WO2014129488A1 - 高純度1h-ヘプタフルオロシクロペンテン - Google Patents

高純度1h-ヘプタフルオロシクロペンテン Download PDF

Info

Publication number
WO2014129488A1
WO2014129488A1 PCT/JP2014/053863 JP2014053863W WO2014129488A1 WO 2014129488 A1 WO2014129488 A1 WO 2014129488A1 JP 2014053863 W JP2014053863 W JP 2014053863W WO 2014129488 A1 WO2014129488 A1 WO 2014129488A1
Authority
WO
WIPO (PCT)
Prior art keywords
heptafluorocyclopentene
gas
ppm
purity
less
Prior art date
Application number
PCT/JP2014/053863
Other languages
English (en)
French (fr)
Inventor
杉本 達也
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP14754553.7A priority Critical patent/EP2960224B1/en
Priority to CN201480009975.9A priority patent/CN104995158B/zh
Priority to JP2015501473A priority patent/JPWO2014129488A1/ja
Priority to US14/769,264 priority patent/US9944852B2/en
Priority to KR1020157024082A priority patent/KR20150118182A/ko
Publication of WO2014129488A1 publication Critical patent/WO2014129488A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/38Devices for discharging contents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/02Monocyclic halogenated hydrocarbons
    • C07C23/08Monocyclic halogenated hydrocarbons with a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a high-purity 1H-heptafluorocyclopentene useful as a plasma reaction gas such as a dry etching gas or a CVD film forming gas, a fluorine-containing pharmaceutical intermediate, a hydrofluorocarbon solvent, or the like.
  • a plasma reaction gas such as a dry etching gas or a CVD film forming gas, a fluorine-containing pharmaceutical intermediate, a hydrofluorocarbon solvent, or the like.
  • 1H-heptafluorocyclopentene has been developed as a dry etching gas that can be applied to the most advanced dry etching process (Patent Document 1).
  • This compound has performance superior to that of hexafluoro-1,3-butadiene, which is currently widely used industrially as an etching gas for silicon oxide films, and its usefulness has been recognized. Yes.
  • octafluorocyclopentene is hydrogenated and converted to 1H, 2H-octafluorocyclopentane, which is contacted with a basic compound such as potassium carbonate and deHFed.
  • Patent Document 2 a method of hydrogenating 1-chloroheptafluorocyclopentene in the presence of a palladium-based hydrogenation catalyst (hydrocracking of chlorine atoms)
  • Patent Document 3 a method of producing 1-chloroheptafluorocyclopentene in the presence of a palladium-based hydrogenation catalyst (hydrocracking of chlorine atoms)
  • 1H-heptafluorocyclopentene has attracted attention as a dry etching gas that can be applied to the most advanced dry etching processes.
  • dry etching is performed by continuously supplying 1H-heptafluorocyclopentene filled in a container to a dry etching apparatus, the etching rate gradually decreases, and in some cases, etching may stop. It was a problem.
  • the causative substance of the etching rate decrease is an impurity contained in 1H-heptafluorocyclopentene, especially an organic chlorine compound contained in a trace amount.
  • the organic chlorine-based compound that is an impurity is concentrated in the container as dry etching is continued, and the purity of 1H-heptafluorocyclopentene decreases when the remaining amount in the container decreases. I found out that it caused a slowdown.
  • high purity 1H-heptafluorocyclopentene filled in the container as a gas for dry etching or CVD film formation stable dry etching is realized from the start of use until almost empty.
  • the inventors have found that it is necessary to limit the amount of the organic chlorine compound contained in 1H-heptafluorocyclopentene to a certain amount or less, and have completed the present invention.
  • 1H-heptafluorocyclopentene as described in (1) to (5) below, a method for use as described in (6) and (7), and a valved container as described in (8).
  • the (1) 1H-heptafluorocyclopentene having a purity of 99.9% by weight or more and an organochlorine compound content of 350 ppm by weight or less.
  • the highly purified 1H-heptafluorocyclopentene of the present invention is suitable for a plasma etching gas, a chemical vapor deposition (CVD) reaction gas, and the like, particularly in the field of manufacturing semiconductor devices using a plasma reaction.
  • a plasma etching gas e.g., a plasma etching gas, a chemical vapor deposition (CVD) reaction gas, and the like.
  • CVD chemical vapor deposition
  • the 1H-heptafluorocyclopentene of the present invention is characterized by having a purity of 99.9% by weight or more and an organochlorine compound content of 350 ppm by weight or less. Further, the contents of nitrogen and oxygen are preferably 100 ppm by volume or less and 50 ppm by volume or less, respectively, with respect to the total amount of 1H-heptafluorocyclopentene, and the moisture content is 20 ppm by weight or less. Particularly preferred.
  • the purity of 1H-heptafluorocyclopentene and the content of the organochlorine compound are values measured by gas chromatography using a flame ionization detector (FID) as a detector.
  • Organochlorine compounds can be identified by gas chromatography mass spectrometry.
  • the contents of nitrogen and oxygen in 1H-heptafluorocyclopentene are values measured by gas chromatography using a thermal conductivity detector (TCD) as a detector.
  • TCD thermal conductivity detector
  • the water content in 1H-heptafluorocyclopentene is a value measured using FT-IR.
  • the production method of the high purity 1H-heptafluorocyclopentene of the present invention is not particularly limited as long as the purity is 99.9% by weight or more and the content of the organic chlorine compound is 350 ppm by weight or less. Not. Among these, those obtained through the step (II) of purifying crude 1H-heptafluorocyclopentene using a rectifying column having 50 or more theoretical plates are preferable.
  • Crude 1H-heptafluorocyclopentene can be produced by the methods described in JP-A-11-292807 and WO2010 / 007968. In the former, octafluorocyclopentene is converted to 1H, 2H-octafluorocyclopentane with hydrogen gas in the presence of a hydrogenation catalyst, and the resulting 1H, 2H-octafluorocyclopentane is deHFed in the presence of alkali. This is a method of reacting to the desired crude 1H-heptafluorocyclopentene.
  • the latter is a method for obtaining crude 1H-heptafluorocyclopentene by hydrogenating 1-chloroheptafluorocyclopentene with hydrogen gas (hydrogen decomposition reaction of chlorine atoms) in the presence of a hydrogenation catalyst. From an industrial point of view, the latter method is desirable in terms of the number of manufacturing steps, ease of operation, raw material procurement costs, and the like.
  • the pressure during rectification is a gauge pressure, and is usually from normal pressure to 5 atmospheres, preferably from normal pressure to 2 atmospheres.
  • the ratio of the reflux amount to the withdrawal amount (hereinafter sometimes referred to as “reflux ratio”) is a small amount of impurities contained in 1H-heptafluorocyclopentene, especially impurities having a small difference in boiling point from 1H-heptafluorocyclopentene. In order to eliminate it, it is preferable to set the reflux ratio to 40: 1 or more.
  • the reflux ratio is too small, trace impurities are not efficiently removed, and the purity improvement of 1H-heptafluorocyclopentene is small, and the amount of 1H-heptafluorocyclopentene that can be obtained as a product substantially increases as the first fraction is increased. Less.
  • the reflux ratio is extremely large, a great amount of time is required for the recovery per extraction, and therefore a great deal of time is required for the rectification itself.
  • the rectification when the production amount is small, the rectification may be a batch method, but when the production amount is large, a continuous method through several rectification columns may be adopted. Moreover, you may carry out combining the extractive distillation operation which added the extraction solvent.
  • the former compound may be removed by the first distillation and the latter compound may be removed by the second distillation.
  • the reflux ratio is preferably 40: 1 or more.
  • rectification may be performed in an inert gas belonging to Group 0.
  • the inert gas of group 0 is not particularly limited, and examples thereof include helium, neon, argon, krypton, and xenon belonging to group 0 of the periodic table. From the viewpoint of easy industrial availability, helium and argon are preferable.
  • the reaction raw materials and by-products that accompany trace amounts in the production process of 1H-heptafluorocyclopentene are organic It is included as an impurity.
  • Specific examples include octafluorocyclopentene, heptafluorocyclopentanone, chlorononafluorocyclopentane, and 1-chloroheptafluorocyclopentene.
  • the content of nitrogen and oxygen contained in 1H-heptafluorocyclopentene may be a problem.
  • nitrogen if the content is high or the content varies from container to container, extreme fluctuations in the etching rate during dry etching, i.e., non-uniform etching rate from batch to batch, are caused. May cause stabilization.
  • oxygen may change the deposition property of 1H-heptafluorocyclopentene, that is, may cause a decrease in selectivity and variation with the material to be etched, depending on the material to be etched and the processing process during dry etching. Accordingly, it is preferable that nitrogen and oxygen contained in 1H-heptafluorocyclopentene be reduced as much as possible.
  • the method for removing nitrogen and oxygen contained in 1H-heptafluorocyclopentene there is no particular limitation on the method for removing nitrogen and oxygen contained in 1H-heptafluorocyclopentene.
  • a method of purification in an inert gas of group 0 a method of performing simple distillation of 1H-heptafluorocyclopentene, and extracting a fraction, etc. Is mentioned.
  • the contents of nitrogen and oxygen contained in 1H-heptafluorocyclopentene remaining in the kettle are reduced by extracting nitrogen and oxygen together with 1H-heptafluorocyclopentene by simple distillation.
  • the content of nitrogen and oxygen in the extracted 1H-heptafluorocyclopentene is preferably 20 to 50%, more preferably 30 to 40%, based on weight with respect to 1H-heptafluorocyclopentene charged in the distillation still.
  • the extracted 1H-heptafluorocyclopentene is stored and can be recovered and reused by adding it to the next batch.
  • the method for removing the water contained in 1H-heptafluorocyclopentene there is no particular limitation on the method for removing the water contained in 1H-heptafluorocyclopentene, and a general method such as a method of contacting with an adsorbent can be employed.
  • adsorbent molecular sieves, alumina, or the like can be used. Many types of molecular sieves and alumina are commercially available, and can be appropriately selected from these. Of these, molecular sieves 3A, 4A, and 5A are preferable, and 3A is more preferable.
  • the alumina is preferably activated alumina with low crystallinity produced by heat dehydration of alumina hydrate.
  • the adsorbent such as molecular sieves and alumina be activated by an operation such as calcination before contacting with 1H-heptafluorocyclopentene. By activating it, more water can be adsorbed.
  • the amount of water in 1H-heptafluorocyclopentene can be reduced to 20 ppm by weight or less. If the amount of moisture is large, moisture will remain on the processed surface after etching the substrate, which may cause peeling of the laminated film and corrosion of the embedded wiring in the wiring formation process such as copper. It is preferable to reduce as much as possible.
  • a rectification step for purifying the crude 1H-heptafluorocyclopentene contained in the reaction crude product to a purity of 99.9 wt% or more and an organochlorine compound to 350 wt ppm or less, and further adsorption A step of removing moisture by contacting with an agent, and then performing simple distillation of 1H-heptafluorocyclopentene, whereby the concentration of nitrogen and oxygen in 1H-heptafluorocyclopentene is 100 ppm by volume or less, preferably 50 volumes High purity 1H-heptafluorocyclopentene reduced to ppm or less can be obtained.
  • the high purity 1H-heptafluorocyclopentene of the present invention is suitably used as a plasma reaction gas for dry etching, CVD, ashing and the like.
  • a plasma reaction gas for dry etching, CVD, ashing and the like Preferable specific examples of the high purity 1H-heptafluorocyclopentene of the present invention include a plasma reaction dry etching gas, a plasma reaction CVD gas, and a plasma reaction ashing gas.
  • the high purity 1H-heptafluorocyclopentene of the present invention is filled in a container with a valve.
  • the filling container is not particularly limited as long as it is a metal pressure-resistant container, but usually, manganese steel, chromium molybdenum steel, stainless steel, nickel steel, and aluminum alloy steel are used.
  • the valve hereinafter sometimes referred to as “container valve”
  • a container valve based on the High Pressure Gas Safety Law and JIS-B8246 standard is used in consideration of the corrosiveness and safety of the compound. It is desirable.
  • the container valve include a diaphragm type, a key plate type, and a direct diaphragm seal container valve.
  • a manganese steel container with a diaphragm valve is desirable because of its availability.
  • GC part HP-6890 (manufactured by Agilent)
  • Detector EI type (acceleration voltage: 70 eV)
  • GC part HP-7890 (manufactured by Agilent)
  • Cell length 10m
  • the 1H-heptafluorocyclopentene coming out from the outlet of the SUS tube was returned to the SUS316 tank and circulated. After 8 hours, 1H-heptafluorocyclopentene (about 100 g) in a SUS316 tank was sampled into a small cylinder. As a result of moisture analysis by FT-IR, the moisture content of the sampled 1H-heptafluorocyclopentene was 9 ppm by weight. Furthermore, a simple distillation apparatus equipped with a short column, a condenser, and a receiver was assembled on the top of a 20 L capacity SUS316 kettle, and cooling water at 10 ° C. was circulated through the condenser.
  • the kettle was charged with 1H-heptafluorocyclopentene (15 kg) from which water had been removed, and the kettle was heated to 80 ° C.
  • the nitrogen and oxygen concentrations in the 1H-heptafluorocyclopentene at this time were measured by gas chromatography and found to be 1418 ppm by volume and 638 ppm by volume, respectively.
  • 30% by weight of the 1H-heptafluorocyclopentene charged was withdrawn into a receiver, simple distillation was stopped and the kettle was cooled to room temperature.
  • 10 kg of 1H-heptafluorocyclopentene in the kettle was filled into a 10 L manganese steel cylinder (inner surface roughness: 1S) with a diaphragm valve.
  • Table 1 shows the results of measuring the nitrogen, oxygen, and water concentrations as a result of analyzing the contents of the packed 1H-heptafluorocyclopentene 1 (sample (1)) by gas chromatography.
  • F7E 1H-heptafluorocyclopentene MCL: 1-chloroheptafluorocyclopentene C 5 ClF 9 : chlorononafluorocyclopentane
  • F8E octafluorocyclopentene C 5 HF 7 O: heptafluorocyclopentanone
  • argon gas, 1H-heptafluorocyclopentene, and oxygen gas were introduced at flow rates of 300 sccm, 25 sccm, and 30 sccm, respectively, and the pressure was maintained at 10 mTorr, and dry etching was performed for 2 minutes. Based on the etching rate when 1H-heptafluorocyclopentene was used after a distillation time of 25 hours, 1H-heptafluorocyclopentene when distilled for an arbitrary time was evaluated as a dry etching gas.
  • organochlorine compounds (1-chloroheptafluorocyclopentene and chlorononafluorocyclopentane) having a boiling point higher than that of 1H-heptafluorocyclopentene are concentrated as the distillation time from the container increases.
  • organochlorine compound concentration was 350 ppm by weight or less, the decrease in etching rate was 10% or less even after 750 hours of distillation (Samples 1 to 4).
  • the etching rate decreased to 11% or more after 600 hours of distillation (Sample 5).
  • the organic chlorine compound concentration was 558 ppm by weight, the etching rate decreased to 11% or more after 400 hours of distillation, and the etching stopped after 650 hours of distillation (Sample 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 本発明は、純度99.9重量%以上で、且つ、有機塩素系化合物の含有量が350重量ppm以下であることを特徴とする1H-ヘプタフルオロシクロペンテンである。 本発明によれば、半導体向けのプラズマ反応用ガスとして好適な高純度の1H-ヘプタフルオロシクロペンテンが提供される。

Description

高純度1H-ヘプタフルオロシクロペンテン
 本発明は、ドライエッチングガスやCVD成膜用ガスなどのプラズマ反応用ガス、含フッ素医薬中間体、ハイドロフルオロカーボン系溶剤等として有用な、高純度1H-ヘプタフルオロシクロペンテンに関する。
 近年、半導体製造技術の微細化が進んでおり、最先端プロセスでは線幅が20nm、さらには10nm世代が採用されてきている。微細化に伴ってその加工する際の技術難度も向上しており、使用する材料、装置、加工方法等、多方面からのアプローチにより技術開発が進められている。
 このような状況から、最先端のドライエッチングプロセスにも対応できるドライエッチング用ガスとして、1H-ヘプタフルオロシクロペンテンが開発されている(特許文献1)。この化合物は、シリコン酸化膜のエッチングガスとして、現在、工業的に汎用されている、ヘキサフルオロ-1,3-ブタジエンを凌ぐ性能を有しており、その有用性が認められるようになってきている。
 1H-ヘプタフルオロシクロペンテンを製造する方法としては、オクタフルオロシクロペンテンを水素化して、1H,2H-オクタフルオロシクロペンタンに変換し、これを炭酸カリウムのような塩基性化合物を接触させて脱HFさせる方法(特許文献2)や、1-クロロヘプタフルオロシクロペンテンを、パラジウムをベースとした水素化触媒の存在下に、水素化(塩素原子の水素化分解)する方法(特許文献3)等が知られている。
WO2009/041560号 特開平11-292807号公報 WO2010/007968号
 上述のように、1H-ヘプタフルオロシクロペンテンは、最先端のドライエッチングプロセスにも対応できるドライエッチング用ガスとして注目されている。
 しかしながら、容器に充填された1H-ヘプタフルオロシクロペンテンをドライエッチング装置へ連続的に供給してドライエッチングを行う場合、次第にエッチング速度が低下し、場合によっては、エッチングが停止してしまう場合があり、問題となっていた。
 本発明者は上記の課題を解決すべく鋭意研究を重ねた結果、エッチング速度低下の原因物質が、1H-ヘプタフルオロシクロペンテン中に含まれる不純物、とりわけ、微量に含まれる有機塩素系化合物であること、及び、この不純物である有機塩素系化合物が、ドライエッチングを継続実施するにつれて容器内で濃縮され、容器内の残量が少なくなった段階で、1H-ヘプタフルオロシクロペンテンの純度低下を引き起こし、エッチング速度低下を引き起こすことを突き止めた。そして、容器内に充填された高純度の1H-ヘプタフルオロシクロペンテンをドライエッチング、又はCVD成膜用ガスとして使用するにあたり、使用開始時からほとんど空の状態に至るまで、安定したドライエッチングを実現させるためには、1H-ヘプタフルオロシクロペンテン中に含まれる有機塩素系化合物の量を、ある一定量以下に制限する必要があることを見出し、本発明を完成させるに至った。
 かくして本発明によれば、下記(1)~(5)に記載の1H-ヘプタフルオロシクロペンテン、(6)、(7)に記載の使用する方法、(8)に記載のバルブ付き容器が提供される。
(1)純度99.9重量%以上、且つ、有機塩素系化合物の含有量が350重量ppm以下であることを特徴とする1H-ヘプタフルオロシクロペンテン。
(2)1-クロロヘプタフルオロシクロペンテンを気相反応で触媒存在下に水素化し、粗1H-ヘプタフルオロシクロペンテンを得る工程(I)、及び、工程(I)で得られた粗1H-ヘプタフルオロシクロペンテンを理論段数が50段以上の精留塔を用いて精製する工程(II)を経て得られたものである、(1)に記載の1H-ヘプタフルオロシクロペンテン。
(3)有機塩素系化合物が、クロロノナフルオロシクロペンタン、および/または、クロロヘプタフルオロシクロペンテンである、(1)に記載の1H-ヘプタフルオロシクロペンテン。
(4)窒素含有量が100容量ppm以下、且つ、酸素含有量が50容量ppm以下である、(1)に記載の1H-ヘプタフルオロシクロペンテン。
(5)水分含有量が20重量ppm以下である、(3)に記載の1H-ヘプタフルオロシクロペンテン。
(6)前記(1)~(5)のいずれかに記載の1H-ヘプタフルオロシクロペンテンをドライエッチングガスとして使用する方法。
(7)前記(1)~(5)のいずれかに記載の1H-ヘプタフルオロシクロペンテンを、プラズマCVDの反応ガスとして使用する方法。
(8)前記(1)~(5)のいずれかに記載の1H-ヘプタフルオロシクロペンテンを充填してなるバルブ付き容器。
 本発明の高純度化された1H-ヘプタフルオロシクロペンテンは、特に、プラズマ反応を用いた半導体装置の製造分野において、プラズマエッチングガス、化学気相成長法(CVD)用反応ガス等に好適である。
 本発明の1H-ヘプタフルオロシクロペンテンは、純度が99.9重量%以上で、且つ、有機塩素系化合物の含有量が350重量ppm以下であることを特徴とする。
 また、窒素と酸素の含有量は、1H-ヘプタフルオロシクロペンテンの全量に対して、それぞれ100容量ppm以下、50容量ppm以下であるものが好ましく、さらに、水分量は20重量ppm以下であるものが特に好ましい。
 本発明において、1H-ヘプタフルオロシクロペンテンの純度、及び有機塩素系化合物の含有量は、水素炎イオン化検出器(FID)を検出器としたガスクロマトグラフィーにより測定した値である。
 有機塩素系化合物は、ガスクロマトグラフィー質量分析により同定できる。
 1H-ヘプタフルオロシクロペンテン中の窒素と酸素の含有量は、熱電導度検出器(TCD)を検出器としたガスクロマトグラフィーにより測定した値である。
 また、1H-ヘプタフルオロシクロペンテン中の水分量は、FT-IRを用いて測定した値である。
 本発明の高純度1H-ヘプタフルオロシクロペンテンは、純度が99.9重量%以上で、且つ、有機塩素系化合物の含有量が350重量ppm以下であるものであれば、その製造方法は、特に限定されない。
 中でも、粗1H-ヘプタフルオロシクロペンテンを、理論段数が50段以上の精留塔を用いて精製する工程(II)を経て得られたものが好ましい。
<粗1H-ヘプタフルオロシクロペンテンの製造>
 粗1H-ヘプタフルオロシクロペンテンは、特開平11-292807号公報や、WO2010/007968号に記載の方法で製造することができる。前者は、オクタフルオロシクロペンテンを水素化触媒の存在下に水素ガスにより、1H,2H-オクタフルオロシクロペンタンに変換し、得られた1H,2H-オクタフロオロシクロペンタンをアルカリの存在下に脱HF反応させて、所望の粗1H-ヘプタフルオロシクロペンテンに導く方法である。一方、後者は、1-クロロヘプタフルオロシクロペンテンを水素化触媒の存在下に、水素ガスにより水素化(塩素原子の水素分解反応)して、粗1H-ヘプタフルオロシクロペンテンを得る方法である。工業的観点から言えば、製造工程数、操業のし易さ、原料の調達コスト等の点で、後者の方法で製造することが望ましい。
<粗1H-ヘプタフルオロシクロペンテンの精製>
 上記の1-クロロヘプタフルオロシクロペンテンの水素化反応を行った後、蒸留精製法などにより、粗1H-ヘプタフルオロシクロペンテンから有機系不純物が除去される。蒸留精製法により有機系不純物を除去する場合、精留塔が用いられる。特に、1H-ヘプタフルオロシクロペンテン(沸点46℃)と沸点の近接した有機系不純物を効率良く除去するために、高理論段数の精留塔が好適に用いられる。用いる精留塔の理論段数は通常30段以上、好ましくは50段以上である。製造上の観点から、理論段数の上限は100段以下が望ましい。
 精留時の圧力は、ゲージ圧で、通常常圧~5気圧、好ましくは常圧~2気圧程度である。還流量と抜出量の比(以下、「還流比」と言うことがある)は、1H-ヘプタフルオロシクロペンテン中に含まれる微量な不純物、とりわけ、1H-ヘプタフルオロシクロペンテンと沸点差の小さい不純物を除去するため、還流比40:1以上に設定するのが好ましい。還流比があまりに小さいと微量不純物が効率良く除去されず、1H-ヘプタフルオロシクロペンテンの純度向上が小さく、また、初留分が多くなってしまい、実質的に製品として取れる1H-ヘプタフルオロシクロペンテンの量が少なくなる。また、極端に還流比が大きすぎると、抜き出し1回当たりの回収までに多大な時間を要すために、精留そのものに多大な時間を要してしまう。
 精留の方式としては、製造量が少ない場合においては、精留は回分式でも良いが、製造量が多い場合においては、精留塔を数本経由させる連続式を採用しても良い。また、抽出溶剤を加えた抽出蒸留操作を組み合わせて行っても良い。
 有機系不純物として、1H-ヘプタフルオロシクロペンテンよりも沸点の低い化合物と、沸点の高い化合物の両方とが存在する。蒸留精製においては、例えば、1回目の蒸留で前者の化合物を、2回目の蒸留で後者の化合物を除去するなど段階的な蒸留を行ってもよい。その場合においても、還流比は40:1以上であることが好ましい。
 また、粗1H-ヘプタフルオロシクロペンテンを、精留塔を用いて精製する場合、0族の不活性ガス中で精留を行ってもよい。0族の不活性ガスは特に限定されず、周期表第0族に属する、ヘリウム、ネオン、アルゴン、クリプトン、キセノンなどが挙げられる。工業的に入手が容易な観点から、好ましくは、ヘリウム、アルゴンである。
 上述の方法により、99.9重量%以上に純度の高められた、1H-ヘプタフルオロシクロペンテン中には、1H-ヘプタフルオロシクロペンテンの製造過程で微量に随伴する反応原料や副生成物が、有機系不純物として含まれている。具体的には、オクタフルオロシクロペンテン、ヘプタフルオロシクロペンタノン、クロロノナフルオロシクロペンタン、及び1-クロロヘプタフルオロシクロペンテンが挙げられる。
 これらの有機系不純物の中でも、1H-ヘプタフルオロシクロペンテン(沸点46℃)より沸点が高いクロロノナフルオロシクロペンタン(沸点52℃)、及び、1-クロロヘプタフルオロシクロペンテン(沸点56℃)が多く存在していると、容器に充填された状態でエッチング装置へ連続して供給されていくに連れて、容器内の1H-ヘプタフルオロシクロペンテンの残量が少なくなった段階で濃縮が起こる。
 有機塩素系化合物であるクロロノナフルオロシクロペンタンや1-クロロヘプタフルオロシクロペンテンの濃縮物を含む1H-ヘプタフルオロシクロペンテンを、ドライエッチングガスに使用した場合、エッチング時の速度低下を引き起こしたり、あるいは途中でエッチング自体が停止してしまうことがある。このような挙動は、容器内に充填された1H-ヘプタフルオロシクロペンテンの見かけ使用可能量が少なくなることを意味し、また、半導体デバイス製造の歩留り低下を起こすという不具合を招く。
 また、1H-ヘプタフルオロシクロペンテン中に含まれる窒素と酸素についても、その含有量が問題となることがある。窒素については、含有量が多かったり、容器ごとに含有量にバラツキがあるとドライエッチング時のエッチング速度の極端な変動、すなわち、バッチ毎にエッチング速度の不均一化を引き起こすので、製造プロセスの不安定化を引き起こすおそれがある。また、酸素については、ドライエッチング時の被エッチング材料や加工プロセスにもよるが、1H-ヘプタフルオロシクロペンテンのデポジション性が変化、すなわち、被エッチング材料との選択性低下やバラツキの要因となりうる。従って、1H-ヘプタフルオロシクロペンテン中に含まれる窒素と酸素についても、可能な限り低減されている状態が好ましい。
 1H-ヘプタフルオロシクロペンテン中に含まれる窒素と酸素を除去する方法に格別な制限はない。例えば、前述の有機塩素系化合物除去を精留で行う場合に、0族の不活性ガス中で精製を行う方法や、1H-ヘプタフルオロシクロペンテンを単蒸留し、留分を抜き出す操作を行う方法などが挙げられる。後者の場合、単蒸留により、窒素と酸素を1H-ヘプタフルオロシクロペンテンと一緒に抜出すことにより、釜に残った1H-ヘプタフルオロシクロペンテン中に含まれる窒素と酸素の含有量は低減されている。抜出す1H-ヘプタフルオロシクロペンテン中の窒素と酸素の含有量は、蒸留釜に仕込まれた1H-ヘプタフルオロシクロペンテンに対し、重量基準で20~50%が好ましく、30~40%がより好ましい。抜き出された1H-ヘプタフルオロシクロペンテンは貯留しておき、次のバッチに加えることで回収、再使用が可能である。
 また、1H-ヘプタフルオロシクロペンテンに含まれる水分を除去する方法に格別な制限はなく、吸着剤と接触させる方法などの一般的な方法を採用することができる。
 吸着剤としては、モレキュラーシーブスやアルミナ等を用いることができる。モレキュラーシーブスやアルミナは、多くの種類が市販されているので、これらの中から適宜選択できる。なかでも、モレキュラーシーブス3A、4A、及び5Aなどが好ましく、3Aがより好ましい。また、アルミナはアルミナ水和物の加熱脱水により生成する、結晶性の低い活性アルミナが好ましい。モレキュラーシーブスやアルミナなどの吸着剤は、1H-ヘプタフルオロシクロペンテンを接触させる前に、焼成等の操作により活性化しておくことが望ましい。活性化させておくことで、より多くの水分を吸着させることが可能になる。このように、1H-ヘプタフルオロシクロペンテンを吸着剤と接触させることにより、1H-ヘプタフルオロシクロペンテン中の水分量を20重量ppm以下に低減することが可能である。水分量が多いと、基板をエッチング加工した後に、加工面に水分が吸着残存し、銅等の配線形成工程で積層膜の剥がれや、埋め込んだ配線の腐食を起こすおそれがあるので、水分量は可能な限り低減されていることが好ましい。
 以上に説明したように、反応粗生成物中に含まれる粗1H-ヘプタフルオロシクロペンテンを純度99.9重量%以上、且つ、有機塩素系化合物を350重量ppm以下に精製する精留工程、さらに吸着剤と接触させることにより、水分を除去する工程を行い、次いで、1H-ヘプタフルオロシクロペンテンを単蒸留することにより、1H-ヘプタフルオロシクロペンテン中の窒素、酸素濃度を100容量ppm以下、好ましくは50容量ppm以下に低減させた高純度の1H-ヘプタフルオロシクロペンテンを取得することができる。このように不純物量を制御することにより、ドライエッチング時の加工安定性や、プラズマCVDを行う成膜安定性を高めることが可能になる。
 従って、本発明の高純度1H-ヘプタフルオロシクロペンテンは、ドライエッチング、CVD、及びアッシングなどのプラズマ反応用ガスとして好適に用いられる。本発明の高純度1H-ヘプタフルオロシクロペンテンの好適な具体例としては、プラズマ反応ドライエッチング用ガス、プラズマ反応CVD用ガス、及びプラズマ反応アッシング用ガスが挙げられる。
 本発明の高純度1H-ヘプタフルオロシクロペンテンは、バルブ付き容器に充填される。この充填容器は、金属製の耐圧容器であれば材質には特に限定はないが、通常、マンガン鋼、クロムモリブデン鋼、ステンレス鋼、ニッケル鋼、及びアルミニウム合金鋼が使用される。また、バルブ(以下、「容器弁」と言うことがある)に関しては、当該化合物の腐食性等や安全性を考慮して、高圧ガス保安法及びJIS-B8246規格に基づいた容器弁を使用することが望ましい。この容器弁は、ダイヤフラム式、キープレート式、及びダイレクトダイヤフラムシール容器弁などが挙げられる。入手の容易さから、ダイヤフラム式バルブを付したマンガン鋼容器が望ましい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例によってその範囲を限定されるものではない。
 以下において採用した分析条件は下記の通りである。
・ガスクロマトグラフィー分析(GC分析)
 装置:HP-6890(アジレント社製)
  カラム:Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm(ジーエルサイエンス社製)
  カラム温度: 40℃で10分間保持、次いで、20℃/分で昇温し、その後、240℃で10分間保持
  インジェクション温度:250℃
  キャリヤーガス:窒素
  スプリット比:100/1
  検出器:FID
・不純物の分析(ガスクロマトグラフィー質量分析)
  GC部分:HP-6890(アジレント社製)
  カラム:Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm(ジーエルサイエンス社製)
  カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後、240℃で10分間保持
  MS部分:5973 NETWORK(アジレント社製)
  検出器:EI型(加速電圧:70eV)
・窒素及び酸素含有量の測定(ガスクロマトグラフィー分析)
  GC部分:HP-7890(アジレント社製)
  カラム:HP-5 長さ30m、内径0.32mm、膜厚0.25μm(アジレント社製)
  カラム温度:40℃で5分間保持し、次いで、5℃/分で昇温し、その後、65℃で1分間保持
  ガスサンプラー:100℃
  キャリヤーガス:ヘリウム
  検出器:TCD+パルス放電型
・水分量測定(FT-IR)
  IG-1000(大塚電子社製)
  セル長:10m
[製造例]
(粗1H-ヘプタフルオロシクロペンテンの製造)
 直径1インチ、長さ1mのSUS316製反応管に、2%Pd-0.2%Bi担持活性炭(粒径約3mm)触媒を35g充填し、水素ガスを、マスフローコントラーを介して1500ml/分の速度で2時間、供給し続けた。反応管は熱媒を循環接触させて150℃に加温し、この温度を維持した。その後、水素ガスの流量を830ml/分に調整し、ポンプを使って原料である1-クロロヘプタフルオロシクロペンテンを5g/分の速度で、100℃に加温した気化器に供給し、次いで、反応管に導入した。反応管から出てくるガスはガラスフラスコに入れた水酸化カリウム水溶液にバブリングさせ、さらに、ガラスフラスコ内から出てくるガス成分をドライアイス/エタノールで冷却したガラストラップに捕集した。この反応を約2週間継続し、粗1H-ヘプタフルオロシクロペンテンを約79kg得た。得られた粗1H-ヘプタフルオロシクロペンテンをガスクロマトグラフィーにて分析した結果、1H-ヘプタフルオロシクロペンテン59.77重量%、1-クロロヘプタフルオロシクロペンテン12.26重量%、1H,1H,2H-ヘプタフルオロシクロペンタン11.55重量%、1H,2H-ヘキサフルオロシクロペンテン1.33重量%、及びヘキサフルオロシクロペンタン10.26重量%を主に含む混合物であった。
[サンプル1の調製]
 理論段数50段(充填剤、商品名:スルーザーパッキン)のカラムを付したSUS316製精留塔の容量50L釜に、製造例で製造した粗1H-ヘプタフルオロシクロペンテンを35.7kg仕込み、釜を100℃に加温した。還流用コンデンサーには約10℃の冷却水を循環させた。約12時間全還流させて系内を安定化させた。精留塔の塔頂部の温度が、46℃になったところで、還流比40:1で留分の抜出しを開始した。蒸留精製された1H-ヘプタフルオロシクロペンテンが24.6g得られた(仕込み1H-ヘプタフルオロシクロペンテン基準で、収率70%)。
 次いで、容量20LのSUS316製タンク(内面:電解研磨処理)に、蒸留精製された1H-ヘプタフルオロシクロペンテンを22kg入れた。直径1インチ×長さ60cmのSUS316製チューブにモレキュラーシーブス3A(ユニオン昭和製)を200cm充填し、SUSタンク内に入れた1H-ヘプタフルオロシクロペンテンをポンプにより供給し、水分除去を行った。SUS製チューブの出口から出てくる1H-ヘプタフルオロシクロペンテンはSUS316製タンクに戻し、循環させた。8時間経過後、SUS316製タンク内の1H-ヘプタフルオロシクロペンテン(約100g)を小型のシリンダーへサンプリングした。FT-IRによる水分分析の結果、サンプリングした1H-ヘプタフルオロシクロペンテンの水分量は、9重量ppmであった。
 さらに、容量20LのSUS316製釜の上部に、ショートカラムおよびコンデンサー、及び受器を取り付けた単蒸留装置を組み、コンデンサーには10℃の冷却水を循環させた。釜に水分除去を行った1H-ヘプタフルオロシクロペンテン(15kg)を仕込み、釜を80℃に加温した。この時の1H-ヘプタフルオロシクロペンテン中の窒素及び酸素濃度をガスクロマトグラフィーにて測定したところ、それぞれ1418容量ppm及び638容量ppmであった。仕込んだ1H-ヘプタフルオロシクロペンテンに対して、30重量%を受器に抜出したところで、単蒸留を停止し、釜を室温まで冷却した。釜内の1H-ヘプタフルオロシクロペンテンを、ダイヤフラム式バルブを付した容量10Lのマンガン鋼製シリンダー(内面粗度:1S)に10kg充填した。この充填された1H-ヘプタフルオロシクロペンテン1(サンプル(1))の内容物を、ガスクロマトグラフィーで分析した結果、窒素、酸素、及び水分濃度を測定した結果を表1に示した。
[サンプル2~6の調製]
 精留条件において、還流比及び蒸留回数を変更した以外は、(サンプル1の調製)と同様にして、シリンダーに充填された1H-ヘプタフルオロシクロペンテンのサンプル2~6を得た。得られたサンプル2~6が充填された内容物をガスクロマトグラフィーで分析した結果、窒素及び酸素濃度、及び水分濃度を測定した結果を表1に示した。
[規則26に基づく補充 11.03.2014] 
Figure WO-DOC-TABLE-1
F7E:1H-ヘプタフルオロシクロペンテン
MCL:1-クロロヘプタフルオロシクロペンテン
ClF:クロロノナフルオロシクロペンタン
F8E:オクタフルオロシクロペンテン 
HFO:ヘプタフルオロシクロペンタノン
[評価方法]
(1)1H-ヘプタフルオロシクロペンテンの純度変化確認試験
 蒸留精製後に、水分除去を行い、単蒸留して得られた1H-ヘプタフルオロシクロペンテンを、シリンダー内に充填された状態から、連続的に供給した場合の純度変化を確認する試験を行った。
 マスフローコントラーを介して、25sccm/分の速度で、1H-ヘプタフルオロシクロペンテンを容器から留出させ、表2に記載の留出時間ごとに、1H-ヘプタフルオロシクロペンテンの純度と有機塩素系化合物の濃度とをガスクロマトグラフィーを使って調べた。
(2)1H-ヘプタフルオロシクロペンテンのドライエッチング評価
 CCP(容量結合プラズマ)方式のドライエッチング装置を用いて、シリンダー内に充填された状態から、連続的に供給した場合の純度変化を確認する試験を行った1H-ヘプタフルオロシクロペンテンのエッチング評価を行った。
 膜厚2μmのシリコン酸化膜上にマスクとしてフォトレジストを0.6μm塗布し、0.1μmのホールパターンを形成したシリコンウェハー(直径20cm)をエッチング装置のチャンバー内にセットし、系内を真空にした後、アルゴンガス、1H-ヘプタフルオロシクロペンテン及び酸素ガスを、それぞれ、300sccm、25sccm、及び30sccmの流量で導入し、圧力を10mTorrに維持して、ドライエッチングを2分間実施した。
 留出時間25時間後の1H-ヘプタフルオロシクロペンテンを用いたときのエッチング速度を基準に、任意の時間留出した際の1H-ヘプタフルオロシクロペンテンをドライエッチング用ガスとして評価した。
[評価結果]
 得られたサンプル(1)~(6)の純度変化確認試験、及びドライエッチング評価を行った。その結果を表2に示した。
[規則26に基づく補充 11.03.2014] 
Figure WO-DOC-TABLE-2
 表2から、純度変化確認試験の結果、1H-ヘプタフルオロシクロペンテンより沸点の高い有機塩素系化合物(1-クロロヘプタフルオロシクロペンテン、及びクロロノナフルオロシクロペンタン)が容器からの留出時間に伴い、濃縮されていることが分かった。また、ドライエッチング評価の結果、有機塩素系化合物濃度が350重量ppm以下の場合、エッチング速度の低下は、留出750時間後でも10%以下であることが分かった(サンプル1~4)。
 一方で、有機塩素系化合物濃度が407重量ppmの場合、エッチング速度低下は、留出600時間後に11%以上となった(サンプル5)。また、有機塩素系化合物濃度が558重量ppmの場合では、エッチング速度低下は、留出400時間後に11%以上となり、留出650時間後にはエッチングが停止した(サンプル6)。

Claims (8)

  1.  純度99.9重量%以上、且つ、有機塩素系化合物の含有量が350重量ppm以下であることを特徴とする1H-ヘプタフルオロシクロペンテン。
  2.  1-クロロヘプタフルオロシクロペンテンを気相反応で触媒存在下に水素化し、粗1H-ヘプタフルオロシクロペンテンを得る工程(1)、及び、工程(1)で得られた粗1H-ヘプタフルオロシクロペンテンを理論段数が50段以上の精留塔を用いて精製する工程(2)を経て得られたものである、請求項1に記載の1H-ヘプタフルオロシクロペンテン。
  3.  有機塩素系化合物が、クロロノナフルオロシクロペンタン、および/または、クロロヘプタフルオロシクロペンテンである、請求項1に記載の1H-ヘプタフルオロシクロペンテン。
  4.  窒素含有量が100容量ppm以下、且つ、酸素含有量が50容量ppm以下である、請求項1に記載の1H-ヘプタフルオロシクロペンテン。
  5.  水分含有量が20重量ppm以下である、請求項3に記載の1H-ヘプタフルオロシクロペンテン。
  6.  請求項1~5のいずれかに記載の1H-ヘプタフルオロシクロペンテンを、ドライエッチングガスとして使用する方法。
  7.  請求項1~5のいずれかに記載の1H-ヘプタフルオロシクロペンテンを、プラズマCVDの反応ガスとして使用する方法。
  8.  請求項1~5のいずれかに記載の1H-ヘプタフルオロシクロペンテンを充填してなるバルブ付き容器。
PCT/JP2014/053863 2013-02-21 2014-02-19 高純度1h-ヘプタフルオロシクロペンテン WO2014129488A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14754553.7A EP2960224B1 (en) 2013-02-21 2014-02-19 High-purity 1h-heptafluorocyclopentene
CN201480009975.9A CN104995158B (zh) 2013-02-21 2014-02-19 高纯度1h-七氟环戊烯
JP2015501473A JPWO2014129488A1 (ja) 2013-02-21 2014-02-19 高純度1h−ヘプタフルオロシクロペンテン
US14/769,264 US9944852B2 (en) 2013-02-21 2014-02-19 High-purity 1H-heptafluorocyclopentene
KR1020157024082A KR20150118182A (ko) 2013-02-21 2014-02-19 고순도 1h-헵타플루오로시클로펜텐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013031599 2013-02-21
JP2013-031599 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129488A1 true WO2014129488A1 (ja) 2014-08-28

Family

ID=51391274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053863 WO2014129488A1 (ja) 2013-02-21 2014-02-19 高純度1h-ヘプタフルオロシクロペンテン

Country Status (7)

Country Link
US (1) US9944852B2 (ja)
EP (1) EP2960224B1 (ja)
JP (2) JPWO2014129488A1 (ja)
KR (1) KR20150118182A (ja)
CN (1) CN104995158B (ja)
TW (1) TWI617538B (ja)
WO (1) WO2014129488A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218287A (ja) * 2018-06-18 2019-12-26 国立研究開発法人産業技術総合研究所 フッ素化合物の製造方法
WO2023157442A1 (ja) * 2022-02-16 2023-08-24 株式会社レゾナック エッチング方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470940B (zh) * 2020-04-16 2022-09-09 北京宇极科技发展有限公司 一种制备高纯3,3,4,4,5,5-六氟环戊烯的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033771A1 (fr) * 1997-12-26 1999-07-08 Nippon Zeon Co., Ltd. Procede de preparation de composes ayant des groupes -ch2-chf-
JPH11292807A (ja) 1998-04-01 1999-10-26 Nippon Zeon Co Ltd フッ素化不飽和炭化水素の製造方法
JP2000086548A (ja) * 1998-09-08 2000-03-28 Nippon Zeon Co Ltd フルオロシクロペンテン類の製造方法
WO2009041560A1 (ja) 2007-09-28 2009-04-02 Zeon Corporation プラズマエッチング方法
JP2009206444A (ja) * 2008-02-29 2009-09-10 Nippon Zeon Co Ltd プラズマエッチング方法
WO2010007968A1 (ja) 2008-07-18 2010-01-21 日本ゼオン株式会社 含水素フルオロオレフィン化合物の製造方法
JP2010043034A (ja) * 2008-08-14 2010-02-25 Nippon Zeon Co Ltd 含水素フルオロオレフィン化合物の製造方法
JP2010126452A (ja) * 2008-11-25 2010-06-10 Nippon Zeon Co Ltd 含水素フルオロオレフィン化合物の製造方法
JP2011105625A (ja) * 2009-11-16 2011-06-02 Nippon Zeon Co Ltd ヘプタフルオロシクロペンテンの異性化方法及びその利用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566996B2 (ja) * 1994-10-19 2004-09-15 日本パイオニクス株式会社 ハロゲンガスの精製方法
DE69823182T2 (de) * 1997-05-02 2005-04-21 Du Pont Entfernung von co2 aus fluorkohlenwasserstoffen durch semipermeable membrane
JP4492764B2 (ja) * 1999-05-24 2010-06-30 日本ゼオン株式会社 プラズマ反応用ガス及びその製造方法
JP4703865B2 (ja) * 2001-02-23 2011-06-15 昭和電工株式会社 パーフルオロカーボン類の製造方法およびその用途
JP2005239596A (ja) * 2004-02-25 2005-09-08 Nippon Zeon Co Ltd 不飽和フッ素化炭素化合物の精製方法
JP2007176770A (ja) * 2005-12-28 2007-07-12 Showa Denko Kk 高純度フッ素ガスの製造方法および高純度フッ素ガス製造装置
JP2012049376A (ja) * 2010-08-27 2012-03-08 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
WO2012105109A1 (ja) * 2011-02-02 2012-08-09 シーケーディ株式会社 真空制御バルブ、真空制御装置、およびコンピュータプログラム
JP5993191B2 (ja) * 2012-04-23 2016-09-14 Ckd株式会社 リニアアクチュエータ、真空制御装置およびコンピュータプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033771A1 (fr) * 1997-12-26 1999-07-08 Nippon Zeon Co., Ltd. Procede de preparation de composes ayant des groupes -ch2-chf-
JPH11292807A (ja) 1998-04-01 1999-10-26 Nippon Zeon Co Ltd フッ素化不飽和炭化水素の製造方法
JP2000086548A (ja) * 1998-09-08 2000-03-28 Nippon Zeon Co Ltd フルオロシクロペンテン類の製造方法
WO2009041560A1 (ja) 2007-09-28 2009-04-02 Zeon Corporation プラズマエッチング方法
JP2009206444A (ja) * 2008-02-29 2009-09-10 Nippon Zeon Co Ltd プラズマエッチング方法
WO2010007968A1 (ja) 2008-07-18 2010-01-21 日本ゼオン株式会社 含水素フルオロオレフィン化合物の製造方法
JP2010043034A (ja) * 2008-08-14 2010-02-25 Nippon Zeon Co Ltd 含水素フルオロオレフィン化合物の製造方法
JP2010126452A (ja) * 2008-11-25 2010-06-10 Nippon Zeon Co Ltd 含水素フルオロオレフィン化合物の製造方法
JP2011105625A (ja) * 2009-11-16 2011-06-02 Nippon Zeon Co Ltd ヘプタフルオロシクロペンテンの異性化方法及びその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960224A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218287A (ja) * 2018-06-18 2019-12-26 国立研究開発法人産業技術総合研究所 フッ素化合物の製造方法
JP7133202B2 (ja) 2018-06-18 2022-09-08 国立研究開発法人産業技術総合研究所 フッ素化合物の製造方法
WO2023157442A1 (ja) * 2022-02-16 2023-08-24 株式会社レゾナック エッチング方法

Also Published As

Publication number Publication date
TWI617538B (zh) 2018-03-11
CN104995158A (zh) 2015-10-21
TW201434804A (zh) 2014-09-16
EP2960224A1 (en) 2015-12-30
JP2018093233A (ja) 2018-06-14
EP2960224A4 (en) 2016-09-14
US9944852B2 (en) 2018-04-17
KR20150118182A (ko) 2015-10-21
EP2960224B1 (en) 2019-03-27
US20160002530A1 (en) 2016-01-07
CN104995158B (zh) 2018-11-02
JPWO2014129488A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
KR101969517B1 (ko) 드라이 에칭 가스 및 드라이 에칭 방법
JP6256462B2 (ja) 高純度2−フルオロブタン
JP6822763B2 (ja) ドライエッチング方法
JP2018093233A (ja) ドライエッチング方法
JP2014185111A (ja) 高純度2,2−ジフルオロブタン
TW201833066A (zh) 異丙醇組成物及異丙醇的製造方法
JP6311710B2 (ja) 高純度1−フルオロブタン及びプラズマエッチング方法
JP6447507B2 (ja) 高純度フッ素化炭化水素をプラズマエッチングガスとして用いるプラズマエッチング方法
JPWO2007063938A1 (ja) 不飽和フッ素化炭素化合物の精製方法、フルオロカーボン膜の成膜方法、及び半導体装置の製造方法
JP5652179B2 (ja) 半導体ガスの製造方法
JP7412657B1 (ja) 高純度塩酸の製造方法
JP2016166157A (ja) フッ素化炭化水素化合物充填済みガス充填容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501473

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024082

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014754553

Country of ref document: EP