WO2014125565A1 - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
WO2014125565A1
WO2014125565A1 PCT/JP2013/053245 JP2013053245W WO2014125565A1 WO 2014125565 A1 WO2014125565 A1 WO 2014125565A1 JP 2013053245 W JP2013053245 W JP 2013053245W WO 2014125565 A1 WO2014125565 A1 WO 2014125565A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
region
insulating layer
side semiconductor
layer
Prior art date
Application number
PCT/JP2013/053245
Other languages
English (en)
French (fr)
Inventor
康弘 平林
大西 徹
克彦 西脇
順 斎藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2015500017A priority Critical patent/JPWO2014125565A1/ja
Priority to CN201380072766.4A priority patent/CN104981896A/zh
Priority to US14/766,887 priority patent/US20160005843A1/en
Priority to PCT/JP2013/053245 priority patent/WO2014125565A1/ja
Priority to DE112013006649.1T priority patent/DE112013006649T5/de
Priority to TW103104255A priority patent/TW201432823A/zh
Publication of WO2014125565A1 publication Critical patent/WO2014125565A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate

Definitions

  • a semiconductor device and a manufacturing method thereof are disclosed.
  • the present invention relates to a vertical semiconductor device manufactured by thinning a semiconductor substrate and a manufacturing method thereof.
  • the vertical semiconductor device here refers to a semiconductor device in which a current flows between a front electrode and a back electrode formed on a semiconductor substrate.
  • the thickness of the semiconductor substrate affects the performance of the vertical semiconductor device.
  • the performance of a semiconductor device is improved by thinning the semiconductor substrate.
  • the thinned semiconductor substrate is easily cracked, easily bent, and difficult to handle. For this reason, it is difficult to manufacture a semiconductor device by subjecting a thinned semiconductor substrate to a semiconductor manufacturing process. Therefore, the surface of the semiconductor substrate before thinning is subjected to the processing to be performed from the surface, a reinforcing member is fixed to the surface of the semiconductor substrate after the processing, and the back surface of the semiconductor substrate whose surface is reinforced is polished to obtain a semiconductor.
  • a technique is widely used in which a substrate is thinned, a treatment performed from the back surface is performed on the back surface of the thinned semiconductor substrate, and then the reinforcing member is peeled off from the surface of the semiconductor substrate.
  • the thickness of the thinned semiconductor substrate is different every time it is manufactured, and the variation in thickness when the semiconductor device group is mass-produced is large.
  • the surface of the semiconductor substrate is not flat at the stage where the processing performed from the surface of the semiconductor substrate is performed, and undulations are formed on the surface.
  • the semiconductor substrate is easily bent during back surface processing, and the thickness of the semiconductor substrate is likely to vary even within the same semiconductor substrate.
  • the thickness variation is large among the semiconductor device groups manufactured at the same time. Furthermore, in the conventional manufacturing method, since the substrate is thinned uniformly, the semiconductor substrate is easily cracked or bent.
  • This specification discloses a method of mass-producing vertical semiconductor device groups in which the variation in the thickness of the semiconductor substrate is small.
  • the present specification also discloses an improved technique obtained by developing the above basic technique.
  • This improved technology stabilizes the performance of the semiconductor device at a high level by thinning it to a specified thickness in the range necessary to ensure the performance of the semiconductor device group, and in the range not related to the performance of the semiconductor device.
  • the strength of the semiconductor substrate is ensured by not thinning the substrate.
  • the basic technology is utilized within the range of thinning.
  • a semiconductor manufacturing process is performed on an SOI substrate.
  • a front-side semiconductor layer, an insulating layer, and a back-side semiconductor layer are stacked in this order, and both the front-side semiconductor layer and the back-side semiconductor layer include a semiconductor material containing silicon (for example, a single material of Si or SiC).
  • the back side refers to the side that is etched to reduce the thickness
  • the front side refers to the side that remains after etching.
  • the surface of the surface side semiconductor layer of the SOI substrate is subjected to a treatment performed from the surface.
  • etching is performed from the back surface of the SOI substrate to remove the back surface side semiconductor layer and the insulating layer in at least a part of the active region where the semiconductor structure functioning as a semiconductor device is formed to expose the back surface of the front surface side semiconductor layer.
  • the back surface of the front surface side semiconductor layer of the SOI substrate is subjected to processing performed from the back surface to manufacture a semiconductor structure necessary for the vertical semiconductor device.
  • the back semiconductor layer and the insulating layer are removed in at least a part of the active region.
  • the back side semiconductor layer and the insulating layer may be removed in the entire active region and other regions.
  • the back side semiconductor layer and the insulating layer may be removed in the active region, and the back side semiconductor layer and the insulating layer may be left in other regions.
  • the necessary performance can be ensured by thinning a part of the active region.
  • the back side semiconductor layer and the insulating layer may be removed in a part of the active region.
  • the back surface of the SOI substrate may be mechanically polished to thin the back side semiconductor layer. That is, the step of exposing the back surface of the front-side semiconductor layer may be realized by etching, and a mechanical polishing step may be employed in a step preceding that.
  • the back side semiconductor layer and the insulating layer are removed by etching from the back side of the SOI substrate to leave the front side semiconductor layer.
  • a semiconductor substrate thinned by the surface-side semiconductor layer remaining after etching is obtained.
  • the etching technique a phenomenon can be obtained in which the insulating layer is etched and the surface-side semiconductor layer is not etched. Therefore, according to this method, it is possible to prevent the front side semiconductor layer from being thinned from the back side.
  • the relationship of “thickness of the thinned semiconductor substrate” “thickness of the semiconductor layer on the surface side of the SOI substrate” can be obtained.
  • the thickness of the surface side semiconductor layer of the SOI substrate can be accurately managed.
  • the thickness variation of the semiconductor substrate thinned by polishing the back surface of the semiconductor substrate is large.
  • the relationship of “variation in thickness of the semiconductor layer on the surface side of the SOI substrate” ⁇ “variation in thickness of the semiconductor substrate polished and thinned” can be obtained. According to the above manufacturing method, the above-described two technical elements are combined, and a vertical semiconductor device group with small variations in the thickness of the semiconductor substrate can be mass-produced.
  • the semiconductor substrate is thinned by leaving the front surface side semiconductor layer while etching the back surface of the SOI substrate to remove the back surface side semiconductor layer and the insulating layer.
  • the basic technique utilizes the fact that, according to the etching technique, a phenomenon in which the insulating layer is etched and the surface-side semiconductor layer is hardly etched can be obtained.
  • the back side semiconductor layer and the insulating layer may be removed over the entire area of the SOI substrate.
  • the reason why the semiconductor substrate of the vertical semiconductor device is thinned is to improve the performance of the semiconductor device.
  • the area required for performance improvement is not necessarily the entire area.
  • the active region where the semiconductor structure that functions as a semiconductor device is formed is thinned, the remaining region does not need to be thinned. In some cases, the required performance can be ensured by thinning a part of the active region. In this case, it is only necessary to thin a part of the active region, and it is not necessary to thin the remaining region. According to the etching technique, it is possible to perform etching in a limited region.
  • the back side semiconductor layer and the insulating layer can be removed by limiting the region, and the back side semiconductor layer and the insulating layer can be left outside the region. Only the area that needs to be thinned can be thinned, and a thick substrate before thinning can be left in the remaining area.
  • the portion serves as a reinforcing member and contributes to ensuring the strength of the semiconductor substrate.
  • the improved technique disclosed in this specification the above-described two technical elements are combined, and etching is performed in a region necessary for improving the performance to make it thin, and the remaining region is not etched.
  • the backside semiconductor layer and the insulating layer remaining without etching can reinforce the thin frontside semiconductor layer.
  • the improved technology the area necessary for improving the performance of the semiconductor device is thinned, and the thickness sufficient to prevent the semiconductor substrate from cracking or bending is secured in a range not necessary for improving the performance.
  • the semiconductor device can be mass-produced.
  • FIG. 2 shows a cross-sectional structure of an SOI substrate used in the manufacturing method of the example.
  • a cross-sectional structure at a stage where necessary processing is performed on the surface of an SOI substrate is shown.
  • a cross-sectional structure at a stage where a reinforcing member is fixed to the surface of an SOI substrate and polished from the back surface is shown.
  • the cross-sectional structure at the stage where the insulating layer is exposed by etching the back side semiconductor layer remaining in the polishing step is shown.
  • a cross-sectional structure at a stage where a collector region is formed by ion implantation through an insulating layer is shown.
  • a cross-sectional structure at a stage where the insulating layer is etched to expose the back surface of the front-side semiconductor layer is shown.
  • the cross-sectional structure in the stage which formed the back surface electrode in the back surface of the surface side semiconductor layer is shown.
  • the cross-sectional structure at the stage where the reinforcing member is peeled is shown.
  • the relationship between the thickness of a semiconductor substrate and a short circuit tolerance is shown.
  • the relationship between the thickness of a semiconductor substrate and ON voltage is shown.
  • the relationship between the impurity concentration and the depth is shown for each processing method applied to the back surface.
  • the cross-sectional structure at the stage where a part of the back side semiconductor layer is thinned and the remaining part is not thinned by the improved manufacturing method of the embodiment is shown.
  • the cross-sectional structure of the semiconductor device manufactured by the manufacturing method of the improved Example is shown.
  • the cross-sectional structure of the semiconductor device of the improved second embodiment is shown.
  • 6 shows a cross-sectional structure of a semiconductor device according to an improved third embodiment.
  • 8 shows a cross-sectional structure of a semiconductor device according to an improved fourth embodiment.
  • 6 shows a cross-sectional structure of a semiconductor device according to an improved fifth embodiment.
  • 9 shows a cross-sectional structure of a semiconductor device according to an improved sixth embodiment.
  • An SOI substrate is used in which the front-side semiconductor layer is an n-type Si single crystal, the insulating layer is a SiO 2 layer, and the back-side semiconductor layer is a Si single crystal.
  • the back side semiconductor layer may be p-type or n-type.
  • the conductivity type is not limited.
  • the impurity concentration of the surface-side semiconductor layer is adjusted to a concentration necessary for the drift region of the IGBT.
  • a high-concentration diffusion region of n-type impurities is formed in the vicinity of the back surface of the n-type Si single crystal that is the front-side semiconductor layer.
  • the impurity concentration of the high concentration diffusion region of the n-type impurity is adjusted to a concentration necessary for the buffer region of the IGBT.
  • a p-type impurity is implanted through the insulating layer to be inverted to p-type.
  • the impurity concentration is adjusted to a concentration necessary for the collector region of the IGBT.
  • a p-type impurity is implanted with energy that forms a collector region in the vicinity of the back surface of the high concentration diffusion region of the n-type impurity.
  • the IGBT is formed in a region (active region) surrounded by the peripheral breakdown voltage structure.
  • the peripheral withstand voltage structure includes a RESURF layer.
  • the peripheral pressure-resistant structure includes a guard ring.
  • FIG. 1 shows a cross-sectional structure of an SOI substrate 2 before the semiconductor device manufacturing method of the first embodiment is performed. For clarity of illustration, hatching is omitted.
  • the SOI substrate 2 has a structure in which a front-side semiconductor layer 10, an insulating layer 50, and a back-side semiconductor layer 60 are stacked.
  • the front side semiconductor layer 10 and the back side semiconductor layer 60 are Si single crystal substrates, and the insulating layer 50 is made of SiO 2 .
  • the thickness of the front surface side semiconductor layer 10 is so thin that it is easily cracked and easily bent, it is reinforced by the thick back surface side semiconductor layer 60, so that the SOI substrate 2 itself is easy to handle. It should be noted that the dimension in the thickness direction in the figure is different from the actual ratio for clarity of illustration.
  • n-type impurity is introduced into the surface side semiconductor layer 10 of the SOI substrate 2.
  • the impurity concentration matches the concentration of the drift region of the IGBT to be finally manufactured.
  • n-type impurities are heavily introduced.
  • the concentration of the n-type impurity high concentration introduction region 14 in the vicinity of the back surface is matched with the concentration of the buffer region of the IGBT to be finally manufactured.
  • the depth of the n-type impurity high concentration introduction region 14 from the back surface 10b is adjusted to the depth of the buffer region of the IGBT to be finally manufactured.
  • the SOI substrate 2 is manufactured by bonding the front surface side semiconductor layer 10 and the back surface side semiconductor layer 60 together.
  • the impurity concentration and depth can be freely adjusted.
  • the n-type impurity high concentration introduction region 14 reaches a depth of approximately 12 ⁇ m from the back surface 10 b of the front surface side semiconductor layer 10.
  • Reference numeral 12 in FIG. 1 indicates a low-concentration region of n-type impurities remaining after the formation of the high-concentration introduction region 14 of n-type impurities.
  • the thick line in the figure indicates the boundary between the substrates, and the thin line indicates the boundary between the regions.
  • the SOI substrate 2 of FIG. 1 can be purchased from a substrate manufacturer.
  • FIG. 2 shows a cross-sectional structure at a stage where the surface 2a of the SOI substrate 2 (that is, the surface of the surface-side semiconductor layer) is subjected to necessary treatment.
  • an IGBT is manufactured. Therefore, at this stage, the semiconductor structure on the surface side necessary for realizing the IGBT is manufactured. That is, the p-type body region 16, the n-type emitter region 18, the trench gate electrode 20, the p-type body contact region 22, the peripheral breakdown voltage structure 28, the emitter electrode 24, the protective film 26, and the like are manufactured.
  • the p-type body region 16 is manufactured by implanting p-type impurities from the surface 2a into the shallow portion of the n-type impurity low concentration region 12. In FIG.
  • the low concentration region of the n-type impurity remaining after the formation of the body region 16 is indicated by reference numeral 12a.
  • the low concentration region 12a of the n-type impurity becomes a drift region.
  • the heights of the emitter electrode 24 and the protective film 26 are different. That is, the surface of the SOI substrate 2 after the surface treatment is not flat and has undulations.
  • the detailed structure of a gate insulating film that surrounds the trench gate electrode 20 and an interlayer insulating film that insulates the trench gate electrode 20 and the emitter electrode 24 is omitted.
  • the SOI substrate 2 is shown upside down.
  • the reinforcing member 70 is attached to the surface of the SOI substrate 2 at the stage where the processing on the surface 2 a is completed, so as to prepare for a thinning operation to be performed later. Since the surface of the SOI substrate 2 at the stage where the processing on the surface 2 a is finished is not flat and the protective film 26 is thick, the reinforcing member 70 is attached to the protective film 26. A space remains between the reinforcing member 70 and the emitter electrode 24.
  • the back side semiconductor layer 60 is mechanically polished from the back side 2 b of the SOI substrate 2. This polishing process ends with the back-side semiconductor layer 60 being thinned.
  • Reference numeral 60a in FIG. 3 indicates a polishing area removed by polishing
  • reference numeral 60b indicates a remaining area remaining after the polishing process.
  • the SOI substrate 2 bends.
  • the SOI substrate 2 is polished in a bent state.
  • the SOI substrate 2 is released from bending. Then, the polishing surface 60c of the remaining region 60b that was flat during polishing becomes a curved surface that is convex upward.
  • the back surface of the substrate is polished and thinned (however, the substrate to be polished is not an SOI substrate). Therefore, the bending of the substrate being polished directly affects the thickness of the thinned substrate.
  • a phenomenon occurs in which the thickness of the substrate changes depending on the location in the substrate.
  • FIG. 4 shows a state where the residual region 60b remaining after polishing is removed by etching.
  • the residual region 60b Si single crystal
  • the insulating layer 50 SiO 2
  • the etching is finished.
  • the problem that the bending of the substrate being polished causes the polished surface 60c of the residual region 60b to be curved is solved.
  • the back surface 50b of the insulating layer 50 exposed on the back surface of the SOI substrate is flat.
  • the etching here may be a technique that removes the remaining region 60b without bending the SOI substrate, and may be wet or dry.
  • the region 60a in FIG. 3 is removed by mechanical polishing. Instead, the entire thickness of the back side semiconductor layer 60 may be removed by etching.
  • the remaining region 60b may not be left and the polishing may be performed until the insulating layer 50 is exposed. What is important is to reduce the thickness of the backside semiconductor layer 10 without damaging the backside 10b. It is essential to leave the remaining region 60b or to expose the backside 50b of the insulating film 50 without damaging it. is not.
  • FIG. 5 shows a stage in which p-type ions are implanted through the insulating layer 50.
  • the implantation concentration of the p-type ions is made higher than the implantation density of the high concentration introduction region 14 of n-type impurities.
  • p-type ions are implanted with energy remaining in the vicinity of the back surface 14e of the n-type impurity high concentration introduction region 14.
  • the vicinity of the back surface 14e of the n-type impurity high concentration introduction region 14 is p-type.
  • the p-type region becomes the collector region 30.
  • reference numeral 14 a indicates a remaining region of n-type impurities remaining after the implantation of p-type ions.
  • the remaining region of the n-type impurity becomes an IGBT buffer region 14a.
  • p-type ions are implanted with the insulating layer 50 remaining. If ions are implanted while the insulating layer 50 remains, metal can be prevented from entering the substrate and contaminating the substrate.
  • the process of FIG. 5 illustrates a case where a semiconductor device to be an IGBT is manufactured.
  • a collector region is formed by implanting p-type ions in the formation range of the IGBT, and a cathode region is formed by implanting n-type ions in the formation range of the diode. To do.
  • the ion implantation process shown in FIG. 5 may be performed after the insulating film 50 is removed.
  • FIG. 6 shows a state where the insulating film 50 is removed by etching.
  • the insulating film 50 SiO 2
  • the surface side semiconductor layer 10 Si single crystal
  • the etching is finished when the back surface 10b of the front surface side semiconductor layer 10 is exposed.
  • the thinning of the semiconductor substrate is completed. According to the method of thinning by selecting an SOI substrate as a substrate to be processed, etching using an etchant that etches the insulating film and hardly etches the surface-side semiconductor layer, and leaves only the surface-side semiconductor layer.
  • FIG. 7 shows a stage in which the collector electrode 32 is formed on the back surface of the thinned SOI substrate 2 (that is, the back surface 10b of the front surface side semiconductor layer 10).
  • FIG. 8 shows a stage where the reinforcing member 70 is peeled off. In FIG. 8, the top and bottom are reversed again.
  • the semiconductor device manufactured by the manufacturing method of the present embodiment it is possible to mass-produce semiconductor devices in which the thickness L of the semiconductor substrate interposed between the emitter electrode 24 and the collector electrode 32 is always kept constant.
  • FIG. 9 shows the relationship between the thickness of the semiconductor substrate and the short-circuit tolerance.
  • the semiconductor substrate is thicker on the right side, and the short circuit resistance is higher on the upper side.
  • the short-circuit withstand is a withstand until the semiconductor device is destroyed when an abnormal large current flows through the semiconductor device. The higher the withstand, the harder the semiconductor device is destroyed.
  • the withstand amount is determined by the amount of heat generation and the amount of heat transfer. The thicker the semiconductor substrate, the higher the short-circuit withstand amount.
  • a in the figure indicates the lower limit value of the short-circuit resistance required for the semiconductor device. That is, the semiconductor substrate needs to be at least thicker than B.
  • the distance between BDs indicates the magnitude of variation in the thickness of the semiconductor substrate in the case of the conventional manufacturing method (that is, the method of polishing and thinning). Even if there is variation, it is necessary to obtain a thickness of B or more. It can be seen that the conventional manufacturing method requires a design in which the thickness of the thinned semiconductor substrate is D, otherwise the short-circuit withstand value A cannot be satisfied when the thickness of the semiconductor substrate varies.
  • the distance between BCs indicates the magnitude of the variation in the thickness of the semiconductor substrate in the case of the manufacturing method of the embodiment (that is, the method of thinning by leaving the surface side semiconductor layer of the SOI substrate). Yes.
  • the design value of the thickness of the semiconductor substrate can be C. It can be seen that even if the design value is reduced from D to C, the lower limit A of the short-circuit resistance can be satisfied.
  • the design value of the thickness of the semiconductor substrate can be reduced from 124 ⁇ m to 115 ⁇ m.
  • FIG. 10 shows the relationship between the thickness of the semiconductor substrate and the on-voltage of the semiconductor device.
  • the semiconductor substrate is thicker on the right side, and the on-voltage is higher on the upper side.
  • the on-voltage is a potential difference between the emitter and collector electrodes when the semiconductor device is on. The higher the on-voltage, the greater the loss caused by the semiconductor device. The relationship is such that the thinner the semiconductor substrate, the lower the on-voltage. It is confirmed that thinning is important for improving the performance of semiconductor devices.
  • F shown in the figure represents the on-voltage when the conventional design value D is used
  • E shown in the figure represents the on-voltage when the design value C is obtained according to the manufacturing method of the embodiment.
  • G shows the amount of decrease in the on-voltage due to the manufacturing method of the example.
  • G / F here shows the improvement rate when the manufacturing method of the example is used. According to this embodiment, it is confirmed that the on-voltage decreases and the loss decreases.
  • the on-resistance can be reduced by 5%.
  • the thickness of the semiconductor substrate is reduced, the electric field applied to the back surface is increased, and the pressure resistance performance while the semiconductor device is turned off is likely to deteriorate.
  • the semiconductor device is turned off, a depletion layer spreads from the interface between the body region 16 and the drift region 12a shown in FIG.
  • the breakdown voltage performance of the semiconductor device decreases.
  • the buffer region 14a prevents the depletion layer from spreading further and prevents the breakdown voltage performance from deteriorating.
  • the buffer region 14a is easily depleted, and the depletion layer easily reaches the collector region 30 or the back surface scratch. Therefore, it is effective to increase the thickness of the buffer region 14a in order to prevent the breakdown voltage performance from decreasing.
  • the thinner the semiconductor substrate the greater the need to make the buffer region 14a thicker.
  • the back surface is thinned, ions are implanted, and heat treatment is performed to manufacture the buffer region 14a. Since the heat treatment can be performed only within a range that does not impair the structure on the surface side, it is difficult to increase the thickness of the buffer region 14a.
  • FIG. 11 shows the relationship between the distance from the back surface and the impurity concentration obtained when the high concentration impurity introduction process is performed from the back surface of the semiconductor substrate.
  • concentration profile after the heat treatment after the implantation is shown.
  • the concentration profile obtained when the heat treatment is performed by irradiating the back surface with a laser after ion implantation It can be seen that the thickness of the high concentration region cannot be increased.
  • (2) shows a concentration profile obtained with an SOI substrate obtained by performing heat treatment after implanting ions into a semiconductor substrate before bonding, and bonding after the heat treatment. Since the heat treatment temperature is not restricted, it can be seen that the thickness of the high concentration region can be increased. Further, the activation rate of impurities is extremely high, and defects are hardly generated in the buffer layer. As a result, an increase in leakage current can be suppressed.
  • (1) shows a concentration profile at the time of proton injection. When protons are implanted, a thick buffer region can be formed. However, when protons are implanted, defects are likely to occur in the buffer region, increasing the leakage current. As shown in FIG.
  • the semiconductor substrate 2 in which the n-type impurity high concentration introduction region 14 is formed on the back surface 10b side of the front surface side semiconductor layer 1 is used, the semiconductor substrate is thinned to reduce the on-voltage,
  • the buffer region can be made thick to prevent the breakdown voltage performance from being lowered, and the defect density in the buffer region can be lowered to suppress the leakage current. Further, the impurity concentration and depth of the buffer layer can be freely adjusted. It is easy to adjust the concentration profile required by the semiconductor device.
  • the back surface of the thinned semiconductor substrate is likely to be damaged.
  • the leakage current of the semiconductor device increases.
  • the back surface of the front-side semiconductor layer is exposed by etching, there is a low risk of scratching the back surface of the thinned semiconductor substrate. Even if a scratch occurs, a buffer layer having a sufficient thickness can be secured as described above, so that an increase in leakage current can be efficiently prevented.
  • the thickness of the semiconductor substrate that affects the performance of the semiconductor device is the thickness in the range where the emitter electrode 24 and the collector electrode 32 shown in FIG. 8 face each other, and the thickness in the range where the both do not face does not affect.
  • the back side semiconductor layer or the like is left without being thinned in a range where the two do not face each other, and the strength of the semiconductor substrate is ensured in the remaining portion.
  • the thickness after being thinned using the surface-side semiconductor layer is managed to a constant value.
  • the region where the emitter electrode 24 and the collector electrode 32 face each other is a region in which a semiconductor structure that operates as an IGBT is formed by the emitter region 18, the trench gate electrode 20, the body region 16, the drift region 12a, the buffer region 14a, the collector region 30, and the like. And is referred to as an active region in this specification.
  • the active region referred to in this specification refers to a region where a semiconductor structure functioning as a semiconductor device is formed, and is distinguished from a region where a peripheral breakdown voltage structure is formed.
  • FIG. 12 focuses on the existence of an active region Q in which an IGBT structure is formed and a peripheral region P in which a peripheral withstand voltage structure is formed in the same semiconductor substrate.
  • Example of applying thinning technique by removing the layer 50 and leaving only the front surface side semiconductor layer 10, and leaving the back side semiconductor layer 60 and the insulating layer 50 in a thick plate state in the peripheral region P Show.
  • the peripheral region P makes a round around the active region Q.
  • a plurality of IGBT chips are manufactured from the same SOI substrate by dicing along the peripheral region P.
  • reference numeral 60P indicates the back-side semiconductor layer 60 remaining in the peripheral region P
  • reference numeral 50P indicates the insulating layer 50 remaining in the peripheral region P
  • the region 60Q indicated by the phantom line is the back side semiconductor layer 60 in the active region Q, which is the region removed by etching
  • the region 50Q is the insulating layer 50 in the active region Q.
  • the region removed by etching is shown.
  • FIG. 12 shows a result of selective etching by the region where the region 60Q is etched and removed, the region 60P is left unetched, the region 50Q is etched away, and the region 50P is left unetched. Is shown. Note that etching takes time compared to mechanical polishing. On the other hand, it is difficult to thin the plate by limiting the range by mechanical polishing, but it can be thinned by limiting the range by etching. Therefore, it is preferable to polish the entire back surface of the back-side semiconductor layer 60 until the thickness indicated by 60P in FIG. By leaving the back-side semiconductor layer 60P having a thickness that can be etched within a practical time, the semiconductor substrate is difficult to break and bend easily, and is easy to handle.
  • FIG. 12 shows a stage in which p-type ions are implanted from the back side of the SOI substrate 2 after selectively etching the back side semiconductor layer 60 in the active region Q.
  • the p-type ions are implanted with energy remaining in the vicinity of the back surface 14b of the n-type impurity high concentration introduction region 14.
  • the remaining back-side semiconductor layer 60P serves as a mask, so that p-type ions do not reach the front-side semiconductor layer 10.
  • p-type ions are implanted in the vicinity of the back surface 14b of the n-type impurity high concentration introduction region 14.
  • the implantation concentration of p-type ions is made higher than the implantation density of n-type impurities.
  • the vicinity of the back surface 14b of the n-type impurity high concentration introduction region 14 is p-type.
  • the p-type region becomes the collector region 30b.
  • the collector region 30b is formed only in the active region Q.
  • reference numeral 14b indicates a high-concentration region of n-type impurities remaining after the implantation of p-type ions.
  • the high concentration region 14b of the n-type impurity becomes a buffer region.
  • the buffer region 14b is formed in both the peripheral region P and the active region Q.
  • the ion implantation step shown in FIG. 12 may be performed after the insulating film 50Q is removed, or may be performed over the insulating film 50Q.
  • the back-side semiconductor layer 60P remaining in the peripheral region P serves as a mask, and the collector region 30b can be formed limited to the range of the active region Q.
  • FIG. 13 shows a stage where the reinforcing member 70 is removed thereafter (inverted upside down). The same reference numerals are assigned to the regions and the like described in FIG. FIG. 13 is further enlarged than FIG. 8, and the gate insulating film 36 and the interlayer insulating film 34 are clearly shown.
  • the following advantages are obtained. (1) Since the back side semiconductor layer 60P and the insulating layer 50P remaining in the peripheral region P serve as reinforcing members, the strength of the semiconductor substrate is improved and it is easy to handle. (2) The collector region 30b is not formed in the peripheral region P, and holes are hardly injected into the peripheral region P. When holes are injected into the peripheral region P, the holes are concentrated in the vicinity of the boundary between the peripheral region P and the active region Q at the time of turn-off, and the breakdown tolerance is reduced. According to the structure of FIG. 13, the breakdown tolerance can be maintained high. (3) There is a possibility that holes are injected from the collector electrode 32 into the peripheral region P via the backside semiconductor layer 60P remaining in the peripheral region P.
  • the insulating layer 50P remains in the peripheral region P, hole injection is prevented. This also contributes to the improvement of the breakdown tolerance.
  • the semiconductor layer 10 of the semiconductor device is thinned, the short-circuit resistance is reduced.
  • the thick back electrode 32 can be formed in the active region Q, the withstand voltage is not reduced.
  • the thick back-side semiconductor layer 60P remains, which prevents a decrease in withstand voltage.
  • the thermal conductivity of the insulating layer 50P is low, if the film thickness is suppressed to 1/107 or less of the thickness of the SOI substrate 2, the influence of a decrease in thermal conductivity hardly occurs.
  • the buffer region 14c and the collector region 30c may extend over the entire area of the semiconductor substrate. If the buffer region 14c and the collector region 30c are formed by processing the back surface side of the front surface side semiconductor layer 10 before being bonded to form an SOI substrate, the structure of FIG. 14 can be realized. When processing is performed at this stage, the impurity concentration, diffusion depth, and the like of the buffer region 14c and the collector region 30c can be freely adjusted. Also in this embodiment, there is a possibility that carriers are injected into the peripheral region P through the backside semiconductor layer 60P remaining in the peripheral region P. However, since the insulating layer 50P remains in the peripheral region P, carrier injection is blocked as indicated by a cross in FIG. This also contributes to the improvement of the breakdown tolerance.
  • FIG. 15 shows the structure of the improved semiconductor device of the third embodiment.
  • the same reference numerals are assigned to the same areas as those already described, and the duplicate description is omitted. Only the differences will be described. The same applies to the following embodiments.
  • the back-side semiconductor layer 60Q and the insulating layer 50Q are intermittently left in the active region Q. Conversely, in the active region Q, the back side semiconductor layer and the insulating layer are removed and thinned in a plurality of dispersed ranges. A collector electrode 32a is formed in the thinned area.
  • a result of continuous adjacent collector regions 30b can be obtained. This is because in the process of forming the collector region 30b, it is diffused by heat treatment.
  • the adjacent collector regions may be discontinuous. If the turn-off characteristics are poor due to excessive hole injection, it may be advantageous to leave the adjacent collector region in a discontinuous state.
  • the mechanical strength of the semiconductor substrate is further enhanced by leaving the back side semiconductor layer 60Q and the insulating layer 50Q.
  • anisotropic etching can be employed if necessary to remove the back side semiconductor layer and the insulating layer in a plurality of dispersed ranges. Anisotropic etching enables etching that goes deep in the thickness direction of the substrate.
  • FIG. 16 shows the structure of the improved semiconductor device of the fourth embodiment.
  • a plurality of guard rings are formed in the peripheral region P to ensure a withstand voltage.
  • n-type is used for the surface-side semiconductor layer 10.
  • the combination of the n-type emitter region, the p-type body region, the n-type drift region, and the p-type collector improves the IGBT characteristics.
  • the conductivity type of the back-side semiconductor layer 60 may be n-type, i-type, or p-type.
  • FIG. 17 shows a case where the conductivity types of the front surface side semiconductor layer 10 and the back surface side semiconductor layer 60P are opposite.
  • the buffer regions 14a to 14c extending over the entire area of the semiconductor substrate are used.
  • the peripheral region P may have a structure in which the buffer region and the collector region do not exist.
  • the buffer region 14d and the collector region 30b may be formed only in the active region Q.
  • an SOI substrate in which the n-type impurity high concentration introduction region 14 is not formed is used.
  • using the backside semiconductor layer 60P remaining in the peripheral region P as a mask using the backside semiconductor layer 60P remaining in the peripheral region P as a mask, n-type ions are implanted to form the buffer region 14d, and p-type ions are implanted to form the collector region 30b.
  • the structure of FIG. 18 is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thin Film Transistor (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Element Separation (AREA)

Abstract

 表面側半導体層と絶縁層と裏面側半導体層が順に積層しているSOI基板を用いて、半導体層の厚みが管理されている縦型の半導体装置を量産する。SOI基板の表面に対して表面から実施する処理を施し、SOI基板の裏面からエッチングして裏面側半導体層と絶縁層を除去して表面側半導体層の裏面を露出させ、露出した表面側半導体層の裏面に対して裏面から実施する処理を施す。SOI基板の表面側半導体層の厚みは正確に管理でき、その表面側半導体層と同じ厚みの半導体層を持つ半導体装置が量産される。半導体装置として機能する半導体構造が形成されている活性領域でない領域では、裏面側半導体層と絶縁層を除去する必要がない。活性領域では絶縁層と裏面側半導体層が除去されており、周辺耐圧領域では絶縁層と裏面側半導体層が残存している縦型の半導体装置を量産することもできる。高性能な半導体装置を歩留まりよく量産できる。

Description

半導体装置とその製造方法
 本明細書では、半導体装置とその製造方法を開示する。特に、半導体基板を薄板化して製造する縦型の半導体装置とその製造方法に関する。ここでいう縦型の半導体装置とは、半導体基板に形成されている表面電極と裏面電極の間を電流が流れる半導体装置をいう。
 縦型の半導体装置の性能には、半導体基板の厚みが影響する。多くの場合、半導体基板を薄板化することで半導体装置の性能が向上する。薄板化した半導体基板は、割れ易くて撓み易く、取り扱いが難しい。そのために、薄板化した半導体基板に半導体製造プロセスを施して半導体装置を製造することは困難である。そこで、薄板化する前の半導体基板の表面に対して表面から実施する処理を施し、処理を終えた半導体基板の表面に補強部材を固定し、表面を補強した半導体基板の裏面を研磨して半導体基板を薄板化し、薄板化した半導体基板の裏面に対して裏面から実施する処理を施し、その後に半導体基板の表面から補強部材を剥離する技術が普及している。
特開2009-064825号公報 特開2005-317570号公報 特開2004-088074号公報 特開2000-040773号公報 特開2000-040711号公報
 上記の製造方法では、半導体基板の裏面を研磨して薄板化する際に、薄板化した半導体基板の厚みを一定値に管理するのが難しい。製造するたびに薄板化した半導体基板の厚みが相違することになり、半導体装置群を量産したときの厚みのばらつきが大きい。
 特に、半導体基板の表面から実施する処理を施した段階で半導体基板の表面が平坦でなくなっており、表面に起伏が形成されている場合がある。表面に起伏が生じている場合には、裏面加工の際に半導体基板が撓み易く、同じ半導体基板内でも半導体基板の厚みがばらつき易い。同一の半導体基板から複数個の半導体装置を製造する場合には、同時に製造した半導体装置群の中でも、厚みのばらつきが大きい。
 さらに従来の製造方法では、基板を一様に薄板化してしまうことから、半導体基板が割れたり撓んだりし易い。
 本明細書では、半導体基板の厚みのばらつきが小さい、縦型の半導体装置群を量産する方法を開示する。また本明細書では、上記の基本技術を発展させた改良技術も開示する。この改良技術では、半導体装置群の性能を確保するのに必要な範囲では規定の厚みに薄板化することによって半導体装置の性能を高いレベルで安定させるとともに、半導体装置の性能に関係しない範囲では半導体基板を薄板化しないことによって半導体基板の強度を確保する。この改良技術でも、薄板化する範囲では基本技術を活用する。
 本明細書で開示する基本技術では、SOI基板に対して半導体製造プロセスを施す。ここでいうSOI基板は、表面側半導体層と絶縁層と裏面側半導体層が順に積層しており、表面側半導体層と裏面側半導体層の双方がシリコンを含む半導体材料(例えばSiまたはSiCの単結晶)で形成されている積層基板をいう。ここでいう裏面側とは、薄板化するためにエッチングする側をいい、表面側とは、エッチング後も残留する側をいう。
 本明細書で開示する基本技術では、SOI基板の表面側半導体層の表面に対して、表面から実施する処理を施す。次に、SOI基板の裏面からエッチングし、半導体装置として機能する半導体構造が形成されている活性領域の少なくとも一部における裏面側半導体層と絶縁層を除去して表面側半導体層の裏面を露出させる。その後に、SOI基板の表面側半導体層の裏面に対して、裏面から実施する処理を施し、縦型の半導体装置に必要な半導体構造を製造する。
 エッチング工程では、活性領域の少なくとも一部において、裏面側半導体層と絶縁層を除去する。すなわち、活性領域とそれ以外の領域の全域において、裏面側半導体層と絶縁層を除去してもよい。活性領域では裏面側半導体層と絶縁層を除去し、それ以外の領域では裏面側半導体層と絶縁層を残存させてもよい。活性領域の一部を薄板化することで必要な性能を確保できる場合があり、その場合は、活性領域の一部において裏面側半導体層と絶縁層を除去すればよい。
 エッチング工程に先だって、SOI基板の裏面を機械的に研磨して裏面側半導体層を薄板化しておいてもよい。すなわち、表面側半導体層の裏面を露出させる段階をエッチングで実現すればよく、それに先立つ段階では機械的研磨工程を採用してもよい。
 上記の製造方法では、SOI基板の裏面からエッチングして裏面側半導体層と絶縁層を除去し、表面側半導体層を残留させる。エッチング後に残留する表面側半導体層によって薄板化した半導体基板を得る。エッチング技術によると、絶縁層をエッチングして表面側半導体層をエッチングしない現象を得ることができる。そのために、この方法によると、表面側半導体層が裏面側から薄板化されてしまうことを防止できる。「薄板化した半導体基板の厚み」=「SOI基板の表面側半導体層の厚み」の関係を得ることができる。
 SOI基板の表面側半導体層の厚みは正確に管理することができる。それに対して、半導体基板の裏面を研磨して薄板化した半導体基板の厚みのばらつきは大きい。「SOI基板の表面側半導体層の厚みのばらつき」<「研磨して薄板化した半導体基板の厚みのばらつき」の関係を得ることができる。
 上記の製造方法によると、上記の2技術要素が複合され、半導体基板の厚みのばらつきが小さい縦型の半導体装置群を量産することができる。
 エッチング工程に先立つ段階では、機械的研磨工程を採用して薄板化してもよい。表面側半導体層の裏面を露出させる段階をエッチングで実現すれば、絶縁層をエッチングして表面側半導体層をエッチングしない現象を得ることができ、「薄板化した半導体基板の厚み」=「SOI基板の表面側半導体層の厚み」の関係を得ることができる。機械的研磨工程を併用すると、薄板化処理に要する時間が短縮される。
 本明細書で開示する基本技術では、SOI基板の裏面からエッチングして裏面側半導体層と絶縁層を除去する一方において、表面側半導体層を残留させることによって半導体基板を薄板化する。その基本技術では、エッチング技術によると、絶縁層をエッチングして表面側半導体層をほとんどエッチングしない現象が得られることを活用する。SOI基板の全域に亘って裏面側半導体層と絶縁層を除去してもよい。
 縦型の半導体装置の半導体基板を薄板化するのは、半導体装置の性能を向上させるためである。性能向上に必要な領域は必ずしも全域でない。半導体装置として機能する半導体構造が形成されている活性領域さえ薄板化すれば、残余の領域を薄板化する必要はない。活性領域の一部を薄板化することで必要な性能を確保できる場合があり、その場合は、活性領域の一部を薄板化すればよく、残余の領域を薄板化する必要はない。
 エッチング技術によると、領域を限定してエッチングすることができる。領域を限定して裏面側半導体層と絶縁層を除去し、領域外では裏面側半導体層と絶縁層を残留させることができる。薄板化が必要な領域のみを薄板化し、残余の領域では薄板化前の厚い基板を残存させることができる。残余の領域では薄板化しないと、その部分が補強部材となって半導体基板の強度を確保することに貢献する。
 本明細書で開示する改良された技術では、上記の2技術要素を組み合わせ、性能向上に必要な領域ではエッチングして薄板化し、残余の領域ではエッチングしない。改良された技術によると、エッチングしないで残留する裏面側半導体層と絶縁層が、薄い表面側半導体層を補強する結果を得ることができる。改良された技術によると、半導体装置の性能向上に必要な領域では薄板化されており、性能向上に必要でない範囲では半導体基板が割れたり撓んだりすることを防止するだけの厚みが確保されている半導体装置を量産することができる。
実施例の製造方法で用いるSOI基板の断面構造を示す。 SOI基板の表面に必要な処理を施した段階での断面構造を示す。 SOI基板の表面に補強部材を固定して裏面から研磨した段階での断面構造を示す。 研磨工程で残留した裏面側半導体層をエッチングして絶縁層を露出させた段階での断面構造を示す。 絶縁層越しにイオン注入してコレクタ領域を形成した段階での断面構造を示す。 絶縁層をエッチングして表面側半導体層の裏面を露出させた段階での断面構造を示す。 表面側半導体層の裏面に裏面電極を形成した段階での断面構造を示す。 補強部材を剥離した段階での断面構造を示す。 半導体基板の厚みと短絡耐量の関係を示す。 半導体基板の厚みとオン電圧の関係を示す。 裏面に施す処理方法ごとに、不純物濃度と深さの関係を示す。 改良した実施例の製造方法によって、裏面側半導体層の一部の領域を薄板化して残部を薄板化しない段階での断面構造を示す。 改良した実施例の製造方法で製造される半導体装置の断面構造を示す。 改良した第2実施例の半導体装置の断面構造を示す。 改良した第3実施例の半導体装置の断面構造を示す。 改良した第4実施例の半導体装置の断面構造を示す。 改良した第5実施例の半導体装置の断面構造を示す。 改良した第6実施例の半導体装置の断面構造を示す。
 以下に説明する実施例の特徴を整理しておく。
(特徴1)表面側半導体層がn型のSi単結晶であり、絶縁層がSiO2層であり、裏面側半導体層がSi単結晶であるSOI基板を用いる。
(特徴2)裏面側半導体層は、p型でもよいしn型でもよい。導電型は制約されない。
(特徴3)表面側半導体層の不純物濃度が、IGBTのドリフト領域に必要な濃度に調整されている。
(特徴4)表面側半導体層であるn型のSi単結晶の裏面近傍に、n型不純物の高濃度な拡散領域が形成されている。
(特徴5)n型不純物の高濃度拡散領域の不純物濃度が、IGBTのバッファ領域に必要な濃度に調整されている。
(特徴6)絶縁層越しに、p型不純物を注入してp型に反転させる。その不純物濃度が、IGBTのコレクタ領域に必要な濃度に調整されている。n型不純物の高濃度拡散領域の裏面近傍にコレクタ領域が形成されるエネルギーでp型不純物を注入する。
(特徴7)周辺耐圧構造に囲繞されている領域(活性領域)内にIGBTが形成されている。
(特徴8)周辺耐圧構造に囲繞されている領域(活性領域)内にIGBTとダイオードが形成されている。
(特徴9)周辺領域では、コレクタ領域が形成されていてもよいし、いなくてもよい。
(特徴10)周辺領域では、バッファ領域が形成されていてもよいし、いなくてもよい。
(特徴11)周辺領域では裏面側半導体層と絶縁層が残留し、活性領域では裏面側半導体層と絶縁層が除去されている。
(特徴12)活性領域の一部では裏面側半導体層と絶縁層が除去されており、活性領域の残部と周辺領域では裏面側半導体層と絶縁層が残留している。
(特徴13)周辺耐圧構造は、リサーフ層を備えている。
(特徴14)周辺耐圧構造は、ガードリングを備えている。
 図1は、第1実施例の半導体装置の製造方法を実施する前のSOI基板2の断面構造を示している。図示の明瞭化のために、ハッチングを省略して図示する。SOI基板2は、表面側半導体層10と絶縁層50と裏面側半導体層60が積層された構造を備えている。表面側半導体層10と裏面側半導体層60は、Siの単結晶基板であり、絶縁層50は、SiO2で形成されている。表面側半導体層10の厚みは、単独では割れ易くて撓み易いほど薄いが、厚い裏面側半導体層60で補強されていることから、SOI基板2自体は取り扱い易い。なお、図における厚み方向の寸法は、図示の明瞭化のために、実際の比率と相違している。
 SOI基板2の表面側半導体層10にはn型の不純物が導入されている。その不純物濃度は、最終的に製造するIGBTのドリフト領域の濃度に合わせてある。表面側半導体層10の裏面10bの近傍には、n型の不純物が濃く導入されている。裏面近傍のn型の不純物の高濃度導入領域14の濃度は、最終的に製造するIGBTのバッファ領域の濃度に合わせてある。またn型の不純物の高濃度導入領域14の裏面10bからの深さは、最終的に製造するIGBTのバッファ領域の深さにあわせてある。SOI基板2は、表面側半導体層10と裏面側半導体層60を貼り合わせて製造する。貼り合わせる前の表面側半導体層10を処理してn型の不純物の高濃度導入領域14を形成することから、不純物濃度と深さを自在に調整することができる。本実施例では、図11を参照して後で説明するように、n型の不純物の高濃度導入領域14は、表面側半導体層10の裏面10bからほぼ12μmの深さにまで達している。図1の参照番号12は、n型の不純物の高濃度導入領域14の形成後にも残留するn型不純物の低濃度領域を示している。図中における太線は基板と基板の境界を示し、細線は領域と領域の境界を示している。図1のSOI基板2は基板製造業者から購入することができる。
 図2は、SOI基板2の表面2a(すなわち表面側半導体層の表面)に、必要な処理を施した段階での断面構造を示す。本実施例では、IGBTを製造する。そこで、この段階では、IGBTを実現するのに必要な表面側の半導体構造を製造する。すなわち、p型のボディ領域16、n型のエミッタ領域18、トレンチゲート電極20、p型のボディコンタクト領域22、周辺耐圧構造28、エミッタ電極24、保護膜26等を製造する。p型のボディ領域16は、表面2aからn型不純物の低濃度領域12の浅部にp型不純物を注入して製造する。図2では、ボディ領域16の形成後にも残留するn型不純物の低濃度領域を参照番号12aで示している。n型不純物の低濃度領域12aは、ドリフト領域となる。表面2aに対する処理が終了した段階では、エミッタ電極24と保護膜26の高さが相違している。すなわち、表面処理後のSOI基板2の表面は平坦でなく、起伏が存在する状態となっている。なお図2では、トレンチゲート電極20を取り囲むゲート絶縁膜やトレンチゲート電極20とエミッタ電極24を絶縁する層間絶縁膜等の詳細構造の図示を省略している。
 図3では、SOI基板2の上下を反転して図示している。図3の段階では、表面2aに対する処理が終了した段階のSOI基板2の表面に補強部材70を貼り付けて、後で実施する薄板化作業に備える。表面2aに対する処理が終了した段階のSOI基板2の表面は平坦でなく、保護膜26が厚いことから、補強部材70は保護膜26に貼り付けられる。補強部材70とエミッタ電極24の間には空間が残留している。保護膜26の表面に補強部材70を貼り付けたら、SOI基板2の裏面2bから、裏面側半導体層60を機械的に研磨する。この研磨工程は、裏面側半導体層60が薄板化された状態で終了する。図3の参照番号60aは研磨することで除去された研磨領域を示し、参照番号60bは研磨工程後に残留する残留領域を示している。
 前記したように、補強部材70とエミッタ電極24の間には空間が残留している。その状態で研磨すると、SOI基板2が撓む。SOI基板2は撓んだ状態で研磨される。研磨が終了すると、SOI基板2が撓みから開放される。すると、研磨中は平坦であった残留領域60bの研磨面60cが上に凸な曲面となってしまう。
 従来の製造方法では、基板の裏面を研磨して薄板化する(ただし研磨する基板はSOI基板でない)。そのため、研磨中の基板の撓みが薄板化された基板の厚みに直接的に影響する。従来の製造方法では、基板内の場所によって、基板の厚みが変化してしまう現象が生じる。従来の製造方法では、研磨中の基板の撓みが基板の厚みを不均一にすることを前提にして半導体装置を設計しなければならなかった。後記するように、それが半導体装置の性能向上を妨げていた。
 本実施例では、研磨だけで薄型化するのではなく、その後にエッチングして薄板化することによって、上記の問題に対処する。図4は、研磨後に残留した残留領域60bをエッチングして除去した状態を示す。この段階では、残留領域60b(Siの単結晶)をエッチングして絶縁層50(SiO2)をほとんどエッチングしないエッチャントを用いてエッチングする。絶縁層50の裏面50bが、SOI基板の裏面に露出したら、エッチングを終了する。この段階で、研磨中の基板の撓みが残留領域60bの研磨面60cを曲面にするという問題が解消する。SOI基板の裏面に露出する絶縁層50の裏面50bは平坦である。ここでいうエッチングは、SOI基板を撓ませないで残留領域60bを除去する手法であればよく、湿式でも乾式でもよい。
 本実施例では、図3で60aに示した領域は機械的に研磨して除去する。それに代えて裏面側半導体層60の全厚みを、エッチングして除去してもよい。絶縁層50が厚く、絶縁層50の厚みの範囲内で研磨工程を終了できる場合には、残留領域60bを残さず、絶縁層50が露出するまで研磨してもよい。大事なことは、表面側半導体層10の裏面10bに傷つけることなく薄板化することであり、残留領域60bを残すことや、エッチングして絶縁膜50の裏面50bを傷つけないで露出させることは不可欠ではない。
 図5は、絶縁層50越しに、p型イオンを注入している段階を示す。p型イオンの注入濃度は、n型不純物の高濃度導入領域14の注入密度よりもさらに濃くする。また、p型イオンが、n型不純物の高濃度導入領域14の裏面14eの近傍に留まるエネルギーで注入する。この結果、n型不純物の高濃度導入領域14の裏面14eの近傍はp型となる。p型化された領域は、コレクタ領域30となる。図5において、参照番号14aは、p型イオンの注入後も残留したn型不純物の残留領域を示している。n型不純物の残留領域はIGBTのバッファ領域14aとなる。
 図5の工程では、絶縁層50を残留させた状態でp型イオンを注入する。絶縁層50が残留している状態でイオンを注入すると、金属が基板内に侵入して基板を汚染することを防止できる。また、図5の工程は、IGBTとなる半導体装置を製造する場合を図示している。IGBTとダイオードの双方を備えている半導体装置を製造する場合、IGBTの形成範囲ではp型イオンを注入してコレクタ領域を形成し、ダイオードの形成範囲ではn型イオンを注入してカソード領域を形成する。図5に示すイオン注入工程は、絶縁膜50を除去した後に実施してもよい。
 図6は、絶縁膜50をエッチングして除去した状態を示す。この段階では、絶縁膜50(SiO2)をエッチングして表面側半導体層10(Siの単結晶)をほとんどエッチングしないエッチャントを用いてエッチングする。表面側半導体層10の裏面10bが露出したらエッチングを終了する。上記によって、半導体基板の薄板化が完了する。
 処理対象とする基板にSOI基板を選択し、絶縁膜をエッチングして表面側半導体層をほとんどエッチングしないエッチャントを用いてエッチングして表面側半導体層のみを残留させることによって薄板化する方法によると、
(1)薄板化した半導体基板に絶縁膜が残留することがなく、
(2)薄板化の際に表面側半導体層を薄板化することもなく、
(3)薄板化の際に表面側半導体層の裏面を傷つけることもない。
 上記の結果、「薄板化された半導体基板の厚み=SOI基板の表面側半導体層の厚み」の関係を得ることができる。
 表面側半導体層の厚みが正確に一定値に管理されているSOI基板を入手することが可能である。本実施例の薄板化方法によると、薄板化された半導体基板の厚みのばらつきを抑えることができる。また、薄板化した面に傷を発生させることもない。
 図7は、薄板化したSOI基板2の裏面(すなわち表面側半導体層10の裏面10b)にコレクタ電極32を形成した段階を示している。
 図8は、補強部材70を剥離した段階を示している。図8では再び上下を反転して図示している。本実施例の製造方法で製造した半導体装置によると、エミッタ電極24とコレクタ電極32の間に介在している半導体基板の厚みLが常に一定に管理されている半導体装置を量産することができる。
 薄板化された半導体基板の厚みのばらつきを抑制することの利点を説明する。図9は、半導体基板の厚みと短絡耐量の関係を示す。右側ほど半導体基板が厚く、上側ほど短絡耐量が高い。短絡耐量は、半導体装置に異常な大電流が流れたときに半導体装置が破壊されるまでの耐量であり、耐量が高いほど半導体装置は破壊され難い。耐量は、発熱量と伝熱量で決まり、半導体基板が厚いほど短絡耐量が高いという関係となる。
 図中のAは、半導体装置に必要とされる短絡耐量の下限値を示している。すなわち、半導体基板は少なくともBよりも厚い必要があることを示している。BD間の距離は、従来の製造方法(すなわち研磨して薄板化する方法)による場合の半導体基板の厚みのばらつきの大きさを示している。ばらつきがあってもB以上の厚みが得られるようにする必要がある。従来の製造方法では、薄板化した半導体基板の厚みをDとする設計が必要とされ、そうしないと、半導体基板の厚みがばらついたときに短絡耐量の下限値Aを満たせないことがわかる。それに対して、BC間の距離は、実施例の製造方法(すなわちSOI基板の表面側半導体層を残留せせることで薄板化する方法)による場合の、半導体基板の厚みのばらつきの大きさを示している。前記したように、実施例の製造方法によるとばらつきが減少するために、半導体基板の厚みの設計値をCにできることがわかる。設計値をDからCに薄くしても、短絡耐量の下限値Aを満たせることがわかる。
 一例を挙げると、従来技術による場合のBD間距離は10μmであり、B=114μmの場合にはD=124μmとなる。それが実施例によると、BC間距離が1μmとなり、C=115μmとなる。半導体基板の厚みの設計値を124μmから115μmに薄くすることができる。
 図10は、半導体基板の厚みと半導体装置のオン電圧の関係を示している。右側ほど半導体基板が厚く、上側ほどオン電圧が高い。オン電圧は、半導体装置のオン時におけるエミッタとコレクタ電極間の電位差であり、オン電圧が高いほど半導体装置による損失が大きい。半導体基板が薄いほどオン電圧が低いという関係となっている。半導体装置の性能向上には、薄板化が重要なことが確認される。図示のFは、従来の設計値Dによる場合のオン電圧を示し、図示のEは、実施例の製造方法によるときの設計値Cによる場合のオン電圧を示している。Gは、実施例の製造方法によるオン電圧の低下量を示している。ここでのG/Fが、実施例の製造方法によるときの改善率を示している。本実施例によって、オン電圧が低下し、損失が低下することが確認される。
 一例を挙げると、D=124μmの場合のオン抵抗と、D=115μmの場合のオン抵抗の比は、1.05:1.00となる。実施例の場合には、半導体基板の厚みのばらつきを押さえられることから、オン抵抗を5%減少させることができる。
 上記したように、オン電圧を低下させるためには半導体基板の厚みを薄くするのが有効である。その反面、半導体基板の厚みを薄くすると、裏面にかかる電界が強くなり、半導体装置をオフしている間の耐圧性能が低下し易い。半導体装置をオフすると、図8に示したボディ領域16とドリフト領域12aの界面から、空乏層が広がる。広がった空乏層がコレクタ領域30に達すると、あるいは製造工程で裏面に生じたキズに達すると、半導体装置の耐圧性能が低下する。バッファ領域14aは、空乏層がそれ以上に広がることを防止し、耐圧性能が低下するのを防止する。しかし、裏面にかかる電界が強くなると、バッファ領域14aが空乏化し易くなり、空乏層がコレクタ領域30または裏面キズに達しやすくなる。そこで、耐圧性能の低下を防止するには、バッファ領域14aの厚みを厚くするのが有効である。半導体基板を薄板化するほどバッファ領域14aを厚くする必要が高まる。従来の製造方法では、表面側に対する加工が終了した後に、裏面を薄板化し、イオンを注入し、熱処理してバッファ領域14aを製造する。表面側の構造を損ねない範囲でしか熱処理できないことから、バッファ領域14aを厚くすることが難しい。
 図11は、半導体基板の裏面から高濃度不純物の導入処理を実施したときに得られる裏面からの距離と不純物濃度の関係を示している。実際には、注入後に熱処理した後の濃度プロファイルを示している。半導体基板を薄板化する場合、半導体基板の表面側に対する処理を完了してから熱処理するために、表面側の構造を損傷しない条件での熱処理しか採用できない。図11の(3)は、イオンを注入してから裏面にレーザを照射して熱処理をした場合に得られる濃度プロファイルを示している。高濃度領域の厚みを厚くできないことがわかる。それに対しては、(2)は、貼り合わせる前の半導体基板にイオンを注入してから熱処理し、熱処理後に貼りあわせて得られるSOI基板で得られる濃度プロファイルを示す。熱処理温度が制約されないことから、高濃度領域の厚みを厚くできることがわかる。また、不純物の活性化率が極めて高く、バッファ層に欠陥が生じがたい。そのためにリーク電流が増加することを抑制できる。(1)は、プロトン注入時の濃度プロファイルを示す。プロトンを注入すると厚いバッファ領域を形成することができる。しかしプロトンを注入するとバッファ領域に欠陥が生じ易く、リーク電流が増加してしまう。
 図1に示したように、表面側半導体層1の裏面10b側にn型不純物の高濃度導入領域14が形成されているSOI基板2を利用すると、半導体基板を薄板化してオン電圧をさげ、バッファ領域を厚くして耐圧性能の低下を防ぎ、バッファ領域の欠陥密度を下げてリーク電流を抑制することができる。また、バッファ層の不純物濃度と深さを自由に調整することができる。半導体装置が必要とする濃度プロファイルに調整し易い。
 従来の製造方法、すなわち、機械的研磨で薄板化する方法によると、薄板化した半導体基板の裏面に傷が生じ易い。その傷に空乏層が達すると、半導体装置のリーク電流が増大してしまう。本実施例によると、エッチングして表面側半導体層の裏面を露出させるために、薄板化した半導体基板の裏面に傷が生じるおそれが低い。また傷が生じたとしても、上記のように、十分な厚さのバッファ層を確保できることから、リーク電流が増大することを効率的に防止できる。
(改良した実施例)
 半導体装置の性能に影響する半導体基板の厚みは、図8に示したエミッタ電極24とコレクタ電極32が向かいあう範囲の厚みであり、両者が向かいあわない範囲の厚みは影響しない。改良された技術では、両者が向かいあわない範囲では薄板化せずに裏面側半導体層等を残留させ、残留させた部分で半導体基板の強度を確保する。エミッタ電極24とコレクタ電極32が向かいあう範囲では、表面側半導体層を利用して薄板化された後の厚みを一定値に管理する。エミッタ電極24とコレクタ電極32が向かいあう範囲は、エミッタ領域18、トレンチゲート電極20、ボディ領域16、ドリフト領域12a、バッファ領域14a、コレクタ領域30などによってIGBTとして動作する半導体構造が形成されている領域であり、本明細書では活性領域という。本明細書でいう活性領域は、半導体装置として機能する半導体構造が形成されている領域をいい、周辺耐圧構造が形成されている領域等と区別する。
 図12は、同一半導体基板内に、IGBT構造を作りこむ活性領域Qと、周辺耐圧構造を作りこむ周辺領域Pが存在することに着目し、活性領域Qには、裏面側半導体層60と絶縁層50を除去して表面側半導体層10のみを残すことによって薄板化する技術を適用し、周辺領域Pでは、裏面側半導体層60と絶縁層50を残して厚板の状態に残す実施例を示している。SOI基板を平面視したときに、周辺領域Pは活性領域Qの周囲を一巡している。製造後に、周辺領域Pに沿ってダイシングすることによって、同一SOI基板から複数個のIGBTチップを製造する。
 図12では、図8で説明した領域等に関しては同一の参照番号を付することによって重複説明を省略する。図12において、参照番号60Pは、周辺領域Pにおいて残存した裏面側半導体層60を示し、参照番号50Pは、周辺領域Pにおいて残存した絶縁層50を示している。それに対して仮想線で示す領域60Qは、活性領域Qにあった裏面側半導体層60であって、エッチングによって除去された領域を示し、領域50Qは、活性領域Qにあった絶縁層50であって、エッチングによって除去された領域を示している。エッチング技術は、図示しないマスク技術と併用することによって、領域を限定してエッチングし、領域外ではエッチングしない結果を得ることができる。図12は、領域による選択的エッチングによって、領域60Qではエッチングして除去し、領域60Pではエッチングせずに残存させ、領域50Qではエッチングして除去し、領域50Pではエッチングせずに残存させた結果を示している。なお機械的研磨に比してエッチングには時間を要する。その一方において、機械的研磨では範囲を限定して薄板化することが困難であるのに対しエッチングによると範囲を限定して薄板化することができる。そこで、図12の60Pに示す厚みとなるまでは裏面側半導体層60の裏面の全体を研磨し、その後に領域による選択的エッチングをすることが好ましい。実用的な時間内にエッチングできる厚みの裏面側半導体層60Pが残存することで、半導体基板は割れ難くなり撓み難くなり、取り扱い易くなる。
 図12は、活性領域Qにおける裏面側半導体層60を選択的にエッチングした後に、SOI基板2の裏面側からp型イオンを注入している段階を示す。p型イオンが、n型不純物の高濃度導入領域14の裏面14bの近傍に留まるエネルギーで注入する。周辺領域Pでは、残存した裏面側半導体層60Pがマスクとなるために、p型イオンは表面側半導体層10に達しない。活性領域Q内でのみ、p型イオンがn型不純物の高濃度導入領域14の裏面14bの近傍に注入される。p型イオンの注入濃度は、n型不純物の注入密度よりもさらに濃くする。この結果、n型不純物の高濃度導入領域14の裏面14bの近傍は、p型となる。p型化された領域は、コレクタ領域30bとなる。活性領域Q内にのみコレクタ領域30bが形成される。図12において、参照番号14bは、p型イオンの注入後も残留したn型不純物の高濃度領域を示している。n型不純物の高濃度領域14bはバッファ領域となる。バッファ領域14bは、周辺領域Pと活性領域Qの双方に形成される。
 図12に示すイオン注入工程は、絶縁膜50Qを除去した後に実施してもよいし、絶縁膜50Q越しに実施してもよい。改良された実施例によると、周辺領域Pで残存する裏面側半導体層60Pがマスクとなり、活性領域Qの範囲に限定してコレクタ領域30bを形成することができる。
 図12の工程後、コレクタ領域30bに接するコレクタ電極32を形成する。コレクタ電極32は、裏面側半導体層が除去された範囲60Qと絶縁膜50が除去された範囲にのみ形成する。
 図13は、その後に補強部材70を除去した段階を示している(上下を反転して図示している)。図8で説明した領域等に関しては同一の参照番号を付することによって重複説明を省略する。図13は、図8よりもさらに拡大されており、ゲート絶縁膜36と層間絶縁膜34が明記されている。
 図13の構造によると、下記の利点が得られる。
(1)周辺領域Pに残存している裏面側半導体層60Pと絶縁層50Pが補強部材となるために半導体基板の強度が向上し、扱いやすい。
(2)周辺領域Pではコレクタ領域30bが形成されておらず、周辺領域Pには正孔が注入され難い。周辺領域Pに正孔が注入されると、ターンオフ時に正孔が周辺領域Pと活性領域Qの境界近傍に集中し、破壊耐量を低下させる。図13の構造によると、破壊耐量を高く維持することができる。
(3)コレクタ電極32から、周辺領域Pで残存している裏面側半導体層60Pを経由して周辺領域Pに正孔が注入される可能性がある。しかしながら、周辺領域Pでは絶縁層50Pが残存しているので、正孔の注入が阻止される。これもまた、破壊耐量の向上に寄与する。
(4)半導体装置の半導体層10を薄板化すると、短絡耐量が低下する。本実施例では、活性領域Qでは厚い裏面電極32を形成できることから耐圧耐量は低下しない。周辺領域Pでは、厚い裏面側半導体層60Pが残存しており、耐圧耐量の低下を防止する。絶縁層50Pの熱伝導度は低いけれども、その膜厚をSOI基板2の厚みの1/107以下に抑えれば、熱伝導度の低下の影響はほとんど生じない。
(改良した第2実施例)
 図14に示すように、バッファ領域14cとコレクタ領域30cが、半導体基板の全域に広がっていてもよい。貼り合わせてSOI基板とする前の表面側半導体層10の裏面側を処理してバッファ領域14cとコレクタ領域30cを形成しておくと、図14の構造を実現することができる。この段階で処理すると、バッファ領域14cとコレクタ領域30cの不純物濃度や拡散深さ等を自由に調整することができる。
 この実施例でも、周辺領域Pで残存している裏面側半導体層60Pを経由して周辺領域Pにキャリアが注入される可能性がある。しかしながら、周辺領域Pでは絶縁層50Pが残存しているので、図14中でバツ印で示すように、キャリアの注入が阻止される。これもまた、破壊耐量の向上に寄与する。
(改良した第3実施例)
 図15は、改良した第3実施例の半導体装置の構造を示す。すでに説明した領域等と同じものには同じ参照番号を付することによって重複説明を省略する。相違点のみを説明する。以下の実施例についても同様である。
 図15の構造では、活性領域Qの全域で薄板化する代わりに、活性領域Q内でも断続的に裏面側半導体層60Qと絶縁層50Qを残存させる。逆にいうと、活性領域Q内では、分散された複数の範囲において裏面側半導体層と絶縁層を除去して薄板化する。薄板化した範囲には、コレクタ電極32aを形成する。薄板化した範囲を分離する裏面側半導体層60Qと絶縁層50Qの壁の厚みを管理することで、隣接するコレクタ領域30bが連続する結果を得ることができる。コレクタ領域30bの形成過程では、熱処理して拡散させるからである。なお隣接するコレクタ領域が不連続であってもかまわない。過剰に正孔が注入されるためにターンオフ時の特性が悪い場合には、隣接するコレクタ領域が不連続な状態に残すのが有利であることがある。活性領域Q内でも断続的な範囲では、裏面側半導体層60Qと絶縁層50Qを残存させるようにすると、半導体基板の機械的強度がさらに強化される。なお、分散された複数の範囲において裏面側半導体層と絶縁層を除去するために必要なら、異方性エッチングを採用することができる。異方性エッチングによると、基板の厚み方向に深く抉るエッチングが可能となる。
(改良した第4実施例)
 図16は、改良した第4実施例の半導体装置の構造を示す。図16では、周辺領域Pに複数のガードリングを形成して耐圧を確保している。なお、図15に示したように、リサーフ構造によって周辺耐圧構造を実現してもよい。
(改良した第5実施例)
 本実施例では、表面側半導体層10にn型を用いる。n型のエミッタ領域とp型のボディ領域とn型のドリフト領域とp型のコレクタの組合せの方が、IGBTの特性が改善される。それに対して、裏面側半導体層60の導電型は、n型であってもよいし、i型であってもよいし、p型であってもよい。図17は、表面側半導体層10と裏面側半導体層60Pの導電型が反対である場合を示している。
(改良した第6実施例)
 上記実施例では、半導体基板の全域に広がるバッファ領域14a~14cを利用する。これに対して、図18に示すように、周辺領域Pではバッファ領域とコレクタ領域が存在しない構造でもよい。すなわち、活性領域Q内でのみ、バッファ領域14dとコレクタ領域30bが形成されている構造でもよい。この場合は、n型不純物の高濃度導入領域14が形成されていないSOI基板を用いる。図12の段階で、周辺領域Pで残存した裏面側半導体層60Pをマスクにして、n型イオンを注入してバッファ領域14dを形成し、p型イオンを注入してコレクタ領域30bを形成すれば、図18の構造が得られる。
 以上、本実施例について詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:SOI基板
2a:表面
2b:裏面
10:表面側半導体層
10b:裏面
12:n型不純物の低濃度導入領域
12a:ドリフト領域(n型不純物の低濃度残留領域)
14:n型不純物の高濃度導入領域
14a:バッファ領域(n型不純物の高濃度残留領域)
16:ボディ領域(p型不純物導入領域)
18:エミッタ領域
20:トレンチゲート電極
22:ボディコンタクト領域
24:エミッタ電極
26:保護膜
28:周辺耐圧構造
30:コレクタ領域(p型不純物導入領域)
32:コレクタ電極
50:絶縁層
60:裏面側半導体層
60a:研磨領域
60b:残留領域
60c:研磨面
70:補強部材

Claims (10)

  1.  表面側半導体層と絶縁層と裏面側半導体層が順に積層しているSOI基板の前記表面側半導体層の表面に対して、表面から実施する処理を施す表面側処理工程と、
     前記表面側処理工程後のSOI基板の裏面からエッチングし、半導体装置として機能する半導体構造が形成されている活性領域の少なくとも一部における前記裏面側半導体層と前記絶縁層を除去して前記表面側半導体層の裏面を露出させるエッチング工程と、
     前記エッチング工程後の前記表面側半導体層の裏面に対して、裏面から実施する処理を施す裏面側処理工程と、
     を備えている縦型の半導体装置の製造方法。
  2.  請求項1の製造方法であり、
     前記表面側処理工程と前記エッチング工程の間に、前記SOI基板の裏面を機械的に研磨して前記裏面側半導体層を薄板化する工程を実施する。
  3.  請求項1または2の製造方法であり、
     前記エッチング工程において、前記活性領域における前記裏面側半導体層と前記絶縁層を除去して前記表面側半導体層の裏面を露出させ、前記活性領域以外の領域における前記裏面側半導体層と前記絶縁層を残存させる。
  4.  請求項3の製造方法であり、
     前記裏面側処理工程において、残存した前記裏面側半導体層と前記絶縁層をマスクとする。
  5.  請求項1から4のいずれかの1項の製造方法であり、
     前記表面側半導体層の裏面近傍に、前記表面側半導体層と同じ導電型のイオンが導入されているSOI基板を用いる。
  6.  半導体装置として機能する半導体構造が形成されている活性領域と、
     前記活性領域に隣接している周辺耐圧領域を備えており、
     前記周辺耐圧領域では、表面側半導体層と絶縁層と裏面側半導体層が順に積層しているSOI基板が残存しており、
     前記活性領域では、前記絶縁層と前記裏面側半導体層が除去されていることを特徴とする縦型の半導体装置。
  7.  請求項6の半導体装置であり、
     前記活性領域の一部において、前記絶縁層と前記裏面側半導体層が除去されている。
  8.  請求項6または7の半導体装置であり、
     前記絶縁層と前記裏面側半導体層が除去されている範囲に、コレクタ電極が形成されている。
  9.  請求項6から8のいずれかの1項に記載の半導体装置であり、
     前記絶縁層と前記裏面側半導体層が除去されている範囲に、コレクタ領域が形成されている。
  10.  請求項6から9のいずれかの1項に記載の半導体装置であり、
     前記絶縁層と前記裏面側半導体層が除去されている範囲に、バッファ領域が形成されている。
PCT/JP2013/053245 2013-02-12 2013-02-12 半導体装置とその製造方法 WO2014125565A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015500017A JPWO2014125565A1 (ja) 2013-02-12 2013-02-12 半導体装置とその製造方法
CN201380072766.4A CN104981896A (zh) 2013-02-12 2013-02-12 半导体装置及其制造方法
US14/766,887 US20160005843A1 (en) 2013-02-12 2013-02-12 Semiconductor device and manufacturing method thereof
PCT/JP2013/053245 WO2014125565A1 (ja) 2013-02-12 2013-02-12 半導体装置とその製造方法
DE112013006649.1T DE112013006649T5 (de) 2013-02-12 2013-02-12 Halbleitereinrichtung und Herstellungsverfahren derselben
TW103104255A TW201432823A (zh) 2013-02-12 2014-02-10 半導體裝置及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053245 WO2014125565A1 (ja) 2013-02-12 2013-02-12 半導体装置とその製造方法

Publications (1)

Publication Number Publication Date
WO2014125565A1 true WO2014125565A1 (ja) 2014-08-21

Family

ID=51353601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053245 WO2014125565A1 (ja) 2013-02-12 2013-02-12 半導体装置とその製造方法

Country Status (6)

Country Link
US (1) US20160005843A1 (ja)
JP (1) JPWO2014125565A1 (ja)
CN (1) CN104981896A (ja)
DE (1) DE112013006649T5 (ja)
TW (1) TW201432823A (ja)
WO (1) WO2014125565A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899477B2 (en) 2014-07-18 2018-02-20 Infineon Technologies Americas Corp. Edge termination structure having a termination charge region below a recessed field oxide region
WO2016169818A1 (en) * 2015-04-24 2016-10-27 Abb Technology Ag Power semiconductor device with thick top-metal-design and method for manufacturing such power semiconductor device
DE102021204298A1 (de) * 2021-04-29 2022-11-03 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines vertikalen Leistungshalbleiterbauelements und vertikales Leistungshalbleiterbauelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510329A (ja) * 2000-09-21 2004-04-02 ケンブリッジ セミコンダクター リミテッド 半導体デバイスおよび半導体デバイスを形成する方法
JP2004134762A (ja) * 2002-09-19 2004-04-30 Denso Corp 半導体装置
JP2009124112A (ja) * 2007-10-24 2009-06-04 Denso Corp 半導体装置及びその製造方法
JP2011003568A (ja) * 2009-06-16 2011-01-06 Mitsumi Electric Co Ltd 半導体チップの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076326A (ja) * 2000-09-04 2002-03-15 Shindengen Electric Mfg Co Ltd 半導体装置
JP3764343B2 (ja) * 2001-02-28 2006-04-05 株式会社東芝 半導体装置の製造方法
US7622357B2 (en) * 2006-05-25 2009-11-24 International Business Machines Corporation Semiconductor device structures with backside contacts for improved heat dissipation and reduced parasitic resistance
US8710568B2 (en) * 2007-10-24 2014-04-29 Denso Corporation Semiconductor device having a plurality of elements on one semiconductor substrate and method of manufacturing the same
CN201725798U (zh) * 2010-06-24 2011-01-26 浙江华芯科技有限公司 一种具有介电质阻止层的igbt器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510329A (ja) * 2000-09-21 2004-04-02 ケンブリッジ セミコンダクター リミテッド 半導体デバイスおよび半導体デバイスを形成する方法
JP2004134762A (ja) * 2002-09-19 2004-04-30 Denso Corp 半導体装置
JP2009124112A (ja) * 2007-10-24 2009-06-04 Denso Corp 半導体装置及びその製造方法
JP2011003568A (ja) * 2009-06-16 2011-01-06 Mitsumi Electric Co Ltd 半導体チップの製造方法

Also Published As

Publication number Publication date
CN104981896A (zh) 2015-10-14
JPWO2014125565A1 (ja) 2017-02-02
DE112013006649T5 (de) 2015-11-19
US20160005843A1 (en) 2016-01-07
TW201432823A (zh) 2014-08-16

Similar Documents

Publication Publication Date Title
JP6524666B2 (ja) 半導体装置
JP5515922B2 (ja) 半導体装置
WO2016080269A1 (ja) 半導体装置および半導体装置の製造方法
JP2001339063A (ja) 半導体装置およびその製造方法
US10593788B2 (en) Reverse-conducting insulated-gate bipolar transistor structure and corresponding fabrication method thereof
JP6708257B2 (ja) 半導体装置およびその製造方法
US7713794B2 (en) Manufacturing method of a semiconductor device
JP5149922B2 (ja) 半導体素子
JP6337217B1 (ja) 厚い上部金属設計を有するパワー半導体デバイスおよびそのパワー半導体デバイスの製造方法
JP5822032B2 (ja) 半導体装置の製造方法
US8835935B2 (en) Trench MOS transistor having a trench doped region formed deeper than the trench gate
CN109427563B (zh) 碳化硅器件和用于制造碳化硅器件的方法
CN102832121B (zh) 快恢复二极管制造方法
JP2007208075A (ja) 半導体装置
WO2014125565A1 (ja) 半導体装置とその製造方法
TWI534911B (zh) 高效能絕緣柵雙極電晶體及其製作方法
JP5201169B2 (ja) 誘電体分離型半導体装置の製造方法
JP2017531317A (ja) 薄い半導体ウェハを備える半導体デバイスの製造方法
JP5683139B2 (ja) 半導体装置およびその製造方法
JP2018133493A (ja) 半導体装置
JP4097416B2 (ja) 絶縁ゲート型バイポーラトランジスタ及びその製造方法
KR20140033078A (ko) 바이폴라 펀치 쓰루 반도체 디바이스 및 그러한 반도체 디바이스의 제조 방법
JP2010034172A (ja) 半導体装置とその製造方法
JP2008053610A (ja) 絶縁ゲート型バイポーラトランジスタ
JP2007329279A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14766887

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130066491

Country of ref document: DE

Ref document number: 112013006649

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875256

Country of ref document: EP

Kind code of ref document: A1