WO2014123325A1 - 베인 로터리 압축기 - Google Patents

베인 로터리 압축기 Download PDF

Info

Publication number
WO2014123325A1
WO2014123325A1 PCT/KR2014/000866 KR2014000866W WO2014123325A1 WO 2014123325 A1 WO2014123325 A1 WO 2014123325A1 KR 2014000866 W KR2014000866 W KR 2014000866W WO 2014123325 A1 WO2014123325 A1 WO 2014123325A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
rotary compressor
rotor
cylinder
weight portion
Prior art date
Application number
PCT/KR2014/000866
Other languages
English (en)
French (fr)
Inventor
곽정명
신인철
임권수
홍선주
Original Assignee
한라비스테온공조 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130012992A external-priority patent/KR101881543B1/ko
Priority claimed from KR1020130012994A external-priority patent/KR101881545B1/ko
Application filed by 한라비스테온공조 주식회사 filed Critical 한라비스테온공조 주식회사
Priority to CN201480007240.2A priority Critical patent/CN104968941A/zh
Priority to US14/765,843 priority patent/US9822779B2/en
Publication of WO2014123325A1 publication Critical patent/WO2014123325A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/321Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/40Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member
    • F04C18/44Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/32Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members
    • F04C2/321Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members with vanes hinged to the inner member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/40Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member
    • F04C2/44Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the present invention relates to a vane rotary compressor in which a fluid such as a refrigerant is compressed while the volume of the compression chamber is reduced during rotation of the rotor.
  • the vane rotary compressor is used in an air conditioner and the like and compresses a fluid such as a refrigerant and supplies it to the outside.
  • FIG. 1 is a cross-sectional view schematically showing a conventional vane rotary compressor disclosed in Japanese Patent Laid-Open No. 2010-31759
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
  • the vane rotary compressor 10 As shown in FIG. 1, the vane rotary compressor 10 according to the related art has a housing H composed of a rear housing 11 and a front housing 12, and has a cylindrical shape inside the rear housing 11.
  • the cylinder 13 of is accommodated.
  • the inner peripheral surface of the cylinder 13 has an elliptical cross-sectional shape as shown in FIG.
  • the front cover 14 is coupled to the front of the cylinder 13
  • the rear cover 15 is coupled to the rear of the cylinder 13
  • the discharge space Da is formed between the inner circumferential surface of the rear housing 11, the front cover 14, and the rear cover 15, which face each other.
  • a rotating shaft 17 is rotatably installed in the front cover 14 and the rear cover 15 through the cylinder 13, and a cylindrical rotor 18 is coupled to the rotating shaft 17 so that the rotating shaft 17 In the rotation, it rotates in the cylinder 13 together with the rotation shaft 17.
  • each of the slots (18a) is a linear type of vanes 20 are slidably received.
  • Lubricating oil is supplied into the slot 18a.
  • a stroke in which the volume of the compression chamber 21 is enlarged in accordance with the rotational direction of the rotor 18 is a suction stroke
  • a stroke in which the volume of the compression chamber 21 is reduced is a compression stroke
  • a suction port 24 is formed at an upper portion of the front housing 12, and a suction space Sa communicating with the suction port 24 is formed inside the front housing 12. Is formed.
  • the front cover 14 is provided with a suction port 14b communicating with the suction space Sa, and a suction passage 13b communicating with the suction port 14b is formed through the axial direction of the cylinder 13.
  • discharge chambers 13d recessed inwardly are formed on both sides of the outer circumferential surface of the cylinder 13, and the pair of discharge chambers 13d is compressed by the discharge holes 13a. In communication with 21, a part of the discharge space Da is formed.
  • the rear housing 11 is formed with a high pressure chamber 30 which is partitioned by the rear cover 15 and into which the compressed refrigerant flows. That is, the inside of the rear housing 11 is partitioned into the discharge space Da and the high pressure chamber 30 by the rear cover 15. At this time, the discharge port 15e communicating with the high pressure chamber 30 is formed in any one of the pair of discharge chambers 13d.
  • the high pressure chamber 30 is provided with an oil separator 40 for separating the lubricating oil from the compressed refrigerant introduced into the high pressure chamber 30, the oil separation pipe 43 is installed on the upper portion of the case 41, An oil separation chamber 42 in which the separated oil falls is formed in the lower part of the oil separation pipe 43, and the oil in the oil separation chamber 42 is formed in the oil storage chamber formed under the high pressure chamber 30 through the oil passage 41b ( 32).
  • the oil stored in the oil storage chamber 32 lubricates the sliding surfaces of the rear cover 15 and the rotor 18 through the lubrication space of the bush supporting the rear end of the rotary shaft 17 through the oil supply passage 15d.
  • the oil flows back into the discharge port 15e through the oil return groove 45.
  • the vane 20 of the straight type is applied as in the vane rotary compressor 10 described above, the vane 20 is configured to be protruded out of the rotor 18 along the slot 18a. There is a problem in that hitting noise is generated while the front end of the 20 collides with the inner circumferential surface of the cylinder 13.
  • FIG. 3 is a cross-sectional view schematically showing a vane rotary compressor of a curved blade type disclosed in Japanese Patent Laid-Open No. 2002-130169.
  • the vane rotary compressor shown in FIG. 3 includes a cylindrical cylinder 1, a rotor 2, and a drive shaft 3 thereof. At this time, the cylinder 1 has a suction port 1A and a discharge port 1B, and the rotor 2 is eccentrically installed in the cylinder 1.
  • a plurality of curved vane type vanes 4 are provided on the outer circumferential surface of the rotor 2 to form a plurality of compression chambers 6 between the cylinder 1 and the rotor 2, and one side of the vanes 4 It is hinged to the outer circumferential surface of the rotor 2 by the hinge pin (5).
  • the back portion of the vane 4 is in contact with the inner circumferential surface of the cylinder 1, and only after the suction stroke has progressed to some extent, the vane 4 rapidly develops from the rotor 2, and the tip thereof is closed. (1) Since it is supported on the inner circumferential surface, the volume expansion of the compression chamber 6 is not smoothly performed, resulting in a decrease in suction flow rate.
  • the center of gravity of the vanes 4 is formed near the hinge coupling portion with the rotor 2, so that the rotation moment of the vanes 4 when the rotor 2 rotates. small.
  • Figure 4 is a schematic diagram showing the forces acting on the vane of the curved wing type during rotor rotation.
  • the vane 4 is unfolded from the rotor 2 when the rotor 2 rotates, and the tip end thereof comes into close contact with the inner circumferential surface of the cylinder 1 to form the compression chamber 6. .
  • the hinge friction force B1 of the vane 4 acts as a force which pulls the front-end
  • the compression chamber 6 is not completely sealed by the vanes 4, and internal leaks occur between adjacent compression chambers 6, causing a problem that the compression flow rate of the refrigerant is lowered.
  • the vane 4 has a problem in that the front end portion of the vane 4 instantaneously contacts the inner circumferential surface of the cylinder 1 due to the rotation moment A2 of the vane 4.
  • the tip portion of the vane 4 is formed in a round arc shape.
  • the tip of the vane 4 rubs against the inner circumferential surface of the cylinder 1.
  • the vane 4 eventually becomes the cylinder 1 ) It shows friction characteristics close to sliding friction with respect to the inner circumferential surface.
  • Such friction characteristics cause increased wear of the vane 4 tip and cylinder 1 inner circumferential surface as friction is locally generated, and deteriorates durability such as noise and internal leakage during long-term operation of the compressor. Act as a factor.
  • the present invention has been made to solve the problems as described above, an embodiment of the present invention, by maximizing the rotation moment of the vane, it is possible to eliminate the blow noise due to the delayed rotational operation of the vanes when the rotor rotates, It is an object of the present invention to provide a vane rotary compressor which can reduce the leakage and increase the performance.
  • an embodiment of the present invention is to provide a vane rotary compressor having an effect of preventing internal leakage and increasing durability by reducing friction generated between the vane tip and the inner peripheral surface of the cylinder.
  • a hollow cylinder in which the suction port is formed on one side;
  • a rotor installed in the hollow and rotating by receiving power from a driving source;
  • a vane having one end hinged to one side of the outer circumferential surface of the rotor and pivoting in the direction of the inner circumferential surface of the cylinder, wherein a weight is formed at the tip of the vane so that the center of gravity of the vane is formed on one side of the vane.
  • a vane rotary compressor is provided.
  • the apparatus may further include a counter weight provided in the weight part.
  • the counter weight is made of a material having a specific gravity greater than that of the vane.
  • the vane includes a hinge portion hinged to one side of the outer circumferential surface of the rotor, a wing portion formed to be bent from one side of the hinge portion, and a weight portion formed at the end of the wing portion, the center of gravity of the vane It is formed on one side of the weight portion spaced apart from the hinge portion.
  • a protrusion may protrude convexly toward the inner circumferential surface of the cylinder on an outer side of the weight portion.
  • the weight portion is formed to be wider than the wing portion.
  • the weight portion may be formed in a circular cross-sectional shape.
  • the weight portion may be formed in an elliptical cross-sectional shape.
  • the weight portion may be formed in a polygonal cross-sectional shape.
  • the weight portion, one side facing the inner peripheral surface of the cylinder may be formed in a curved surface, the other side facing the outer peripheral surface of the rotor may be formed in a plane.
  • the contact between the weight portion and the cylinder inner circumferential surface moves along one side edge of the weight portion.
  • the contact point moves in the rotational direction of the rotor during the suction stroke, and the contact point moves in the opposite direction of rotation of the rotor during the compression stroke.
  • the weight portion, the moving section of the contact forms an elliptical arc of a predetermined curvature.
  • the hollow inner circumferential surface of the cylinder may be in the form of an involute curve along the circumferential direction in cross section.
  • the hollow cylinder in which the suction port is formed on one side A rotor eccentrically installed in the hollow and rotating by receiving power from a driving source; And a vane hinged to one side of an outer circumferential surface of the rotor, and a vane extending from one side of the hinge to a wing, wherein a weight portion is formed at a wider width than the wing at the end of the wing, and the weight is formed on one side of the rotor.
  • a vane rotary compressor is provided, which is in rolling friction with the inner circumferential surface of the cylinder along a contact moving section formed at an edge thereof.
  • the apparatus may further include a count weight provided in the weight part.
  • the counter weight is made of a material having a specific gravity greater than that of the vane.
  • the center of gravity of the vane is formed on one side of the weight portion spaced apart from the hinge portion.
  • the contact moves along the rotational direction of the rotor during suction stroke, and the contact moves along the opposite direction of rotation of the rotor during compression stroke.
  • the weight portion, the moving section of the contact forms an elliptical arc of a predetermined curvature.
  • FIG. 1 is a longitudinal sectional view schematically showing a conventional vane rotary compressor.
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
  • FIG 3 is a cross-sectional view of a conventional curved vane type vane rotary compressor.
  • Figure 4 is a schematic diagram showing the forces acting on the vanes during rotor rotation.
  • FIG 5 is a longitudinal sectional view of the vane rotary compressor according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG. 5.
  • FIG. 7 is a perspective view of a vane according to a first embodiment of the present invention.
  • FIG. 8 is a schematic view showing a center of gravity forming position of a conventional vane.
  • Figure 9 is a schematic diagram showing the position of the center of gravity of the vane according to the first embodiment of the present invention.
  • 10 to 13 are cross-sectional views showing an operating state of the vane rotary compressor according to the first embodiment of the present invention.
  • FIG. 14 is a perspective view of a vane according to a second embodiment of the present invention.
  • FIG. 15 is a perspective view of a vane according to a third embodiment of the present invention.
  • 16 to 18 are cross-sectional views showing the direction of contact movement between the weight portion and the inner circumferential surface of the cylinder during the suction stroke according to the third embodiment of the present invention.
  • 19 to 21 are cross-sectional views showing the direction of contact movement of the rolling friction portion and the inner peripheral surface of the cylinder in the cross section during the compression stroke according to the third embodiment of the present invention.
  • FIG. 22 is a sectional view of a vane according to a fourth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view of the vane according to the fifth embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of the vane rotary compressor in which the inner circumferential surface of the cylinder forms an involute curve according to the sixth embodiment of the present invention.
  • the appearance of the vane rotary compressor is made by the combination of the housing and the second head portion, and describes an example in which the cylinder is accommodated in the housing, the present invention and the housing forming the appearance of such vane rotary compressor Note that it is not limited by the coupling relationship between the head and the cylinder.
  • FIG 5 is a longitudinal sectional view of the vane rotary compressor according to the first embodiment of the present invention.
  • the vane rotary compressor (hereinafter, referred to as a 'compressor') 100 is a compressor (by combining the housing 110 and the second head part 114).
  • the overall appearance of 100 may be formed.
  • the housing 110 is formed integrally with the cylinder portion 112 in which the space portion 111 is formed therein, and the cylinder portion 112 in the axial front of the cylinder portion 112, and thus the space portion 111. It includes a first head portion 113 for closing the front of the, space portion 111 is mounted to the cylinder 200 of the hollow form.
  • the inside of the cylinder 200 is rotated by the power of the drive source, the rotating shaft 310, the rotor 300 is rotated with the rotary shaft 310 receives the rotational force of the rotary shaft 310, the rotor 300
  • a plurality of vanes 400 are hinged to the outer circumferential surface of the rotor 300 to be rotatably hinged in the radial direction of the rotor 300.
  • the second head portion 114 is coupled to the axial rear of the housing 110 to close the rear of the space 111.
  • the outer peripheral surface of the first head portion 113 of the housing 110 has a suction port (not shown) for sucking the refrigerant from the outside, and a discharge port for discharging the high-pressure refrigerant compressed in the cylinder 200 to the outside (not shown) H) are provided spaced apart from each other in the circumferential direction.
  • the pulley coupling portion 510 is extended to the front center of the first head 113 to be coupled to the pulley 500 of the electronic clutch (not shown).
  • FIG. 6 is a cross-sectional view taken along the line B-B of FIG. 5, and FIG. 7 is a perspective view of the vane according to the first embodiment of the present invention.
  • the hollow of the cylinder 200 is slightly eccentrically formed to one side from the center of the cylinder 200 in which the rotating shaft 310 is installed, and the rotor 300 having the vanes 400 in the hollow. By inserting), the hollow of the cylinder 200 forms a compression space in which the introduced refrigerant is compressed by the rotation of the rotor 300.
  • the suction hole 210 is formed on one side of the cylinder 200, one side of the suction hole 210 is in communication with the suction port of the first head portion 113, the other side is a compression space in the cylinder 200 In communication with the suction port 211, the refrigerant sucked through the suction port from the outside is introduced into the hollow of the cylinder 200 which is a compression space through the suction hole 210 and the suction port 211 of the cylinder 200.
  • one side of the outer circumferential surface of the cylinder 200 is formed with a discharge portion 220 in which a compressed high-pressure refrigerant is discharged, and one side of the discharge portion 220 communicates with a plurality of discharge ports communicated with the compression chamber 230 described later. 221 is formed through, and the other side of the discharge portion 220 is formed with a guide flow path (not shown) for guiding the high-pressure refrigerant in the discharge port direction.
  • the rotor 300 is coupled to a rotating shaft 310 connected to a driving motor (not shown) or a clutch (not shown) driven by an engine belt (not shown) to rotate along with the rotating shaft 310.
  • the rotary shaft 310 is mounted along the central axis of the cylinder 200, so that the rotor 300 is slightly deviated to one side from the center of the cylinder 200 hollow, rotated in an eccentric position in the cylinder 200 hollow Done.
  • the vane 400 of the curved wing type is coupled to a plurality of hinges on the outer circumferential surface of the rotor 300 spaced apart from each other.
  • one side of the vane 400 is hinged to the outer peripheral surface slot 320 of the rotor 300, the other end of the vane 400 when the rotor 300 rotates by the centrifugal force and the pressure of the refrigerant of the cylinder 200
  • the compression space is divided into a plurality of compression chambers 230 by rotating in the direction of the inner circumferential surface.
  • each compression chamber 230 is formed by the space which consists of an adjacent pair of vanes 400, the outer peripheral surface of the rotor 300, and the inner peripheral surface of the cylinder 200. As shown in FIG.
  • the present embodiment shows an example in which three vanes 400 are provided along the outer circumferential surface of the rotor 300, the number of vanes 400 may be appropriately selected as necessary.
  • the tip portion of the vane 400 rotates together in the rotational direction of the rotor 300 along the hollow inner circumferential surface of the cylinder 200, and as the rotor 300 is eccentrically positioned in the hollow, the rotor 300 During the rotation, as the interval between the outer circumferential surface and the hollow inner circumferential surface of the rotor 300 becomes narrower, the volume of the compression chamber 230 decreases, and the refrigerant trapped in the compression chamber 230 is compressed.
  • one side of the outer circumferential surface of the rotor 300 is eccentrically arranged to contact the hollow inner circumferential surface of the cylinder 200.
  • the outer circumferential surface of the rotor 300 is provided with a plurality of accommodation grooves 330 for accommodating the vanes 400 in the circumferential direction corresponding to the number of vanes 400, wherein the accommodation grooves 330 will be described later. And a wing portion receiving groove 331 for receiving the wing portion 420 of the vane 400 and a weight portion receiving groove 332 for receiving the weight portion 430 of the vane 400.
  • the vane 400 has a hinge portion 410 hinged to one side of the outer circumferential surface of the rotor 300, and a wing portion formed to be curved from one side of the hinge portion 410. 420 and a weight portion 430, the width of which is extended at the end of the wing portion 420.
  • the hinge portion 410 of the vane 400 is hinged to one side of the outer circumferential surface of the rotor 300, the hinge portion of the circular cross-sectional shape in the slot 320 of the circular cross-sectional shape formed on one side of the outer circumferential surface of the rotor 300.
  • 410 is rotatably coupled, at this time, it is preferable that the hinge portion 410 is not detached to the radially outer side of the rotor 300.
  • the vane 400 of the vane 400 is formed to be curved in the direction of the hollow inner circumferential surface of the cylinder 200 from one side of the hinge portion 410, the weight portion 430 is formed at the end of the wing portion 420 .
  • the wing portion 420 is preferably formed inside the virtual circle that the hinge portion 410 and the weight portion 430 inscribed at the same time.
  • the vane 400 has the weight 430 in contact with the hollow inner circumferential surface of the cylinder 200, or the weight 430 and the hinge 410 have the hollow of the cylinder 200 at the same time. Only in contact with the inner circumferential surface, the wing 420 is always spaced apart from the inner circumferential surface of the cylinder 200.
  • the weight portion 430 is formed such that its width w1 is wider than the width w2 of the wing portion 420, which maximizes the center of gravity of the vane 400 from the hinge center G of the hinge portion 410. This is to form close to the weight portion 430 by spaced apart.
  • a curved surface 431 having a predetermined curvature is formed to protrude from the outside of the weight portion 430, that is, the one facing the inner circumferential surface of the cylinder 200, so that the curved surface 431 is always the cylinder 200 when the rotor 300 is rotated. ) To be in contact with the hollow inner circumferential surface.
  • the inside of the weight portion 430 that is, the other side facing the outer peripheral surface of the rotor 300 is preferably formed in the plane 432, which is to reduce the volume inside the weight portion 430 of the weight portion 430 This is to make the center of gravity deviate from the inner circumferential surface of the cylinder 200.
  • the weight center of the vane 400 which is located near the hinge part 410, moves in the direction of the weight part 430.
  • the vanes 400 according to the embodiment of the present invention shown in FIG. is larger.
  • the rotation moment of the vane 400 when the rotor 300 is rotated is larger than that of the conventional example, and thus, hitting noise is generated due to the delayed rotational operation of the vane 400 as in the prior art. Can be prevented.
  • the tip of the vane 400 maintains a state in which the tip thereof is in close contact with the inner circumferential surface of the cylinder 200, the internal leakage due to the occurrence of a gap can be reduced, and the performance of the compressor 100 can be reduced. You can increase it.
  • 10 to 13 are cross-sectional views showing the operating state of the vane rotary compressor according to an embodiment of the present invention.
  • the rotation moment of the vane 400 is increased due to the weight part 430 formed at the tip of the vane 400.
  • the weight 430 is always in contact with the inner circumferential surface of the cylinder 200 by the rotation moment of the vane 400. Done.
  • the vanes 400 folded into the receiving grooves 330 of the rotor 300 are rapidly deployed in the direction of the inner circumferential surface of the cylinder 200, and are illustrated by a circular dotted line.
  • the weight part 430 is in contact with the inner circumferential surface of the cylinder 200.
  • FIG. 14 is a perspective view of a vane according to a second embodiment of the present invention.
  • the second embodiment of the present invention is similar in overall structure to the first embodiment described above, except that the counter weight 440 is inserted into the weight portion 430a of the vane 400a. Therefore, the same reference numerals are used to designate the same components as in the above-described embodiment, and redundant descriptions thereof will be omitted.
  • the weight of the weight portion 430a is increased as compared with the above-described first embodiment, and the rotation moment of the vane 400a is also increased.
  • an insertion groove 433 having a predetermined depth is formed in the weight portion 430a, and the counter weight 440 is inserted into the insertion groove 433.
  • the width and thickness of the counter weight 440 are necessary. Can be selected accordingly.
  • the length of the counter weight 440 is preferably equal to or smaller than the height of the weight portion 430a.
  • the material of the counter weight 440 is a material having a greater specific gravity than the material of the vane 400a. It is preferable to make.
  • the counter weight 440 may be made of steel having a specific gravity greater than that of aluminum.
  • FIG. 15 is a perspective view of a vane according to a third embodiment of the present invention.
  • the third embodiment of the present invention is similar in overall structure, except that the weight portion 430b of the vane 400b is formed in an elliptical cross-sectional shape. Therefore, the same reference numerals are used to designate the same components as in the above-described embodiment, and redundant descriptions thereof will be omitted.
  • the vane 400b includes a hinge portion 410 hinged to one side of the outer circumferential surface of the rotor 300, and a wing portion 420 formed to be curved from one side of the hinge portion 410. ), And a weight portion 430b formed at the end of the wing portion 420.
  • the outer surface of the wing portion 420 may be formed with a curvature corresponding to the hollow inner circumferential surface of the cylinder 200, preferably the inner side of the virtual circle in which the hinge portion 410 and the weight portion 430b inscribe at the same time Is formed. That is, the outer edge of the weight portion 430b is disposed inside the virtual arc connecting one side of the hinge portion 410 and one side of the weight portion 430b.
  • the weight portion 430b is formed at the end of the wing portion 420, and the outer surface of the weight portion 430b, that is, the surface facing the inner circumferential surface of the cylinder 200, is cross-sectional as shown in FIG. 15. An elliptical arc of predetermined curvature is formed.
  • the vane 400b maintains the weight portion 430b in contact with the inner circumferential surface of the cylinder 200 at all times, and the contact between the weight portion 430b and the inner circumferential surface of the cylinder 200 is a weight portion.
  • 430b is moved along the contact movement section A to C on the outer surface.
  • the tip portion of the vane 400b moves along the inner circumferential surface of the cylinder 200 along the contact movement section A to C of the weight portion 430b, Compared with the conventional vane rotary compressor (see FIG. 3) having a very short moving distance of the contact, it exhibits a certain rolling friction characteristic.
  • the tip of the vane 400b moves in a rolling friction manner to prevent noise and internal leakage due to abrasion reduction. Therefore, the durability of the compressor is improved.
  • FIGS. 16 to 18 are cross-sectional views showing a contact movement direction of a weight portion and an inner circumferential surface of a cylinder in cross section during a suction stroke according to a third embodiment of the present invention, and FIGS. 19 to 21 are compressed according to a third embodiment of the present invention. It is sectional drawing which shows the direction of contact movement of a rolling friction part and a cylinder inner peripheral surface in stroke cross section.
  • the vane 400b is unfolded in the direction of the inner circumferential surface of the cylinder 200 from the receiving groove 330 of the rotor 300 by the rotation of the rotor 300 during the suction stroke of the compressor 100.
  • the contacts of the outer side of the weight portion 430b and the inner circumferential surface of the cylinder 200 are in the same direction (A ⁇ C) as the rotation direction (arrow direction) of the rotor 300 as shown in FIGS. 16 to 18. Move.
  • the center of gravity of the vane 400b is formed near the weight portion 430b to be spaced apart from the hinge center of the hinge portion 410.
  • the rotation moment of the vane 400b is increased by the weight increase of the tip of the vane 400b due to the weight part 430b, so that the tip of the vane 400b adheres quickly to the inner circumferential surface of the cylinder 200 during the suction stroke.
  • the tip of the vane 400b adheres quickly to the inner circumferential surface of the cylinder 200 during the suction stroke.
  • the vane (400b) is folded into the receiving groove 330 of the rotor 300 by the rotation of the rotor 300, at this time, the outer surface of the weight portion (430b) and the cylinder ( 200) the contacts of the inner circumferential surface move in a direction C ⁇ A opposite to the rotational direction (arrow direction) of the rotor 300 as shown in FIGS. 19 to 21.
  • the weight 440b according to the third embodiment of the present invention may be provided with the counter weight 440 of the above-described second embodiment.
  • FIG. 22 is a cross-sectional view of the vane according to the fourth embodiment of the present invention.
  • the overall configuration is similar to the first embodiment described above, except that one edge of the weight portion 430c of the vane 400c forms an elliptical arc shape having a predetermined curvature in cross section for rolling friction. There is a difference in that.
  • the weight portion 430c is formed by extending the width at the end of the wing portion 420, and faces the outer surface of the weight portion 430c, that is, the inner circumferential surface of the cylinder 200.
  • the face forms an elliptical arc of predetermined curvature in cross section, as shown by the dashed line in FIG. 22.
  • the protrusion 431 is formed to protrude convexly toward the inner circumferential surface of the cylinder 200 on the outer surface of the weight portion 430c, so that the outer surface of the hinge portion 410 and the outer surface of the protrusion 431 are simultaneously in contact with each other.
  • the outer surface of the wing 420 is formed inside the curve L.
  • the wing 420 is formed inside the virtual circle in which one side of the hinge portion 410 and one side of the weight portion 430c are inscribed at the same time.
  • the vane 400c maintains the weight portion 430c always in contact with the inner circumferential surface of the cylinder 200, and the contact between the weight portion 430c and the inner circumferential surface of the cylinder 200 is weighted.
  • the portion 430c moves along the contact movement sections A to C on the outer surface.
  • the tip of the vane 400c moves along the inner circumferential surface of the cylinder 200 in a rolling friction manner in which the contact moves along the sections A to C of the weight portion 430c. Done.
  • the center of gravity of the vane 400c is spaced apart from the hinge center of the hinge portion 410 near the weight portion 430c Is formed.
  • the rotation moment of the vane 400c is increased by increasing the weight of the tip of the vane 400c due to the weight part 430c, and the adhesion between the inner circumferential surface of the cylinder 200 at the tip of the vane 400c is increased, whereby the internal leak ( It is effective in preventing leakage and increasing compressor efficiency.
  • the inside of the weight portion 430c that is, the other side facing the outer peripheral surface of the rotor 300 is preferably formed as a plane 432, which is to reduce the volume inside the weight portion 430c of the weight portion 430c This is to make the center of gravity deviate from the inner circumferential surface of the cylinder 200.
  • weight portion 430c according to the fourth embodiment of the present invention may be provided with the counter weight 440 of the above-described second embodiment.
  • FIG. 23 is a cross-sectional view of the vane according to the fifth embodiment of the present invention.
  • the fifth embodiment of the present invention is similar in overall configuration to the above-described first embodiment, except that the weight portion 430d of the vane 400d has a circular shape in cross section. Therefore, the same components as those in the above-described first embodiment will be denoted by the same reference numerals and redundant description thereof will be omitted.
  • the weight portion 430d is formed at the end of the wing portion 420, and is formed in a circular cross-sectional shape as shown in FIG.
  • the width of the weight portion 430d is formed to be larger than the width of the wing portion 420, the center position of the weight portion 430d may be appropriately selected as necessary.
  • the outer edge of the weight portion 430d may protrude out of a curve formed by the outer edge of the wing portion 420 as shown in FIG. 23.
  • the outer edge of the weight portion 430d may be formed inside the curve formed by the outer edge of the wing portion 420.
  • the weight portion it is also possible for the weight portion to form a polygonal shape such as a triangle, a square or a pentagon in cross section.
  • the width of the weight portion should be formed larger than the width of the wing portion so that the center of gravity of the vane is formed adjacent to the weight portion.
  • one end of the edge portion of the weight portion facing the inner circumferential surface of the cylinder 200 may be formed in an elliptical arc shape so that the tip portion of the vane according to the fifth embodiment of the present invention and the modified example thereof performs rolling friction with the inner circumferential surface of the cylinder 200. have.
  • the counter weight 440 of the above-described second embodiment may be provided in the weight part 430d according to the fifth embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of the vane rotary compressor in which the inner circumferential surface of the cylinder forms an involute curve according to the sixth embodiment of the present invention.
  • the overall configuration is similar to the above-described embodiments, except that the hollow inner circumferential surface of the cylinder 200 'is in the form of an involute curve, and the cylinder 200' and the rotor 300 are co-centered. It differs from the above embodiment in that it has an axis. Therefore, the same reference numerals are assigned to the same components as the above-described embodiments, and redundant descriptions thereof will be omitted.
  • the hollow inner circumferential surface of the cylinder 200 ′ has an involute curve shape, and the inner circumferential surface of the cylinder 200 ′ and the outer circumferential surface of the rotor 300 are cross-sectional.
  • the rotor 300 is installed in the hollow of the cylinder 200 'to achieve concentricity.
  • the center of the start point and the end point is coincident with the center of the rotor 300, and thus the rotor 300 is eccentrically arranged as in the above-described embodiment. In comparison, vibration and noise are reduced.
  • the vane 400d is the rotational moment is increased due to the weight portion 430d to prevent the rotational operation delay and the impact sound of the vane 400d as in the prior art, one side of the weight portion 430d wing portion 420 As it is formed to protrude outward, the weight portion 430d is moved in contact with the inner circumferential surface of the cylinder 200 '.
  • the weight portion is formed on the tip of the vane, the center of gravity of the vane is formed on one side of the vane, thereby increasing the rotation moment of the vane compared to the conventional.
  • the counterweight made of a material having a greater specific gravity than the material of the vane is inserted into the weight portion of the vane, thereby increasing the rotation moment of the vane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

본 발명은 로터 회전시 압축실의 체적이 감소되면서 냉매 등의 유체가 압축되는 베인 로터리 압축기에 관한 것으로, 본 발명의 일실시예에 의하면, 곡면 날개 타입(curved wing type) 베인의 선단부에 웨이트부를 확장 형성함으로써 베인의 회전 모멘트를 최대화하여, 로터 회전시 베인의 회전 작동 지연으로 인한 타격 소음을 없앨 수 있고, 내부 리크를 줄여 성능 증대의 효과가 있는 베인 로터리 압축기가 제공된다.

Description

베인 로터리 압축기
본 발명은 로터 회전시 압축실의 체적이 감소되면서 냉매 등의 유체가 압축되는 베인 로터리 압축기에 관한 것이다.
베인 로터리 압축기는 공기조화기 등에 사용되며, 냉매 등의 유체를 압축하여 외부로 공급한다.
도 1은 일본공개특허 특개2010-31759에 개시된 종래의 베인 로터리 압축기를 개략적으로 도시한 단면도이고, 도 2는 도 1의 A-A선 단면도이다.
도 1에 도시한 바와 같이, 종래의 베인 로터리 압축기(10)는 리어 하우징(11)과 프론트 하우징(12)으로 구성되는 하우징(H)이 외관을 이루며, 리어 하우징(11)의 내부에는 원통 형상의 실린더(13)가 수용된다.
이때, 실린더(13)의 내주면은 도 2에 도시된 바와 같이 타원 단면 형상으로 이루어진다.
또한, 리어 하우징(11)의 내부에 있어서, 실린더(13)의 전방에는 프론트 커버(14)가 결합되고, 실린더(13)의 후방에는 리어 커버(15)가 결합되며, 실린더(13)의 외주면과, 이와 대향하는 리어 하우징(11)의 내주면, 프론트 커버(14), 및 리어 커버(15) 사이에 토출공간(Da)이 형성된다.
프론트 커버(14) 및 리어 커버(15)에는 회전축(17)이 실린더(13)를 관통하여 회전 가능하게 설치되며, 회전축(17)에는 원통 형상의 로터(18)가 결합되어 회전축(17)의 회전시 회전축(17)과 함께 실린더(13) 내에서 회전하게 된다.
이때, 도 2에 도시된 바와 같이, 로터(18)의 외주면에는 방사상으로 다수의 슬롯(18a)이 형성되고, 각각의 슬롯(18a)에는 직선 타입의 베인(20)이 슬라이드 이동 가능하게 수용되며, 슬롯(18a) 내에는 윤활유가 공급된다.
그리고, 회전축(17)의 회전에 의해 로터(18)가 회전하게 되면, 베인(20)의 선단부가 슬롯(18a)의 외측으로 돌출되어 실린더(13)의 내주면에 밀착되며, 이에 따라 로터(18)의 외주면과, 실린더(13)의 내주면, 및 서로 인접하는 한 쌍의 베인(20)과, 실린더(13)와 대향하는 프론트 커버(14)의 대향면(14a), 및 리어 커버(15)의 대향면(15a)으로 이루어지는 압축실(21)이 복수 개 구획 형성된다.
여기서, 베인 로터리 압축기의 경우, 로터(18)의 회전방향에 따라 압축실(21)의 체적이 확대되는 행정이 흡입행정이며, 압축실(21)의 체적이 감소되는 행정이 압축행정이 된다.
또한, 도 1에 도시된 바와 같이, 프론트 하우징(12)의 상부에는 흡입포트(24)가 형성되고, 이 흡입포트(24)와 연통되는 흡입공간(Sa)이 프론트 하우징(12)의 내부에 형성된다.
그리고, 프론트 커버(14)에는 흡입공간(Sa)과 연통되는 흡입구(14b)가 형성되며, 흡입구(14b)와 연통하는 흡입통로(13b)가 실린더(13)의 축방향으로 관통 형성된다.
아울러, 도 2에 도시된 바와 같이, 실린더(13)의 외주면 양측에는 내측으로 함몰된 토출실(13d)이 형성되고, 이들 한 쌍의 토출실(13d)은 토출공(13a)에 의해 압축실(21)과 연통되며, 토출공간(Da)의 일부를 형성한다.
또한, 리어 하우징(11)에는 리어 커버(15)에 의해 구획되며 압축된 냉매가 유입되는 고압실(30)이 형성된다. 즉, 리어 하우징(11)의 내부는 리어 커버(15)에 의해 토출공간(Da)과 고압실(30)로 구획된다. 이때, 한 쌍의 토출실(13d) 중 어느 하나에는 고압실(30)과 연통되는 토출구(15e)가 형성된다.
따라서, 회전축(17) 회전시 로터(18)와 베인(20)이 회전하면, 냉매가 흡입공간(Sa)으로부터 흡입구(14b) 및 흡입통로(13b)를 거쳐 각각의 압축실(21)로 흡입되며, 압축실(21)의 체적감소에 따라 압축된 냉매는 토출공(13a)을 통해 토출실(13d)로 토출되어, 토출구(15e)를 통해 고압실(30)로 유입되고, 배출포트(31)를 통해 외부로 공급된다.
한편, 고압실(30)에는 고압실(30)로 유입된 압축냉매에서 윤활유를 분리하기 위한 유분리기(40)가 구비되는데, 케이스(41)의 상부에 유분리 파이프(43)가 설치되고, 유분리 파이프(43)의 하부에는 분리된 오일이 떨어지는 유분리실(42)이 형성되며, 유분리실(42)의 오일은 오일통로(41b)를 통해 고압실(30) 하부에 형성되는 오일저장실(32)로 흘러내리게 된다.
오일저장실(32)에 저장된 오일은 오일공급통로(15d)를 통해 회전축(17)의 후단을 지지하는 부시(bush)의 윤활공간을 거쳐 리어 커버(15)와 로터(18)의 습동면을 윤활하게 되며, 토출공간(Da)과 고압실(30)의 압력차에 의해 오일리턴홈(45)을 통해 다시 토출구(15e)로 유입된다.
그런데, 전술한 종래의 베인 로터리 압축기(10)와 같이 직선 타입의 베인(20)이 적용되는 경우, 베인(20)이 슬롯(18a)을 따라 로터(18)의 외측으로 출몰되게 구성되므로, 베인(20)의 선단부가 실린더(13)의 내주면에 충돌하면서 타격 소음이 발생되는 문제가 있다.
도 3은 일본공개특허 특개2002-130169에 개시된 곡면 날개 타입의 베인 로터리 압축기를 개략적으로 도시한 단면도이다.
도 3에 도시된 베인 로터리 압축기는 원통형의 실린더(1)와 로터(2) 및 그 구동축(3)을 포함한다. 이때, 실린더(1)는 흡입구(1A) 및 토출구(1B)를 구비하며, 로터(2)는 실린더(1) 내에 편심 설치된다.
로터(2)의 외주면에는 복수의 곡면 날개 타입의 베인(4)이 구비되어 실린더(1)와 로터(2) 사이에 복수 개의 압축실(6)을 구획 형성하며, 베인(4)의 일측은 힌지핀(5)에 의해 로터(2)의 외주면에 힌지 결합된다.
그런데, 베인(4)이 토출구(1B)를 지나서 압축행정이 종료된 시점부터, 흡입구(1A)를 지나면서 흡입행정이 시작되는 시점까지, 로터(2)가 소정 각도 회전하는 동안, 도 3의 확대도에 도시된 바와 같이 베인(4)의 등부가 실린더(1)의 내주면에 의해 로터(2) 방향으로 가압되며, 이때 베인(4)의 선단부는 실린더(1)의 내주면으로부터 이격되어 있다.
이후, 로터(2) 회전에 의해 로터(2)의 외주면과 실린더(1) 내주면 사이 간격이 벌어짐에 따라 베인(4)의 등부를 가압하던 힘이 순간적으로 제거되면, 베인(4)이 로터(2)로부터 회동하여 펼쳐지면서 베인(4)의 선단부가 실린더(1) 내주면에 접촉하게 된다.
이때, 로터(2)의 고속회전시 베인(4)의 회전 관성 모멘트 증가로 인해, 로터(2)에 접혀있던 베인(4)이 실린더(1) 내주면 방향으로 펼쳐지는 과정에서, 베인(4)의 선단부가 실린더(1) 내주면을 타격하는 타격 소음을 유발하게 된다.
또한, 흡입행정의 초기에는 베인(4)의 등부가 실린더(1) 내주면에 접촉하고 있다가, 흡입행정이 어느 정도 진행된 후에야 베인(4)이 로터(2)로부터 급격히 전개되어 나와 그 선단부가 실린더(1) 내주면에 지지되므로, 압축실(6)의 체적 팽창이 원활하게 이루어지지 못하여 흡입유량이 저하되는 결과를 초래하게 된다.
한편, 종래의 곡면 날개 타입 베인(4)의 경우, 베인(4)의 무게중심이 로터(2)와의 힌지결합부 가까이에 형성됨에 따라, 로터(2) 회전시 베인(4)의 회전 모멘트가 작다.
이에 따라, 로터(2)로부터 베인(4)이 펼쳐져서 그 선단부가 실린더(1) 내주면에 접촉하기까지의 회전 작동 시간이 지연되어 내부 리크(leak)가 발생하며, 이는 압축냉매의 유량을 저하시키는 한 원인이 된다.
이에 대하여, 도 4를 참고하여 좀 더 상세히 살펴보기로 한다.
도 4는 로터 회전시 곡면 날개 타입의 베인에 작용되는 힘들을 도시한 개략도이다.
도 3에 도시된 베인 로터리 압축기의 경우, 로터(2) 회전시 베인(4)이 로터(2)로부터 펼쳐지고, 그 선단부가 실린더(1)의 내주면에 밀착됨으로써 압축실(6)을 형성하게 된다.
이때, 도 3과 도 4를 참고하여 베인(4)에 가해지는 힘들을 그 작용 방향별로 살펴보면, 로터(2) 회전에 의한 원심력(A1)과 베인(4)의 무게중심에 따른 회전 모멘트(A2)가 베인(4)의 선단부를 실린더(1) 내주면 방향으로 밀어서 회전시키는 힘으로 작용한다.
이에 대하여, 베인(4)의 힌지 마찰력(B1), 회전 관성 모멘트(B2), 압축실 냉매의 유체저항(B3), 베인(4)과 실린더(1) 사이 마찰력(B4), 및 윤활오일의 점착력(B5)은 베인(4)의 선단부를 로터(2)의 외주면 방향으로 끌어당기는 힘으로 작용한다.
이때, 베인(4)의 선단부를 로터(2)의 외주면 방향으로 끌어당기는 힘(B1~B5)이 실린더(1) 내주면 방향으로 미는 힘(A1~A2)보다 크면, 도 4에 도시된 바와 같이 베인(4)과 실린더(1) 사이에 간극이 형성된다.
이 경우, 베인(4)에 의해 압축실(6)이 완전히 밀폐되지 못하게 되어, 인접하는 압축실(6) 간에 내부 리크(leak)가 발생하여 냉매의 압축 유량이 저하되는 문제가 발생한다.
또한, 베인(4)의 회전 작동이 지연되는 동안, 로터(2)의 회전에 의해 베인(4)과 실린더(1) 사이 간극이 점차 증가하게 되는데, 로터(2)의 회전에 따른 원심력(A1)과 베인(4)의 회전 모멘트(A2)에 의해 베인(4)의 선단부가 실린더(1)의 내주면에 순간적으로 접촉하면서 타격 소음이 발생하게 되는 문제가 있다.
아울러, 종래의 베인 로터리 압축기의 경우, 베인(4)의 선단부가 라운드진 원호 형태로 형성된다. 로터(2) 회전시 베인(4) 선단부가 실린더(1) 내주면과 마찰되는데, 이때 베인(4)의 선단부를 따라 이동하는 접점의 이동거리가 매우 짧으므로, 결국 베인(4)은 실린더(1) 내주면에 대하여 미끄럼 마찰에 가까운 마찰 특성을 보이게 된다.
이러한 마찰 특성은, 마찰이 국부적으로 발생됨에 따라 베인(4) 선단부와 실린더(1) 내주면의 마모 증대를 초래하며, 압축기의 장기 구동시 소음과 내부 리크(leak)를 유발하는 등 내구성을 저하시키는 요인으로 작용하게 된다.
본 발명은 상술한 바와 같은 문제를 해결하기 위해 안출된 것으로, 본 발명의 일실시예는, 베인의 회전 모멘트를 최대화함으로써, 로터 회전시 베인의 회전 작동 지연으로 인한 타격 소음을 없앨 수 있고, 내부 리크를 줄여 성능 증대의 효과가 있는 베인 로터리 압축기의 제공을 목적으로 한다.
또한, 본 발명의 일 실시예는, 베인 선단부와 실린더의 내주면 사이에 발생하는 마찰을 감소시킴으로써, 내부 리크 방지와 내구성 증대의 효과가 있는 베인 로터리 압축기의 제공을 다른 목적으로 한다.
본 발명의 바람직한 일실시예에 의하면, 일측에 흡입구가 형성되는 중공 형상의 실린더; 상기 중공 내에 설치되어, 구동원의 동력을 전달받아 회전하는 로터; 및 상기 로터의 외주면 일측에 일단이 힌지 결합되어 상기 실린더의 내주면 방향으로 회동하는 베인을 포함하며, 상기 베인의 무게중심이 상기 베인의 선단부 일측에 형성되도록, 상기 베인의 선단부에 웨이트부가 형성되는 것을 특징으로 하는 베인 로터리 압축기가 제공된다.
또한, 상기 웨이트부에 구비되는 카운터 웨이트를 더 포함할 수 있다.
이때, 상기 카운터 웨이트는, 상기 베인의 소재보다 비중이 큰 소재로 이루어진다.
이때, 상기 베인은 상기 로터의 외주면 일측에 힌지 결합되는 힌지부와, 상기 힌지부의 일측으로부터 만곡지게 형성되는 날개부와, 상기 날개부의 끝단에 형성되는 웨이트부를 포함하며, 상기 베인의 무게중심이 상기 힌지부로부터 이격하여 상기 웨이트부 일측에 형성된다.
또한, 상기 웨이트부의 외측에 상기 실린더 내주면 방향으로 볼록하게 돌출되는 돌출부가 형성될 수 있다.
이때, 상기 웨이트부는, 상기 날개부보다 큰 폭으로 확장 형성된다.
또한, 상기 웨이트부는, 원형 단면 형태로 형성될 수 있다.
또한, 상기 웨이트부는, 타원형 단면 형태로 형성될 수 있다.
또한, 상기 웨이트부는, 다각형 단면 형태로 형성될 수 있다.
또한, 상기 웨이트부는, 상기 실린더의 내주면과 대향하는 일측이 곡면으로 형성되고, 상기 로터의 외주면과 대향하는 타측이 평면으로 형성될 수 있다.
이때, 상기 로터 회전시, 상기 웨이트부와 상기 실린더 내주면이 구름 마찰하게 된다.
또한, 상기 웨이트부와 상기 실린더 내주면의 접점이, 상기 웨이트부의 일측 테두리를 따라 이동한다.
이때, 흡입행정시 상기 접점은 상기 로터의 회전 방향을 따라 이동하고, 압축행정시 상기 접점은 상기 로터의 회전 반대방향을 따라 이동한다.
이때, 상기 웨이트부는, 상기 접점의 이동구간이 소정 곡률의 타원형 원호 형태를 이룬다.
또한, 상기 실린더의 중공 내주면이 단면상 원주방향을 따라 인벌류트 곡선 형태로 이루어질 수 있다.
한편, 일측에 흡입구가 형성되는 중공 형상의 실린더; 상기 중공 내에 편심 설치되어, 구동원의 동력을 전달받아 회전하는 로터; 및 상기 로터의 외주면 일측에 힌지부가 힌지 결합되고, 상기 힌지부의 일측에서 날개부가 연장 형성되는 베인을 포함하며, 상기 날개부의 끝단에 상기 날개부 보다 큰 폭으로 웨이트부가 확장 형성되고, 상기 웨이트부는 일측 테두리에 형성되는 접점 이동구간을 따라, 상기 실린더 내주면과 구름 마찰하는 것을 특징으로 하는 베인 로터리 압축기가 제공된다.
또한, 상기 웨이트부에 구비되는 카운트 웨이트를 더 포함할 수 있다.
이때, 상기 카운터 웨이트는, 상기 베인의 소재보다 비중이 큰 소재로 이루어진다.
이때, 상기 베인의 무게중심이 상기 힌지부로부터 이격하여 상기 웨이트부의 일측에 형성된다.
이때, 흡입행정시 상기 접점이 상기 로터의 회전 방향을 따라 이동하고, 압축행정시 상기 접점이 상기 로터의 회전 반대방향을 따라 이동한다.
이때, 상기 웨이트부는, 상기 접점의 이동구간이 소정 곡률의 타원형 원호 형태를 이룬다.
도 1은 종래의 베인 로터리 압축기를 개략적으로 도시한 종단면도.
도 2는 도 1의 A-A선 단면도.
도 3은 종래의 곡면 날개 타입 베인 로터리 압축기의 단면도.
도 4는 로터 회전시 베인에 작용되는 힘들을 도시한 개략도.
도 5는 본 발명의 제1 실시예에 따른 베인 로터리 압축기의 종단면도.
도 6은 도 5의 B-B선 단면도.
도 7은 본 발명의 제1 실시예에 따른 베인의 사시도.
도 8은 종래의 베인의 무게중심 형성 위치를 도시한 개략도.
도 9는 본 발명의 제1 실시예에 따른 베인의 무게중심 형성 위치를 도시한 개략도.
도 10 내지 도 13은 본 발명의 제1 실시예에 따른 베인 로터리 압축기의 작동 상태를 도시한 단면도.
도 14는 본 발명의 제2 실시예에 따른 베인의 사시도.
도 15는 본 발명의 제3 실시예에 따른 베인의 사시도.
도 16 내지 도 18은 본 발명의 제3 실시예에 따른 흡입행정시 단면상 웨이트부와 실린더 내주면의 접점 이동방향을 도시한 단면도.
도 19 내지 도 21은 본 발명의 제3 실시예에 따른 압축행정시 단면상 구름마찰부와 실린더 내주면의 접점 이동방향을 도시한 단면도.
도 22는 본 발명의 제4 실시예에 따른 베인의 단면도.
도 23은 본 발명의 제5 실시예에 따른 베인의 단면도.
도 24는 본 발명의 제6 실시예에 따라 실린더 내주면이 인벌류트 곡선 형태를 이루는 베인 로터리 압축기의 단면도.
이하, 본 발명인 베인 로터리 압축기의 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 하여 내려져야 할 것이다.
아울러, 아래의 실시예는 본 발명의 권리범위를 한정하는 것이 아니라 본 발명의 청구범위에 제시된 구성요소의 예시적인 사항에 불과하며, 본 발명의 명세서 전반에 걸친 기술사상에 포함되고 청구범위의 구성요소에서 균등물로서 치환 가능한 구성요소를 포함하는 실시예는 본 발명의 권리범위에 포함될 수 있다.
또한, 이하의 실시예는, 베인 로터리 압축기의 외관이 하우징과 제2헤드부의 결합에 의해 이루어지고, 하우징 내에 실린더가 수용된 예를 설명하고 있으나, 본 발명은 이러한 베인 로터리 압축기의 외관을 이루는 하우징과 헤드부 및 실린더의 결합관계에 의해 한정되지 않음을 미리 밝혀둔다.
제1 실시예
도 5는 본 발명의 제1 실시예에 따른 베인 로터리 압축기의 종단면도이다.
도 5에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 베인 로터리 압축기(이하, '압축기')(100)는, 하우징(110)과 제2헤드부(114)의 결합에 의해 압축기(100)의 전체적인 외관이 형성될 수 있다.
여기서, 하우징(110)은, 내부에 공간부(111)가 형성되는 실린더부(112)와, 실린더부(112)의 축방향 전방에서 실린더부(112)와 일체로 형성되어 공간부(111)의 전방을 폐쇄하는 제1헤드부(113)를 포함하며, 공간부(111)에는 중공 형태의 실린더(200)가 장착된다.
이때, 실린더(200) 내부에는 구동원의 동력에 의해 회전하는 회전 샤프트(310)와, 회전 샤프트(310)의 회전력을 전달받아 회전 샤프트(310)와 함께 회전하는 로터(300)와, 로터(300)의 외주면에 로터(300)의 반경 방향으로 회동 가능하게 힌지 결합되는 복수의 베인(400)이 장착된다.
또한, 하우징(110)의 축방향 후방에는 제2헤드부(114)가 결합되어 공간부(111)의 후방을 폐쇄한다.
한편, 하우징(110)의 제1헤드부(113) 외주면에는 외부로부터 냉매를 흡입하는 흡입포트(미도시)와, 실린더(200) 내에서 압축된 고압의 냉매를 외부로 토출하는 토출포트(미도시)가 원주방향으로 서로 이격하여 구비된다.
이때, 제1헤드부(113)의 전방 중앙에는 전자클러치(미도시)의 풀리(500)가 결합되도록, 풀리결합부(510)가 연장 형성된다.
도 6은 도 5의 B-B선 단면도이고, 도 7은 본 발명의 제1 실시예에 따른 베인의 사시도이다.
도 6에 도시된 바와 같이, 실린더(200)의 중공은 회전 샤프트(310)가 설치되는 실린더(200)의 중심에서 일측으로 약간 편심되어 형성되며, 이 중공에 베인(400)을 가진 로터(300)가 삽입 장착됨으로써, 실린더(200)의 중공은 유입된 냉매가 로터(300) 회전에 의해 압축되는 압축공간을 이루게 된다.
이때, 실린더(200)의 일측에는 흡입홀(210)이 형성되는데, 이 흡입홀(210)의 일측은 제1헤드부(113)의 흡입포트와 연통되고, 타측은 실린더(200) 내 압축공간으로 연통되는 흡입구(211)와 연통되어, 외부로부터 흡입포트를 통해 흡입된 냉매가 실린더(200)의 흡입홀(210)과 흡입구(211)를 거쳐 압축공간인 실린더(200)의 중공으로 유입된다.
또한, 실린더(200)의 외주면 일측에는 압축된 고압의 냉매가 토출되는 토출부(220)가 함몰 형성되고, 이 토출부(220)의 일측에는 후술하는 압축실(230)과 연통되는 복수의 토출구(221)가 관통 형성되며, 토출부(220)의 타측에는 고압의 냉매를 토출포트 방향으로 안내하는 가이드 유로(미도시)가 형성된다.
로터(300)는 구동모터(미도시), 혹은 엔진벨트(미도시)에 의해 구동되는 클러치(미도시)와 연결된 회전 샤프트(310)에 결합되어 회전 샤프트(310)와 함께 축회전한다.
이때, 회전 샤프트(310)는 실린더(200)의 중심 축선을 따라 장착되며, 따라서 로터(300)는 실린더(200) 중공의 중심으로부터 일측으로 약간 벗어나, 실린더(200) 중공 내 편심된 위치에서 회전하게 된다.
또한, 로터(300)의 외주면에는 곡면 날개 타입의 베인(400)이 서로 이격하여 복수 개 힌지 결합된다. 이때, 베인(400)의 일측은 로터(300)의 외주면 슬롯(320)에 힌지 결합되며, 로터(300) 회전시 베인(400)의 타측 선단부가 원심력과 냉매의 압력에 의해 실린더(200)의 내주면 방향으로 회동하여 압축공간을 다수의 압축실(230)로 구획한다.
즉, 인접하는 한 쌍의 베인(400)과, 로터(300)의 외주면, 및 실린더(200)의 내주면으로 이루어지는 공간에 의해 각각의 압축실(230)이 형성되는 것이다.
이때, 본 실시예에서는 로터(300)의 외주면을 따라 세 개의 베인(400)이 구비되는 예를 도시하고 있으나, 베인(400)의 개수는 필요에 따라 적절히 선택될 수 있다.
로터(300) 회전시 베인(400)의 선단부는 실린더(200)의 중공 내주면을 따라 로터(300)의 회전방향으로 함께 회전하며, 로터(300)가 중공 내에 편심하여 위치함에 따라, 로터(300) 회전시 로터(300)의 외주면과 중공 내주면 사이의 간격이 점점 좁아지면서 압축실(230)의 체적이 감소하고, 압축실(230)에 갇힌 냉매가 압축된다.
이때, 압축행정에서 압축실의 체적 감소를 최대로 하기 위해, 로터(300)의 외주면 일측이 실린더(200) 중공 내주면에 접촉하게끔 편심 배치된다.
이에 따라, 로터(300)의 외주면에는 베인(400)을 수용하는 수용홈(330)이 베인(400)의 개수에 대응하여 원주방향으로 복수 개 형성되는데, 이때 수용홈(330)은, 후술하는 베인(400)의 날개부(420)를 수용하는 날개부 수용홈(331)과, 베인(400)의 웨이트부(430)를 수용하는 웨이트부 수용홈(332)을 포함한다.
도 6과 도 7에 도시된 바와 같이, 베인(400)은 로터(300)의 외주면 일측에 힌지 결합되는 힌지부(410)와, 힌지부(410)의 일측으로부터 만곡지게 연장 형성되는 날개부(420)와, 날개부(420)의 끝단에서 폭이 확장 형성되는 웨이트부(430)를 포함한다.
이때, 베인(400)의 힌지부(410)는 로터(300)의 외주면 일측에 힌지 결합되는 것으로, 로터(300)의 외주면 일측에 형성된 원호 단면 형태의 슬롯(320)에 원형 단면 형태의 힌지부(410)가 회전 가능하게 결합되며 이때, 힌지부(410)가 로터(300)의 반경방향 외측으로 이탈되지 않게끔 하는 것이 바람직하다.
베인(400)의 날개부(420)는 힌지부(410)의 일측에서 실린더(200)의 중공 내주면 방향으로 만곡지게 연장 형성되며, 날개부(420)의 끝단에 웨이트부(430)가 형성된다.
이때, 날개부(420)는 힌지부(410)와 웨이트부(430)가 동시에 내접하는 가상원의 내측에 형성되는 것이 바람직하다. 이 경우, 로터(300) 회전시 베인(400)은 웨이트부(430)가 실린더(200)의 중공 내주면에 접촉되거나, 웨이트부(430)와 힌지부(410)가 동시에 실린더(200)의 중공 내주면에 접촉될 뿐, 날개부(420)는 실린더(200)의 내주면으로부터 항상 이격하게 된다.
웨이트부(430)는 그 폭(w1)이 날개부(420)의 폭(w2)보다 더 넓게 형성되는데, 이는 베인(400)의 무게중심을 최대한 힌지부(410)의 힌지중심(G)으로부터 이격시켜 웨이트부(430)에 가깝게 형성시키기 위함이다.
또한, 웨이트부(430)의 외측 즉, 실린더(200)의 내주면과 대향하는 일측에는 소정 곡률의 곡면(431)이 돌출 형성되어, 로터(300) 회전시 이 곡면(431)이 항상 실린더(200)의 중공 내주면에 접촉된 상태를 유지하게 된다.
아울러, 웨이트부(430)의 내측 즉, 로터(300)의 외주면과 대향하는 타측은 평면(432)으로 형성되는 것이 바람직한데, 이는 웨이트부(430) 내측의 볼륨을 줄여 웨이트부(430)의 무게중심이 외측 즉, 실린더(200)의 내주면 방향으로 치우쳐 형성되도록 하기 위함이다.
이와 같이 베인(400)의 선단부에 웨이트부(430)가 형성되면, 종래 힌지부(410) 가까이에 위치하였던 베인(400)의 무게중심이 웨이트부(430) 방향으로 이동하게 된다.
도 8과 도 9를 통해, 이처럼 무게중심을 웨이트부(430) 방향으로 이동시킨 본 발명의 일실시예에 따른 베인과 종래의 베인의 무게중심 위치를 서로 비교할 수 있다.
도 8에 도시된 종래의 베인(4)의 무게중심(M)과 힌지중심(G)의 이격거리(L)에 비해, 도 9에 도시된 본 발명의 일실시예에 따른 베인(400)의 무게중심(M')과 힌지중심(G)의 이격거리(L')가 더 크다.
이에 따라, 본 발명의 일실시예에 의하면 로터(300) 회전시 베인(400)의 회전 모멘트가 종래의 예에 비해 더욱 크며, 따라서 종래와 같은 베인(400)의 회전 작동 지연에 따른 타격 소음 발생을 방지할 수 있다.
또한, 베인(400)의 회전 모멘트에 의해 그 선단부가 실린더(200)의 내주면에 밀착 지지된 상태를 유지하므로, 종래와 같은 간극 발생에 의한 내부 리크를 줄일 수 있고, 압축기(100)의 성능을 증대시킬 수 있다.
도 10 내지 도 13은 본 발명의 일실시예에 따른 베인 로터리 압축기의 작동 상태를 도시한 단면도이다.
본 발명의 일실시예에 의하면, 베인(400)의 선단부에 형성되는 웨이트부(430)로 인해 베인(400)의 회전 모멘트가 증대된다.
이에 따라, 원형 점선으로 도시된 바와 같이, 압축행정(도 10, 도 11 참조)에서는 베인(400)의 회전 모멘트에 의해 웨이트부(430)가 실린더(200)의 내주면에 접촉된 상태를 항상 유지하게 된다.
또한, 흡입행정(도 12, 도 13 참조)시에는, 로터(300)의 수용홈(330)에 접혀져 있던 베인(400)이 신속하게 실린더(200) 내주면 방향으로 전개되어, 원형 점선으로 도시된 바와 같이 웨이트부(430)가 실린더(200) 내주면과 접촉하게 된다.
따라서, 종래와 같은 베인(400)의 회전 작동 지연에 의한 베인(400)과 실린더(200) 사이 간극 발생과, 이로 인한 타격음 및 내부 리크를 방지하여, 압축기(100)의 내구성과 효율을 증대시킬 수 있게 되는 것이다.
제2 실시예
도 14는 본 발명의 제2 실시예에 따른 베인의 사시도이다.
본 발명의 제2 실시예는, 전술한 제1 실시예와 비교하여 전체적인 구성이 유사하며 다만, 베인(400a)의 웨이트부(430a)에 카운터 웨이트(440)가 삽입된다는 점에서 차이가 있다. 따라서, 전술한 실시예와 동일한 구성에 대하여는 동일한 도면부호를 부여하고 중복 설명은 생략하기로 한다.
본 발명의 제2 실시예에 따른 베인(400a)에 의하면, 전술한 제1 실시예에 비해 웨이트부(430a)의 무게가 증대됨으로써 베인(400a)의 회전 모멘트 역시 증대된다.
이때, 웨이트부(430a)에는 소정 깊이의 삽입홈(433)이 형성되며, 이 삽입홈(433)에 카운터 웨이트(440)가 삽입되는데, 카운터 웨이트(440)의 폭과 두께 등 규격은 필요에 따라 적절히 선택될 수 있다.
다만, 압축실(230) 간의 밀폐를 위해, 카운터 웨이트(440)의 길이는 웨이트부(430a)의 높이와 동일하거나 그보다 더 작은 것이 바람직하다.
또한, 웨이트부(430a)의 무게 증가를 위해 카운터 웨이트(440)를 웨이트부(430a)에 삽입하는 것이므로, 카운터 웨이트(440)의 소재는 베인(400a)의 소재보다 더 큰 비중을 가진 소재로 이루어지는 것이 바람직하다.
예를 들어, 알루미늄 재질로 베인(400a)을 제작하는 경우, 카운터 웨이트(440)는 알루미늄보다 비중이 더 큰 스틸(steel) 재질로 제작될 수 있다.
제3 실시예
도 15는 본 발명의 제3 실시예에 따른 베인의 사시도이다.
본 발명의 제3 실시예는, 전술한 제1 실시예와 비교하여 전체적인 구성이 유사하며 다만, 베인(400b)의 웨이트부(430b)가 타원형 단면 형태로 형성된다는 점에서 차이가 있다. 따라서, 전술한 실시예와 동일한 구성에 대하여는 동일한 도면부호를 부여하고 중복 설명은 생략하기로 한다.
본 발명의 제3 실시예에 의하면, 베인(400b)은 로터(300)의 외주면 일측에 힌지 결합되는 힌지부(410)와, 힌지부(410)의 일측으로부터 만곡지게 연장 형성되는 날개부(420)와, 날개부(420)의 끝단에 형성되는 웨이트부(430b)를 포함한다.
이때, 날개부(420)의 외측면은 실린더(200)의 중공 내주면과 대응되는 곡률로 형성될 수 있고, 바람직하게는 힌지부(410)와 웨이트부(430b)가 동시에 내접하는 가상원의 내측에 형성된다. 즉, 힌지부(410)의 일측과 웨이트부(430b)의 일측을 연결하는 가상의 원호 내측에 웨이트부(430b)의 외측 테두리가 배치된다.
웨이트부(430b)는 날개부(420)의 끝단에 형성되며, 웨이트부(430b)의 외측면 즉, 실린더(200)의 내주면과 대향하는 면은, 도 15에서 점선으로 도시된 바와 같이, 단면상 소정 곡률의 타원형 원호 형상을 이룬다.
이때, 로터(300) 회전시 베인(400b)은 웨이트부(430b)가 실린더(200) 내주면에 항상 접촉된 상태를 유지하게 되며, 웨이트부(430b)와 실린더(200) 내주면의 접점은 웨이트부(430b) 외측면의 접점 이동구간(A~C)을 따라 이동하게 된다.
즉, 본 발명의 제3 실시예에 의하면, 웨이트부(430b)의 접점 이동구간(A~C)을 따라 베인(400b)의 선단부가 실린더(200)의 내주면을 따라 구름 마찰 방식으로 이동하므로, 접점의 이동 거리가 매우 짧은 종래의 베인 로터리 압축기(도 3 참조)에 비해 확실한 구름 마찰 특성을 보이게 된다.
따라서, 본 발명의 제3 실시예는, 웨이트부(430b)의 형성에 따른 회전 모멘트 증대 효과에 더하여, 베인(400b)의 선단부가 구름 마찰 방식으로 이동함에 따라 마모 감소에 의한 소음과 내부 리크 방지의 효과가 있고, 따라서 압축기의 내구성이 향상되는 효과가 있다.
도 16 내지 도 18은 본 발명의 제3 실시예에 따른 흡입행정시 단면상 웨이트부와 실린더 내주면의 접점 이동방향을 도시한 단면도이고, 도 19 내지 도 21은 본 발명의 제3 실시예에 따른 압축행정시 단면상 구름마찰부와 실린더 내주면의 접점 이동방향을 도시한 단면도이다.
본 발명의 제3 실시예에 의하면, 압축기(100)의 흡입행정시 로터(300)의 회전에 의해 베인(400b)이 로터(300)의 수용홈(330)으로부터 실린더(200) 내주면 방향으로 펼쳐져 나오게 되며, 이때 웨이트부(430b) 외측면과 실린더(200) 내주면의 접점은 도 16 내지 도 18에 도시된 바와 같이 로터(300)의 회전 방향(화살표 방향)과 동일한 방향(A→C)으로 이동한다.
이때, 회전 방향과 접점의 이동 방향이 동일함에 따라 마찰이 증가하게 되나, 흡입행정에서는 압축실(230)의 부하가 적으므로 마모 발생은 최소화된다.
또한, 날개부(420)의 끝단에 웨이트부(430b)가 형성됨에 따라, 베인(400b)의 무게중심이 힌지부(410)의 힌지중심으로부터 이격하여 웨이트부(430b) 가까이에 형성된다.
따라서, 웨이트부(430b)로 인한 베인(400b) 선단부의 무게 증가에 의해 베인(400b)의 회전 모멘트가 증대되어, 흡입행정시 베인(400b)의 선단부가 실린더(200)의 내주면에 신속하게 밀착 지지됨으로써 내부 리크(leak) 방지와 압축기(100)의 효율이 증대되는 효과가 있다.
한편, 압축기(100)의 압축행정시에는, 로터(300)의 회전에 의해 베인(400b)이 로터(300)의 수용홈(330)으로 접혀져 들어가며, 이때 웨이트부(430b) 외측면과 실린더(200) 내주면의 접점은 도 19 내지 도 21에 도시된 바와 같이 로터(300)의 회전 방향(화살표 방향)과 반대 방향(C→A)으로 이동한다.
이때, 압축행정이 진행됨에 따라 압축실(230)의 부하가 증가하지만, 회전 방향과 접점의 이동 방향이 반대 방향임에 따라 마찰이 감소하므로, 마모 발생은 최소화된다.
아울러, 본 발명의 제3 실시예에 따른 웨이트부(430b)에 전술한 제2 실시예의 카운터 웨이트(440)가 구비되는 것도 가능하다.
제4 실시예
도 22는 본 발명의 제4 실시예에 따른 베인의 단면도이다.
본 발명의 제4 실시예는, 전술한 제1 실시예와 전체적인 구성이 유사하며 다만, 베인(400c)의 웨이트부(430c) 일측 테두리가 구름 마찰을 위해 단면상 소정 곡률의 타원형 원호 형상을 이룬다는 점에서 차이가 있다.
따라서, 전술한 제1 실시예와 동일한 구성에 대하여는 동일한 도면부호를 부여하고 중복 설명은 생략하기로 한다.
본 발명의 제4 실시예에 의하면, 웨이트부(430c)는 날개부(420)의 끝단에서 폭이 확장되어 형성되며, 웨이트부(430c)의 외측면 즉, 실린더(200)의 내주면과 대향하는 면은 도 22에서 점선으로 도시된 바와 같이, 단면상 소정 곡률의 타원형 원호 형상을 이룬다.
이때, 웨이트부(430c)의 외측면에는 실린더(200) 내주면 방향으로 볼록하게 돌출부(431)가 돌출 형성되며, 따라서 힌지부(410)의 외측면과 돌출부(431)의 외측면이 동시에 접하도록 동일 곡률로 가상의 곡선(L)이 그려지는 경우, 날개부(420)의 외측면은 곡선(L)의 내측에 형성된다. 힌지부(410)의 일측과 웨이트부(430c)의 일측이 동시에 내접하는 가상원의 내측에 날개부(420)가 형성되는 것이다.
이에 따라, 로터(300) 회전시 베인(400c)은 웨이트부(430c)가 실린더(200) 내주면에 항상 접촉된 상태를 유지하게 되며, 웨이트부(430c)와 실린더(200) 내주면의 접점은 웨이트부(430c) 외측면의 접점 이동구간(A~C)을 따라 이동하게 된다.
즉, 본 발명의 제4 실시예에 의하면, 웨이트부(430c)의 구간(A~C)을 따라 접점이 이동하는 구름 마찰 방식으로 베인(400c)의 선단부가 실린더(200)의 내주면을 따라 이동하게 된다.
한편, 웨이트부(430c)가 날개부(420)의 폭보다 더 넓은 폭으로 형성됨에 따라, 베인(400c)의 무게중심이 힌지부(410)의 힌지중심으로부터 이격하여 웨이트부(430c) 가까이에 형성된다.
이 경우, 웨이트부(430c)로 인한 베인(400c) 선단부의 무게 증가에 의해 베인(400c)의 회전 모멘트가 증대되어, 베인(400c) 선단부의 실린더(200) 내주면 밀착력이 증대됨으로써, 내부 리크(leak) 방지와 압축기 효율이 증대되는 효과가 있다.
이때, 웨이트부(430c)의 내측 즉, 로터(300)의 외주면과 대향하는 타측은 평면(432)으로 형성되는 것이 바람직한데, 이는 웨이트부(430c) 내측의 볼륨을 줄여 웨이트부(430c)의 무게중심이 외측 즉, 실린더(200)의 내주면 방향으로 치우쳐 형성되도록 하기 위함이다.
아울러, 본 발명의 제4 실시예에 따른 웨이트부(430c)에 전술한 제2 실시예의 카운터 웨이트(440)가 구비되는 것도 가능하다.
제5 실시예
도 23은 본 발명의 제5 실시예에 따른 베인의 단면도이다.
본 발명의 제5 실시예는, 전술한 제1 실시예와 전체적인 구성이 유사하며 다만, 베인(400d)의 웨이트부(430d)가 단면상 원형 형태를 이룬다는 점에서 차이가 있다. 따라서, 전술한 제1 실시예와 동일한 구성에 대하여는 동일한 도면부호를 부여하고 중복 설명은 생략하기로 한다.
본 발명의 제5 실시예에 의하면, 날개부(420)의 끝단에 웨이트부(430d)가 형성되되, 도 23에 도시된 바와 같이 원형 단면 형태로 형성된다.
이때, 웨이트부(430d)의 폭은 날개부(420)의 폭 보다 크게 형성되며, 웨이트부(430d)의 중심 위치는 필요에 따라 적절히 선택될 수 있다. 일 예로서, 웨이트부(430d)의 외측 테두리는 도 23에 도시된 바와 같이 날개부(420)의 외측 테두리가 형성하는 곡선의 외측으로 돌출될 수 있다.
다른 예로서, 날개부(420)의 외측 테두리가 형성하는 곡선의 내측에, 웨이트부(430d)의 외측 테두리가 내접하도록 형성되는 것도 가능하다.
한편, 본 발명의 제5 실시예에 대한 변형예로서, 웨이트부가 단면상 삼각형이나 사각형 또는 오각형 등 다각형 형태를 이루는 것도 가능하다. 다만, 이 경우 베인의 무게중심이 웨이트부에 인접하여 형성되도록, 웨이트부의 폭이 날개부의 폭보다 더 크게 형성되어야 함은 물론이다.
또한, 본 발명의 제5 실시예 및 그 변형예에 따른 베인의 선단부가, 실린더(200) 내주면과 구름 마찰하도록, 실린더(200) 내주면과 대향하는 웨이트부의 테두리 일측 구간이 타원형 원호 형태로 이루어질 수도 있다.
아울러, 본 발명의 제5 실시예에 따른 웨이트부(430d)에 전술한 제2 실시예의 카운터 웨이트(440)가 구비되는 것도 가능하다.
제6 실시예
도 24는 본 발명의 제6 실시예에 따라 실린더 내주면이 인벌류트 곡선 형태를 이루는 베인 로터리 압축기의 단면도이다.
본 발명의 제6 실시예는, 전술한 실시예들과 전체적인 구성이 유사하며 다만, 실린더(200')의 중공 내주면이 인벌류트 곡선 형태이고, 실린더(200')와 로터(300)가 동일 중심축을 가진다는 점에서 전술한 실시예와 차이가 있다. 따라서, 전술한 실시예들과 동일한 구성에 대하여는 동일한 도면부호를 부여하고 중복 설명은 생략하기로 한다.
한편, 도 24에 도시된 실시예의 경우, 전술한 제5 실시예의 원형 단면 형태의 베인(400d)이 적용된 예를 도시하고 있으나, 제1 실시예 내지 제4 실시예의 베인(400,400a,400b,400c) 역시 적용 가능함은 물론이다.
본 발명의 제6 실시예에 의하면, 도 24에 도시된 바와 같이 실린더(200')의 중공 내주면이 인벌류트 곡선 형태로 이루어지며, 실린더(200')의 내주면과 로터(300)의 외주면이 단면상 동심을 이루도록 실린더(200')의 중공에 로터(300)가 설치된다.
즉, 실린더(200')의 내주면을 따라 그려지는 인벌류트 곡선은, 시작점과 종료점의 중심이 로터(300)의 중심과 일치하게 되며, 따라서 전술한 실시예처럼 로터(300)가 편심 배치되는 예에 비해, 진동과 소음이 저감되는 효과가 있다.
여기서, 도면상 로터(300)의 시계 방향 회전에 따라 베인(400d)이 흡입 구간(S→P)을 지나는 동안에는 실린더(200')와 로터(300) 사이 간격이 점점 멀어지면서 흡입행정이 진행되며, 베인(400d)이 압축 구간(P→S)을 지나는 동안에는 실린더(200')와 로터(300) 사이 간격이 점점 가까워지면서 압축행정이 진행된다.
이때, 베인(400d)은 웨이트부(430d)로 인해 회전 모멘트가 증대되어 종래와 같은 베인(400d)의 회전 작동 지연과 타격음 발생이 방지되며, 웨이트부(430d)의 일측이 날개부(420) 외측으로 돌출 형성됨에 따라, 웨이트부(430d)가 실린더(200') 내주면에 계속 접촉된 상태로 이동하게 된다.
본 발명의 일실시예에 따른 베인 로터리 압축기에 의하면, 베인의 선단부에 웨이트부가 확장 형성됨으로써, 베인의 무게중심이 선단부 일측에 형성되어, 종래에 비해 베인의 회전 모멘트가 증대되는 효과가 있다.
이에 따라, 로터 회전시 베인의 회전 작동 지연에 따른 타격 소음 발생을 방지할 수 있으며, 내부 리크를 줄여 압축기의 성능을 증대시킬 수 있는 효과가 있다.
이때, 베인의 소재보다 비중이 더 큰 소재로 이루어지는 카운터 웨이트가 베인의 웨이트부에 삽입됨으로써, 베인의 회전 모멘트 증대 효과가 더욱 크게 나타난다.
또한, 단면상 베인의 선단부에서 실린더의 내주면과 접촉하는 접점의 이동거리가 증가됨으로써 구름 마찰 특성을 보이게 되며, 따라서 미끄럼 마찰 특성을 보이는 종래의 예에 비해, 마모 최소화에 따른 압축기의 내구성이 증대되는 효과가 있다.
이때, 압축실의 부하가 적은 흡입행정시에는 접점의 이동방향이 로터의 회전방향과 일치하고, 압축실의 부하가 큰 압축행정시에는 접점의 이동방향이 로터의 회전방향과 반대이므로, 마찰 감소의 효과가 극대화된다.

Claims (21)

  1. 중공 형상의 실린더(200);
    상기 중공 내에 설치되어, 구동원의 동력을 전달받아 회전하는 로터(300); 및
    상기 로터(300)의 외주면 일측에 일단이 힌지 결합되어 상기 실린더(200)의 내주면 방향으로 회동하는 베인(400)을 포함하며,
    상기 베인(400)의 무게중심이 상기 베인(400)의 선단부 일측에 형성되도록, 상기 베인(400)의 선단부에 웨이트부(430)가 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  2. 청구항 1에 있어서,
    상기 웨이트부(430)에 구비되는 카운터 웨이트(440)를 더 포함하는 것을 특징으로 하는 베인 로터리 압축기.
  3. 청구항 2에 있어서, 상기 카운터 웨이트(440)는,
    상기 베인(400)의 소재보다 비중이 큰 소재로 이루어지는 것을 특징으로 하는 베인 로터리 압축기.
  4. 청구항 1에 있어서,
    상기 베인(400)은 상기 로터(300)의 외주면 일측에 힌지 결합되는 힌지부(410)와, 상기 힌지부(410)의 일측으로부터 만곡지게 형성되는 날개부(420)와, 상기 날개부(420)의 끝단에 형성되는 웨이트부(430)를 포함하며,
    상기 베인(400)의 무게중심이 상기 힌지부(410)로부터 이격하여 상기 웨이트부(430) 일측에 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  5. 청구항 1에 있어서,
    상기 웨이트부(430)의 외측에 상기 실린더(200) 내주면 방향으로 볼록하게 돌출되는 돌출부(431)가 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  6. 청구항 4에 있어서, 상기 웨이트부(430)는,
    상기 날개부(420)보다 큰 폭으로 확장 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  7. 청구항 6에 있어서, 상기 웨이트부(430)는,
    원형 단면 형태로 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  8. 청구항 6에 있어서, 상기 웨이트부(430)는,
    타원형 단면 형태로 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  9. 청구항 6에 있어서, 상기 웨이트부(430)는,
    다각형 단면 형태로 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  10. 청구항 4에 있어서, 상기 웨이트부(430)는,
    상기 실린더(200)의 내주면과 대향하는 일측이 곡면(431)으로 형성되고, 상기 로터(300)의 외주면과 대향하는 타측이 평면(432)으로 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  11. 청구항 1에 있어서,
    상기 로터(300) 회전시, 상기 웨이트부(430)와 상기 실린더(200) 내주면이 구름 마찰하는 것을 특징으로 하는 베인 로터리 압축기.
  12. 청구항 11에 있어서,
    상기 웨이트부(430)와 상기 실린더(200) 내주면의 접점이, 상기 웨이트부(430)의 일측 테두리를 따라 이동하는 것을 특징으로 하는 베인 로터리 압축기.
  13. 청구항 12에 있어서,
    흡입행정시 상기 접점이 상기 로터(300)의 회전 방향을 따라 이동하고,
    압축행정시 상기 접점이 상기 로터(300)의 회전 반대방향을 따라 이동하는 것을 특징으로 하는 베인 로터리 압축기.
  14. 청구항 12에 있어서, 상기 웨이트부(430)는,
    상기 접점의 이동구간(A~C)이 소정 곡률의 타원형 원호 형태를 이루는 것을 특징으로 하는 베인 로터리 압축기.
  15. 청구항 1에 있어서,
    상기 실린더(200)의 중공 내주면이 단면상 원주방향을 따라 인벌류트 곡선 형태로 이루어지는 것을 특징으로 하는 베인 로터리 압축기.
  16. 중공 형상의 실린더(200);
    상기 중공 내에 편심 설치되어, 구동원의 동력을 전달받아 회전하는 로터(300); 및
    상기 로터(300)의 외주면 일측에 힌지부(410)가 힌지 결합되고, 상기 힌지부(410)의 일측에서 날개부(420)가 연장 형성되는 베인(400)을 포함하며,
    상기 날개부(420)의 끝단에 상기 날개부(420) 보다 큰 폭으로 웨이트부(430)가 확장 형성되고,
    상기 웨이트부(430)는 일측 테두리에 형성되는 접점 이동구간(A~C)을 따라, 상기 실린더(200) 내주면과 구름 마찰하는 것을 특징으로 하는 베인 로터리 압축기.
  17. 청구항 16에 있어서,
    상기 웨이트부(430)에 구비되는 카운트 웨이트(440)를 더 포함하는 것을 특징으로 하는 베인 로터리 압축기.
  18. 청구항 17에 있어서, 상기 카운터 웨이트(440)는,
    상기 베인(400)의 소재보다 비중이 큰 소재로 이루어지는 것을 특징으로 하는 베인 로터리 압축기.
  19. 청구항 16에 있어서,
    상기 베인(400)의 무게중심이 상기 힌지부(410)로부터 이격하여 상기 웨이트부(430)의 일측에 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  20. 청구항 16에 있어서,
    흡입행정시 상기 접점이 상기 로터(300)의 회전 방향을 따라 이동하고,
    압축행정시 상기 접점이 상기 로터(300)의 회전 반대방향을 따라 이동하는 것을 특징으로 하는 베인 로터리 압축기.
  21. 청구항 16에 있어서, 상기 웨이트부(430)는,
    상기 접점의 이동구간(A~C)이 소정 곡률의 타원형 원호 형태를 이루는 것을 특징으로 하는 베인 로터리 압축기.
PCT/KR2014/000866 2013-02-05 2014-01-29 베인 로터리 압축기 WO2014123325A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480007240.2A CN104968941A (zh) 2013-02-05 2014-01-29 旋叶式压缩机
US14/765,843 US9822779B2 (en) 2013-02-05 2014-01-29 Vane rotary compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0012994 2013-02-05
KR1020130012992A KR101881543B1 (ko) 2013-02-05 2013-02-05 베인 로터리 압축기
KR10-2013-0012992 2013-02-05
KR1020130012994A KR101881545B1 (ko) 2013-02-05 2013-02-05 베인 로터리 압축기

Publications (1)

Publication Number Publication Date
WO2014123325A1 true WO2014123325A1 (ko) 2014-08-14

Family

ID=51299883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000866 WO2014123325A1 (ko) 2013-02-05 2014-01-29 베인 로터리 압축기

Country Status (3)

Country Link
US (1) US9822779B2 (ko)
CN (1) CN104968941A (ko)
WO (1) WO2014123325A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879300A (zh) * 2015-05-14 2015-09-02 上海大学 刹车用助力真空泵的定子内曲面设计方法
CN108691764A (zh) * 2017-04-10 2018-10-23 百川股份公司 叶轮泵

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884792B (zh) * 2017-02-16 2018-08-07 罗金 一种多功能摆动叶片式多压输出旋转机械机构
CN109505728A (zh) * 2018-12-28 2019-03-22 中国地质大学(北京) 动态推靠式回转马达
ES2953942T3 (es) * 2019-04-22 2023-11-17 Zodiac Pool Systems Llc Motor accionado por fluido para un limpiador automático para piscinas
CN111287972B (zh) * 2020-02-26 2021-11-23 李炳强 叶旋压缩机
US20230083167A1 (en) * 2021-08-27 2023-03-16 Charles H. Tuckey Rotary pump or motor with improved intake, exhaust, vane and bearingless sleeve features

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990074A (en) * 1988-09-27 1991-02-05 Aisin Seiki Kabushiki Kaisha Oil pump having pivoting vanes
WO1998048172A1 (en) * 1997-04-18 1998-10-29 John Eastman Barnes Improvements to impeller pumps
JP2002130169A (ja) * 2000-10-20 2002-05-09 Katsunori Onishi ロータリーベーン式回転機械
WO2008050212A2 (en) * 2006-10-24 2008-05-02 Pierburg Pump Technology Italy S.P.A. Variable delivery rotary vane pump
US20100143174A1 (en) * 2004-03-09 2010-06-10 Maciej Radziwill Rotary Working Machine Provided with an Assembly of Working Chambers and Periodically Variable Volume, In Particular a Compressor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB327153A (en) * 1928-12-22 1930-03-24 Ernest Feuerheerd Improvements in rotary compressors, exhausters, engines, pumps and the like
DE622554C (de) 1934-07-20 1935-11-30 Alfred Schneemilch Umlaufende Arbeits- und Kraftmaschine mit sichelfoermigem Arbeitsraum und Schwingkolben
CH618771A5 (ko) * 1978-02-10 1980-08-15 Idram Eng Co Est
GB2098278A (en) 1981-05-07 1982-11-17 Pendray George Rotary positive displacement fluid
DE3501507A1 (de) * 1985-01-18 1986-07-24 Pierburg Gmbh & Co Kg, 4040 Neuss Drehfluegelpumpe
US6371745B1 (en) * 2000-06-16 2002-04-16 Stuart Bassine Pivoting vane rotary compressor
JP5176754B2 (ja) 2008-07-29 2013-04-03 株式会社豊田自動織機 ベーン圧縮機
KR101520526B1 (ko) * 2011-07-22 2015-05-21 한라비스테온공조 주식회사 베인 로터리 압축기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990074A (en) * 1988-09-27 1991-02-05 Aisin Seiki Kabushiki Kaisha Oil pump having pivoting vanes
WO1998048172A1 (en) * 1997-04-18 1998-10-29 John Eastman Barnes Improvements to impeller pumps
JP2002130169A (ja) * 2000-10-20 2002-05-09 Katsunori Onishi ロータリーベーン式回転機械
US20100143174A1 (en) * 2004-03-09 2010-06-10 Maciej Radziwill Rotary Working Machine Provided with an Assembly of Working Chambers and Periodically Variable Volume, In Particular a Compressor
WO2008050212A2 (en) * 2006-10-24 2008-05-02 Pierburg Pump Technology Italy S.P.A. Variable delivery rotary vane pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879300A (zh) * 2015-05-14 2015-09-02 上海大学 刹车用助力真空泵的定子内曲面设计方法
CN108691764A (zh) * 2017-04-10 2018-10-23 百川股份公司 叶轮泵
US11346342B2 (en) 2017-04-10 2022-05-31 Biotrans Ag Impeller pump having different geometries of the inlet and outlet openings

Also Published As

Publication number Publication date
US20150369245A1 (en) 2015-12-24
CN104968941A (zh) 2015-10-07
US9822779B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2014123325A1 (ko) 베인 로터리 압축기
WO2018208023A1 (ko) 스크롤 압축기
WO2019221417A1 (ko) 터보 압축기
EP3824186A1 (en) Scroll compressor
WO2014014182A1 (ko) 베인 로터리 압축기
WO2021194113A1 (ko) 로터리 엔진
WO2021015429A1 (ko) 스크롤 압축기
WO2021194154A1 (ko) 스크롤 압축기
WO2017188575A1 (ko) 스크롤 압축기
EP3334936A1 (en) Compressor
WO2020116781A1 (ko) 고압식 스크롤 압축기
WO2010041841A2 (ko) 용량가변형 압축기의 용량제어밸브
WO2018147562A1 (en) Hermetic compressor
WO2021040271A1 (ko) 스크롤 압축기
WO2018190544A1 (en) Scroll compressor
WO2021215652A1 (ko) 압축기
WO2020017917A1 (ko) 가변 용량 사판식 압축기
WO2024025159A1 (ko) 스크롤 압축기
WO2018199488A1 (ko) 스크롤 압축기
WO2020050605A1 (ko) 압축기
WO2021215651A1 (ko) 압축기
WO2015129961A1 (en) Vane rotary compressor
WO2023204354A1 (ko) 스크롤 압축기
WO2022211331A1 (ko) 로터리 압축기
WO2023038293A1 (ko) 스크롤 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14765843

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14748830

Country of ref document: EP

Kind code of ref document: A1