationship between the n and d (n, p), and follows the downstream in order.
  • Control sensitivity K (i) When the operation amount (SVR tap ratio or SVC current) of each voltage control device 102 is changed by the equation 6A and the equation 6B, the voltage of each node 103 changes according to the power equations of the equation 6A and the equation 6B.
  • the control sensitivity K (i) which is a voltage change of the node n due to the change of the operation amount of the node p viewed from the distributed controller 107 of the node i, is expressed in matrix as K (i) np .
  • the control sensitivity K (i) represented in matrix is shown as Equation 7 below.
  • K (i) np V in / ⁇ ip .
  • K (i) np ⁇ V in / ⁇ I ip .
  • Specific numerical values of each element of the control sensitivity K (i) can be derived from the system topology (adjacency matrix U, D, hierarchical matrix C U , C D , C O , C E ) and power equations (6A, 6B). It is calculated. However, the detailed description of the process of solving is omitted.
  • the state estimation function 109 (FIG. 1) estimates each node voltage and each node current, which are state quantities of the power system, by solving the least squares problem related to the power equation and the measurement equation.
  • a linear equation concerning voltage and current of the branch u (p) ⁇ p described in the equation 6A and the equation 6B holds for the combination of all adjacent nodes. That is, the number of equations is (N-1) with respect to the number of nodes N, and when collectively described, it is expressed as a matrix equation as in the following equation.
  • the A (i) in this equation 8 is the impedance r u (p) ⁇ p , x u (p) ⁇ p and the tap ratio ⁇ ip , the hierarchy matrix given by the power equation of the branch (Equation 6A, Equation 6B) It is a coefficient matrix regarding the dispersion
  • V S on the right side there is a vector of (N-1) zero columns (ON -1 ). Since there are 2N variables (V i1 ... V iN , I i1 ... I iN ) for these, the size of A (i) is a factor of N ⁇ 2 N (N rows, 2 N columns) It is a matrix. In addition, 0 is also included in the element of the coefficient of A (i). For example, in the first line of A (i), the left end is a coefficient 1 and all terms located to the right are 0.
  • Equation 6A since all the terms include either V ip or I ip , as described above, the right side of Equation 8 is a vector in which the elements other than the first element are 0.
  • I 2 N on the left side is a 2N ⁇ 2 N matrix, and a diagonal matrix in which diagonal components are 1 and all other than diagonal components are 0 is described.
  • a dot (V i1 ... V iN , I i1 ... I iN ), which is a modification symbol of an alternating current (complex number) vector value, is held by the dispersion controller 107 The internal states of voltage and current for each node are shown.
  • the modification symbol “ ⁇ ” is attached to the upper part of the character (V i1 ... V iN , I i1 ... I iN ), as described above. Represents estimated values and alternative values).
  • Approximate solution of least squares problem By solving Eq. 8 and Eq. 9 simultaneously to solve the least squares problem, an error for the power equation and an approximate solution that minimizes the error for the measured value can be obtained. This approximate solution is obtained from solving the matrix equation shown in the following equation 10.
  • V i1 ⁇ V iN are N measurements modified top with " ⁇ "
  • I i1 ⁇ I iN are N
  • Equation 10 becomes a 3N equation.
  • V i1 ⁇ V iN are N vector representation of complex numbers that have been modified with an upper dot, a 2N variables because I i1 ⁇ I iN is the N There is. That is, since there are 2N variables for 3N equations, this can generally be solved as an over-constrained problem.
  • the coefficient matrix A (i) on the right side and the left side of Equation 10, and the unit matrix (diagonal matrix) I 2 N are known values.
  • the voltage deviation of the whole electric power system can be made small by solving Formula 10 as an over-constrained problem.
  • the details of the process of solving Equation 10 as the over-constrained problem will be omitted.
  • the above-mentioned measurement value in the above-mentioned equation 10 is not limited to the real-time measurement value because it is restricted by the communication line. That is, there is no guarantee that the solution (V i1 ... V iN , I i1 ... I iN ) obtained by equation 10 is the optimum solution for reducing the voltage deviation of the entire power system. Therefore, a method of further reducing the voltage deviation of the entire power system by introducing a reliability matrix W according to the measurement accuracy and obtaining a solution with higher reliability will be described next.
  • the element W ip of the reliability matrix shown in Equation 11 is the reliability of the node p viewed from the node i, and the larger the value is, the more accurate the measured value is.
  • a matrix used for weighting of Equation 10 a row relating to node i is extracted from the reliability matrix W, and this is set as a diagonalization reliability matrix W d (i).
  • the diagonalization reliability matrix W d (i) has an N ⁇ N configuration, and there are elements only on the diagonal, and elements other than the diagonal are 0.
  • Equation 13 the right-hand side of I N, a matrix of N ⁇ N, diagonal is 1, are denoted the diagonal matrix all but diagonal elements are zero. Further, the diagonalization reliability matrix W d (i) on the right side has the above-described N ⁇ N configuration, and there are elements only on the diagonal, and elements other than the diagonal are 0. Then, there are two diagonalization reliability matrices W d (i). Therefore, the right side of Equation 13 has a configuration of 3N ⁇ 3N, and represents a diagonal matrix in which the diagonal components are elements of 1 or W d (i) and all other than diagonal components are 0. . This configuration is the configuration of the weighting coefficient matrix H (i) described on the left side of Equation 13.
  • Equation 14 is an operation of weighting each of the equations constituting Equation 10 using the diagonal components of the weighting coefficient matrix H (i) as coefficients.
  • the solution to Eq. 14 which is a weighted least squares problem is given by
  • Equation 15 is a more reliable solution that introduces the reliability of measurement accuracy subject to the restrictions of the communication line, and the voltage deviation of the entire power system can be further reduced.
  • the voltage control device is solved by solving the least-squares problem concerning the deviation equation concerning the voltage deviation and the restriction equation which gives constraints such as suppression or fixing of the operation amount of the voltage control device by the optimum control function 110 (FIG. 1)
  • a method of determining the optimal distribution of the amount of movement of 102 and distributing the amount of movement accordingly will be described.
  • a deviation equation regarding voltage deviation will be described.
  • the deviation equation relating to the voltage deviation is the control sensitivity matrix K (i) for the deviation ⁇ V in of the estimated value V in (the estimated value 114 in FIG. 1) with respect to the target value V refn (the target value 115 in FIG. 1) of each node voltage.
  • the operation amount ⁇ f ip of the voltage control device is described by the following equation 16.
  • ⁇ V i1 ... ⁇ V iN indicates a dot that is a modification symbol of complex number vector notation attached to the upper part of the character, but is omitted in the explanation for convenience of the notation. ing.
  • I N on the left side of Expression 17 is an N ⁇ N unit matrix, and the diagonal component is 1, and the others are all 0 diagonal matrices.
  • Equation 16 and 17 By solving Equations 16 and 17 simultaneously to solve the least square problem, it is possible to obtain an approximate solution that minimizes the deviation with respect to the voltage target value and the error with respect to the constraint value. This can be obtained by solving a matrix equation as shown in the following equation 18.
  • Equation 18 ⁇ V i1 ⁇ ⁇ V iN consisting deviation [Delta] V in the estimated value V in is an N-number is known, also, ⁇ f ref1 ⁇ ⁇ f refN consisting constraint value Delta] f refp is It is N and known. Therefore, the right side of Equation 18 has 2N known values. In addition, ⁇ f i1 to ⁇ f iN consisting of the operation amount ⁇ f ip of the voltage control device are N and unknown. Thus, equation 18 can generally be solved as an over-constrained problem, since there are N variables for the 2N equation.
  • Priority matrix L, L d (i) A method of introducing the priority matrix L will be described.
  • the priority matrix L is shown in the following equation 19.
  • L ip is the priority of the node p viewed from the node i.
  • setting the priority low corresponds to not considering the voltage deviation of the node in control.
  • L d (i) This diagonalization priority matrix L d (i) is shown in the following equation 20.
  • R ip in Expression 21 is the degree of restriction on the control device of the node p as seen from the node i, and a value corresponding to the strength of the restriction is set.
  • the constraint degree matrix R for weighting of equation 18 of the matrix equation, as in the case of the priority matrix L, the row relating to the node i is taken out, and this is made a diagonalization constraint degree matrix R d (i).
  • the following equation 22 is the diagonalization constraint degree matrix R d (i).
  • weighting coefficient matrix G (i) >> Weighting coefficient combining priority and constraint with the diagonalization priority matrix L d (i) shown in the above equation 20 and the diagonalization constraint degree matrix R d (i) shown in the equation 22 Construct a matrix G (i).
  • the weighting coefficient matrix G (i) is shown in the following equation 23.
  • the weighting coefficient matrix G (i) shown in the equation 23 is multiplied from the left side on both sides of the equation 18 to obtain the following equation 24.
  • Weighted Least Squares Problem Equation 24 is an operation of weighting each of the equations constituting Equation 18 using the diagonal components of the weighting coefficient matrix G (i) as coefficients.
  • the solution to equation 24 which is a weighted least squares problem is given by equation 25 below.
  • ⁇ f i1 to ⁇ f iN are the operation amounts of the voltage control devices (102, FIG. 1) distributed in the distributed controller 107 (FIG. 1) of the node i.
  • the distributed controller 107 outputs the operation amount ⁇ f ii related to the own node i among the solutions of Expression 25 to the voltage control device 102 as the control command 117 (FIG. 1).
  • each voltage control device optimally distributed by the equation 25 not only reduces the voltage deviation of the whole system but also optimizes the distribution of the operation amount of each voltage control device.
  • the reduction of power consumption by the device and the control by the more desirable power system control system in consideration of various restrictions in the field are realized.
  • the weighting coefficient matrix G (i) in Equation 25 includes the diagonalization priority matrix L d (i) and the diagonalization constraint degree matrix R d (i)
  • the diagonals relating to the priority It may be solved using only the quantization priority matrix L d (i).
  • it may be solved using only the diagonalization constraint degree matrix R d (i) regarding the constraint degree.
  • FIG. 4 is a figure which shows the example of the condition where the voltage of a distribution system is controlled by superposition of the voltage change amount by each voltage control apparatus of the electric power grid
  • Four examples of changes in the grid voltage at each position from the power transmission end 405 to the power reception end 406 of the power system 401 and the schematic configuration of the power system 401 are shown.
  • a plurality of loads 402 and one SVR 403 and one SVC 404 are connected to the power system 401.
  • the grid voltage drops (drops in voltage) from the transmitting end 405 toward the receiving end 406 as shown by the voltage graph 407. From this state, when the SVR 403 is operated, the system voltage is boosted at a point A corresponding to the position where the SVR 403 is installed, as shown in the voltage graph 408. Further, when the SVC 404 is operated, the grid voltage is boosted at a point B corresponding to the position where the SVC 404 is installed as shown in the voltage graph 409. Further, when the SVR 403 and the SVC 404 are operated at the same time, the grid voltage is boosted at points corresponding to the points A and B as a voltage graph 410 as the superposition. As described above, by properly controlling and operating the SVR 403 and the SVC 404, the voltage deviation in the power system (the entire power system) 401 is reduced.
  • each voltage control device is independently controlled that the distributed controller 107 of each of these nodes acquires measurement values of only its own node and controls only its own node voltage.
  • the diagonal element of the constraint degree matrix R is 0 and the non-diagonal element is 1.
  • setting the constraint value 0 to the own node indicates that the distributed controller 107 of each node is assigned the operation amount only to the voltage control device 102 of the own node.
  • other nodes are executing constraints with a constraint value of 1.
  • FIG. 5 is a flowchart showing the operation of the power grid control system 100 according to the embodiment of the present invention.
  • steps S501 to S505 there are steps (steps) of steps S501 to S505.
  • steps S502 to S505 are common to a plurality of distributed controllers 107 (FIG. 1), only steps S502 to S505 for one distributed controller 107 will be described.
  • step S501 system topology and circuit impedance are set in the system parameter 111 (FIG. 1) of each distributed controller 107 as initial setting at the start of operation (setting of system parameters).
  • Step S502 In operation, first, in step S502, the distributed controller 107 stores the own node measurement value 112 (FIG. 1) and the other node measurement value 113 (FIG. 1) obtained through the communication line in the measurement value table 108 (FIG. 1). Yes (measurement value storage).
  • step S503 the state estimation function 109 (FIG. 1) receives the measured value stored in the measured value table 108 and uses the system parameter 111 to determine each node voltage and each node current, which are state quantities of the electric power system. Estimate (state estimation).
  • step S504 the optimum control function 110 (FIG. 1) outputs the estimated value 114 (FIG. 1) which is the output of the state estimation function 109, the target value 115 of voltage control (FIG. 1) and the constraint value 116 of the operation amount (FIG. 1).
  • the system parameter 111 is used as an input, and the operation amount of each voltage control device 102 (FIG. 1) is distributed so as to eliminate the voltage deviation between the estimated value 114 and the target value 115, and the operation amount related to the own node is voltage controlled
  • the control command 117 (FIG. 1) is output to the device 102 (optimum control).
  • Step S505 the voltage control device 102 changes the operation amount (tap ratio in the case of SVR, reactive current output in the case of SVC) based on the control command 117, and the process returns to step S502 (own node operation amount generation) ).
  • step S502 to step S505 is performed in parallel for each of the voltage control device 102 and the distributed controller 107 to be paired. This is shown in FIG. 5 by writing S502 to S505 in parallel.
  • FIG. 6 shows the self-node measurement value 112 (FIG. 1) and the other-node measurement value 113 (FIG. 1) obtained through the communication line in the power system control system 100 (FIG. 1) according to the embodiment of the present invention. It is a figure which shows the data structure of the measured value table 108 (FIG. 1) in which 1) is stored.
  • a data record corresponds to each node. Each record is composed of a node number, update time, voltage, current (active current, reactive current), rated voltage, rated current (rated active current, rated reactive current).
  • the node (node number) 1 and the node 2 are generally new data, and the latest update time, and the voltage at that time, the effective current, and the reactive current are recorded. Since node 4 and node 5 have older update time stamps as compared with node 1 and node 2, these measurement values are considered to be less accurate. Then, in the state estimation function 109 (FIG. 1), the reliability is set small and substituted into the least squares problem of Equation 14. Further, the node 3 is a branch end, and there is no measurement value (active current, reactive current) in the first place. Therefore, the state estimation function 109 sets the reliability to zero.
  • the measured value of node 6 is not measured at this point, it does not exist, but there is a possibility that it may be measured, and its rated value (rated active current, rated reactive current) exists. While setting it small, substitute the rated value into the least squares problem of Equation 14 as a substitute value of the measured value.
  • the power system control system estimates the state quantities of the power system by using the own node measurement value and the other node measurement value that can be obtained limitedly by each of the distributed controllers via the communication line, to estimate the state quantity of the power system.
  • the control instruction is output to the own node so that the operation amount of the voltage control device of the own node and the operation amount of the voltage control device of the other node are optimally distributed based on By matching, the voltage deviation of the entire power system can be reduced.
  • estimated values regarding the voltage and current of the entire power system with smaller errors can be obtained.

Abstract

 本発明は、負荷(101)と電圧制御機器(102)がノードを介して接続する電力系統の電力系統制御システム(100)において、計測値の取得が限定される場合においても、電力系統全体の電圧偏差を小さくすることができるようにしたものである。 前記電力系統制御システムが含む分散コントローラ(107)は、自ノード及び他ノードの計測値(112,113)を収集する計測値データ収集機能部(108)と、計測値を収集できないノードの電圧又は電流を推定して推定値(114)を出力する状態推定機能部(109)と、前記計測値(112,113)と、前記推定値(114)と、各ノードに設定された前記電圧目標値(115)とを入力として、制御指令(117)を出力する最適制御機能部(110)と、を有して構成される。そして、各電圧制御機器(102)による電圧変化量の重ね合わせによって系統電圧を制御する。

Description

電力系統制御システムおよびそれに用いる分散コントローラ
 本発明は電力系統制御システムおよびそれに用いる分散コントローラに関する。
 電力系統または配電系統は、負荷の変動などにより、潮流が変化する場合にも、電力系統全体の電圧を適切に制御、管理することが重要である。
 例えば特許文献1には、配電系統に設置されたセンサによる電圧・電流等の計測値と、系統構成データに基づく潮流計算から、計測誤差の推定値および潮流計算による系統状態の修正量を計算し、系統状態の真値を精度良く推定する技術が開示されている。
特開2008-154418号公報
 特許文献1に開示された技術によると、電力系統に設置されたセンサによる電圧・電流等の計測値と、系統構成データに基づく潮流計算から、計測誤差の推定値および潮流計算による系統状態の修正量を計算し、系統状態の真値を精度よく推定できる。
 しかしながら、この技術は、系統上の全センサの計測値を取得できる集中制御を前提としており、通信回線の制約によって計測値の取得が限定される分散制御の状態推定に適用できないという問題がある。
 そこで、本発明は、このような問題点を解決するもので、その目的とするところは、通信回線の制約によって計測値の取得が限定される場合においても、電力系統全体の電圧偏差を小さくすることである。
 前記の課題を解決して、本発明の目的を達成するために、以下のように構成した。
 すなわち、本発明の電力系統制御システムは、負荷と電圧制御機器がノードを介して接続する電力系統における電圧を制御する電力系統制御システムにおいて、複数の前記電圧制御機器に制御指令を行う分散コントローラを少なくとも2つ含んで構成され、前記分散コントローラは、計測値データ収集機能部と状態推定機能部と最適制御機能部とを有して構成され、前記計測値データ収集機能部は、自身が属する自ノードにおける電圧と電流を計測するセンサからの計測値データと、自身が属さない他ノードにおける電圧と電流を計測するセンサからの計測値データを収集し、前記状態推定機能部は、前記自ノードの電圧と電流の計測値および前記他ノードの電圧と電流の計測値を入力として、他ノードで前記計測値データを収集できないノードの前記電力系統の状態量である電圧又は電流を推定して出力し、前記最適制御機能部は、前記計測値データと前記状態推定機能部の出力である推定値と各ノードに設定された電圧目標値を入力として、自ノードを含む複数のノードの前記電圧制御機器に配分する動作量に基づいて、制御指令として出力し、複数の前記電圧制御機器による電圧制御量の重ね合わせによって、電力系統の電圧を制御する。
 また、その他の手段は、発明を実施するための形態のなかで説明する。
 本発明によれば、通信回線の制約によって計測値の取得が限定される場合においても、電力系統全体の電圧偏差を小さくできる。
本発明の実施形態に係る電力系統制御システムの構成例を示す図である。 本発明の実施形態に係る電力系統制御システムの各要素の構成例と、各要素に付したノード番号の設定例を示す図である。 本発明の実施形態に係る電力系統制御システムのSVRとSVCに関するパラメータ等の表記について示す図である。 本発明の実施形態に係る電力系統制御システムの各電圧制御機器による電圧変化量の重ね合わせによって配電系統の電圧が制御される状況の例を示す図である。 本発明の実施形態に係る電力系統制御システムの運用を示したフローチャートである。 本発明の実施形態に係る電力系統制御システムにおける計測値が格納される計測値テーブルのデータ構造を示す図である。
 以下に本願の発明を実施するための形態(以下、「実施形態」と称す)を、図面を参照して説明する。
(実施形態)
 本発明の実施形態に係る電力系統制御システムを図1~図6を参照して説明する。
 なお、電力系統制御システムの説明にあたっては、多くの概念、定義、数式を必要とするので、まず、どのような項目と順番で説明するかを整理して先に示す。そして、各項目について順に説明する。
<説明する項目と順番の概要>
 はじめに図1を参照して、電力系統制御システムの構成を説明する。
 次に、この電力系統制御システムの数理モデルを、図2を参照して説明する。数理モデルにおいては、系統トポロジ、系統パラメータを示し、隣接行列(式1、式2)と階層行列(式3A~式3D、式4A~式4D)を用いて説明する。
 次に、観測元ノードと観測対象ノードの関係とそのパラメータ等の表記について、式55A、式5Bとともに説明する。そしてこの表記の仕方を用いて、電力系統に備えられた分散コントローラから見た階層行列を含むノードから見たブランチの電力方程式(式6A、式6B)を説明する。
 また、この電力方程式と系統トポロジから、分散コントローラから見たノードの動作量変化による電圧変化である制御感度(式7)が算出されることを説明する。
 次に、各ノードに成立する電力方程式を電力系統の全体で集約した電力方程式(式8)と、各ノードで取得されたノードの電圧と電流の計測値による計測方程式(式9)について説明する。
 そして、分散コントローラに備えられた状態推定機能によって、この集約した電力方程式と計測方程式を連立させて最小二乗問題を解き、電力方程式に対する誤差と、計測値に対する誤差を最小化する近似解を求める行列方程式(式10)について説明する。
 また、前記の計測値は、通信回線の制約を受けることから、計測精度に応じた信頼度行列(式11、式12)を定義し、さらに信頼度による対角化信頼度行列から構成される重み係数行列(式13)を定義する。
 そして、この重み係数行列を、前記した電力方程式と計測方程式を連立させる最小二乗問題に、さらに導入(式14)することで、より誤差の小さい全系統の電圧と電流に関する推定値が得られる(式15)。
 また、分散コントローラに備えられた最適制御機能によって、電圧偏差に関する偏差方程式(式16)と、動作量に制約を与える制約方程式(式17)とに関する最小二乗問題を解くことで、電圧目標値に対する偏差と、制約値に対する誤差を最小化する近似解を行列方程式(式18)から得ることを説明する。なお、この偏差方程式と制約方程式についても説明する。
 また、状態推定における近似誤差がノードによって異なる場合、センスティブな負荷に対して、優先的に電圧偏差を解消する運用を行うときには、偏差方程式に優先度行列(式19、式20)による重み付けをすることを説明する。
 また、制約方程式として、制約の対象となる制御機器に応じて、制約の強さに応じた値の制約度行列(式21)を設定する。この制約度行列から対角化制約度行列(式22)を取り出し、前記の優先度行列から得られた対角化優先度行列(式20)と組み合わせ、重み係数行列(式23)を構成する。さらに、この重み係数行列を前記の偏差方程式と制約方程式とを連立させる最小二乗問題に、導入(式24)して、より実態にあった解(式25)を得る。
 また、この解から自ノードに関する動作量が得られて、この動作量を制御指令として電圧制御機器に出力、配分することによって、電力系統全体の電圧偏差が小さくなる制御が実現することを説明する。
 また、信頼度行列、優先度行列、制約度行列(式26、式27、式28)を導入し、これらの行列の要素の選択によって、ローカル制御、分散協調制御、集中制御の間をシームレスに遷移可能となることを説明する。
 また、以上の制御における電力系統制御システムの運用を示したフローチャートと、計測値テーブルのデータ構造についても説明する。
<電力系統制御システムの構成>
 以下、本発明の電力系統制御システムの構成について説明する。
 図1は本発明の実施形態に係る電力系統制御システム100の構成例を示す図である。
 図1において、電力系統制御システム100は、複数の負荷101と、SVR(Step Voltage Regulator、自動電圧調整器)やSVC(Static Var Compensator、無効電力補償装置)などの電圧制御機器102と、を備えている。
 また、電力系統制御システム100は、複数の前記負荷と前記電圧制御機器が複数のノード103を介して接続された電力系統104と、前記複数のノードの全ノードあるいは一部ノードに設置され電圧と電流を計測する複数のセンサ105と、この各センサ105からデータを収集する通信回線106と、前記の各電圧制御機器を制御する複数の分散コントローラ107とを備える。
 負荷101は、具体的には高圧/低圧系統上の単一の需要家、あるいは複数の低圧需要家が集約された柱上変圧器などを単位として、ノード103を介して電力系統104に接続されている。
 電圧制御機器102は、SVRやSVCなど専用の電圧制御機器のほかに、高圧/低圧系統上の機器としては、たとえばDMS(Distribution Management System、配電電圧制御システム)を用いて需要家の消費電力を制御することや、PCS(Power Conditioning System、パワーコンディショナ)を用いて太陽電池の出力電力を制御することも考えられる。また、DVR(Dynamic Voltage Restorer、瞬時電圧補償装置)、UPS(Uninterruptible Power Supply、無停電電源装置)、電圧調整機能付き柱上変圧器も電圧制御機器に含まれる。さらに、HEMS(Home Energy Management System、ホームエネルギーマネジメントシステム)又は前記DMSを用いて、電力系統接続時の充電計画設定によって電力を入出力可能な電気自動車、電気給湯器、空調等の電力を制御することも考えられる。
 複数の分散コントローラ107は、それぞれに、計測値テーブル(計測値データ収集機能部)108と、状態推定機能(状態推定機能部)109と、最適制御機能(最適制御機能部)110と、系統トポロジと回路インピーダンスを既知情報として設定する系統パラメータ111とを備えて構成される。
 自ノードにおいて計測して得られる自ノード計測値112、および通信回線106を介して限定的に得られる他ノード計測値113は、計測値テーブル108に格納される。
 状態推定機能109は、計測値テーブル108に格納された計測値を入力し、系統パラメータ111を用いて、電力系統の状態量である各ノード電圧および各ノード電流を推定する。
 最適制御機能110は、状態推定機能109の出力である推定値114と前記の系統パラメータ111を用い、さらに電圧制御の目標値115ならびに動作量に制約を設定する制約値116を入力、参照して、推定値114と目標値115との電圧偏差を解消するように各電圧制御機器の動作量を配分する。そして、最適制御機能110は、自ノードに関する動作量を電圧制御機器102に制御指令117として出力する。
<電力系統制御システムの数理モデル>
 以下に電力系統制御システム100の数理モデルを示す。
 数理モデルにおいて、系統パラメータ111に設定される系統トポロジは、次のように定義する。
 まず、電力系統の各要素のノード番号を設定し、このノード間の接続関係を隣接行列(上流隣接行列U、下流隣接行列D)と階層行列(C、C、C、C)で表現する。以下に、順に説明する。
《ノード番号》
 図2は、本発明の実施形態に係る電力系統制御システムの各要素の構成例と、各要素に付したノード番号の設定例を示す図である。
 図2において、送電端201から電圧Vが電力系統制御システム200の配電線211に送電される状態を示している。
 なお、電圧Vは、交流(複素数)の電圧ベクトルであって、図2に示すように、文字の上に修飾記号であるドットを付けるのが慣例であるが、文章においては表記上の都合によりドットを省略して表記する。
 数理モデルとしての、この配電線211には、まず、負荷212が接続された負荷端202があり、次に分岐端203がある。分岐端203において、第1の配電系統234と第2の配電系統237に分岐する。
 第1の配電系統234には、SVR245が接続され、SVR245の入力側と出力側にそれぞれSVR端204とSVR端205とがある。そして、SVR端205の出力から先に、負荷216が接続された負荷端206がある。
 また、分岐端203から分岐した第2の配電系統237においては、まず、負荷217が接続された負荷端207がある。次に、SVC218が接続されたSVC端208がある。さらに、その先に負荷219が接続された負荷端209がある。
 ノード番号は、図2に示すように送電端201、負荷端202、分岐端203、SVR端204、SVR端205、負荷端206、負荷端207、SVC端208、負荷端209について、それぞれ順に1~9の番号をノード番号として、排他的に設定する。
 また、ノード間の接続関係は、次に述べる隣接行列と階層行列で表現する。まず、隣接行列について説明し、その後で、階層行列について説明する。
 《隣接行列》
 隣接行列について説明する。
 隣接行列は、ノード上下流(送電端に近い方が上流、遠い方が下流)の隣接関係の数理表記として定義する。また、上流と下流とによって、上流隣接行列Uと下流隣接行列Dとをそれぞれ定義する。次に、順に説明する。
 《上流隣接行列U》
 上流隣接行列Uの要素uは、ノードpの上流隣接ノード(ノード番号)とする。この定義を図2の例に沿って、ノード1から順に各ノードの上流隣接ノードを左側から書き下すと次式の式1のようになる。ただし0は該当するノードが無いことを示す。
Figure JPOXMLDOC01-appb-M000001
 《下流隣接行列D》
 次に、下流隣接行列Dについて説明する。
 下流隣接行列Dの各要素dnpは、ノードnに至るパスにおいてノードpの下流隣接ノード(ノード番号)として定義する。ただし0は該当するノードが無いことを示す。
 また、上流隣接ノードが一意であるのに対し、下流隣接ノードは分岐があるため、図2の例においてはノード5に至るパスとノード8に至るパスではノード3の下流隣接ノードが異なる。
 また、後記する式2の8行目と9行目において、ノード番号3(7と表記)とノード番号7(8と表記)に対応する下流隣接行列成分d8,3とd8,7、またd9,3とd9,7の間に0、0、0が存在するのは、本来はノード番号4、5、6に対応するところであるが、図2において、ノード7やノード8に至るパスにおいては、ノード(4、5、6)がないので、0、0、0と表記している。これは、本方式の数理処理上の都合により、このように定義する。
 この定義にしたがって、図2の例について、すべての要素を書き下したのが、次の式2の行列である。
Figure JPOXMLDOC01-appb-M000002
《階層行列》
 階層行列は、後記するように4種類の階層行列C、C、C、Cがあり、それぞれ後記する式3A~式3Dの関係式に基づき、式4A~式4Dの行列によって定義する。
 階層行列C、C、C、Cは、隣接、間接を問わず、上下流の接続関係を表す数理表記として定義している。それぞれの各要素CUnp、CDnp、COnp、CEnpは、接続関係に応じて、定義(式3A~式3D)する値をとる。
 また、式3Dで定義するCEnpにおける並流ノードとは、分岐端を介して並列した接続関係にあるノードであり、図2の例で言うとノード8から見たノード5は並流ノードである。
《階層行列の各要素CUnp、CDnp、COnp、CEnp
 階層行列の各要素CUnp、CDnp、COnp、CEnpについて、詳しく説明する。
 各要素CUnp、CDnp、COnp、CEnpを次に示す式3A~式3Dの定義の詳細は次のとおりである。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 前記した階層行列の定義を、図2の例に沿って書き下すと、それぞれ、次の式4A、式4B、式4C、式4Dに示す行列となる。階層行列の各成分要素CUnp、CDnp、COnp、CEnpは互いに排他的であり、かつ、任意のn、pについて、
 CUnp+CDnp+COnp+CEnp=1
 の関係がある。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 下流隣接行列、階層行列は、上流隣接行列の冗長表現だが、数理モデルを記述する上で頻繁に用いる表記であり、かつ、配電系統のトポロジが変化しない限り不変の定数である。そのため、分散コントローラ107(図1)を電力系統制御システム100に装備する際に、前記の上流隣接行列、下流隣接行列、および各階層行列をあらかじめ生成しておくことができる。
 以下では、数理モデルの記述を見やすくするため、u、dnp、CUnp、CDnp、COnp、CEnpのそれぞれをu(p)、d(n,p)、C(n,p)、C(n,p)、C(n,p)、C(n,p)と適宜、表記する。
《観測元ノードと観測対象ノードとの関係による計測値》
 通信回線の有無や帯域の制約から、通信回線106(図1)を介して得られるセンサ105の計測値は、ノード103の配置によって更新周期や分解能が異なる。これは同一のノードが観測対象(p)であっても観測元(i)のノードによって得られる計測値が異なるということであり、他ノードの計測値の取得はノード間の通信回線106の状況に依存する。
 具体的には精度が高い順に、
 (十分な帯域の通信回線で計測値をリアルタイムに取得できる)>(通信帯域の不足から計測値に時間遅れや離散化誤差が生じる)>(計測値が取得できないが統計値や定格値で代替できる)>(計測値も代替値も存在しない)
 といった状況が想定される。
 このように観測元ノードと観測対象ノードとの関係によって異なる電圧と電流を次に示す式5A、式5Bのように行列表記する。
 なお、式5A、式5Bのように、交流(複素数)のベクトル表記のVip、Iipは、文字の上に修飾記号であるドットを付けるのが慣例であるが、説明文においては、表記上の都合によりドットを省略して表記する。
 また、交流(複素数)のベクトル表記のVip、Iipは、ノードiから見たノードpのノード電圧、ノード電流である(ただし、1≦i≦N、1≦p≦N)。
 これらVip、Iipは、ノードiの分散コントローラ107で保持されたノードpに関する内部状態である。また、ノード電流Iipは、当該ノードを通過する合計電流ではなく、当該ノードの負荷もしくはSVCに流入または流出する電流を指す(後記する図3参照)。
 また、Nは全ノード数である。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 また、「ノードiから見たノードpのノード電圧」という表現において、「から見た」と表記した理由は、前記したように、ノードpにおけるノード電圧は、ノード毎に必ずしも同じ情報とは限らないからである。
 つまり、ノードpにおけるノード電圧は、ノードp自体で測定されたものは計測時点の概ね正確な値であるが、他のノードが有するノードpのノード電圧の情報は、通信回線106を経由しているので通信回線に依存した情報である。
 すなわち前記したように、過去の時点の情報であったり、離散化誤差を有していたり、統計値や定格値で代替したものであったり、そもそも情報を持っていなかったりすることもある。つまり、「ノードiから見たノードpのノード電圧」とは、「ノードiが有しているノードpのノード電圧の情報」の意味に相当する。
《SVRとSVCに関するパラメータ表記》
 以上の式5A、式5Bで定義された電圧と電流の表記に基づいて、ノードiの分散コントローラ107から見た電力方程式を記述するが、それに先立って、SVRとSVCに関するパラメータ等の表記について説明する。
 図3は、本発明の実施形態に係る電力系統制御システムのSVRとSVCに関するパラメータ等の表記について示す図である。
 図3において、ノードpと、その隣接する上位のノードu(p)との間に、SVR345が備えられている。ノードiから見たこのSVR345の電圧調整のタップ比をτipと表記する。
 また、SVR345がないものとして、ノードu(p)とノードpの間のブランチのインピーダンスの抵抗成分を、ru(p)→pとし、リアクタンス成分をxu(p)→pと表記する。
 また、ノードpに負荷319とSVC318が接続されていたとして、そこにノードiから見た、ノードpの負荷319もしくはSVC318に流入または流出する電流をIipと表記する。
 なお、SVC318を一般的なコンデンサの記号で表記しているが、SVC318は、コンデンサの進み電流のみならず、遅れ電流を流すことのできる機能も有している。
《ブランチの電力方程式》
 次に、ブランチの電力方程式(式6A、式6B)について説明する。これは、隣接するノード(u(p),p)間に成立する関係式である。なお、隣接するノード間を接続する要素をブランチと呼称する。また、ノードpはノードiの上流でも下流でもあり得る。
 次に示す式6Aにおいて、ノードiから見たノードpの電圧Vip、電流Iipの他に、ノードpからノードひとつ上流側のノードの電圧をViu(p)と表記する。
 また、任意の下流側ノードnのノード電流Iinについて、ノードpを通過する通過電流をI’in(p)と表記する。
 また、系統パラメータ111に設定された回路インピーダンスの表記として、前記したように、隣接するノードu(p)からノードpへのブランチ(配電線に相当)をu(p)→pと添え字して表記する。
 すなわち、そのインピーダンスの抵抗成分とリアクタンス成分をそれぞれ、ru(p)→p、xu(p)→pとし、インピーダンスを(ru(p)→p+jxu(p)→p)と表記する。
 また、τipは、前記したようにノードiから見たノードpのSVRタップ比である。
 なお、交流(複素数)であるVip、Viu(p)、Iip、I’in(p)、Iinについては、式6A、式6Bにおいて、文字の上に修飾記号であるドットを記載しているが、前記したように、説明文では、表記上の都合によりドットを省略して表記している。
 また、各ノードはSVR端、SVC端、負荷端、分岐端に排他的に設定されているが、それらを前記した図3のように一般化するとノードiから見たブランチu(p)→pの電力方程式は、電圧、電流、インピーダンスの関係から、次の式6A、式6Bとなる。
ここでSVRタップ比について補足すると、SVRの設置されていないノードではτip=1である。あるいは、τipに固定的な変圧比を設定することで、高圧/低圧系統間の柱上変圧器を記述することができる。
Figure JPOXMLDOC01-appb-M000013
 ただし、
Figure JPOXMLDOC01-appb-M000014
 なお、式6Aにおいて、係数τipが含まれる項は、SVRおよび柱上変圧器に関連し、I’in(p)が含まれる項は、SVCおよび負荷に関連している。
 また、式6Bにおいて、τの添え字のd(n,p)は、前記したように、下流隣接行列Dの要素dnpであり、さらに、d(n,d(n,p))は、当該のnとd(n,p)との間の関係を示すものであり、順に下流を辿っている。
《制御感度K(i)》
 この式6A、式6Bで各電圧制御機器102の動作量(SVRタップ比あるいはSVC電流)を変化させると、各ノード103の電圧が式6A、式6Bの電力方程式に従って変化する。
 数理モデルでは、ノードiの分散コントローラ107から見たノードpの動作量変化によるノードnの電圧変化である制御感度K(i)を、K(i)npとして行列表記する。
 行列表記された制御感度K(i)を、次に式7として示す。
Figure JPOXMLDOC01-appb-M000015
 なお、SVRについては、K(i)np=∂Vin/∂τipである。
 また、SVCについては、K(i)np=∂Vin/∂Iipである。
 また、電圧制御機器が設けられていないノードは、K(i)np=0である。
 制御感度K(i)の各要素の具体的な数値は、系統トポロジ(隣接行列U、D、階層行列C、C、C、C)と電力方程式の式6A、式6Bとから算出される。ただし、解く過程の詳細な説明は省略する。
《集約した電力方程式》
 状態推定機能109(図1)は、電力方程式と計測方程式に関する最小二乗問題を解くことで、電力系統の状態量である各ノード電圧および各ノード電流を推定する。
 電力方程式については、式6A、式6Bで記述したブランチu(p)→pの電圧と電流に関する線形方程式が、隣接する全てのノードの組み合わせについて成立する。
 すなわちノード数Nに対して方程式の数は(N-1)であり、集約して記述すると次式のように行列方程式として表される。
Figure JPOXMLDOC01-appb-M000016
 この式8におけるA(i)は、ブランチの電力方程式(式6A、式6B)にでてくるインピーダンスru(p)→p、xu(p)→pおよび、タップ比τip、階層行列C(n,p)で構成されたノードiの分散コントローラに関する係数行列である。ただし第1行は送電端ノードの送出電圧Vに対する拘束条件Vi1=Vを記述する。なお、送電端ノードの送出電圧Vを基準にして、電圧降下量から(Vi1・・・ViN)を計算し、記述することになる。
 また、右辺のVの下には(N-1)個の0の縦列によるベクトルがある(ON-1)。
 これらに対して2Nの変数(Vi1・・・ViN、Ii1・・・IiN)が存在することから、A(i)の大きさはN×2N(N行、2N列)の係数行列である。
 なお、A(i)の係数の要素には0も含まれて構成されている。例えば、A(i)の1行目は、左端が係数1で、それから右に位置する項はすべて0である。
 また、系統パラメータ111に設定されたインピーダンスと階層行列C(n,p)は既知定数だが、SVRの調整されるタップ比(τip)を含むことからA(i)は、時変である。また、式6Aでは全ての項にVip、Iipのいずれかが含まれることから、前記したように、式8の右辺は、第1要素以外を0とするベクトルである。
《計測方程式》
 計測方程式については、ノードiで取得されたノードpの電圧と電流の計測値Vip、Iip(自ノード計測値112および通信回線を介して限定的に得られる他ノード計測値113)に対して、次の式9が成り立つ、もしくは成り立つことが望ましい。
 つまり、式9においては、左辺と右辺を「=」の等号で表記しているが、必ずしも、「=」が成立するわけではなく、なるべく成立するように解く条件式に相当する。なお、式9で求めるのは、修飾記号であるドットを文字の上部につけた(Vi1・・・ViN、Ii1・・・IiN)である。
Figure JPOXMLDOC01-appb-M000017
 また、式9において、左辺のI2Nは、2N×2Nの行列であり、対角成分が1であって、対角成分以外はすべて0である対角行列を表記している。
 また、左辺において、交流(複素数)のベクトル値の修飾記号であるドットを文字の上部につけた(Vi1・・・ViN、Ii1・・・IiN)は、分散コントローラ107で保持される各ノードに関する電圧、電流の内部状態を表している。
 また、右辺において、修飾記号である「~」を文字の上部につけた(Vi1・・・ViN、Ii1・・・IiN)は、前記したように計測値(実測値のみならず、推定値、代替値を含む)を表している。
《最小二乗問題の近似解》
 式8、式9を連立させて最小二乗問題を解くことで、電力方程式に対する誤差と、計測値に対する誤差を最小化する近似解が得られる。この近似解は、次の式10に示す行列方程式を解くことから得られる。
Figure JPOXMLDOC01-appb-M000018
 式10の右辺において、VとON-1でN個、「~」で上部を修飾された計測値のVi1・・・ViNがN個、Ii1・・・IiNがN個あるので、式10は3Nの方程式となる。
 また、式10の左辺において、ドットで上部を修飾された複素数のベクトル表示のVi1・・・ViNがN個、Ii1・・・IiNがN個あるので2Nの変数を有している。
 つまり、3Nの方程式に対して2Nの変数が存在することから、これは一般に過拘束問題として解くことができる。
 なお、式10の右辺と、左辺の係数行列A(i)、および単位行列(対角行列)I2Nは既知の値である。
 以上、式10を過拘束問題として解くことによって、電力系統全体の電圧偏差を小さくすることができる。
 なお、式10を過拘束問題として解く過程の詳細は、省略する。
<計測精度の信頼度を導入したより信頼性の高い解法>
 前記の式10における前記した計測値は、通信回線の制約を受けることから、リアルタイムの計測値とは限らない。すなわち式10で求めた解(Vi1・・・ViN、Ii1・・・IiN)が電力系統全体の電圧偏差を小さくする最適解である保証はない。
 そのため、計測精度に応じた信頼度行列Wを導入して、信頼性のより高い解を求めることで、電力系統全体の電圧偏差をさらに小さくする方法について、次に説明する。
《信頼度行列W》
 計測精度に応じた信頼度行列Wを次の式11のように定義し、式10に重み付けをして、より信頼性の高い解を求める。
Figure JPOXMLDOC01-appb-M000019
 式11に示した信頼度行列の要素Wipは、ノードiから見たノードpの信頼度であり、値が大きいほど計測値が正確であることを示す。式10の重み付けに用いる行列として、信頼度行列Wからノードiに関する行を取り出して、これを対角化信頼度行列W(i)とする。
 なお、対角化信頼度行列W(i)は、N×Nの構成であって、対角線上にのみ要素があり、対角線以外の要素は0である。
Figure JPOXMLDOC01-appb-M000020
《重み係数行列H(i)》
 式10を信頼度で重み付けするには、次の式13に示すような、対角化信頼度行列W(i)から構成される重み係数行列H(i)を、まず作成する。
Figure JPOXMLDOC01-appb-M000021
 この式13において、右辺のIは、N×Nの行列であり、対角成分が1であって、対角成分以外はすべて0である対角行列を表記している。
 また、右辺の対角化信頼度行列W(i)は、前記したN×Nの構成であって、対角線上にのみ要素があり、対角線以外の要素は0である。そして、対角化信頼度行列W(i)が二つ存在している。
 したがって、式13の右辺は、3N×3Nの構成であり、対角成分が1またはW(i)の要素であって、対角成分以外はすべて0である対角行列を表記している。この構成が、式13の左辺に表記した重み係数行列H(i)の構成である。
《重み付けされた最小二乗問題》
 前記の式13で表された重み係数行列H(i)を式10の両辺にそれぞれ左側から乗じると、次の式14が得られる。
Figure JPOXMLDOC01-appb-M000022
 式14は、式10を構成する方程式のそれぞれを重み係数行列H(i)の対角成分を係数として重み付けする操作である。重み付けされた最小二乗問題である式14の解は次式により与えられる。
Figure JPOXMLDOC01-appb-M000023
 この式15の左辺の複素数のベクトル表記の修飾記号であるドットを文字の上部につけた(Vi1・・・ViN、Ii1・・・IiN)が、ノードiの分散コントローラ107において得られる全系統の電圧と電流に関する推定値114である。なお、式15の右辺はすべて既知の値である。
 以上、式15で得られる解が、通信回線の制約を受ける計測精度の信頼度を導入した、より信頼性の高い解であって、電力系統全体の電圧偏差を、さらに小さくすることができる。
<最適制御機能による偏差方程式と制約方程式とに関する最小二乗問題>
 電力系統全体の電圧偏差を小さくする方法(解)が複数、存在した場合において、電圧制御機器102の動作量(制御量)は、小さいことが一般的に望ましい。この理由は、電力系統全体の電圧偏差を小さくするために、電圧制御機器102の動作量を大きくすると、余分の電力を必要とするからである。したがって、単に電力系統全体の電圧偏差を小さくのみならず、電圧制御機器102の動作量の最適配分を考慮することが要請される。
 次に、最適制御機能110(図1)が、電圧偏差に関する偏差方程式と、電圧制御機器の動作量の抑制あるいは固定といった制約を与える制約方程式と、に関する最小二乗問題を解くことで、電圧制御機器102の動作量の最適配分を求め、それにしたがって、動作量を配分する方法について説明する。
 まず電圧偏差に関する偏差方程式について説明する。
《偏差方程式》
 電圧偏差に関する偏差方程式は、各ノード電圧の目標値Vrefn(図1の目標値115)に対する推定値Vin(図1の推定値114)の偏差ΔVinについて、制御感度行列K(i)と電圧制御機器の動作量Δfipで次の式16のように記述する。
 なお、式16において、ΔVi1・・・ΔViNには、複素数のベクトル表記の修飾記号であるドットを文字の上部につけて、を表記しているが、説明文では表記上の都合により省略している。
Figure JPOXMLDOC01-appb-M000024
《制約方程式》
 電圧制御機器の動作量の制約方程式については、電圧制御機器の動作量Δfipについて制約値Δfrefp(図1の制約値116)を設定する。これはたとえば、SVRのタップ位置を固定するには、
 Δfrefp=0
 であり、SVCの出力を抑制するにはSVC端のノード電流推定値Iipに対して、
 Δfrefp=-Iip
 と設定する。このような制約を式16に合わせて行列方程式で記述すると、次の式17に示すようになる。
 なお、式17の左辺のIは、N×Nの単位行列であって、対角成分が1で、他はすべて0の対角行列である。
Figure JPOXMLDOC01-appb-M000025
《偏差方程式と制約方程式による最小二乗問題》
 数式16、17を連立させて最小二乗問題を解くことで、電圧目標値に対する偏差と、制約値に対する誤差を最小化する近似解が得られる。これは次の式18に示すような行列方程式を解くことで求まる。
Figure JPOXMLDOC01-appb-M000026
 式18において、推定値Vinの偏差ΔVinからなるΔVi1・・・ΔViNは、N個であって、既知であり、また、制約値ΔfrefpからなるΔfref1・・・ΔfrefNは、N個であって、既知である。そのため、式18の右辺は2N個の既知の値である。
 また、電圧制御機器の動作量ΔfipからなるΔfi1・・・ΔfiNは、N個であって未知である。
 したがって、式18は、2Nの方程式に対してNの変数が存在することから、これは一般に過拘束問題として解くことができる。
 以上、式18の過拘束問題を解くことによって、最適制御機能110による電圧偏差と、電圧制御機器の動作量を考慮した解と制御が得られる。
 なお、式18を過拘束問題として解く過程の詳細は、省略する。
<電圧変動にセンシティブな負荷に対して、優先的に電圧偏差を解消する方法>
 前記の式18を解く場合において、状態推定における近似誤差がノードによって異なる場合、誤差の大きな推定値に対して電圧偏差を解消する必要性は低い。
 そのため、電圧変動に対してセンシティブな負荷に対して、優先的に電圧偏差を解消する運用も考えられる。そこで、式18に内包される偏差方程式に対して、さらにノード毎の優先度を考慮した優先度行列による重み付けを行う方法について、説明する。
《優先度行列L、L(i)》
 優先度行列Lを導入する方法について説明する。
 優先度行列Lを次の式19に示す。
Figure JPOXMLDOC01-appb-M000027
 式19の優先度行列Lにおいて、Lipはノードiから見たノードpの優先度であり、値が大きいほど制御の優先度が高く、電圧偏差が優先的に解消される。一方、優先度を小さく設定することは、制御において当該ノードの電圧偏差を考慮しないということに相当する。
 式19の優先度行列Lを式18の重み付けに用いるには、ノードiに関する行を取り出し、これを対角化優先度行列L(i)とする。この対角化優先度行列L(i)を次の式20に示す。
Figure JPOXMLDOC01-appb-M000028
《制約度行列R、R(i)》
 次に、制約度行列Rについて説明する。
 電力系統を制御する電圧制御機器(SVR、SVC等)における調整能力には前記した制約(固定等)があって、この制約による制約方程式を導入して解くことについては、式16、式17、式18を用いて説明したとおりである。
 しかし、電圧制御機器には、さらに個々の電圧制御機器に応じて、制約の強弱の度合いが異なることがある。つまり、制約の強い制約値に対する誤差をより小さく動作量を算出することが要請されることがある。
 このような場合には、制約方程式では対象となる制御機器に応じて、次の式21のように制約の強弱を表す制約度からなる制約度行列Rを設定する。
Figure JPOXMLDOC01-appb-M000029
 式21におけるRipがノードiから見たノードpの制御機器に関する制約度であり、制約の強さに応じた値を設定する。制約度行列Rを行列方程式の式18への重み付けに用いるには、優先度行列Lの場合と同様にノードiに関する行を取り出し、これを対角化制約度行列R(i)とする。次に示す式22が対角化制約度行列R(i)である。
Figure JPOXMLDOC01-appb-M000030
《重み係数行列G(i)》
 前記の式20に示した対角化優先度行列L(i)と、式22に示した対角化制約度行列R(i)とを組み合わせ、優先度と制約度を兼ね備えた重み係数行列G(i)を構成する。
 次の式23に重み係数行列G(i)を示す。
Figure JPOXMLDOC01-appb-M000031
 この式23で示した重み係数行列G(i)を、式18の両辺に左側から乗じて、次の式24を得る。
Figure JPOXMLDOC01-appb-M000032
《重み付けされた最小二乗問題》
 この式24は、数式18を構成する方程式のそれぞれを、重み係数行列G(i)の対角成分を係数として重み付けする操作である。重み付けされた最小二乗問題である式24の解は次に示す式25により与えられる。
Figure JPOXMLDOC01-appb-M000033
《動作量Δfii
 式25の左辺におけるΔfi1・・・ΔfiNが、ノードiの分散コントローラ107(図1)において配分される各電圧制御機器(102、図1)の動作量である。
 分散コントローラ107は、式25の解のうち自ノードiに関する動作量Δfiiを制御指令117(図1)として電圧制御機器102に出力する。
 式25によって、最適に配分された各電圧制御機器の動作量は、系統全体の電圧偏差を小さくするのみならず、各電圧制御機器の動作量の配分が最適化されることにより、各電圧制御機器による消費電力の低減や、現場での各種制約を配慮したより望ましい電力系統制御システムによる制御が実現する。
 なお、式25における重み係数行列G(i)には、対角化優先度行列L(i)と対角化制約度行列R(i)が含まれているが、優先度に関する対角化優先度行列L(i)のみを用いて解いてもよい。また、制約度に関する対角化制約度行列R(i)のみを用いて解いてもよい。
<電圧制御機器による系統電圧の変化>
 次に、各電圧制御機器による電圧変化量の重ね合わせによって配電系統の電圧が制御されるが、この作用を模式的に表して次に説明する。
 図4は、本発明の実施形態に係る電力系統制御システムの各電圧制御機器による電圧変化量の重ね合わせによって配電系統の電圧が制御される状況の例を示す図である。
 電力系統401の概略の構成と、電力系統401の送電端405から受電端406までの各位置における系統電圧の変化を4例、示している。
 図4において、電力系統401には、複数の負荷402と、それぞれ1個ずつのSVR403、SVC404が接続されている。
 SVR403とSVC404を動作させない状態では、系統電圧は、電圧グラフ407のように送電端405から受電端406に向かって降下(電圧降下)していく。
 この状態から、SVR403を動作させると、系統電圧は、電圧グラフ408に示すように、SVR403を設置した位置に対応するA点で昇圧される。
 また、SVC404を動作させると、系統電圧は、電圧グラフ409のようにSVC404を設置した位置に対応するB点で昇圧される。
 また、SVR403とSVC404を同時に動作させると、系統電圧は、その重ね合わせとして電圧グラフ410のように、A点とB点に対応する点で昇圧される。
 以上、SVR403とSVC404を適正に制御、動作させることにより、電力系統(電力系統全体)401での電圧偏差が小さくなる。
<重み係数行列と集中制御、ローカル制御、分散協調制御との関連:その1>
 次に信頼度行列、優先度行列、制約度行列の各要素の設定により、集中制御、ローカル制御、分散協調制御の使い分けがシームレスに遷移させることができることを説明する。
《信頼度行列Wと優先度行列Lによる集中制御》
 まず、信頼度行列Wと優先度行列Lの要素の設定による集中制御について説明する。
 次に示す式26Aのように、信頼度行列Wの全要素を1とするならば、全ノードの分散コントローラ107が互いに同精度の計測値を取得していることを表している。
 また、優先度行列Lの全要素を1とするならば全ノードの分散コントローラ107が互いに同じ配分で動作量を割り当てていることを表している。
 これらの全要素が1である信頼度行列Wと全要素が1である優先度行列Lによる制御は、集中制御と等価である。
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
《信頼度行列W、優先度行列L、制約度行列Rによるローカル制御》
 次に、信頼度行列W、優先度行列L、制約度行列Rの要素の設定によるローカル制御について説明する。
 また、次の式27Aに示すように、信頼度行列Wの非対角要素を0とするならば、各ノードの分散コントローラ107が、自ノードのみ計測値を取得していることを表す。
 また、次の式27Bに示すように、優先度行列Lの非対角要素を0とするならば、各ノードの分散コントローラ107が、自ノード電圧のみを制御していることを表す。
 これらの各ノードの分散コントローラ107が、自ノードのみ計測値を取得し、自ノード電圧のみを制御することは、各電圧制御機器が独立して制御されるローカル制御に等価である。
 また、ここでは、次の式27Cに示すように、制約度行列Rの対角要素を0として非対角要素を1としている。このように、自ノードに制約値0を設定することで、各ノードの分散コントローラ107が、自ノードの電圧制御機器102のみに動作量が割り当てられることを表す。なお、他ノードは制約値1で制約実行中である。
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
《信頼度行列W、優先度行列Lによる分散協調制御》
 次に、信頼度行列W、優先度行列Lによる分散協調制御について説明する。
 また、次の式28Aのように、信頼度行列Wの対角要素(1)のみならず、非対角要素の一部を非ゼロ(例えば0.7)とするならば、各ノードの分散コントローラ107が他端の計測値も部分的に取得していることを表している。
 また、次の式28Bのように、優先度行列Lの非対角要素の一部を非ゼロとするならば、各ノードの分散コントローラ107が他端の電圧も部分的に制御していることを表している。
 これらは、分散協調制御にあたる。
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
<重み係数行列と集中制御、ローカル制御、分散協調制御との関連:その2>
 このように本発明による電力系統制御システムは、信頼度と優先度の設定によって、制御特性を集中制御、ローカル制御、分散協調制御ができることを示した。
 それのみならず、分散協調制御における信頼度行列の非対角要素の一部と優先度行列の非対角要素の一部の非ゼロの要素を様々にとることによって、ローカル制御から分散協調制御を経て集中制御までシームレスに遷移させることが可能である。
<電力系統制御システムの運用を示したフローチャート>
 つぎに、電力系統制御システムの運用を示したフローチャートについて説明する。
 図5は、本発明の実施形態に係る電力系統制御システム100の運用を示したフローチャートである。
 図5において、ステップS501~ステップS505の各段階(ステップ)がある。また、ステップS502~ステップS505については、複数の分散コントローラ107(図1)において、共通であるので、ひとつの分散コントローラ107についてのステップS502~ステップS505のみ説明するものとする。
<ステップS501>
 ステップS501では、運用開始時の初期設定として各分散コントローラ107の系統パラメータ111(図1)に系統トポロジおよび回路インピーダンスを設定する(系統パラメータの設定)。
<ステップS502>
 運用時は、まずステップS502において、分散コントローラ107が自ノード計測値112(図1)および通信回線を介して得られる他ノード計測値113(図1)を計測値テーブル108(図1)に格納する(計測値格納)。
<ステップS503>
 次にステップS503において、状態推定機能109(図1)が計測値テーブル108に格納された計測値を入力として、系統パラメータ111を用いて、電力系統の状態量である各ノード電圧および各ノード電流を推定する(状態推定)。
<ステップS504>
 ステップS504では、最適制御機能110(図1)が状態推定機能109の出力である推定値114(図1)と電圧制御の目標値115(図1)ならびに動作量の制約値116(図1)を入力として、系統パラメータ111を用いて、推定値114と目標値115の電圧偏差を解消するように各電圧制御機器102(図1)の動作量を配分し、自ノードに関する動作量を電圧制御機器102に制御指令117(図1)として出力する(最適制御)。
<ステップS505>
 ステップS505において、電圧制御機器102は、制御指令117に基づいて動作量(SVRであればタップ比、SVCであれば無効電流出力)を変化させ、処理はステップS502に戻る(自ノード動作量発生)。
 前記したように、ステップS502~ステップS505までの処理は、電圧制御機器102および対になる分散コントローラ107ごとに並列的に実施される。これを図5ではS502からS505を並列表記することで示している。
<計測値テーブルのデータ構造>
 次に、ステップS502(図5)において計測値の格納をしたが、この格納される計測値テーブルのデータ構造について説明する。
 図6は、本発明の実施形態に係る電力系統制御システム100(図1)における、自ノード計測値112(図1)、および通信回線を介して限定的に得られる他ノード計測値113(図1)が格納される計測値テーブル108(図1)のデータ構造を示す図である。
 図6において、データのレコード(記録値)は各ノードに対応する。そして、各レコードは、ノード番号、更新時刻、電圧、電流(有効電流、無効電流)、定格電圧、定格電流(定格有効電流、定格無効電流)から構成されている。
 図6の例では、ノード(ノード番号)1、ノード2は、概ね新しいデータであって、最新の更新時刻と、その時刻における電圧、有効電流、無効電流が記録されている。
 ノード4、ノード5は、ノード1、ノード2と比較すると、更新時刻のタイムスタンプが古いので、これらの計測値は精度が低いとみなす。そして、状態推定機能109(図1)では、その信頼度を小さく設定して式14の最小二乗問題に代入する。
 また、ノード3は、分岐端であって、計測値(有効電流、無効電流)がそもそも存在しない。そのため、状態推定機能109では、その信頼度を0に設定する。
 一方、ノード6の計測値は、この時点では計測されていないので存在しないが、計測される可能性があり、かつ定格値(定格有効電流、定格無効電流)が存在するため、その信頼度を小さく設定しつつ、定格値を計測値の代替値として、式14の最小二乗問題に代入する。
<実施形態についての補足>
 以上、本発明による電力系統制御システムは、分散コントローラのそれぞれが自ノード計測値および通信回線を介して限定的に得られる他ノード計測値を入力として電力系統の状態量を推定し、推定状態量に基づいて自ノードの電圧制御機器の動作量と他ノードの電圧制御機器の動作量が最適配分となるように自ノードに制御指令を出力することで、各電圧制御機器による電圧変化量の重ね合わせによって電力系統全体の電圧偏差を小さくすることができる。
 また、計測精度に応じた信頼度行列を導入するで、より誤差の小さい全電力系統の電圧と電流に関する推定値が得られる。
 また、センスティブな負荷に対して優先的に電圧偏差を解消するための優先度行列と、制約の対象となる制御機器に応じて制約の強さを設定した制約度行列とを、導入することで、各電圧制御機器による消費電力の低減や、現場での各種制約を配慮した、より望ましい制御が実現する。
 また、前記の信頼度行列、優先度行列、制約度行列を導入し、これらの行列の要素の選択により、ローカル制御、分散協調制御、集中制御の間をシームレスに遷移する制御が可能となる。
 1~9、103  ノード
 100、200  電力系統制御システム
 101、212、216、217、219、319、402  負荷
 102  電圧制御機器
 104、401  電力系統
 105  センサ
 106  通信回線
 107  分散コントローラ
 108  計測値テーブル(計測値データ収集機能部)
 109  状態推定機能(状態推定機能部)
 110  最適制御機能(最適制御機能部)
 111  系統パラメータ
 112  自ノード計測値
 113  他ノード計測値
 114  推定値
 115  目標値
 116  制約値
 117  制御指令
 201、405  送電端
 202、206、209  負荷端
 203  分岐端
 204、205  SVR端
 208  SVC端
 201、405  送電端
 211  配電線
 218、318、404  SVC
 234  第1の配電系統
 237  第2の配電系統
 245、345、403  SVR
 406  受電端
 407、408、409、410  電圧グラフ

Claims (10)

  1.  負荷と電圧制御機器がノードを介して接続する電力系統における電圧を制御する電力系統制御システムにおいて、
     複数の前記電圧制御機器に制御指令を行う分散コントローラを少なくとも2つ含んで構成され、
     前記分散コントローラは、計測値データ収集機能部と状態推定機能部と最適制御機能部とを有して構成され、
     前記計測値データ収集機能部は、自身が属する自ノードにおける電圧と電流を計測するセンサからの計測値データと、自身が属さない他ノードにおける電圧と電流を計測するセンサからの計測値データを収集し、
     前記状態推定機能部は、前記自ノードの電圧と電流の計測値および前記他ノードの電圧と電流の計測値を入力として、他ノードで前記計測値データを収集できないノードの前記電力系統の状態量である電圧又は電流を推定して出力し、
     前記最適制御機能部は、前記計測値データと前記状態推定機能部の出力である推定値と各ノードに設定された電圧目標値を入力として、自ノードを含む複数のノードの前記電圧制御機器に配分する動作量に基づいて、制御指令として出力し、
     複数の前記電圧制御機器による電圧制御量の重ね合わせによって、電力系統の電圧を制御することを特徴とする電力系統制御システム。
  2.  請求項1に記載の電力系統制御システムにおいて、
     前記状態推定機能部が、前記各ノードと隣接するノード間における電圧と電流に関する電力方程式に対する誤差と、前記各ノードの電圧と電流の計測値に対する誤差とを最小化する最小二乗問題を解くことで、前記各ノードの電圧又は電流の推定値を算出することを特徴とする電力系統制御システム。
  3.  請求項2に記載の電力系統制御システムにおいて、
     前記最小二乗問題を前記各計測値の精度の高低を表す信頼度で重み付けすることで、精度の高い計測値に対する誤差をより小さくする推定値を算出することを特徴とする電力系統制御システム。
  4.  請求項1に記載の電力系統制御システムにおいて、
     前記最適制御機能部が、前記各ノードの電圧の目標値に対する偏差と、前記各電圧制御機器の動作量の制約値に対する誤差とを最小化する最小二乗問題を解くことで、前記各電圧制御機器の動作量を算出することを特徴とする電力系統制御システム。
  5.  請求項4に記載の電力系統制御システムにおいて、
     前記最小二乗問題を前記目標値の達成に関する優先度で重み付けすることで、優先度の高い目標値に対する偏差をより小さくする動作量を算出することを特徴とする電力系統制御システム。
  6.  請求項4に記載の電力系統制御システムにおいて、
     前記最小二乗問題を前記制約値の制約の強弱を表す制約度で重み付けすることで、制約の強い制約値に対する誤差をより小さくする動作量を算出することを特徴とする電力系統制御システム。
  7.  請求項1に記載の電力系統制御システムにおいて、
     前記計測値データ収集機能部は、前記他ノードの計測値を、通信回線を介して収集することを特徴とする電力系統制御システム。
  8.  請求項1に記載の電力系統制御システムにおいて、
     前記電圧制御機器には、自動電圧調整器(SVR)、無効電力補償装置(SVC)、配電電圧制御システム(DMS)、パワーコンディショナ(PCS)、瞬時電圧補償装置(DVR)、無停電電源装置(UPS)、ホームエネルギーマネジメントシステム(HEMS)又は電圧調整機能付き柱上変圧器を含むことを特徴とする電力系統制御システム。
  9.  負荷と電圧制御機器がノードを介して接続する電力系統における電圧を制御する分散コントローラにおいて、
     前記分散コントローラは、計測値データ収集機能部と状態推定機能部と最適制御機能部とを有して構成され、
     前記計測値データ収集機能部は、自身が属する自ノードにおける電圧と電流を計測するセンサからの計測値データと、自身が属さない他ノードにおける電圧と電流を計測するセンサからの計測値データを収集し、
     前記状態推定機能部は、前記自ノードの電圧と電流の計測値および前記他ノードの電圧と電流の計測値を入力として、他ノードで前記計測値データを収集できないノードの前記電力系統の状態量である電圧又は電流を推定して出力し、
     前記最適制御機能部は、前記計測値データと前記状態推定機能部の出力である推定値と各ノードに設定された電圧目標値を入力として、自ノードを含む複数のノードの前記電圧制御機器に配分する動作量に基づいて、制御指令として出力することを特徴とする分散コントローラ。
  10.  請求項9に記載の分散コントローラにおいて、
     前記電圧制御機器には、自動電圧調整器(SVR)、無効電力補償装置(SVC)、配電電圧制御システム(DMS)、パワーコンディショナ(PCS)、瞬時電圧補償装置(DVR)、無停電電源装置(UPS)、ホームエネルギーマネジメントシステム(HEMS)又は電圧調整機能付き柱上変圧器を含むことを特徴とする分散コントローラ。
PCT/JP2013/055286 2013-02-28 2013-02-28 電力系統制御システムおよびそれに用いる分散コントローラ WO2014132374A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13876590.4A EP2963757B1 (en) 2013-02-28 2013-02-28 Power system control system and distributed controller used in same
US14/768,938 US9780563B2 (en) 2013-02-28 2013-02-28 Power system control system and distributed controller used in same
PCT/JP2013/055286 WO2014132374A1 (ja) 2013-02-28 2013-02-28 電力系統制御システムおよびそれに用いる分散コントローラ
JP2015502639A JP5872732B2 (ja) 2013-02-28 2013-02-28 電力系統制御システムおよびそれに用いる分散コントローラ
CN201380072311.2A CN104981954A (zh) 2013-02-28 2013-02-28 电力系统控制系统以及其中所使用的分散控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055286 WO2014132374A1 (ja) 2013-02-28 2013-02-28 電力系統制御システムおよびそれに用いる分散コントローラ

Publications (1)

Publication Number Publication Date
WO2014132374A1 true WO2014132374A1 (ja) 2014-09-04

Family

ID=51427676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055286 WO2014132374A1 (ja) 2013-02-28 2013-02-28 電力系統制御システムおよびそれに用いる分散コントローラ

Country Status (5)

Country Link
US (1) US9780563B2 (ja)
EP (1) EP2963757B1 (ja)
JP (1) JP5872732B2 (ja)
CN (1) CN104981954A (ja)
WO (1) WO2014132374A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207220A (zh) * 2015-09-02 2015-12-30 山东大学 一种基于渐进学习的分级电压调控方法
JP2019047647A (ja) * 2017-09-04 2019-03-22 株式会社日立製作所 電力系統の電圧適正化装置、方法、及びシステム
JP7044666B2 (ja) 2018-08-29 2022-03-30 一般財団法人電力中央研究所 電力需給制御装置および電力需給制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361560B2 (en) * 2014-03-31 2019-07-23 Hitachi, Ltd. Power system control instruction device and method for controlling a voltage of a power system
CN107086613B (zh) * 2016-02-15 2024-04-09 周锡卫 一种分布式多子系统组成的n+m冗余ups系统
US11619206B2 (en) 2016-06-21 2023-04-04 General Electric Company System and method for controlling a power generating unit
CN110531137A (zh) * 2018-05-25 2019-12-03 许继集团有限公司 一种电能质量调节、电压暂变检测方法及动态电压恢复器
US10985611B2 (en) 2019-04-10 2021-04-20 General Electric Company System and method for estimating grid strength
US11169187B2 (en) * 2019-06-28 2021-11-09 King Fahd University Of Petroleum And Minerals Zig zag based load flow method and system for extended radial distribution systems
US11689618B2 (en) * 2019-12-18 2023-06-27 Hitachi Energy Switzerland Ag Data exchange and processing synchronization in distributed systems
IT202000005980A1 (it) * 2020-03-20 2021-09-20 Univ Degli Studi Genova Metodo e sistema per la determinazione rapida dei flussi di potenza all’interno di una generica rete elettrica
CN112668946B (zh) * 2021-01-28 2022-07-05 广西大学 Vsc-hvdc接入的电力系统机组恢复次序决策方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281669A (ja) * 2001-03-19 2002-09-27 Tokyo Electric Power Co Inc:The 配電線電圧変動補償装置
JP2008154418A (ja) 2006-12-20 2008-07-03 Hitachi Ltd 配電系統の状態推定装置、状態推定方法及びそのプログラム
JP2008278658A (ja) * 2007-04-27 2008-11-13 Toshiba Corp 配電系統監視制御システムと方法、およびプログラム
JP2011250629A (ja) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp 電圧制御装置
JP2012005277A (ja) * 2010-06-18 2012-01-05 Hitachi Ltd 潮流計算機能を備えた無効電力補償装置、およびそのシステムと方法
JP2013031362A (ja) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry 配電系統における需要家電圧安定化システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929235B2 (ja) 2000-08-01 2007-06-13 関西電力株式会社 配電系統における状態推定方法
JP2007006674A (ja) * 2005-06-27 2007-01-11 Chugoku Electric Power Co Inc:The 配電設備制御システム
US20120022713A1 (en) * 2010-01-14 2012-01-26 Deaver Sr Brian J Power Flow Simulation System, Method and Device
US8965588B2 (en) * 2011-07-26 2015-02-24 General Electric Company Devices and methods for decentralized voltage control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281669A (ja) * 2001-03-19 2002-09-27 Tokyo Electric Power Co Inc:The 配電線電圧変動補償装置
JP2008154418A (ja) 2006-12-20 2008-07-03 Hitachi Ltd 配電系統の状態推定装置、状態推定方法及びそのプログラム
JP2008278658A (ja) * 2007-04-27 2008-11-13 Toshiba Corp 配電系統監視制御システムと方法、およびプログラム
JP2011250629A (ja) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp 電圧制御装置
JP2012005277A (ja) * 2010-06-18 2012-01-05 Hitachi Ltd 潮流計算機能を備えた無効電力補償装置、およびそのシステムと方法
JP2013031362A (ja) * 2011-06-23 2013-02-07 Central Research Institute Of Electric Power Industry 配電系統における需要家電圧安定化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2963757A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207220A (zh) * 2015-09-02 2015-12-30 山东大学 一种基于渐进学习的分级电压调控方法
JP2019047647A (ja) * 2017-09-04 2019-03-22 株式会社日立製作所 電力系統の電圧適正化装置、方法、及びシステム
JP7044666B2 (ja) 2018-08-29 2022-03-30 一般財団法人電力中央研究所 電力需給制御装置および電力需給制御方法

Also Published As

Publication number Publication date
JP5872732B2 (ja) 2016-03-01
EP2963757A1 (en) 2016-01-06
JPWO2014132374A1 (ja) 2017-02-02
US20160013648A1 (en) 2016-01-14
CN104981954A (zh) 2015-10-14
US9780563B2 (en) 2017-10-03
EP2963757B1 (en) 2018-06-20
EP2963757A4 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2014132374A1 (ja) 電力系統制御システムおよびそれに用いる分散コントローラ
Chen et al. Measurement-based estimation of the power flow Jacobian matrix
JP4705563B2 (ja) 配電系統の状態推定装置、状態推定方法及びそのプログラム
Clements The impact of pseudo-measurements on state estimator accuracy
US20150168465A1 (en) Method and apparatus for electric power system distribution state estimations
US10678984B2 (en) Systems for real-time available delivery capability determination of large-scale distribution networks
WO2016158659A1 (ja) 配電監視制御装置
JP4148208B2 (ja) 配電系統の状態推定装置,方法及びプログラム
JP2017221040A (ja) 配電系統監視装置
Madbhavi et al. Tensor completion based state estimation in distribution systems
Modarresi et al. New adaptive and centralised under‐voltage load shedding to prevent short‐term voltage instability
Lavenius et al. Performance assessment of PMU-based estimation methods of Thevenin equivalents for real-time voltage stability monitoring
JP2021136745A (ja) 状態推定装置、状態推定プログラム、状態推定方法
JP6109326B2 (ja) 電力系統状態推定装置およびその電力系統状態推定方法
CN110350540A (zh) 一种基于在线估计负荷频率特性的精细切负荷方法
Tang et al. Distributed control of active distribution networks to support voltage control in subtransmission networks
JP2008072791A (ja) 計測器設置位置の決定装置、決定方法及び決定用プログラム
CN109143142A (zh) 一种直流暂态阶跃源信号自适应调节方法和装置
JP2017083397A (ja) 接続相判定信頼度算出プログラム、装置、及び方法
JP5584535B2 (ja) 電力系統監視制御システム
JP7467379B2 (ja) 状態推定システム及び状態推定方法
CN114243803B (zh) 一种配电网电压控制方法、系统、装置及存储介质
CN113468729B (zh) 无标定方式的电力厂站计量装置运行误差测算方法及系统
Lin et al. Data Adjustment of Power System Based on Kalman Filtering and Adaptive Filtering
JP2022103087A (ja) 電力系統管理装置、電力系統管理システムおよび電力系統管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502639

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14768938

Country of ref document: US

Ref document number: 2013876590

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE