WO2014125844A1 - オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法 - Google Patents

オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法 Download PDF

Info

Publication number
WO2014125844A1
WO2014125844A1 PCT/JP2014/050097 JP2014050097W WO2014125844A1 WO 2014125844 A1 WO2014125844 A1 WO 2014125844A1 JP 2014050097 W JP2014050097 W JP 2014050097W WO 2014125844 A1 WO2014125844 A1 WO 2014125844A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
polishing
peripheral portion
circular
radius
Prior art date
Application number
PCT/JP2014/050097
Other languages
English (en)
French (fr)
Inventor
山口 直宏
Original Assignee
Mipox株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mipox株式会社 filed Critical Mipox株式会社
Priority to CN201480003185.XA priority Critical patent/CN104812527B/zh
Priority to KR1020157021753A priority patent/KR102114790B1/ko
Priority to EP14751286.7A priority patent/EP2957386B1/en
Publication of WO2014125844A1 publication Critical patent/WO2014125844A1/ja
Priority to US14/794,984 priority patent/US9496129B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to a method of polishing the periphery of a wafer made of a crystalline material, and in particular, by polishing the periphery of the wafer using a polishing tape, a highly accurate surface property is formed on the periphery of the wafer and the handling property is improved.
  • the invention relates to a method of manufacturing an improved circular wafer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-100050: Patent Document 1
  • a cylindrical or cylindrical grindstone and a wafer having a chamfered portion formed of an orientation flat (hereinafter appropriately referred to as an OF) portion, an outer peripheral portion and a corner portion are pressed against each other with a predetermined pressing force.
  • the soft grinding position of the wafer is changed according to whether the soft grinding position is the OF portion, the outer peripheral portion, or the corner portion, and the OF portion, the outer peripheral portion, and the corner portion of the wafer are softly ground.
  • the outer peripheral portion and the corner portion are respectively polished, and uniform soft grinding is performed over the entire chamfered portion.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-303112: Patent Document 2.
  • the present invention is to reduce the roundness of a wafer, which is a disk-shaped wafer having an orientation flat (OF) indicating crystal orientation and a notch and made of a crystalline material. It is an object of the present invention to provide a method for producing a circular wafer which is abraded with high precision using an abrasive tape and which sufficiently meets the processing specifications.
  • OF orientation flat
  • One embodiment of the present invention for solving the above-mentioned problems is a disk-shaped wafer made of a crystalline material, and the peripheral edge of the wafer having an orientation flat and a peripheral portion is polished using a polishing tape.
  • Method of manufacturing a circular wafer by rotating the wafer stage while bringing the polishing body into contact with the peripheral portion of the wafer which is arranged centered on a horizontal wafer stage having a vertical rotation axis.
  • the primary polishing process for polishing the part and the radius of the primary polished wafer are measured along the periphery, and a radius equal to or less than the minimum radius of the measured radius is set, and the radius is measured with the set radius.
  • ⁇ r which is a difference with the radius of the wafer along the periphery, and determining a portion of the periphery of the primary polished wafer where ⁇ r is larger than a predetermined value
  • the peripheral portion of the primary polished wafer is polished by bringing the peripheral portion of the next polished wafer into contact with the polishing body, and rotating the wafer stage forwardly and reversely around the rotation axis within a predetermined rotation angle range.
  • the polishing body includes a polishing tape which is disposed on the flat polishing pad to define a flat polishing surface, and in the secondary polishing step, the orientation flat and the polishing surface are included.
  • the wafer stage and the polishing surface are relatively oscillated along a horizontal axis without parallel to each other, and the speed of forward or reverse rotation of the wafer stage corresponds to the determined portion of the periphery of the wafer. It is characterized by reducing in the range of the rotation angle.
  • polishing the peripheral edge of the wafer having the OF and the peripheral portion as described above variations in the polishing rate due to the crystal orientation and the like of the peripheral portion of the wafer can be sufficiently reduced, and the wafer can be Since polishing is performed while rotating, intermittent contact between the polishing body and the peripheral edge of the wafer can be prevented, and uniform polishing can be performed.
  • the polishing for rotating the wafer forward and reverse may be performed at least in the secondary polishing process, and may be performed through the primary polishing process and the secondary polishing process.
  • the wafer is made of silicon (Si, SOI, single crystal, polycrystalline silicon), compound (GaN, SiC, GaP, GaAs, GaSb, InP, InAs, InS, InSb, ZnS, ZnTe, etc.), oxide (LiTaO3 (LT), LiNbO3
  • the wafer may be made of (LN), Ga 2 O 3, MgO, ZnO, sapphire, quartz and the like, glass (soda lime, alkali-free, borosilicate, crown glass, silica (silica), quartz and the like).
  • the wafer may be a semiconductor wafer.
  • the circular wafer may be a true circular wafer.
  • SEMI semiconductor Equipment
  • Materials International may be circular with an error of tolerance according to the wafer size standardized by an industry group, or an error within a range satisfying processing specifications according to other standards, or wafer size, materials, etc. It may be circular with.
  • the wafer stage is rotated forward and backward within a range of rotation angles in which a part of the circular arc-shaped peripheral portion of the wafer is linearly polished.
  • a rotation angle may be an angle defined by the ends of the OF and the center of the wafer. Or, it may be an angle defined by two points respectively located on the periphery near the both ends of the OF and the center of the wafer.
  • the orientation flat may be further polished by bringing the orientation flat and the polishing surface into contact and relatively linearly swinging along a horizontal axis. preferable. By doing this, it is possible to obtain a circular wafer having sufficient roundness.
  • the OF length and the like of the circular wafer formed as described above satisfy the standards such as SEMI and the processing specifications.
  • the wafer stage may be rotated forward and backward within a range of rotation angles in which the entire arc-shaped peripheral portion of the wafer is polished in an arc shape.
  • Another embodiment according to the present invention is a disc-shaped wafer of crystalline material, wherein the peripheral edge of the wafer having the orientation flat and the periphery is polished using an abrasive tape to produce a circular wafer
  • the polishing body is brought into contact with the peripheral portion of the wafer placed centered on a horizontal wafer stage having a vertical rotation axis, and the wafer stage is rotated around the rotation axis within a predetermined rotation angle range.
  • polishing the periphery of the wafer by rotating in the forward and reverse directions the polishing body comprising a polishing tape defining a flat polishing surface by being disposed on the flat polishing pad,
  • the orientation flat and the polishing surface do not become parallel, and the wafer stage and the polishing surface are relatively rocked along the horizontal axis.
  • the speed of forward rotation or reverse rotation of the wafer stage reducing the range of the rotation angle corresponding to the predetermined portion of the periphery of the wafer, and wherein the.
  • the peripheral portion of the wafer may be predetermined based on, for example, the difference ⁇ r between the radius set as described above and the measured radius by test-polishing a single wafer. .
  • the primary polishing step and the peripheral portion of a wafer (for example, a wafer cut out from the same ingot) consisting of the same crystal material where variations in the peripheral polishing rate are caused by the crystal orientation are determined.
  • the process can be omitted to efficiently produce a circular wafer.
  • Another embodiment of the present invention is a method of manufacturing a circular wafer by polishing the arc-shaped peripheral edge of a disk-shaped wafer of crystalline material using an abrasive tape, wherein the radius of the wafer is increased.
  • An arc-shaped peripheral edge is measured along an arc-shaped peripheral edge, a radius equal to or less than the minimum radius of the measured radii is set, and a difference between the set radius and the measured wafer radius is ⁇ r. Determining along the edge, determining the peripheral portion of the wafer where .DELTA.r is greater than a predetermined value, and polishing the peripheral portion of the wafer centered on a horizontal wafer stage having a vertical axis of rotation.
  • a step of polishing the peripheral portion by bringing the wafer into contact with the body and rotating the wafer stage forwardly and reversely around the rotation axis within a range of rotation angles corresponding to the peripheral portion, the polishing body being flat Polishing pad Polishing, comprising: an abrasive tape defining a flat abrasive surface by being placed in the dovetail.
  • a circular wafer having a desired roundness can be manufactured.
  • Yet another embodiment according to the present invention is a disk shaped wafer of crystalline material, wherein the perimeter edge of the wafer having the orientation flat and the periphery is polished using a polishing tape to form a circular wafer
  • a method of manufacturing wherein the wafer stage is rotated forward within a predetermined rotation angle range while the polishing body is brought into contact with the peripheral portion of the wafer placed centered on a horizontal wafer stage having a vertical rotation axis. Polishing the periphery of the wafer by reverse rotation, wherein the polishing body comprises a polishing tape which is arranged on a flat polishing pad to define a flat polishing surface, in the polishing step , And the orientation flat and the polishing surface are not parallel to each other.
  • the peripheral edge of the wafer can be polished without causing sagging around one end of the OF, the reduction of roundness is suppressed, and a circular wafer excellent in handling property is manufactured. can do.
  • the wafer stage may be rotated forward and backward within a range of rotation angles in which a part of the circular arc peripheral portion of the wafer is linearly polished.
  • the method further comprises the step of polishing the wafer orientation flat by bringing the orientation flat and the polishing surface into contact and relatively linearly swinging along a horizontal axis. In this way, the linearly polished parts are removed and a circular wafer is produced.
  • the wafer stage may be rotated forward and backward within a range of rotation angles in which the entire arc-shaped peripheral portion of the wafer is polished in an arc shape.
  • the polishing surface be pressed against the peripheral edge of the wafer through an elastic polishing pad and the polishing surface not be separated from the peripheral edge of the wafer. In this way, it is possible to suppress the decrease in roundness due to the intermittent contact between the polishing surface and the peripheral edge.
  • the periphery of the edge portion, bevel portion, etc. of the wafer can be processed with high accuracy, and cracking of a thin wafer having a thickness of 1 mm or less or a wafer made of a compound material It can be prevented.
  • a circular wafer closer to a true circle can be obtained, the accuracy of the subsequent processes can be improved, and the yield in the process of manufacturing semiconductor devices and the like can be improved.
  • the manufacturing method of the circular wafer concerning the present invention according to processing specification, the circular wafer which has desired roundness can be obtained.
  • FIG. 1A is a plan view of a wafer having an OF
  • FIG. 1B is a cross-sectional view of the periphery of the wafer.
  • FIG. 2 is a front view schematically showing a wafer peripheral edge polishing apparatus.
  • FIG. 3 is a view for conceptually explaining the method for producing a circular wafer according to the present invention.
  • FIG. 4A (a) is a view schematically showing one embodiment of the forward and reverse rotation angle according to the present invention
  • FIG. 4A (b) is a partially enlarged view of FIG. 4A (a).
  • FIG. 4B is a view schematically showing another embodiment of the forward and reverse rotation angle according to the present invention.
  • FIG. 4C is a view schematically showing still another embodiment of the forward / reverse rotation angle according to the present invention.
  • FIG. 5A is a view showing the shape and roundness of the outer diameter of the wafer.
  • FIG. 5B is a view showing the shape and roundness of the outer diameter of a wafer according to a comparative example.
  • FIG. 5C is a view showing the shape and roundness of the outer diameter of a wafer according to an embodiment of the present invention.
  • FIG. 1A shows a wafer W having an orientation flat OF, and a circular wafer W ′ formed by polishing at least a part of the periphery of the wafer W.
  • the periphery of the wafer W is composed of a straight OF and a circular arc peripheral portion A, and the boundary between the straight OF and the circular arc peripheral portion A is both end portions E1 and E2 of the OF.
  • the periphery of the wafer W ′ is made up of a straight OF and an arc-shaped periphery A ′, and the boundary between the straight OF and the arc-shaped periphery A ′ is both ends E1 ′ and E2 of the OF.
  • the wafer W ' generally has a radius slightly smaller than the wafer W and a slightly smaller OF length.
  • FIG. 1B schematically shows a cross section of the periphery of the wafer W, W ′.
  • the wafer W cut out of the ingot has a damage such as a film or residue on the peripheral edge of the bevel portion, the edge portion and the like, and is thus polished to remove the damage.
  • the peripheral edge of the wafer can be finished to a high-precision surface property without chipping.
  • a semiconductor device or the like is formed on the radially inner r1 portion of the wafer W, and the radially outer r2 portion (edge portion, bevel portion) which is the periphery of the wafer which is not an actual product is polished Is formed on the periphery r2 '.
  • the radial length r2 ' is smaller than r2, and the radius (r1 + r2') of the wafer W 'is slightly smaller than the radius (r1 + r2) of the wafer W.
  • the cross-sectional shape of the periphery of the wafer W ′ is not limited to the illustrated example of the round type (R type), but may be a taper type (T type) or the like, and the bevel portion is removed to be perpendicular to the main surface of the wafer. It may be formed on a surface. In addition, it can be formed into a desired edge shape according to processing specifications.
  • FIG. 2 schematically shows a wafer peripheral edge polishing apparatus 100 used in the method of manufacturing a circular wafer according to the present invention.
  • Wafer peripheral polishing apparatus 100 includes polishing tape unit 10 and wafer unit 20.
  • the polishing tape unit 10 is provided with an air cylinder 13 for backup pressure attachment with a flat polishing pad (contact pad) 12 on which the polishing tape T is disposed, a guide roller 14, 14 'and the polishing tape T. , Take-up supply reel 16, take-up reel 17, and auxiliary rollers 18, 18 '.
  • the polishing tape T disposed on the polishing pad defines a flat polishing surface S.
  • the polishing pad 12 is rotatably attached to a support member (not shown) by a pivot shaft 15 extending from the front surface to the back surface of the figure.
  • a pivot shaft 15 extending from the front surface to the back surface of the figure.
  • the polishing tape T can travel in the vertical direction between the upper and lower guide rollers 14 and 14 '.
  • the air cylinder 13 applies the adjusted predetermined pressing force F in the direction of the arrow via the polishing pad 12 and presses the polishing surface S against the periphery of the wafer W.
  • the adjustment of the pressing force F (backup pressing force) of the air cylinder 13 can be performed, for example, by the device configuration described in Japanese Patent No. 4643326 (Patent Document 3).
  • the polishing tape T is obtained by applying a solution in which abrasive particles are dispersed in a resin binder on the surface of a plastic base film, slitting the dried and cured sheet to a required width, and winding it on a reel.
  • a flexible plastic film made of synthetic resin is used as the base film.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polybutylene naphthalate, polyolefin resins such as polyethylene and polypropylene, and acrylic resins containing polyvinyl alcohol or methacrylic alcohol as a main component
  • acrylic resins containing polyvinyl alcohol or methacrylic alcohol as a main component is used as a substrate film.
  • Abrasive grains include alumina (Al2O3), cerium oxide (CeO2), silica (SiO2), diamond, silicon carbide (SiC), chromium oxide (Cr2O3), zirconia (ZrO2), cubic boron nitride (cBN) Etc. and mixtures thereof.
  • the average particle diameter of the abrasive grains is preferably in the range of 0.2 ⁇ m or more (# 20000) and 3 ⁇ m or less (# 4000).
  • the average particle diameter exceeds 3 ⁇ m, fine scratches and chips newly occur on the finished surface of the wafer W, which is not preferable because the wafer W made of a crystalline material can not be provided with sufficient strength.
  • the average particle diameter is less than 0.2 ⁇ m, the polishing efficiency is extremely lowered and the productivity is deteriorated, so that it is not industrially practical.
  • the polishing pad 12 preferably has elasticity.
  • a flat foamed resin plate having a Shore A hardness in the range of 20 to 50 can be used to reduce mechanical impact.
  • a combination of a foamed resin plate as described above and a rubber plate having a Shore A hardness in the range of 80 to 90 can be used.
  • Wafer unit 20 includes a wafer stage 21 having a horizontal upper surface for disposing wafer W.
  • Wafer stage 21 is connected to motor 23 via a shaft 22 coaxial with rotation axis Cs.
  • the motor 23 is preferably a servomotor having an encoder. When the motor 23 is driven, the wafer stage 21 rotates about its center or rotation axis Cs.
  • Wafer stage 21 is preferably a stage for vacuum suction, and has a flat surface provided with one or more suction holes communicated with a vacuum pump (not shown) through a pipe.
  • the wafer W is mounted on the stage 21 via an elastic pad or the like and fixed by vacuum suction.
  • the peripheral portion is polished by bringing the peripheral portion of the wafer W fixed to the wafer stage 21 into contact with the polishing body (polishing surface S) and rotating the wafer stage 21.
  • the wafer stage 21 repeats forward and reverse rotation within a predetermined rotation angle range, and does not rotate more than one rotation (360 degrees) during polishing.
  • the rotation angle of the wafer stage 21 on which the wafer W is mounted is determined so as not to reduce the roundness of the wafer W having the OF.
  • control device 30 is connected to the motor 23 by a lead 31 and to the optical sensor 33 by a lead 32.
  • the optical sensor 33 measures the position of the wafer in the radial direction with respect to the peripheral edge of the wafer, and includes a light emitting unit 33 a and a light receiving unit 33 b.
  • the light projector 33 a emits a strip of parallel light that extends in the radial direction of the wafer and travels parallel to the rotation axis Cs.
  • the light receiving unit 33 b is disposed to face the light emitting unit 33 a with the wafer W interposed therebetween.
  • the light projector 33a may be a light emitting diode or a semiconductor laser, and the light receiver 33b may be a charge coupled device (CCD) image sensor.
  • the light receiving unit 33 b is configured such that a large number of fine photodiodes are arranged in the radial direction of the wafer and can receive the parallel light emitted from the light emitting unit 33 a.
  • a part of the light projected from the light projector 33 a is blocked by the wafer W.
  • the remaining part passes radially outward of the wafer W and enters the light receiving unit 33 b.
  • the amount of light blocked by the wafer W decreases, and the amount of light incident on the light receiving unit 33 b increases.
  • the position of the peripheral edge of the wafer W moves away from the rotation axis Cs in the radial direction, more light is blocked by the wafer W, and the amount of light incident on the light receiving portion 33b decreases.
  • the amount of electricity to be output changes according to the amount of light incident from the light projecting unit 33 a.
  • the position in the radial direction of the peripheral edge of the portion facing the optical sensor 33 is detected based on the amount of electricity output from the light receiving unit 33 b.
  • the control device 30 obtains data of the positions of both ends E1 and E2 (FIG. 1A) of the orientation flat OF of the wafer W from the optical sensor 33 and the motor 23, and determines the rotation angle based on the data. can do. For example, an angle defined by the both ends E1 and E2 and the center O of the wafer W can be determined as the rotation angle of the wafer stage 21. Alternatively, the positions of both ends E1 ′ and E2 ′ of the OF of the circular wafer W ′ having a radius smaller than the radius of the wafer W are determined (FIG. 1A). The angle defined by the center O can be determined as the rotation angle of the wafer stage 21.
  • controller 30 can determine the radius of the wafer along the periphery of the wafer by the radial position of the peripheral edge at the portion facing the optical sensor 33, and can determine the outer shape of the wafer.
  • the work unit 20 comprises a single axis robot 35 having an LM guide 36 having a straight rail extending on the horizontal base 34 in the back direction from the surface of the figure and a straight rail extending on the back direction from the surface of the figure. It is provided on the movable plate 37 connected.
  • the work stage 21 can swing along a horizontal axis extending from the front surface to the rear surface of the drawing.
  • the polishing tape unit 10 may be configured to be swingable by being provided on a swingable movable plate (not shown), and may be configured to be swingable by other means.
  • the wafer W is arranged on the wafer stage 21 (the center of the wafer W is aligned with the rotation axis Cs) for polishing processing. Centering is performed by simultaneously pressing the peripheral edge of the wafer W placed on the wafer stage 21 toward the rotation axis Cs from three directions with a rod-like jig (not shown). The centering may be performed by determining the center O of the wafer W from the outer diameter of the wafer W by the optical sensor 30, and controlling the pressing of the jig so as to align the center O with the rotation axis Cs. And may be performed by other methods.
  • the primary polishing process and the secondary polishing process according to the present invention are performed using the wafer peripheral edge polishing apparatus 100 as described above.
  • the polishing surface S of the polishing tape unit 10 is brought into contact with the peripheral portion of the wafer W so that the radial direction of the polishing surface S and the wafer W is perpendicular, and the wafer stage 21 is rotated. It is performed by rotating around the axis Cs.
  • a wafer W1 (the outer diameter is formed by primary polishing the periphery (the entire circumference of the arc and a part of the OF) of the wafer W (a part of the outer diameter is shown by a broken line)
  • An arc W1 '(indicated by a dot-and-dash line) having a radius r1 equal to or less than the minimum radius of the wafer W1 is illustrated.
  • the wafer is rotated forward and reverse within a range of a predetermined rotation angle ⁇ .
  • the predetermined rotation angle ⁇ may be, for example, an angle (dominant angle) defined by the center O of the wafer W and two points E and E ′ on the OF of the wafer W.
  • the rotation may be CW or CCW constant direction rotation.
  • the wafer W1 that has been primarily polished using the polishing tape may have a nonuniform outer diameter due to variations in the polishing rate of the periphery due to the crystal orientation of the wafer material and the like. For example, depending on the wafer material, there may be a case where the polishing rate of the peripheral portion near both ends of the diameter parallel to the OF is low.
  • a radius r of the wafer W1 is measured along the periphery, a predetermined radius r1 equal to or less than the minimum radius of the wafer W1 is set, and ⁇ r which is a difference between the set radius r1 and the radius r of the wafer W1. Is determined along the periphery of the wafer W1.
  • the value of ⁇ r at the periphery of the wafer W1 has a width because the outer diameter is nonuniform.
  • Portions P and P ′ of the peripheral portion having ⁇ r greater than or equal to a predetermined value are determined to be portions where the polishing rate becomes insufficient due to crystal orientation or the like, and an angle corresponding to the portions P and P ′ of the peripheral portion ⁇ p and ⁇ p ′ are determined.
  • the angles ⁇ p and ⁇ p ′ may be determined, for example, as a range of angles from the reference line R perpendicular to the OF.
  • the secondary polishing process is performed.
  • the wafer stage 21 rotates forward and reverse within the range of a predetermined rotation angle ⁇ , and swings along the horizontal axis parallel to the polishing surface S by swinging of the movable plate 37 (see FIG. 2).
  • wafer W1 is sequentially polished at its peripheral edge in contact with polishing surface S within the range of rotation angle ⁇ by forward and reverse rotation of wafer stage 21, and the portion contacting contact with polishing surface S is shaken against polishing surface S. It is polished by moving. By doing this, the polishing rate of the entire peripheral edge to be polished can be improved.
  • the polishing can be performed by relatively swinging the polishing surface S and the wafer stage 21.
  • the speed of forward and reverse rotation of wafer stage 21 is reduced in the range of angles ⁇ p and ⁇ p 'of rotation angles ⁇ .
  • the peripheral portion of the wafer corresponding to the angles ⁇ p and ⁇ p ′ abuts against the polishing surface S and swings with a constant stroke, so that the reduction of the polishing rate due to the crystal orientation of the relevant portion is suppressed
  • the degree of reduction of the rotational speed in the range of the angles ⁇ p and ⁇ p ′ is appropriately determined based on the difference in polishing rate (value of ⁇ r) (eg, 10%, 30%, 50%, 70% with respect to the reference speed) , 90% etc.) may be determined.
  • the roundness refers to the magnitude of the deviation from the geometrically correct circle of the circular feature
  • the radius difference between the concentric circles of two circles sandwiching the measurement figure is minimized
  • Find the position of the center coordinates of the two circles, and consider this center coordinate as the center of the measurement figure, and the difference in radius between the two circles at this time is made roundness (JIS B0621).
  • the maximum value of the measured ⁇ r may be the roundness of the wafer W1.
  • the peripheral portion P (P') having a ⁇ r of a predetermined value or more is determined, and the peripheral portion P (P ') is By being polished, a circular wafer having a desired roundness can be manufactured.
  • the polishing body (polishing surface S) is abutted only on the peripheral portion P (P ′), and the polishing process is performed by rotating the wafer stage 21 forward and reverse within the range of the rotation angle ⁇ p ( ⁇ p ′). It will be.
  • angle ⁇ p ( ⁇ p ′) is from a reference line R ′ (not shown) passing through the center of the notch of the V-shaped notch and the center O of the wafer. It may be determined as a range of angles of
  • FIG. 4A (a) illustrates the rotation angle ⁇ 1 of one embodiment determined so as not to reduce the roundness in the polishing using the polishing tape.
  • the periphery of the wafer W is comprised of OF and arc-shaped peripheral portions A, each shown by a broken line.
  • a circular wafer W3 is manufactured.
  • the peripheral edge of the circular wafer W3 is composed of the OF 'and an arc-shaped peripheral portion A', and generally has a radius slightly smaller than the wafer W and an OF length slightly smaller than the wafer W.
  • the rotation angle ⁇ 1 is a rotation angle at which a part of the circular arc peripheral portion of the wafer is polished in a straight line shape, and such a rotation angle ⁇ 1 is, for example, both ends a and b of the OF of the wafer W and the center
  • the angle defined by O and the angle O (or the angle defined by both ends a ′ and b ′ of the OF ′ of the wafer W 3 and the center O).
  • the start point and end point (or end point and start point) of polishing are positions where a line passing through one end a of centers O and OF is perpendicular to polishing surface S, and centers O and OF
  • the entire arc-shaped peripheral portion A abuts on the polishing surface S and is polished in an arc shape.
  • the peripheral portion is polished and the radius of the wafer is reduced, the peripheral portions near both ends of the OF that do not fall within the range of the rotation angle ⁇ 1 are linearly polished by the flat polishing surface S.
  • convex portions colored portions in FIG. 4A (b) protruding radially outward with respect to the arc related to the peripheral portion A 'are formed in the peripheral portions near both end portions of the OF.
  • the rotation angle ⁇ 1 is not limited to the illustrated example, and according to the pressing force F and the elasticity of the polishing pad 12, the peripheral portion A is preferably equidistant from each of the end portions a and b of the OF. It may be an angle defined by the two points of and the center O.
  • the OF and the polishing surface S are brought into parallel contact, and the OF and the polishing surface S are relatively rocked, whereby the OF is polished and the convex portions in the vicinity of the both ends of the OF are removed.
  • a circular wafer W3 having OF ' is formed.
  • FIG. 4B illustrates the rotation angle ⁇ 2 of another embodiment that is determined not to reduce the roundness in polishing using an abrasive tape.
  • the circular wafer W4 is formed by polishing the entire arc-shaped peripheral portion A of the wafer W and a part of the OF, and has a slightly smaller radius and OF length than the wafer W.
  • the rotation angle ⁇ 2 is a superior angle of an angle defined by two points (or both ends of the OF of the circular wafer W4) c, d on the OF of the wafer W and the center O.
  • the start point and end point (or end point and start point) of polishing are the positions where the line passing through the center O and one point c becomes perpendicular to the polishing surface S, and the center O and the other point d
  • the passing line is at a position perpendicular to the polishing surface S, and the peripheral edge of the wafer in contact with the polishing surface S in such a range of the start point and the end point is sequentially polished as the wafer stage rotates in reverse.
  • the polishing surface S does not contact the points c and d, and at the end of polishing, the polishing surface S contacts each of the points c and d.
  • the polishing surface S contacts each of the points c and d, forward and reverse rotation switches, so that the rotation speed becomes almost zero, and the polishing force is sufficiently small, so that dripping may occur at both ends of the formed OF Absent.
  • a circular wafer W4 is formed without forming a convex portion in the arc-shaped peripheral portion in the vicinity of the both end portions of the OF. .
  • FIG. 4C illustrates another rotation angle ⁇ 3 of another embodiment determined not to reduce roundness in polishing using an abrasive tape.
  • the circular wafer W5 is formed by polishing the entire arc-shaped peripheral portion A of the wafer W and a part of the OF, and has a slightly smaller radius and OF length than the wafer W.
  • the rotation angle ⁇ 3 is a superior angle of an angle defined by two points e and f on the OF of the wafer W (or the circular wafer W5) and the center O, and preferably, one end of the points e and OF The distance from the part is equal to the distance from the point f to the other end of the OF.
  • the start point and end point (or end point and start point) of polishing are positions where a line passing one point e on centers O and OF is perpendicular to polishing surface S, and on centers O and OF
  • the line passing through the other point f is a position perpendicular to the polishing surface S, and the peripheral edge of the wafer in contact with the polishing surface S in such a range from the start point to the end point is sequentially polished as the wafer stage rotates in reverse. Be done.
  • both ends of the OF of the circular wafer W5 can be polished, but due to the selected pressing force F and the elasticity of the polishing pad 12, the polishing surface S and the wafer W
  • the circular wafer W5 is not reduced because the polishing wafer S is kept in contact with the peripheral edge of the wafer W5 (the polishing surface S is not intermittently in contact with the peripheral wafer W to W5). Can be formed.
  • FIG. 5A shows the shape and roundness of the outer diameter of a Si wafer cut out from a cylindrically ground ingot measured by a roundness measuring machine Rondcom 43C (manufactured by Tokyo Seimitsu Co., Ltd.). The roundness was measured in the range of the arrow by the MZC center method using a low pass filter (2RC) (OF excluded from the calculation). The roundness of the Si wafer was 3.798 ⁇ m before the peripheral edge was polished using an abrasive tape.
  • Rondcom 43C manufactured by Tokyo Seimitsu Co., Ltd.
  • the contact unevenness is weakened such that the contact is weakened at the arc-shaped peripheral edge.
  • the roundness remarkably deteriorated to 51.563 ⁇ m.
  • the wafer is brought into contact with the periphery of the Si wafer disposed on the wafer stage and the polishing body (the polishing tape disposed on the polishing pad) so that a part of the circular arc peripheral portion of the wafer is linearly formed.
  • the wafer peripheral edge was polished by determining the rotation angle of the stage (see FIG. 4A), and rotating the wafer stage continuously and reversely rotating (3000 rpm) at this rotation angle. As shown in FIG. 5C, the change in the shape of the outer diameter was small, and the roundness was 21.318 ⁇ m, which sufficiently satisfied the processing specifications. Thereafter, the OF was further polished to remove the convex portions in the vicinity of the both ends of the OF, whereby a circular wafer was manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

結晶材料から成るウエハの周縁を研磨テープを使用して研磨し、円形ウエハを製造する方法を提供する。鉛直な回転軸を有する水平なステージにセンタリング配置されたウエハの周囲部と研磨体とを当接させステージを回転させて周囲部を研磨する一次研磨工程と、ウエハの半径を測定し測定された最小半径以下の半径を設定し、設定半径と測定されたウエハの半径との差Δrを周囲部に沿って決定する工程と、Δrが所定の値より大きい周囲部の部分を決定する工程と、周囲部と研磨体とを当接させステージを所定の回転角度の範囲で正逆回転させて周囲部を研磨する二次研磨工程とを含み、研磨体が平坦な研磨パッドに配置され平坦な研磨面を画成する研磨テープを含み、二次研磨工程でステージと研磨面とを水平な軸線に沿って相対揺動させ、ステージの正逆回転の速度を決定された周囲部の部分に対応した回転角度の範囲で低下させる。

Description

オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法
 本発明は、結晶材料から成るウエハの周縁を研磨する方法に関し、特に、研磨テープを使用してウエハ周縁を研磨することにより、ウエハの周縁に高精度な表面性状を形成するとともに、ハンドリング性が向上した円形ウエハを製造する方法に関する。
 半導体、MEMS等の製造に使用される各種ウエハは、近年、回路素子の高密度化や薄化等に伴い、ウエハ厚が1mmないし数十μmと薄くなる傾向にある。インゴットから切り出されたウエハは、ベベル部、エッジ部等の周縁を面取りされ、主面を鏡面に研磨されるが、ウエハの薄化に伴って微細なチッピング(欠け)やチッピングに起因したウエハの割れ等が発生しやすくなっている。このため、半導体等の製造における歩留まりを向上するために、ウエハの周縁の加工状態が重要になっている。
 従来、半導体集積回路の高集積化に適したウエハの面取り部の加工方法等が提案された(特開平10―100050号公報:特許文献1)。該加工方法は、円筒状あるいは円柱状の砥石と、面取り部がオリエンテーションフラット(以下適宜、OF)部、外周部及び角部で構成されたウエハとを互いに回転させながら所定の押付力で押接させ、軟研削位置がOF部、外周部、角部かに応じてウエハの回転速度を変えつつ、ウエハのOF部、外周部及び角部をそれぞれ軟研削するようにした後に、ウエハのOF部、外周部及び角部をそれぞれ研磨するようにし、面取り部全体に亘って均一な軟研削をするものであった。
 また、従来、研磨テープを使用して、半導体ウエハのノッチとベベルを研磨するための装置及び方法が提案された(特開2006―303112公報:特許文献2)。
特開平10-100050号公報 特開2006―303112公報 特許第4463326号公報
 劈開性が強い結晶材料から成るウエハの面取り加工に砥石を使用すると、機械的衝撃が大きいために割れや欠けを生じやすく面取り部の加工状態が不十分であり、ウエハの主面を鏡面研磨する際に、面取り部のチッピング等に起因して割れが発生しやすいという問題があった。
 研磨テープを使用してウエハの周縁を研磨することにより、エッジ部等の視認できない微小なチッピングまで取り除くことができ、高精度な面取り加工を行うことができた。しかしながら、従来の研磨テープを使用した研磨方法では、OFの一方の端部(円弧状部とOFとの境界)周辺にダレを生じやすく、また、ウエハの結晶方位や結晶面等により研磨レートに差異を生じ、ウエハの真円度が低下するという問題があった。特に、軟質な化合物材料等から成るウエハの周縁を研磨テープで研磨するとウエハの外径が不均一になりやすく、その後の製造工程においてウエハのセンタリングの精度が低下するなど、加工仕様を十分に満たさない恐れがあった。
 上記の問題に鑑みて、本発明は、結晶方位を示すオリエンテーションフラット(OF)やノッチを有する円板状のウエハであって結晶材料からなるウエハの周縁を、ウエハの真円度を低下させることなく研磨テープを使用して高精度に研磨加工し、加工仕様を十分に満たす円形ウエハを製造する方法を提供することを目的とする。
 上記課題を解決するための本発明の一つの実施形態は、結晶材料から成る円板状のウエハであって、オリエンテーションフラットと周囲部とを有するウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、鉛直な回転軸を有する水平なウエハステージにセンタリングして配置されたウエハの周囲部と研磨体とを当接させながらウエハステージを回転させることにより周囲部を研磨する一次研磨工程と、一次研磨されたウエハの半径を周囲部に沿って測定し、該測定された半径のうちの最小半径以下の半径を設定し、該設定された半径と測定されたウエハの半径との差であるΔrを周囲部に沿って決定する工程と、Δrが所定の値より大きい一次研磨されたウエハの周囲部の部分を決定する工程と、一次研磨されたウエハの周囲部と研磨体とを当接させ、ウエハステージを所定の回転角度の範囲において回転軸の周りに正回転及び逆回転させることにより一次研磨されたウエハの周囲部を研磨する二次研磨工程と、を含み、研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成り、二次研磨工程において、オリエンテーションフラットと研磨面とが平行になることがなく、ウエハステージと研磨面とを水平な軸線に沿って相対揺動させ、ウエハステージの正回転又は逆回転の速度を、決定されたウエハの周囲部の部分に対応した回転角度の範囲で低下させる、ことを特徴とする。
 上記のようにOFと周囲部とを有するウエハの周縁を研磨することにより、ウエハの周囲部の結晶方位等に起因する研磨レートのバラツキを十分に小さくすることができ、また、ウエハを正逆回転させながら研磨が行われるので、研磨体とウエハの周縁との間欠的な接触が防止され、均一な研磨加工を行うことができる。ウエハを正逆回転させる研磨は、少なくとも二次研磨工程において行われ、一次研磨工程、二次研磨工程を通して行われてもよい。
 ウエハは、シリコン(Si、SOI、単結晶、多結晶シリコン)、化合物(GaN、SiC、GaP、GaAs、GaSb、InP、InAs、InSb、ZnS、ZnTe等)、酸化物(LiTaO3(LT)、LiNbO3(LN)、Ga2O3、MgO、ZnO、サファイア、水晶等)、ガラス(ソーダライム、無アルカリ、ホウケイ酸、クラウンガラス、珪酸(シリカ)、石英等)の材料から成るウエハであってよい。ウエハは、半導体ウエハであってよい。
 円形ウエハは、真円なウエハであってよい。または、SEMI(Semiconductor Equipment
and Materials International)等の業界団体により標準化されているウエハサイズに応じた許容範囲の誤差を有する円形であってもよく、その他規格、若しくはウエハサイズや材料等に応じた加工仕様を満たす範囲の誤差を有する円形であってもよい。
 少なくとも二次研磨工程において、ウエハステージを、ウエハの円弧状の周囲部の一部が直線状に研磨される回転角度の範囲において正回転及び逆回転させることが好ましい。このような回転角度は、OFの両端部とウエハの中心とによって画成される角度であり得る。または、OFの両端部近傍の周囲部に各々位置する二点とウエハの中心とによって画成させる角度であり得る。この場合、直線状に研磨された周囲部を取り除くために、さらに、オリエンテーションフラットと研磨面とを当接させ水平な軸線に沿って直線的に相対揺動させることによりオリエンテーションフラットを研磨することが好ましい。このようにすることで、十分な真円度を有する円形ウエハを得ることができる。
 上記のように形成される円形ウエハのOF長等は、SEMI等の規格や加工仕様を満たすことが好ましい。
 または、二次研磨工程で、ウエハステージを、ウエハの円弧状の周囲部全体が円弧状に研磨される回転角度の範囲において正回転及び逆回転させてもよい。この場合、適度な押圧力等により、研磨体とウエハ周縁との間欠的な接触が防止されることが好ましい。
 本発明に係る他の実施形態は、結晶材料から成る円板状のウエハであって、オリエンテーションフラットと周囲部とを有するウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、鉛直な回転軸を有する水平なウエハステージにセンタリングして配置されたウエハの周囲部と研磨体とを当接させ、ウエハステージを所定の回転角度の範囲において回転軸の周りに正回転及び逆回転させることによりウエハの周囲部を研磨する工程、を含み、研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成り、研磨する工程において、オリエンテーションフラットと研磨面とが平行になることがなく、ウエハステージと研磨面とを水平な軸線に沿って相対揺動させ、ウエハステージの正回転又は逆回転の速度を、ウエハの予め決定された周囲部の部分に対応した回転角度の範囲で低下させる、ことを特徴とする。
 ウエハの周囲部の部分は、例えば、一枚のウエハをテスト研磨することにより、上記のように設定された半径と測定された半径の差Δrに基づいて、予め決定されたものであってよい。このようにすることで、周縁の研磨レートのバラツキが結晶方位に起因する同一の結晶材料から成るウエハ(例えば、同一のインゴットから切り出されたウエハ)の一次研磨工程及び周囲部の部分を決定する工程を省略して効率的に円形ウエハを製造し得る。
 本発明のもう一つの実施形態は、結晶材料から成る円板状のウエハの円弧状の周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、ウエハの半径を円弧状の周縁に沿って測定し、該測定された半径のうちの最小半径以下の半径を設定し、該設定された半径と測定されたウエハの半径との差であるΔrを円弧状の周縁に沿って決定する工程と、Δrが所定の値より大きいウエハの周縁の部分を決定する工程と、鉛直な回転軸を有する水平なウエハステージにセンタリングして配置されたウエハの周縁の部分と研磨体とを当接させ、ウエハステージを周縁の部分に対応した回転角度の範囲において回転軸の周りに正回転及び逆回転させることにより周縁の部分を研磨する工程であって、研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成る、ところの研磨する工程、を含む。
 上記のようにすることで、所望の真円度を有する円形ウエハを製造することができる。
 本発明に係るさらに他の実施形態は、結晶材料から成る円板状のウエハであって、オリエンテーションフラットと周囲部とを有するウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、鉛直な回転軸を有する水平なウエハステージにセンタリングして配置されたウエハの周囲部と研磨体とを当接させながらウエハステージを所定の回転角度の範囲において正回転及び逆回転させることによりウエハの周囲部を研磨する工程、を含み、研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成り、研磨する工程において、オリエンテーションフラットと研磨面とが平行になることがない、ことを特徴とする。
 上記のようにすることで、OFの一方の端部周辺にダレを生じさせることなくウエハの周縁を研磨することができ、真円度の低下が抑制され、ハンドリング性に優れた円形ウエハを製造することができる。
 上記の研磨する工程において、ウエハステージを、ウエハの円弧状の周囲部の一部が直線状に研磨される回転角度の範囲において正回転及び逆回転させてよい。
 さらに、オリエンテーションフラットと研磨面とを当接させ水平な軸線に沿って直線的に相対揺動させることによりウエハのオリエンテーションフラットを研磨する工程を含むことが好ましい。このようにすることで、直線状に研磨された部分が取り除かれ、円形のウエハが製造される。
 あるいは、研磨する工程において、ウエハステージを、ウエハの円弧状の周囲部全体が円弧状に研磨される回転角度の範囲において正回転及び逆回転させてもよい。この場合、研磨面が弾性を有する研磨パッドを介してウエハの周縁に押圧され、研磨面がウエハの周縁から離れることがないことが好ましい。このようにすることで、研磨面と周縁との間欠的な接触による真円度の低下を抑制することができる。
 本発明に係る円形ウエハの製造方法によれば、ウエハのエッジ部、べベル部等の周縁を高精度に加工することができ、厚さ1mm以下の薄いウエハや化合物材料から成るウエハの割れを防止することができる。また、より真円に近い円形ウエハを得ることができるので、その後の工程の精度を向上させることができ、半導体デバイス等の製造工程における歩留まりを向上させ得る。さらに、本発明に係る円形ウエハの製造方法により、加工仕様に応じて、所望の真円度を有する円形ウエハを得ることができる。
図1(A)はOFを有するウエハの平面図であり、図1(B)はウエハの周縁の断面図である。
図2はウエハ周縁研磨装置を模式的に示す正面図である。
図3は本発明に係る円形ウエハの製造方法を概念的に説明する図である。
図4A(a)は本発明に係る正逆回転角度のひとつの実施形態を模式的に示す図であり、図4A(b)は図4A(a)の一部拡大図である。
図4Bは本発明に係る正逆回転角度の他の実施形態を模式的に示す図である。
図4Cは本発明に係る正逆回転角度のもう一つの他の実施形態を模式的に示す図である。
図5Aはウエハの外径の形状及び真円度を示す図である。
図5Bは比較例に係るウエハの外径の形状及び真円度を示す図である。
図5Cは本発明の実施例に係るウエハの外径の形状及び真円度を示す図である
 以下、図面を参照しながら、本発明のさまざまな特徴が、本発明の限定を意図するものではない好適な実施例とともに説明される。図面は説明の目的で単純化され、または強調され、尺度も必ずしも一致しない。
 図1(A)に、オリエンテーションフラットOFを有するウエハW、及びウエハWの周縁の少なくとも一部が研磨されて形成された円形ウエハW’が図示されている。ウエハWの周縁は、直線状のOF及び円弧状の周囲部Aから成り、直線状のOFと円弧状の周囲部Aとの境界が、OFの両端部E1及びE2である。同様に、ウエハW’の周縁は、直線状のOF及び円弧状の周囲部A’から成り、直線状のOFと円弧状の周囲部A’との境界が、OFの両端部E1’及びE2’である。ウエハW’は、概して、ウエハWよりやや小さい半径とやや小さいOF長とを有する。
 図1(B)に、ウエハW、W’の周縁の断面が模式的に示されている。インゴットから切り出されたウエハWは、ベベル部、エッジ部等の周縁に膜や残さ等のダメージを有しているため、該ダメージを取り除くために研磨される。研磨テープを使用して研磨することにより、ウエハの周縁をチッピングのない高精度な表面性状に仕上げることができる。半導体デバイス等が形成されるのは、ウエハWの径方向内側のr1部分であり、実際の製品とはならないウエハの周縁である径方向外側のr2部分(エッジ部、べベル部)は、研磨によって、周縁r2’に形成される。径方向の長さr2’はr2より小さく、ウエハW’の半径(r1+r2’)はウエハWの半径(r1+r2)よりもやや小さい。
 ウエハW’の周縁の断面形状は図示されたラウンド型(R型)の例に限定されず、テーパー型(T型)等であってもよく、ベベル部を除去しウエハの主面に垂直な面に形成されてもよい。その他、加工仕様に応じて所望のエッジ形状に形成さ得る。
 図2に、本発明に係る円形ウエハの製造方法に使用されるウエハ周縁研磨装置100が模式的に示されている。
 ウエハ周縁研磨装置100は研磨テープユニット10及びウエハユニット20を含む。
 研磨テープユニット10は、研磨テープTが配置される平坦な研磨パッド(コンタクトパッド)12を先端に取り付けたバックアップ加圧のためのエアシリンダ13と、ガイドローラ14、14’、研磨テープTを送り出し、巻き取るための供給リール16、巻取りリール17、及び補助ローラ18、18’を含む。研磨パッドに配置された研磨テープTは、平坦な研磨面Sを画成する。
 研磨パッド12は、図の表面から裏面に伸長する回動軸15により、回動可能に支持部材(図示せず)に取付けられている。研磨パッド12が回動することにより、研磨パッド12に配置された研磨テープT、すなわち、研磨面SがウエハWの周縁に所望の傾きで当接することができ、ウエハの周縁を所望の断面形状に研磨仕上げすることができる。
 上下のガイドローラ14、14’の間で、研磨テープTは鉛直方向に走行可能である。
 エアシリンダ13は、研磨パッド12を介して、調整された所定の押圧力Fを矢印の方向に加え研磨面SをウエハWの周縁に押し当てる。エアシリンダ13の押圧力F(バックアップ加圧力)の調整は、例えば、特許第4463326号公報(特許文献3)に記載されている装置構成により実施され得る。
 研磨テープTは、プラスチック製の基材フィルムの表面に樹脂バインダーに砥粒を分散させた溶液を塗布し、乾燥、硬化させたシートを必要幅にスリットし、リールに巻かれたものである。
 基材フィルムとして、柔軟性を有する合成樹脂製のプラスチックフィルムが使用される。具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリビニルアルコール又はメタクリルアルコールを主成分とするアクリル系樹脂等から成るフィルムが基材フィルムとして使用される。
 砥粒(研磨粒子)としては、アルミナ(Al2O3)、酸化セリウム(CeO2)、シリカ(SiO2)、ダイヤモンド、炭化珪素(SiC)、酸化クロム(Cr2O3)、ジルコニア(ZrO2)、立方晶窒化ホウ素(cBN)等及びその混合物が使用できる。
 砥粒の平均粒径は、好適に、0.2μm以上(#20000)、3μm以下(#4000)の範囲にある。平均粒径が3μmを超えると、ウエハW周縁の仕上がり面に新たに微細な傷や欠けが発生し、結晶材料から成るウエハWに十分な強度を与えることができず好ましくない。平均粒径が0.2μm未満であると、研磨効率が極端に下がり生産性が悪くなるため、工業上、実用的ではない。
 研磨パッド12は、好適に、弾性を有する。研磨パッド12として、例えば、機械的衝撃を緩和するために、ショアA硬度が20ないし50の範囲の平坦な発泡樹脂板を使用することができる。または、研磨パッド12として、上記のような発泡樹脂板と、ショアA硬度が80ないし90の範囲にあるゴム板とを組み合わせたものを使用することもできる。砥粒径等に応じて研磨パッド12の弾性を適宜選択することで、平均粒径が極めて微細な(例えば、1μm以下)砥粒の研磨テープを使用しても、研磨速度をあまり遅くすることなく、高精度な表面性状をウエハの周縁に形成することができる。
 ウエハユニット20は、ウエハWを配置するための水平な上面を有するウエハステージ21を含み、ウエハステージ21は、回転軸線Csと同軸なシャフト22を介してモータ23に接続されている。モータ23は、好適に、エンコーダを有するサーボモータである。モータ23を駆動すると、ウエハステージ21がその中心すなわち回転軸線Csに関して回転する。
 ウエハステージ21は、好適に、真空吸着用のステージであり、配管を介して真空ポンプ(図示せず)に連通した1個又は複数個の吸引孔を設けた平坦な表面を有する。ウエハWは、弾力性のあるパッド等を介して、ステージ21上に載置され、真空吸着により固定される。
 ウエハステージ21に固定されたウエハWの周囲部と研磨体(研磨面S)とを当接させウエハステージ21を回転させることにより、周囲部の研磨が行われる。
 本発明の実施形態において、好適に、ウエハステージ21は、所定の回転角度の範囲で正逆回転を繰り返し、研磨加工中に一回転(360度)以上回転することがない。ウエハWが載置されるウエハステージ21の回転角度は、OFを有するウエハWの真円度を低下させることがないように決定される。
 好適に、制御装置30が、導線31によってモータ23に接続され、導線32によって光学センサ33に接続されている。
 光学センサ33は、ウエハの周縁について、ウエハの半径方向の位置を測定するものであり、投光部33a及び受光部33bを有する。
 投光部33aは、ウエハ半径方向に延び回転軸線Csに平行に進む帯状の平行光を投光する。受光部33bは、ウエハWを挟んで投光部33aに対向して配置される。投光部33aは、発光ダイオード素子または半導体レーザ素子から成ってよく、受光部33bは、CCD(Charge Coupled Device)イメージセンサから成ってよい。例えば、受光部33bは、多数の微細なフォトダイオードがウエハ半径方向に並び、投光部33aから投光された平行光を受光可能に構成されたものである。
 投光部33aから投光された光の一部は、ウエハWによって遮光される。また残りの一部は、ウエハWよりも半径方向外方を通過して受光部33bに入射する。ウエハWの周縁の位置が回転軸線Csに対して半径方向に近づくと、ウエハWによって遮光される光が少なくなり、受光部33bに入射する光の光量が大きくなる。またウエハWの周縁の位置が回転軸線Csに対して半径方向に遠ざかると、ウエハWによって遮光される光が多くなり、受光部33bに入射する光の光量が小さくなる。受光部33bは、投光部33aから入射する光量によって出力する電気量が変化する。受光部33bから出力される電気量に基づいて、光学センサ33に対向する部分における周縁の半径方向の位置が検出される。
 制御装置30は、光学センサ33及びモータ23から、ウエハWのオリエンテーションフラットOFの両端部E1、E2(図1(A))の位置のデータを得て、該データに基づいて、回転角度を決定することができる。例えば、両端部E1、E2とウエハWの中心Oとによって画成される角度をウエハステージ21の回転角度に決定することができる。あるいは、ウエハWの半径より小さい半径を有する円形ウエハW’のOFの両端部E1’、E2’の位置を決定し(図1(A))、該両端部E1’、E2’とウエハWの中心Oとによって画成される角度をウエハステージ21の回転角度に決定することができる。
 また、制御装置30は、光学センサ33に対向する部分における周縁の半径方向の位置によりウエハの周囲部に沿ってウエハの半径を決定し、ウエハの外形を決定することができる。
 好適に、ワークユニット20は、水平なベース34上に図の表面から裏面方向に伸長する直線レールを有するLMガイド36、及び図の表面から裏面方向に伸長する直線レールを有する単軸ロボット35に連結された可動プレート37上に設けられている。これにより、ワークステージ21は、図の表面から裏面方向に伸長する水平な軸線に沿って揺動することができる。
 または、研磨テープユニット10が、揺動可能な可動プレート(図示せず)上に設けられることにより揺動可能に構成されていてもよく、他の手段によって揺動可能に構成されてもよい。
 ウエハWは、研磨加工のために、ウエハステージ21にセンタリング(ウエハWの中心を回転軸線Csにアライメント)して配置される。センタリングは、ウエハステージ21に載置されたウエハWの周縁を、回転軸線Csに向け三方向からロッド状の治具(図示せず)で同時に押圧することにより行われる。また、センタリングは、光学センサ30により、ウエハWの外径からウエハWの中心Oを決定し、該中心Oと回転軸線Csとをアライメントするよう治具の押圧を制御して行われてもよく、その他の方法により行われてもよい。
 上記のようなウエハ周縁研磨装置100を使用して、本発明に係る一次研磨工程及び二次研磨工程が行われる。一次研磨工程及び二次研磨工程は、研磨テープユニット10の研磨面SをウエハWの周囲部に、研磨面SとウエハWの半径方向が垂直になるように当接させ、ウエハステージ21を回転軸線Csの周りに回転させることにより行われる。
 図3に、ウエハW(外径の一部が破線で示されている)の周縁(円弧状の周囲部全体とOFの一部)を一次研磨することにより形成されたウエハW1(外径が実線で示されている)、及びウエハW1の最小半径以下の半径r1を有する円弧W1’(一点鎖線で示されている)が図示されている。
 一次研磨において、好適に、ウエハは所定の回転角度θの範囲で正逆回転される。該所定の回転角度θは、例えば、ウエハWの中心Oと、ウエハWのOF上の二点E、E’とにより画成される角度(優角)であってよい。
 あるいは、一次研磨工程において、回転は、CW又はCCWの一定方向の回転であってもよい。
 研磨テープを使用して一次研磨されたウエハW1は、ウエハ材料の結晶方位等に起因して周囲部の研磨レートにバラツキを生じ、不均一な外径を有することがある。例えば、ウエハ材料によって、OFに平行な直径の両端近傍の周囲部の部分の研磨レートが低い場合等がある。このようなウエハW1の半径rが周囲部に沿って測定され、ウエハW1の最小半径以下の所定の半径r1が設定され、該設定された半径r1とウエハW1の半径rとの差であるΔrがウエハW1の周囲部に沿って決定される。
 ウエハW1の周囲部のΔrの値は、外径が不均一であるために、幅を有する。所定の値以上のΔrを有する周囲部の部分P、P’が、結晶方位等に起因して研磨レートが不十分になる部分に決定され、該周囲部の部分P、P’に対応する角度θp、θp’が決定される。角度θp、θp’は、例えば、OFに垂直な基準線Rからの角度の範囲として決定されてよい。
 角度θp、θp’を決定した後、本発明に係る二次研磨工程が行われる。二次研磨工程において、ウエハステージ21は、所定の回転角度θの範囲で正逆回転するとともに、可動プレート37の揺動により、水平な軸線に沿って研磨面Sに平行に揺動する(図2)。すなわち、ウエハW1は、ウエハステージ21の正逆回転により、回転角度θの範囲で研磨面Sに当接する周縁を順次研磨され、さらに研磨面Sに当接した部分が研磨面Sに対して揺動することにより研磨される。このようにすることで、研磨される周縁全体の研磨レートを向上させることができる。
 なお、一次研磨工程においても、研磨面Sとウエハステージ21を相対揺動させて研磨を行うことができる。
 ウエハステージ21の正逆回転の速度は、回転角度θのうちの角度θp、θp’の範囲で低下させられる。回転速度が低下した状態で、角度θp、θp’に対応したウエハの周縁の部分と研磨面Sとが当接し一定のストロークで揺動するので、当該部分の結晶方位による研磨レートの低下を抑制することができ、二次研磨によって、ウエハW1よりも真円度が向上した円形ウエハを製造することができる。
 角度θp、θp’の範囲における回転速度の低下の程度は、研磨レートの差異(Δrの値)に基づいて適宜(例えば、基準の速度に対して、10パーセント、30パーセント、50パーセント、70パーセント、90パーセント等)決定されてよい。
 ここで、真円度とは、円形形体の幾何学的に正しい円からの狂いの大きさを指し、MZC最小領域中心法において、測定図形を挟む二円の同心円の半径差が最も小さくなるように二円の中心座標の位置を探し出し、この中心座標を測定図形の中心と考え、このときの二円の半径差が真円度とされる(JIS B0621)。例えば、円弧W1’の半径r1が、ウエハW1の最小半径に等しい場合、測定されたΔrの最大値は、ウエハW1の真円度であり得る。
 設定される円弧W1’の半径がウエハW1の最小半径に等しい場合、所定の値以上のΔrを有する周囲部の部分P(P’)が決定され、該周囲部の部分P(P’)が研磨されることにより、所望の真円度を有する円形ウエハを製造することができる。この場合、研磨体(研磨面S)は周囲部の部分P(P’)のみに当接され、ウエハステージ21を回転角度θp(θp’)の範囲で正逆回転させることにより研磨加工が行われる。
 ウエハW(W1)が、ノッチを有するウエハである場合、角度θp(θp’)は、ノッチのV字型の切り欠きの中心とウエハの中心Oを通る基準線R’(図示せず)からの角度の範囲として決定されてよい。
 図4A(a)に、研磨テープを使用した研磨において、真円度を低下させることがないように決定された一つの実施形態の回転角度θ1が図示されている。
 ウエハWの周縁は、各々破線で示されたOFと円弧状の周囲部Aとから成る。該ウエハWの周縁全体を研磨することにより、円形ウエハW3が製造される。円形ウエハW3の周縁は、OF’と円弧状の周囲部A’とから成り、概して、ウエハWよりやや小さい半径とウエハWよりやや小さいOF長とを有する。
 回転角度θ1は、ウエハの円弧状の周囲部の一部が、直線状に研磨される回転角度であり、このような回転角度θ1は、例えば、ウエハWのOFの両端部a、bと中心Oとによって画成される角度(または、ウエハW3のOF’の両端部a’、b’と中心Oとによって画成される角度)である。回転角度θ1の範囲において、研磨の始点及び終点(または、終点及び始点)は、中心OとOFの一方の端部aを通る線が研磨面Sに垂直になる位置、及び中心OとOFの他方の端部bを通る線が研磨面Sに垂直になる位置であり、このような始点(終点)、終点(始点)の範囲で所定の押圧力Fにより研磨面Sに当接するウエハの周縁が、ウエハステージの正逆回転に伴って順次研磨される。
 研磨開始時には、円弧状の周囲部A全体が研磨面Sに当接して円弧状に研磨される。周囲部が研磨されてウエハの半径が減少するに従って、回転角度θ1の範囲に入らないOFの両端部近傍の周囲部が、平坦な研磨面Sによって直線状に研磨される。研磨終了時には、OFの両端部近傍の周囲部に、周囲部A’に係る円弧に対して半径方向外方に突出した凸部(図4A(b)の色塗り部分)が形成される。
 回転角度θ1は、図示の例に限定されるものではなく、押圧力Fや研磨パッド12の弾性に応じて、OFの両端部a、bから、好適に、各々等距離にある周囲部A上の二点と中心Oとによって画成される角度であってもよい。
 その後の工程で、OFと研磨面Sとを平行に当接させ、OFと研磨面Sとを相対揺動させることにより、OFが研磨されるとともにOF両端部近傍の凸部が取り除かれて、OF’を有する円形ウエハW3が形成される。
 図4Bに、研磨テープを使用した研磨において、真円度を低下させることがないように決定された他の実施形態の回転角度θ2が図示されている。円形ウエハW4は、ウエハWの円弧状の周囲部A全体とOFの一部とを研磨することにより形成されたものであり、ウエハWよりやや小さい半径及びOF長を有する。回転角度θ2は、ウエハWのOF上の二点(または、円形ウエハW4のOFの両端部)c、dと中心Oとによって画成される角の優角である。
 回転角度θ2の範囲において、研磨の始点及び終点(または、終点及び始点)は、中心Oと一方の点cを通る線が研磨面Sに垂直になる位置、及び中心Oと他方の点dを通る線が研磨面Sに垂直になる位置であり、このような始点、終点の範囲で研磨面Sに当接するウエハの周縁がウエハステージの正逆回転に伴って順次研磨される。
 研磨開始時には、研磨面Sは、点c、dに当接せず、研磨終了時には、研磨面Sは、各々の点c、dに接する。研磨面Sが各々の点c、dに接するとき、正逆回転が切り替わるため、回転の速度がほぼゼロとなり、十分に研磨力が小さいため、形成されるOFの両端部にダレを生じることがない。また、円弧状の周囲部全体が、研磨終了時にかけて円弧状に研磨されるため、OF両端部近傍の円弧状の周囲部に凸部が形成されることもなく、円形ウエハW4が形成される。
 図4Cに、研磨テープを使用した研磨において、真円度を低下させることがないように決定されたもう一つの他の実施形態の回転角度θ3が図示されている。円形ウエハW5は、ウエハWの円弧状の周囲部A全体とOFの一部とを研磨することにより形成されたものであり、ウエハWよりやや小さい半径及びOF長を有する。回転角度θ3は、ウエハW(または、円形ウエハW5)のOF上の二点e、fと中心Oとによって画成される角の優角であり、好適に、点eとOFの一方の端部からの距離と、点fとOFの他方の端部からの距離とが等しい。
 回転角度θ3の範囲において、研磨の始点及び終点(または、終点及び始点)は、中心OとOF上の一方の点eを通る線が研磨面Sに垂直になる位置、及び中心OとOF上の他方の点fを通る線が研磨面Sに垂直になる位置であり、このような始点、終点の範囲で研磨面Sに当接するウエハの周縁がウエハステージの正逆回転に伴って順次研磨される。回転角度θ3の範囲において正逆回転による研磨を行うことにより、円形ウエハW5のOFの両端部が研磨され得るが、選択された押圧力Fと研磨パッド12の弾性により、研磨面SとウエハWないしW5の周縁とが当接した状態が維持される(研磨面Sが間欠的にウエハWないしW5の周縁に当接することがない)ため、真円度を低下させることがなく、円形ウエハW5を形成することができる。
 本発明に係る円形ウエハの製造方法及び比較例に係る方法により、OFを有する4インチ単結晶Siウエハの周縁が研磨され、形成されたウエハの真円度が確認された。
 図5Aに、真円度測定機Rondcom 43C(東京精密社製)により測定された、円筒研削されたインゴットから切り出されたSiウエハの外径の形状及び真円度が示されている。真円度は、低域フィルタ(2RC)を使用したMZC中心法により、矢印の範囲で測定された(OFは計算から除外)。周縁を研磨テープを使用して研磨加工する前のSiウエハの真円度は、3.798μmであった。
 比較例
 ウエハステージに配置されたSiウエハの周縁と研磨体(研磨パッドに配置された研磨テープ)とを当接させ、ウエハステージを一定方向(CW)に回転(1000rpm、3分間)させることにより、ウエハ周縁の研磨が行われた。図5Bに示されているとおり、この研磨方法では、ウエハの外径の形状が大きく変化し、特に、OFの一方の端部(肩部)の摩耗が著しかった。ステージが一定方向に回転したことによって、SiウエハのOFが研磨体に対向する位置においてウエハと研磨体との当接が解除された後、OFの一方の端部に強く当接し、その後、研磨パッドの弾性等により、円弧状の周縁において当接が弱まるなど、当たりムラが大きくなった。このように研磨体がウエハの周縁に追従せず間欠的に当接した結果、真円度は51.563μmと著しく悪化した。
 実施例
 ウエハステージに配置されたSiウエハの周縁と研磨体(研磨パッドに配置された研磨テープ)とを当接させ、ウエハの円弧状の周囲部の一部が直線状に形成されるようウエハステージの回転角度を決定し(図4A参照)、該回転角度においてウエハステージを連続して正回転、逆回転(3000rpm)させることにより、ウエハ周縁の研磨が行われた。図5Cに示されているとおり、外径の形状の変化は小さく、真円度は21.318μmであり、加工仕様を十分に満たすものであった。この後、OFがさらに研磨されてOF両端部近傍の凸部が除去され、円形ウエハが製造された。
 本発明の思想及び態様から離れることなく多くのさまざまな修正が可能であることは当業者の知るところである。したがって、言うまでもなく、本発明の態様は例示に過ぎず、本発明の範囲を限定するものではない。
 W    ウエハ1
 W1   ウエハ2
 W1’  設定された円弧
 O    ウエハの中心
 OF   オリエンテーションフラット
 E、E’ ウエハWのOF上の二点
 R    基準線
 P、P’ 周囲部の部分
 r1   設定された半径
 Δr   半径差
 θ    正逆回転の回転角度
 θp、θp’ 周囲部の部分に対応した角度

Claims (12)

  1.  結晶材料から成る円板状のウエハであって、オリエンテーションフラットと周囲部とを有するウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、
     鉛直な回転軸を有する水平なウエハステージにセンタリングして配置されたウエハの周囲部と研磨体とを当接させながら前記ウエハステージを回転させることにより前記周囲部を研磨する一次研磨工程と、
     前記一次研磨されたウエハの半径を周囲部に沿って測定し、該測定された半径のうちの最小半径以下の半径を設定し、該設定された半径と前記測定されたウエハの半径との差であるΔrを前記周囲部に沿って決定する工程と、
     前記Δrが所定の値より大きい前記一次研磨されたウエハの周囲部の部分を決定する工程と、
     前記一次研磨されたウエハの周囲部と前記研磨体とを当接させ、前記ウエハステージを所定の回転角度の範囲において前記回転軸の周りに正回転及び逆回転させることにより前記一次研磨されたウエハの周囲部を研磨する二次研磨工程と、を含み、
     前記研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成り、
     前記二次研磨工程において、前記オリエンテーションフラットと前記研磨面とが平行になることがなく、前記ウエハステージと前記研磨面とを水平な軸線に沿って相対揺動させ、前記ウエハステージの前記正回転又は前記逆回転の速度を、前記決定されたウエハの周囲部の部分に対応した回転角度の範囲で低下させる、
    円形ウエハの製造方法。
  2.  前記二次研磨工程で、前記ウエハステージを、前記ウエハの円弧状の周囲部の一部が直線状に研磨される回転角度の範囲において正回転及び逆回転させる、
    ことを特徴とする請求項1に記載された円形ウエハの製造方法。
  3.  さらに、前記オリエンテーションフラットと前記研磨面とを当接させ水平な軸線に沿って直線的に相対揺動させることにより前記オリエンテーションフラットを研磨する工程を含む、
    ことを特徴とする請求項2に記載された円形ウエハの製造方法。
  4.  前記二次研磨工程で、前記ウエハステージを、前記ウエハの円弧状の周囲部全体が円弧状に研磨される回転角度の範囲において正回転及び逆回転させる、
    ことを特徴とする請求項1に記載された円形ウエハの製造方法。
  5.  前記ウエハが半導体ウエハである、
    ことを特徴とする請求項1に記載された円形ウエハの製造方法。
  6.  結晶材料から成る円板状のウエハであって、オリエンテーションフラットと周囲部とを有するウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、
     鉛直な回転軸を有する水平なウエハステージにセンタリングして配置されたウエハの周囲部と研磨体とを当接させ、前記ウエハステージを所定の回転角度の範囲において前記回転軸の周りに正回転及び逆回転させることによりウエハの周囲部を研磨する工程、を含み、
     前記研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成り、
     前記研磨する工程において、前記オリエンテーションフラットと前記研磨面とが平行になることがなく、前記ウエハステージと前記研磨面とを水平な軸線に沿って相対揺動させ、前記ウエハステージの前記正回転又は前記逆回転の速度を、前記ウエハの予め決定された周囲部の部分に対応した回転角度の範囲で低下させる、
    円形ウエハの製造方法。
  7.  結晶材料から成る円板状のウエハの円弧状の周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、
     ウエハの半径を円弧状の周縁に沿って測定し、該測定された半径のうちの最小半径以下の半径を設定し、該設定された半径と前記測定されたウエハの半径との差であるΔrを前記円弧状の周縁に沿って決定する工程と、
     前記Δrが所定の値より大きい前記ウエハの周縁の部分を決定する工程と、
     鉛直な回転軸を有する水平なウエハステージにセンタリングして配置された前記ウエハの前記周縁の部分と研磨体とを当接させ、前記ウエハステージを前記周縁の部分に対応した回転角度の範囲において前記回転軸の周りに正回転及び逆回転させることにより前記周縁の部分を研磨する工程であって、前記研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成る、ところの研磨する工程、を含む、円形ウエハの製造方法。
  8.  結晶材料から成る円板状のウエハであって、オリエンテーションフラットと周囲部とを有するウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法であって、
     鉛直な回転軸を有する水平なウエハステージにセンタリングして配置されたウエハの周囲部と研磨体とを当接させながら前記ウエハステージを所定の回転角度の範囲において正回転及び逆回転させることによりウエハの周囲部を研磨する工程、を含み、
     前記研磨体が、平坦な研磨パッドに配置されることにより平坦な研磨面を画成する研磨テープを含んで成り、
     前記研磨する工程において、前記ウエハのオリエンテーションフラットと前記研磨面とが平行になることがない、
    円形ウエハの製造方法。
  9.  前記研磨する工程において、前記ウエハステージを、前記ウエハの円弧状の周囲部の一部が直線状に研磨される回転角度の範囲において正回転及び逆回転させる、
    ことを特徴とする請求項8に記載された円形ウエハの製造方法。
  10.  さらに、前記オリエンテーションフラットと前記研磨面とを当接させ水平な軸線に沿って直線的に相対揺動させることにより前記オリエンテーションフラットを研磨する工程を含む、
    ことを特徴とする請求項9に記載された円形ウエハの製造方法。
  11.  前記研磨する工程において、前記ウエハステージを、前記ウエハの円弧状の周囲部全体が円弧状に研磨される回転角度の範囲において正回転及び逆回転させる、
    ことを特徴とする請求項8に記載された円形ウエハの製造方法。
  12.  前記研磨する工程において、前記研磨面が弾性を有する研磨パッドを介して前記ウエハの周囲部に押圧され、前記研磨面が前記ウエハの周縁から離れることがない、
    ことを特徴とする請求項11に記載された円形ウエハの製造方法。
PCT/JP2014/050097 2013-02-13 2014-01-08 オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法 WO2014125844A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480003185.XA CN104812527B (zh) 2013-02-13 2014-01-08 使用研磨带对具有定向平面等切缺部的由晶体材料构成的晶片的周缘进行研磨来制造圆形晶片的方法
KR1020157021753A KR102114790B1 (ko) 2013-02-13 2014-01-08 오리엔테이션 플랫 등 노치부를 가지는, 결정 재료로 이루어지는 웨이퍼의 주위 에지를, 연마 테이프를 사용하여 연마함으로써 원형 웨이퍼를 제조하는 방법
EP14751286.7A EP2957386B1 (en) 2013-02-13 2014-01-08 Method for producing circular wafer by means of using grinding tape to grind edge of wafer comprising crystalline material and having notched section such as orientation flat
US14/794,984 US9496129B2 (en) 2013-02-13 2015-07-09 Method for manufacturing a circular wafer by polishing the periphery, including a notch or orientation flat, of a wafer comprising crystal material, by use of polishing tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-025344 2013-02-13
JP2013025344A JP6071611B2 (ja) 2013-02-13 2013-02-13 オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/794,984 Continuation US9496129B2 (en) 2013-02-13 2015-07-09 Method for manufacturing a circular wafer by polishing the periphery, including a notch or orientation flat, of a wafer comprising crystal material, by use of polishing tape

Publications (1)

Publication Number Publication Date
WO2014125844A1 true WO2014125844A1 (ja) 2014-08-21

Family

ID=51353855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050097 WO2014125844A1 (ja) 2013-02-13 2014-01-08 オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法

Country Status (7)

Country Link
US (1) US9496129B2 (ja)
EP (1) EP2957386B1 (ja)
JP (1) JP6071611B2 (ja)
KR (1) KR102114790B1 (ja)
CN (1) CN104812527B (ja)
TW (1) TWI594845B (ja)
WO (1) WO2014125844A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605289A (zh) * 2014-09-08 2017-04-26 住友电气工业株式会社 碳化硅单晶衬底及用于制造所述碳化硅单晶衬底的方法
CN107112227A (zh) * 2014-12-18 2017-08-29 同和电子科技有限公司 晶圆组、晶圆的制造装置及晶圆的制造方法
WO2017158747A1 (ja) * 2016-03-16 2017-09-21 株式会社日立製作所 エピタキシャル基板の製造方法および半導体装置の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587135B2 (ja) * 2015-03-31 2019-10-09 日本電気硝子株式会社 板ガラスの研磨加工方法及び研磨加工装置
JP6614978B2 (ja) * 2016-01-14 2019-12-04 株式会社荏原製作所 研磨装置及び研磨方法
CN106057646B (zh) * 2016-07-06 2019-06-25 广东先导先进材料股份有限公司 一种半导体晶片磨边工艺
CN106272035B (zh) * 2016-08-10 2020-06-16 盐城工学院 一种氧化镓单晶用的研磨垫及其制备方法
JP6920849B2 (ja) * 2017-03-27 2021-08-18 株式会社荏原製作所 基板処理方法および装置
KR102444720B1 (ko) * 2018-09-14 2022-09-16 가부시키가이샤 사무코 웨이퍼의 경면 모따기 방법, 웨이퍼의 제조 방법 및, 웨이퍼
DE102019119333A1 (de) * 2019-07-17 2021-01-21 Rud. Starcke Gmbh & Co. Kg Schleifvorrichtung
CN111408998B (zh) * 2020-04-15 2022-05-10 中核(天津)机械有限公司 高精度自动打磨多边形工件的装置及打磨方法
CN112059739B (zh) * 2020-10-15 2022-03-11 北京石晶光电科技股份有限公司 一种光学波片光轴角度精磨生产工艺
CN115351668B (zh) * 2022-09-19 2023-04-21 江西锦瑞机械有限公司 一种压铸件加工机床
CN115502884B (zh) * 2022-11-24 2023-03-07 苏州优晶光电科技有限公司 一种碳化硅晶锭外径研磨控制系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638601A (en) * 1985-11-04 1987-01-27 Silicon Technology Corporation Automatic edge grinder
JPH05217830A (ja) * 1992-08-21 1993-08-27 Hitachi Ltd ウエハ
JPH10100050A (ja) 1996-09-27 1998-04-21 Shin Etsu Handotai Co Ltd ウェーハ面取り部の加工方法及び加工装置
JP2006303112A (ja) 2005-04-19 2006-11-02 Ebara Corp 半導体ウエハ周縁研磨装置及び方法
JP2007000945A (ja) * 2005-06-21 2007-01-11 Jtekt Corp 研削方法及び装置
JP2008537317A (ja) * 2005-04-19 2008-09-11 株式会社荏原製作所 基板処理装置
JP4463326B2 (ja) 2008-02-22 2010-05-19 日本ミクロコーティング株式会社 半導体ウェーハ外周端部の研削方法及び研削装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571477B2 (ja) * 1991-06-12 1997-01-16 信越半導体株式会社 ウエーハのノッチ部面取り装置
JPH11320363A (ja) * 1998-05-18 1999-11-24 Tokyo Seimitsu Co Ltd ウェーハ面取り装置
US7315373B2 (en) * 2001-11-14 2008-01-01 Rorze Corporation Wafer positioning method and device, wafer process system, and wafer seat rotation axis positioning method for wafer positioning device
CN100452312C (zh) * 2004-10-15 2009-01-14 株式会社东芝 抛光装置和抛光方法
JP2006142388A (ja) * 2004-11-16 2006-06-08 Nihon Micro Coating Co Ltd 研磨テープ及び方法
US20070131653A1 (en) * 2005-12-09 2007-06-14 Ettinger Gary C Methods and apparatus for processing a substrate
US7993485B2 (en) * 2005-12-09 2011-08-09 Applied Materials, Inc. Methods and apparatus for processing a substrate
US7976361B2 (en) * 2007-06-29 2011-07-12 Ebara Corporation Polishing apparatus and polishing method
KR20090063804A (ko) * 2007-12-14 2009-06-18 주식회사 실트론 연삭 휠 트루잉 공구 및 그 제작방법, 이를 이용한 트루잉장치, 연삭 휠의 제작방법, 및 웨이퍼 에지 연삭장치
TWI430348B (zh) * 2008-03-31 2014-03-11 Memc Electronic Materials 蝕刻矽晶圓邊緣的方法
JP2009302409A (ja) * 2008-06-16 2009-12-24 Sumco Corp 半導体ウェーハの製造方法
JP5160993B2 (ja) * 2008-07-25 2013-03-13 株式会社荏原製作所 基板処理装置
JP5519256B2 (ja) * 2009-12-03 2014-06-11 株式会社荏原製作所 裏面が研削された基板を研磨する方法および装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638601A (en) * 1985-11-04 1987-01-27 Silicon Technology Corporation Automatic edge grinder
JPH05217830A (ja) * 1992-08-21 1993-08-27 Hitachi Ltd ウエハ
JPH10100050A (ja) 1996-09-27 1998-04-21 Shin Etsu Handotai Co Ltd ウェーハ面取り部の加工方法及び加工装置
JP2006303112A (ja) 2005-04-19 2006-11-02 Ebara Corp 半導体ウエハ周縁研磨装置及び方法
JP2008537317A (ja) * 2005-04-19 2008-09-11 株式会社荏原製作所 基板処理装置
JP2007000945A (ja) * 2005-06-21 2007-01-11 Jtekt Corp 研削方法及び装置
JP4463326B2 (ja) 2008-02-22 2010-05-19 日本ミクロコーティング株式会社 半導体ウェーハ外周端部の研削方法及び研削装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605289A (zh) * 2014-09-08 2017-04-26 住友电气工业株式会社 碳化硅单晶衬底及用于制造所述碳化硅单晶衬底的方法
CN106605289B (zh) * 2014-09-08 2020-01-21 住友电气工业株式会社 碳化硅单晶衬底及用于制造所述碳化硅单晶衬底的方法
CN107112227A (zh) * 2014-12-18 2017-08-29 同和电子科技有限公司 晶圆组、晶圆的制造装置及晶圆的制造方法
CN107112227B (zh) * 2014-12-18 2021-06-04 同和电子科技有限公司 晶圆组、晶圆的制造装置及晶圆的制造方法
WO2017158747A1 (ja) * 2016-03-16 2017-09-21 株式会社日立製作所 エピタキシャル基板の製造方法および半導体装置の製造方法
JPWO2017158747A1 (ja) * 2016-03-16 2018-06-28 株式会社日立製作所 エピタキシャル基板の製造方法および半導体装置の製造方法

Also Published As

Publication number Publication date
TWI594845B (zh) 2017-08-11
US9496129B2 (en) 2016-11-15
CN104812527B (zh) 2018-01-23
KR20150120351A (ko) 2015-10-27
US20160005593A1 (en) 2016-01-07
EP2957386B1 (en) 2017-09-27
EP2957386A1 (en) 2015-12-23
JP2014151418A (ja) 2014-08-25
KR102114790B1 (ko) 2020-05-25
CN104812527A (zh) 2015-07-29
JP6071611B2 (ja) 2017-02-01
TW201446425A (zh) 2014-12-16
EP2957386A4 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2014125844A1 (ja) オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法
KR101707252B1 (ko) 웨이퍼의 면취 가공방법
KR101928104B1 (ko) 단연부를 연마 테이프에 의해 연마 마무리한 판유리 및 판유리 단연부의 연마 방법 및 연마 장치
US20070284764A1 (en) Sensing mechanism for crystal orientation indication mark of semiconductor wafer
JP7481518B2 (ja) ツルーイング方法及び面取り装置
JP7443461B2 (ja) ウェーハの位置決め装置及びそれを用いた面取り装置
US6599760B2 (en) Epitaxial semiconductor wafer manufacturing method
JP7128309B2 (ja) 面取り基板の製造方法及びそれに用いられる面取り装置
JP2018069348A (ja) チャックテーブルの整形方法
JP2017159421A (ja) 面取り加工装置
JP6633954B2 (ja) ウェーハの面取り方法
KR20210116224A (ko) 연삭 방법
JP6608604B2 (ja) 面取り加工された基板及び液晶表示装置の製造方法
TW202010007A (zh) 半導體裝置的製造方法和製造裝置
JP2004243422A (ja) 外周研削合体ホイル
JP2022139255A (ja) 半導体装置の製造方法及び製造装置
JP7324889B2 (ja) 面取り加工システム
JP7219358B2 (ja) ウェーハの面取り装置
US20220344207A1 (en) Cutting method of wafer
TW202306703A (zh) 切削刀片之整形方法
JP2024017800A (ja) 被加工物の加工方法
JP2019166624A (ja) 面取り加工システム及びそれに用いられるツルーイング装置
KR20230175103A (ko) 트루어 성형방법
JP2019198898A (ja) 面取り研削装置
JP2020047946A (ja) ウェーハの面取り方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751286

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014751286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014751286

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157021753

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE