WO2021194113A1 - 로터리 엔진 - Google Patents

로터리 엔진 Download PDF

Info

Publication number
WO2021194113A1
WO2021194113A1 PCT/KR2021/002599 KR2021002599W WO2021194113A1 WO 2021194113 A1 WO2021194113 A1 WO 2021194113A1 KR 2021002599 W KR2021002599 W KR 2021002599W WO 2021194113 A1 WO2021194113 A1 WO 2021194113A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
sealing
cover housing
exterior
housing
Prior art date
Application number
PCT/KR2021/002599
Other languages
English (en)
French (fr)
Inventor
유병훈
오휘성
장수호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021194113A1 publication Critical patent/WO2021194113A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • F02B55/10Cooling thereof
    • F02B55/12Cooling thereof by air or other gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/06Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotary engine. More particularly, it relates to a rotary engine comprising a configuration for cooling the rotary engine in order to prevent the efficiency of the rotary engine from falling.
  • a rotary engine refers to an engine that produces power through rotational motion.
  • the rotary engine has a simple structure compared to the piston engine, so it is easy to miniaturize it, and it has the characteristics of producing a high output with a small displacement because of the continuous combustion stroke.
  • vibration and noise are less than that of a piston engine, and it has the advantage of emitting less nitrogen oxide.
  • the recent rotary engine is applied not only to the main engines of automobiles and aircraft due to its advantages, but also to the compressor of the heat pump system due to its simple structure.
  • a rotary engine includes a housing having an epitrochoid curve on an inner surface to produce power, and a rotor rotating within the housing. .
  • each combustion chamber four strokes consisting of intake, compression, combustion and expansion, and exhaust are performed, and accordingly, when the rotor rotates once, the four strokes are performed three times.
  • an intake valve for injecting fuel or air into the combustion chamber and an exhaust valve for discharging fuel or air from the combustion chamber are not separately provided in many cases. Therefore, intake and exhaust can proceed more smoothly, and the efficiency of gas exchange is good.
  • an oil-cooling method in which oil is circulated to cool and an air-cooling method in which air is circulated and cooled through convection or conduction may be considered.
  • the oil cooling method has a disadvantage in that a separate configuration for circulating the oil is additionally provided.
  • US Publication 2010/0313844A1 discloses a configuration for cooling the rotor using blow-by gas.
  • the blow-by gas refers to a gas in which high-pressure gas generated in the expansion and compression strokes of the rotary engine is introduced into the rotor through the side seal installed on the side of the rotor.
  • the blow-by gas is circulated and supplied to the rotor, but oil is supplied by arranging an oil pump in a path through which the blow-by gas is circulated. Therefore, the oil can flow together with the blow-by gas to lubricate and cool the rotary engine at the same time.
  • An embodiment of the present invention aims to cool a rotary engine.
  • An embodiment of the present invention aims that there is no additional configuration for cooling the rotary engine.
  • An embodiment of the present invention aims to consider the trajectory of the rotor to cool the rotary engine.
  • An embodiment of the present invention aims to cool a housing provided to surround the rotor in order to cool the rotary engine.
  • an embodiment of the present invention provides a rotary engine including a cover housing through which air for cooling the rotor can be supplied and discharged using the overlapping space of the rotor inner space generated when the rotor rotates. can do.
  • an embodiment of the present invention has an inlet through which air can be supplied to the cover housing, and a heat dissipation structure capable of cooling the cover housing by exchanging heat with the supplied air inside the cover housing. It is possible to provide a rotary engine comprising.
  • one embodiment of the present invention may provide a rotary engine including a heat dissipation structure in which air heat-exchanged inside the cover housing can be discharged to the outside of the cover housing.
  • a rotor housing forming an accommodating space in which fuel is burned, a cover housing coupled to the rotor housing to seal the accommodating space, the cover housing and the accommodating space a rotation shaft formed to pass through and a rotor coupled to the rotation shaft to be rotatably provided in the accommodating space, and a rotor for moving or compressing the fuel
  • the cover housing includes a closed frame facing the accommodating space and the
  • the sealing frame includes an exterior frame coupled in a direction away from the accommodation space to form a cooling space therein, wherein the sealing frame includes a sealing hole formed through the sealing frame, and the exterior frame includes the exterior frame. It is possible to provide a rotary engine that includes an exterior hole formed therethrough to communicate the cooling space and the outside of the cover housing.
  • the cover housing may include a first cover housing coupled to one side of the rotor housing and a second cover housing coupled to the other side of the rotor housing to be spaced apart from the first cover housing.
  • the first cover housing includes a first sealing frame provided to face the accommodation space and a first exterior frame coupled in a direction away from the accommodation space in the first sealing frame to form a first cooling space therein.
  • the first exterior frame includes a first exterior body through which the rotation shaft passes, a first exterior fastening part protruding from an outer circumferential surface of the first exterior body and coupled to the first sealing frame, and the first exterior body passing through the first exterior frame. and may include a first exterior hole for communicating the outside of the first cover housing with the first cooling space.
  • the first sealing frame includes a first sealing body through which the rotation shaft passes, a first sealing protrusion formed to protrude from the outer peripheral surface of the first sealing body and coupled to the first exterior frame, and passing through the outer peripheral surface of the first sealing body.
  • a first guide portion for communicating the first sealing protrusion and the first cooling space, and a first sealing hole formed through the first sealing projection to communicate the first cooling space and the outside of the first cover housing; may include
  • the first cover housing may further include a first heat dissipation fin protruding from the first sealing body toward the first exterior body.
  • a plurality of first heat dissipation fins may be provided, and a direction in which some of the first heat dissipation fins extend may be formed differently from a direction in which other portions of the first heat dissipation fins extend.
  • the second cover housing includes a second sealing frame provided to face the accommodation space and a second exterior frame coupled in a direction away from the accommodation space in the second sealing frame to form a second cooling space therein.
  • the second sealing frame includes a second sealing body through which the rotation shaft passes, a second sealing protrusion protruding from the outer circumferential surface of the second sealing body, and a second sealing hole formed through the second sealing projection,
  • the second cooling space may communicate with the second cover housing.
  • the second exterior frame includes a second exterior body through which the rotating shaft passes, a second exterior fastening part protruding from the outer circumferential surface of the second exterior body and coupled to the second sealing frame, and the second exterior body penetrating the second exterior frame.
  • the second cover housing may further include a second heat dissipation fin protruding from the second exterior body toward the second sealing body.
  • a plurality of second heat dissipation fins may be provided, and a direction in which some of the second heat dissipation fins extend may be formed differently from a direction in which other portions of the second heat dissipation fins extend.
  • the rotor housing includes a rotor body through which the rotating shaft passes, a rotor protrusion provided to protrude from an outer circumferential surface of the rotor body to come into contact with the first sealing protrusion and the second sealing protrusion, and the rotor protrusion to pass through the first It may include a rotor hole for communicating the cooling space and the second cooling space.
  • the cover housing includes a shaft portion for rotatingly supporting the rotation shaft, and a body hole formed to pass through the cover housing in the longitudinal direction of the rotation shaft, the body hole being provided to surround at least a portion of the shaft portion, the receiving space is the rotary It can communicate with the outside of the engine.
  • the body hole may include a first body hole formed through the first cover housing and a second body hole formed through the second cover housing.
  • the bearing portion includes a first bearing portion provided in the first cover housing and a second bearing portion provided in the second cover housing, and the first body hole extends from the first bearing portion in a direction away from the rotation shaft. can be formed.
  • the second body hole may be provided to be spaced apart from the second bearing unit.
  • an air communication hole capable of cooling only the inside of the rotor may be secured in the cover housing.
  • the rotor and the housing may be simultaneously cooled using ambient air of the rotary engine.
  • the cooling of the cover housing may be efficiently performed to improve durability of the rotary engine.
  • 1 is a view showing a rotary engine
  • FIG. 3 is an exploded perspective view of a rotary engine according to an embodiment of the present invention.
  • FIG. 4 is a view showing a first cover housing according to an embodiment of the present invention.
  • FIG. 5 is a view showing a flow path of air flowing through the first cover housing according to an embodiment of the present invention.
  • FIG. 6 is a view showing a second cover housing according to an embodiment of the present invention.
  • FIG. 7 is a view showing a flow path of air flowing through a second cover housing according to an embodiment of the present invention.
  • FIG. 8 is a view showing a rotor housing according to an embodiment of the present invention.
  • FIG. 9 is a view showing a trajectory of a rotor according to an embodiment of the present invention.
  • FIG. 10 is a view showing a state in which air cools the inside of the rotor by the rotor cooling unit according to an embodiment of the present invention.
  • FIG. 1 is a view showing a rotary engine 10 .
  • the rotary engine 10 includes a housing 100 that provides a space in which fuel and air can flow, and a rotor 200 that is rotatably provided inside the housing 100 to move fuel and air. ), and is coupled to the rotor 200 and includes a rotation shaft 300 for rotating the rotor 200 .
  • the housing 100 is coupled to both ends of the rotor housing 110, the rotor housing 110 having both ends open to provide an accommodation space S in which the rotor 200 can rotate, to seal the accommodation space S. It may include a cover housing.
  • the cover housing includes a first cover housing 120 coupled to one end of the rotor housing 110 , and a second cover housing 130 coupled to the other end of the rotor housing 110 to be spaced apart from the first cover housing 120 . ) may be included.
  • first cover housing 120 and the second cover housing 130 may be provided to face each other.
  • the rotor housing 110 is a suction port 111 that communicates the outside of the accommodating space (S) and the rotor housing 110 so that fuel or air can be introduced into the accommodating space (S) and the fuel or air is accommodating space (S) It may include a discharge port 113 for communicating the receiving space (S) and the outside of the rotor housing (110) to be discharged to the outside of the rotor housing (110).
  • the inlet 111 and the outlet 113 may be formed through the rotor housing 110 .
  • the rotor housing 110 forms an accommodating space S and protrudes from the outer peripheral surface of the rotor housing body 115 and the rotor housing body 115 in which the inlet 111 and the outlet 113 are formed, and the rotor is fastened with the cover housing. It may include a housing fastening part 119 .
  • the rotor housing fastening part 119 may be provided outside the rotor housing body 115 and may be provided to be further apart from the rotation shaft 300 .
  • the rotor housing fastening part 119 may protrude from the rotor housing body 115 in a direction away from the rotation shaft 300 , and include a through hole formed through the rotation shaft 300 in the longitudinal direction to be fastened with the cover housing.
  • the rotor 200 is provided to rotate in the receiving space (S), and can partition the receiving space (S).
  • the rotor 200 includes a rotor body 210 that partitions the accommodation space (S) and is provided to rotate eccentrically in the accommodation space (S).
  • the shape of the rotor 200 may be provided in various ways. As the shape of the rotor 200 is changed, the shape of the inner circumferential surface of the rotor housing 110 forming the accommodation space S should also be changed.
  • the rotor 200 is provided in a triangular prism shape or a shape similar thereto to partition the accommodation space S into three spaces.
  • the rotor body 210 includes a first side 211 forming one side of the rotor body 210, a second side 213 and a first side 211 forming the other side of the rotor body 210, and A third side surface 215 formed to connect the second side surface 213 may be included.
  • any one of the first to third side surfaces 211 , 213 , and 215 may be provided to be connected to the other two side surfaces. That is, the first to third side surfaces 211 , 213 , and 215 may be connected to form a surface, respectively, to form a space therein.
  • the rotor 200 may include a combustion chamber 220 recessed in the rotor body 210 to provide a space in which fuel and air can be combusted.
  • the combustion chamber 220 may be recessed from the outer surface of the rotor body 210 toward the inside of the rotor body 210 .
  • combustion chamber 220 may be provided in each of the rotor body (210). That is, the combustion chamber 220 includes a first combustion chamber 221 formed on the first side surface 211 , a second combustion chamber 223 formed on the second side surface 213 , and a third formed on the third side surface 215 .
  • a combustion chamber 225 may be included.
  • the rotor 200 is provided to rotate eccentrically in the receiving space S, and rotates so as to be in close contact with the inner circumferential surface of the rotor housing 110 .
  • the combustion chamber 220 may provide a space in which fuel and air can be combusted while the rotor 200 is in close contact with the inner circumferential surface of the rotor housing 110 .
  • the rotor 200 divides the accommodation space S into three spaces, the three spaces must be kept airtight from each other. This is because, since different strokes are performed in each space, the efficiency of the rotary engine may decrease when air or fuel moves between spaces.
  • the rotor 200 may form a portion in close contact with the inner circumferential surface of the rotor housing 110 to divide the accommodating space S into three spaces.
  • the rotor 200 may include an end 230 that is in close contact with the inner circumferential surface of the rotor housing 110 as the rotor 200 rotates eccentrically.
  • the end 230 has a first end 231 formed in contact with the first side 211 and the second side 213, and a second end 231 formed in contact with the second side 213 and the third side 215 ( 233) and a third end 235 formed in contact with the third side 215 and the first side 211.
  • the end 230 may refer to a portion to which the first to third sides 211 , 213 , and 215 are connected.
  • the rotor 200 includes the end 230 and the inner circumferential surface of the rotor housing 110 is formed to be in close contact with the rotor 200 (eg, to include an epitrochoid curve), by the rotor 200 It may be difficult to form an airtight between the spaces partitioned in the accommodation space (S).
  • the rotor 200 may include a seal portion 240 coupled toward the inner circumferential surface of the rotor housing 110 at the end 230 .
  • the seal part 240 is coupled to the first seal 241 and the second end 233 provided to be in close contact with the inner circumferential surface of the rotor housing 110 by being coupled to the first end 231 and the inner circumferential surface of the rotor housing 110 and A second seal 243 provided to be in close contact and a third seal 245 provided to be in close contact with the inner circumferential surface of the rotor housing 110 by being coupled to the third end 235 may be included.
  • an elastic member that provides an elastic force toward the inner circumferential surface of the rotor housing 110 to the seal part 240 may be further coupled to the seal part 240 .
  • the rotor 200 may include a rotor shaft portion 250 positioned inside the rotor body 210 and coupled to the rotation shaft 300 .
  • the rotor shaft part 250 may be provided in a shape corresponding to the rotation shaft 300 , and may be provided in a hollow cylindrical shape or a shape similar thereto. In particular, since the rotor shaft part 250 may be coupled to the eccentric part 310 to be described later, it may be provided in a shape corresponding to the eccentric part 310 .
  • the rotor shaft portion 250 is provided inside the rotor body 210, it may be provided to be spaced apart from the rotor body (210). That is, the rotor shaft portion 250 may be provided to be further spaced apart from the rotor body 210 in the direction in which the combustion chamber 220 is formed.
  • the rotor 200 may include ribs 260 connecting the rotor shaft part 250 and the rotor body 210 to support the rotor shaft part 250 and the rotor body 210 .
  • the ribs 260 may extend radially from the rotor shaft part 250 to be coupled to the rotor body 210 . Accordingly, the rib 260 may improve the reliability or durability of the rotor 200 .
  • the rotating shaft 300 is formed to pass through the housing 100 and the rotor 200 , and is coupled to the rotor 200 to rotate the rotor 200 .
  • the rotation shaft 300 may be formed to sequentially pass through the first cover housing 120 , the accommodation space S and the second cover housing 130 .
  • the rotating shaft 300 is an eccentric part 310 coupled to the rotor shaft part 250, and the eccentric part 310 extends in a direction away from the second cover housing 130 to be coupled to the first cover housing 120.
  • the first extension portion 320 and the eccentric portion 310 may include a second extension portion 330 extending in a direction away from the first cover housing 120 and coupled to the second cover housing 130 .
  • the eccentric portion 310 may have a larger diameter than the first extension portion 320 and the second extension portion 330 . That is, the eccentric part 310 connects the first extension part 320 and the second extension part 330, and the first extension part 320 and the second extension part 330 have the same diameter as the central part ( 311 ) and an extension portion 313 extending from the central portion 311 to a radially outward direction of the central portion 311 to induce eccentricity.
  • the rotor 200 may be coupled to the eccentric portion 310 to rotate eccentrically.
  • the first cover housing 120 may include a first bearing portion 125 through which the first extension portion 320 passes, and the second cover housing 130 includes a second extension portion 330 penetrating through it. It may include a biaxial part 135 .
  • the rotary engine 10 may include the housing 100, the rotor 200 or the power unit 400 coupled to the rotating shaft 300 and the balancer 500 for offsetting the rotational moment of the rotating shaft 300. .
  • the power unit 400 is coupled to the eccentric part 310 and the rotor shaft part 250 to rotate the rotor bearing 410 and the first extension part 320 to support the rotation shaft 300 on the inner peripheral surface of the rotor shaft part 250 .
  • the first cover bearing 420 for rotationally supporting the first extension 320 between the first bearing 125 and the second extension between the second extension 330 and the second bearing 135 . It may include a second cover bearing 430 for rotationally supporting the part 330 .
  • the rotor bearing 410 may be formed to have a diameter equal to or smaller than that of the inner circumferential surface of the rotor shaft part 250 to be coupled to the rotor shaft part 250 . That is, the outer circumferential surface of the rotor bearing 410 may be coupled to the inner circumferential surface of the rotor shaft portion 250 .
  • the rotor bearing 410 may include a rotor bearing gear 411 provided on the inner circumferential surface of the rotor bearing 410 to be engaged with the eccentric gear 450 to be described later.
  • the power unit 400 may include a spark plug 440 coupled to the rotor housing 110 to burn fuel and an eccentric gear 450 coupled to mesh with the rotor bearing gear 411 .
  • the spark plugs 440 are coupled to the rotor housing 110 and are provided in plurality to cause sparks in the accommodating space (S).
  • spark plug 440 may be formed in the rotor housing 110 to be spaced apart from the inlet 111 and the outlet 113 through which fuel or air communicates with the accommodation space S.
  • the inlet 111 and the outlet 113 are preferably provided adjacent to each other in consideration of fuel or air efficiency.
  • the spark plug 440 is formed to face the inlet 111 and the outlet 113 . It is preferable to be
  • eccentric gear 450 may be coupled in any shape, for example, it may be coupled with the rotation shaft 300 to mesh with the rotor bearing gear 411 .
  • a trajectory formed while the rotor 200 rotates may be determined.
  • One balancer 500 may be provided, but preferably a plurality of balancers 500 may be provided.
  • the balancer 500 includes a first balancer 510 coupled to one side of the rotation shaft 300 and a second balancer 520 coupled to the other side of the rotation shaft 300 .
  • the first balancer 510 and the second balancer 520 may include a first balancer body 511 and a second balancer body 521 coupled to the rotation shaft 300 , respectively.
  • the first balancer 510 is a first balancer extension 513 extending in a direction that can offset the rotational moment induced by the eccentric part 310 in the first balancer body 511 (in the radial direction of the rotation shaft).
  • the second balancer 520 includes a second balancer extension 523 extending in a direction that can offset the rotational moment induced by the eccentric 310 in the second balancer body 521 (in the radial direction of the rotation shaft). may include
  • the balancer 500 is advantageous as it is spaced apart from the eccentric part 310 .
  • the first balancer 510 may be coupled to the rotation shaft 300 in a direction away from the eccentric portion 310 in the first bearing portion 125
  • the second balancer 520 may be coupled to the second bearing portion 135 .
  • the rotation shaft 300 is in a direction away from the eccentric part 310 in the first balancer coupling part 321 and the second extension part 330 extending in a direction away from the eccentric part 310 in the first extension part 320 . It may include a second balancer coupling part 331 that extends.
  • the first balancer coupling part 321 may be formed to have a smaller diameter than the first extension part 320
  • the second balancer coupling part 331 may be formed to have a smaller diameter than the second extension part 330 . have. Accordingly, the first balancer extension 513 and the second balancer extension 523 respectively formed in the first balancer coupling part 321 and the second balancer coupling part 331 may form a sufficient mass.
  • FIG. 2 is a view showing a stroke of the rotary engine 10 .
  • an intake stroke in which fuel f is sucked from the intake hole is performed.
  • the fuel f is A compression stroke in which the rotor 200 moves along the end 230 of the rotor 200 and is compressed in close contact with the rotor housing 110 is performed.
  • the fuel compressed in the compression stroke explodes due to a spark generated from the spark plug 440 , and an explosion stroke in which the volume starts to increase explosively is performed.
  • the rotor 200 rotates at a high speed due to the repulsive force of the explosion stroke, and the discharge stroke of discharging the oxide of the fuel f to the exhaust hole is performed. Thereafter, the rotor 200 performs the above-described intake stroke again while rotating due to inertia.
  • the trajectory of the rotor 200 may be determined by the shapes of the rotor bearing gear 411 and the eccentric gear 450 .
  • the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke can be sequentially and continuously performed.
  • the above-described strokes may be sequentially performed in any one of the combustion chambers 220 partitioned by the rotor 200, and in the other one of the combustion chambers 220 partitioned by the rotor 200, any one of the combustion chambers ( 220) and a different administration from the one proceeded.
  • an explosion stroke by the spark plug 440 occurs in any one of the accommodation spaces S partitioned by the rotor 200 , and fuel is in the other one of the accommodation spaces S partitioned by the rotor 200 .
  • a compression stroke occurs in which
  • the temperature of the accommodation space (S) is inevitably increased, and the excessive increase in temperature may reduce the efficiency of the rotary engine (10).
  • the configuration that most requires cooling in the rotary engine 10 is the rotor 200, but cooling is also required in the case of the housing 100 provided to surround the rotor 200 and forming the accommodation space S. .
  • the effect of cooling the rotor 200 and the accommodation space (S) can also be expected.
  • cooling of the rotary engine 10 is performed by including at least one of the housing cooling unit 600 for cooling the housing 100 and the rotor cooling unit 700 for cooling the rotor 200 .
  • An embodiment of the present invention will be described.
  • FIG 3 is a view showing a housing cooling unit 600 and a rotor cooling unit 700 according to an embodiment of the present invention.
  • the housing cooling unit 600 and the rotor cooling unit 700 may cool the housing 100 and the rotor 200 using air located around the rotary engine 10 , respectively.
  • the housing cooling unit 600 is formed in the rotor housing 110 and the cover housings 120 and 130 to form an air flow path for cooling the housing 100 (hereinafter abbreviated as a housing cooling flow path).
  • the rotor cooling unit 700 may be formed in the cover housings 120 and 130 to form an air flow path (hereinafter, referred to as a rotor cooling flow path) for cooling the rotor 200 .
  • the housing cooling passage and the rotor cooling passage may be formed as separate passages. That is, the housing cooling passage and the rotor cooling passage are formed as separate passages, so that the rotary engine 10 can be cooled without interfering with each other.
  • the exemplary embodiment of the present invention is the rotary engine 10 having the same configuration as described in FIG. 1 , except for the housing cooling unit 600 and the rotor cooling unit 700 , the overlapping description will be omitted.
  • the housing cooling unit 600 provided in the first cover housing 120 to cool the first cover housing 120 will be described with reference to FIGS. 4 to 5 .
  • the left drawing in FIG. 4 is a view showing the front of the first cover housing 120 as viewed from the front, and the right drawing in FIG. 4 is a view showing the rear of the first cover housing 120 as viewed from the front. am.
  • the first cover housing 120 may form a first cooling space C1 therein.
  • the first cooling space C1 means a space in which air can flow, and may be formed by combining frames.
  • the first cooling space C1 may mean an internal space of the first cover housing 120 , and may form a space separated from the accommodating space S.
  • the first cover housing 120 is a first sealing frame 123 formed to face the receiving space (S) and a first coupled in a direction away from the receiving space (S) in the first sealing frame 120 . It may include an exterior frame 121 .
  • first exterior frame 121 and the first sealing frame 123 may be formed to face each other.
  • the first exterior frame 121 and the first sealing frame 123 are coupled to each other to form a first cooling space C1 therein, the first exterior frame 121 and the first sealing frame 123 have a thickness, respectively.
  • first exterior frame 121 protrudes from the outer peripheral surfaces of the first exterior body 1211 and the first exterior body 1211 through which the rotating shaft 300 passes, and the first sealing frame 123 or the rotor housing 110 ) or the second cover housing 130 may include a first external fastening portion 1213 coupled to at least one.
  • the first exterior fastening portion 1213 may be formed to protrude from the outer peripheral surface of the first exterior body 1211 and protrude in the radial direction of the rotation shaft 300 .
  • the first exterior fastening portion 1213 may be formed to protrude from the outer peripheral surface of the first exterior body 1211 in a direction away from the rotation shaft 300 .
  • the first exterior fastening portion 1213 may have a greater thickness than the thickness formed by the first exterior body 1211 .
  • the thickness may mean a predetermined length formed in the longitudinal direction of the rotation shaft 300 .
  • a first cooling space C1 may be formed inside the first cover housing 120 .
  • the first sealing frame 123 protrudes from the outer peripheral surface of the first sealing body 1231 and the first sealing body 1231 through which the rotating shaft 300 passes, and the first exterior frame 121 or the rotor housing 110 or the first sealing frame 123 is formed. It may include a first sealing fastening portion 1233 coupled to at least one of the two cover housings (130).
  • the first sealing fastening part 1233 may be formed to be in contact with the first external fastening part 1213 to be coupled to the first external fastening part 1213 .
  • the thickness of the first sealing fastening portion 1233 may be greater than the thickness of the first sealing body 1231 .
  • the thickness may mean a predetermined length formed in the longitudinal direction of the rotation shaft 300 .
  • the first cooling space C1 formed inside the first cover housing 120 may have a sufficient volume.
  • the housing cooling unit 600 may include a hole formed to pass through the first cover housing 120 in order to communicate the first cooling space C1 and the outside of the first cover housing 120 .
  • the housing cooling unit 600 is configured to remove the first exterior frame 121 . It may include a first exterior hole 610 formed to penetrate and a first sealing hole 620 formed to penetrate through the first sealing frame 123 .
  • the first exterior hole 610 and the first sealing hole 620 may be provided to be spaced apart from each other.
  • the first exterior hole 610 and the first sealing hole 620 are not formed at positions corresponding to each other, but are spaced apart from each other in the radial direction of the rotation shaft 300 or the rotation direction of the rotation shaft 300 . have.
  • the first exterior hole 610 and the first sealing hole 620 when any one of the first exterior hole 610 and the first sealing hole 620 is provided on the outside of the first cover housing 120 , the first exterior hole 610 and the first sealing hole 620 . ) of the other one may be provided on the inside of the first cover housing (120).
  • the outer side of the first cover housing 120 may mean a greater distance from the rotation shaft 300 than the inner side of the first cover housing 120 .
  • the first sealing hole 620 is spaced apart from the rotation shaft 300 on the outer peripheral surface of the first sealing body 1231 in a direction away from it. and can be provided.
  • the first sealing hole 620 may be formed in the first sealing protrusion 1235 protruding from the outer circumferential surface of the first sealing body 1231 in a direction away from the rotation shaft 300 .
  • the first sealing frame 123 may include a first sealing protrusion 1235 protruding from the outer circumferential surface of the first sealing body 1231 , and the first sealing hole 620 is the first sealing projection 1235 . ) may be formed to penetrate in the longitudinal direction of the rotation shaft 300 .
  • the thicknesses formed by the first exterior fastening part 1213 and the first sealing fastening part 1233 are formed to be larger than the thicknesses of the first exterior body 1211 and the first sealing body 1231, respectively. Air flowing through the first cooling space C1 may be difficult to communicate with the first sealing hole 620 .
  • the housing cooling unit 600 penetrates the outer circumferential surface of the first sealing fastening unit 1233 or the first sealing body 1231 in the radial direction of the rotation shaft 300 or in the direction away from the rotation shaft 300 for the first cooling. It may include a first guide part 621 for communicating the space C1 with the first sealing hole 620 .
  • the first guide part 621 may be formed to pass through the first sealing fastening part 1233 at a position corresponding to the first sealing protrusion 1235 .
  • the air located in the first cooling space C1 may be guided to the first sealing hole 620 through the first guide part 621 , and the air located outside the first cover housing 120 is the first It may be introduced into the sealing hole 620 and guided to the first cooling space C1 through the first guide part 621 .
  • first exterior hole 610 and the first sealing hole 620 may communicate the inside of the first cover housing 120 (the first cooling space) and the outside of the first cover housing 120 .
  • first exterior hole 610 and the second sealing hole 620 are provided in plurality.
  • any one of the plurality of first exterior holes may be provided (611, 613) spaced apart from one side of the rotation shaft 300 or the first bearing part 125, and , the other one of the plurality of first exterior holes may be provided to be spaced apart (615, 617) from the other side of the rotation shaft 300 or the first bearing part 125.
  • the other one of the plurality of first external holes may be provided to be spaced apart from any one of the plurality of first external holes from the rotating shaft 300 or the first bearing part 125 in a direction away from each other.
  • any one of the plurality of first sealing protrusions 1235a may be provided to be spaced apart from one side from the rotating shaft 300 or the first bearing unit 125 and provided with a plurality of The other one 1235b of the first sealing protrusions may be provided to be spaced apart from any one of the plurality of first sealing protrusions from the rotating shaft 300 or the first bearing 125 in a direction away from each other.
  • any one of the first sealing grooves 620a is formed to pass through the first sealing protrusion 1235a, and the other one 620b of the first sealing grooves is formed to penetrate the first sealing projection 1235b.
  • the air introduced into the first cover housing 120 may cool the first cover housing 120 by conduction or convection.
  • the housing cooling unit 600 is a first exterior frame 121 and a first sealing frame 123 that protrudes and extends toward the first cooling space C1 from at least one of the first exterior frame 121 and the first sealing frame 123 in order to increase heat exchange efficiency.
  • One heat dissipation fin 630 may be included.
  • the first heat dissipation fin 630 is provided on the first exterior frame 121 , the first heat dissipation fin 630 is formed to protrude from the inner surface of the first exterior frame 121 toward the first sealing frame 123 and to be extended.
  • the first heat dissipation fin 630 is provided in the first sealing frame 123 , the first heat dissipation fin 630 is formed to protrude from the inner surface of the first sealing frame 123 toward the first exterior frame 121 to be extended.
  • a plurality of first heat dissipation fins 630 may be provided. When a plurality of first heat dissipation fins 630 are provided, some of the first heat dissipation fins 630 may protrude into the first cooling space C1 and extend 631 in the first direction, and the first heat dissipation fins 630 . The remainder may protrude into the first cooling space C1 and extend 633 in a second direction different from the first direction.
  • the air sequentially passes through the first exterior frame 121, the first cooling space C1, and the first sealing frame 123 to the first cover housing ( 120) can be cooled.
  • the air may cool the first cover housing 120 through the first sealing frame 123 , the first cooling space C1 and the first exterior frame 121 sequentially. This may vary depending on the location of the component (eg, a fan) that creates the airflow.
  • the component eg, a fan
  • the first cover housing 120 introduced into the Air may flow by being bent in the first cooling space (C1).
  • the air introduced into the first cover housing 120 from the outside of the first cover housing 120 according to the positions of the first exterior hole 610 and the first sealing hole 620 is again the first cover A flow path formed while flowing out of the housing 120 may be formed to be longer.
  • the housing cooling unit 600 for cooling the second cover housing 130 will be described with reference to FIGS. 6 to 7 .
  • FIG. 6 is a view showing the second sealing frame 131 and the second exterior frame 133
  • FIG. 7 is a view showing an air flow path for cooling the second cover housing 130 .
  • the second cover housing 130 may have a second accommodating space C2 formed therein.
  • the second cover housing 130 is a second sealing frame 131 positioned to face the receiving space (S) and a second sealing frame 131 coupled in a direction away from the receiving space (S). It may include an exterior frame (133).
  • the second sealing frame 131 protrudes from the outer peripheral surfaces of the second sealing body 1311 and the second sealing body 1311 through which the rotating shaft 300 passes, and the second sealing frame 131 or the rotor housing 110 or the second sealing frame 131 is It may include a second sealing fastening portion 1313 coupled to at least one of the first cover frame (120).
  • the second sealing fastening portion 1313 may be formed to protrude from the outer peripheral surface of the second sealing frame 131 in the radial direction of the rotation shaft 300 or in a direction away from the rotation shaft 300 .
  • the second sealing fastening part 1313 and the second sealing body 1311 may have different thicknesses. More preferably, the thickness of the second sealing fastening portion 1313 may be greater than the thickness of the second sealing body 1311 .
  • the thickness may mean a predetermined length formed in the longitudinal direction of the rotation shaft 300 .
  • a second cooling space C2 which is a space formed in a direction from the second sealing fastening part 1313 toward the rotation shaft 300 or the second bearing part 135, is formed inside the second copper housing 130. can do it
  • the second exterior frame 133 protrudes from the outer peripheral surfaces of the second exterior body 1331 and the second exterior body 1331 through which the rotating shaft 300 passes, and the second sealing frame 131 or the rotor housing 110 or It may include a second exterior fastening part 1333 coupled to at least one of the first cover housing 120 .
  • the second exterior fastening part 1333 may be formed to be in contact with the second sealing fastening part 1313 to be coupled to the second sealing fastening part 1313 .
  • the thickness of the second exterior body 1331 and the thickness of the second exterior fastening portion 1333 may be different from each other.
  • the thickness of the second exterior body 1331 may be formed smaller than the thickness of the second exterior fastening portion 1333 .
  • the volume of the second cooling space C2 provided inside the second cover housing 130 may increase.
  • the housing cooling unit 600 may include a hole for communicating the second cooling space C2 located inside the second cover housing 130 and the outside of the second cover housing 130 .
  • the housing cooling unit 600 includes a second sealing hole 640 formed to penetrate the second sealing frame 131 and a second exterior hole 650 formed to penetrate the second exterior frame 133 . can do.
  • the air located outside the second cover housing 130 may flow to the second cooling space C2 , and the air located in the second cooling space C2 may flow to the outside of the second cover housing 130 . can do.
  • the second sealing hole 640 and the second exterior hole 650 are rotated in the radial direction of the rotation shaft 300 or the rotation shaft 300 .
  • the direction may be spaced apart from each other.
  • any one of the second sealing hole 640 and the second exterior hole 650 may be formed inside the second cover housing 130 , and the second sealing hole 640 and the second exterior hole ( The other one of 650 may be formed outside the second cover housing 130 .
  • the inner side of the second cover housing 130 means a position close to the rotation shaft 300 or the second bearing part 135 , and the rotation shaft 300 or the second than the outside of the second cover housing 130 . It may mean a relative close to the bearing part 135 .
  • the second sealing hole 640 may be formed outside the second cover housing 130
  • the second exterior hole 650 may be formed inside the second cover housing 130 .
  • the second sealing hole 640 may be provided at a position farther from the rotation shaft 300 or the second bearing part 135 than the second exterior hole 650 .
  • the second sealing hole 640 may be provided to be spaced apart from the second exterior hole 650 in the radial direction of the rotation shaft 300 or the rotation direction of the rotation shaft 300 .
  • the second sealing frame 131 may include a second sealing protrusion 1315 protruding from the outer circumferential surface of the second sealing frame 131 in a direction away from the rotation shaft 300 or the second bearing part 135 .
  • the second sealing hole 640 may be formed by penetrating the second sealing protrusion 1315 in the longitudinal direction of the rotation shaft 300 to communicate the second cover housing 130 and the second cooling space C2.
  • the second sealing fastening portion 1313 has a thicker thickness than the second sealing body 1311 , the air flowing through the second sealing hole 640 flows into the second cooling space C2 and Difficulty in communication may occur.
  • the housing cooling unit 600 penetrates the outer circumferential surface of the second sealing fastening part 1313 or the second sealing body 1311 in the radial direction of the rotation shaft 300 or in a direction away from the rotation shaft 300 to form a second It may include a second guide portion 641 for communicating the sealing hole 640 and the second cooling space (C2).
  • the second guide part 640 may be formed through a radial direction of the rotation shaft 300 or a direction away from the rotation shaft 300 at a position corresponding to the second sealing protrusion 1315 .
  • the air located outside the second cover housing 130 may flow into the second cooling space C2 through the second sealing hole 640 , and the air located in the second cooling space C2 is the second It may flow to the outside of the second cover housing 130 through the sealing hole 640 .
  • the second exterior hole 650 may be provided inside the second sealing hole 640 .
  • the distance at which the second outer hole 650 is spaced apart from the rotation shaft 300 or the second bearing part 135 is the second sealing hole 640 being spaced apart from the rotation shaft 300 or the second bearing part 135 . It may be formed smaller than the distance.
  • the second exterior hole 650 may be formed by penetrating the second exterior body 1331 in the longitudinal direction of the rotation shaft 300 .
  • the second exterior frame 133 may include a second exterior protrusion 1335 formed to protrude from the outer circumferential surface of the second exterior body 1331 to contact the second sealing projection 1315 .
  • the housing cooling unit 600 penetrates the outer circumferential surface or the second exterior fastening portion 1333 of the second exterior body 1331 in the radial direction of the rotation shaft 300 or in a direction away from the rotation shaft 300 to form a second exterior projection 1335 ) and the second cooling space (C2) may include a third guide portion 651 to communicate.
  • the third guide portion 651 may be formed through the outer peripheral surface of the second exterior body 1331 or the second exterior fastening portion 1333 at the position where the second exterior protrusion 1335 protrudes.
  • the third guide part 651 may be formed to contact the second guide part 641 .
  • the housing cooling unit 600 may include a second heat dissipation fin 660 that protrudes from at least one of the second sealing frame 131 or the second exterior frame 133 toward the second cooling space C2.
  • the second heat dissipation fin 660 protrudes from at least one of the second sealing frame 131 and the second exterior frame 133 to increase the contact portion between the second cooling space C2 and the second cover housing 130 . can do it
  • the second cover housing 130 can be cooled by conduction or convection.
  • the second heat dissipation fin 660 may increase heat exchange efficiency by conduction or convection.
  • a plurality of second heat dissipation fins 660 may be provided. When a plurality of second heat dissipation fins 660 are provided, heat exchange between the second cover housing 130 and the second cooling space C2 may be performed in a larger area.
  • the second heat dissipation fins 660 protrude toward the second cooling space C2 and extend in the first direction.
  • the second heat dissipation fins 661 and the second cooling space It may include a second heat dissipation fin 663 protruding toward (C2) and extending in the second direction.
  • the first direction and the second direction may be provided differently.
  • the air flowing through the outside of the second cover housing 130 and the second cooling space C2 can cool the second cover housing 130 more efficiently.
  • second sealing holes 640 and second exterior holes 650 may be provided, respectively.
  • any one of the second sealing holes 640 may be provided to be spaced apart to one side from the rotating shaft 300 or the second bearing unit 135,
  • the other one of the second sealing holes 640b may be provided to be spaced apart from the second sealing hole 640a in the direction away from the rotation shaft 300 or the second bearing part 135 .
  • any one of the second exterior holes 650 may be provided to be spaced apart to one side from the rotation shaft 300 or the second bearing portion 135,
  • the other one 650b of the second exterior holes 650 may be provided to be spaced apart from the second exterior hole 650a in a direction away from the rotation shaft 300 or the second bearing portion 135 .
  • the air located outside the second cover housing 130 can flow to the second cooling space C2 at a higher flow rate, and the air located in the second cooling space C2 can flow to the second cover housing at a higher flow rate. It can flow out of 130.
  • the cooling passage P2 of the air flowing through the second cover housing 130 is illustrated.
  • the air is bent in the second cooling space C2.
  • the air cooling flow path P2 shown in FIG. 7 sequentially flows through the second sealing frame 131 , the second cooling space C2 and the second exterior frame 133 , but this It may be otherwise formed by the configuration (eg, a fan) that forms the airflow.
  • the air may flow inside and outside the first cover housing 120 to cool the first cover housing 120 .
  • air may flow inside and outside the second cover housing 130 to cool the second cover housing 130 .
  • a separate configuration eg, a fan
  • a separate configuration eg, a fan
  • the configuration for forming the airflow should be provided adjacent to the first cover housing 120 and also adjacent to the second cover housing 130 .
  • the airflow formed in the first cover housing 120 and the second cover housing 130 it is preferable that the direction of the air flow formed in the is the same or similar.
  • the first cooling space C1 and the second cooling space C2 may communicate with each other.
  • FIG 8 is a diagram illustrating a state in which the first cooling space C1 and the second cooling space C2 are communicated through the rotor housing 110 .
  • the housing cooling unit 600 may include a rotor hole 670 formed through the rotor housing 110 to communicate the first cooling space C1 and the second cooling space C2.
  • the rotor housing 110 is formed to protrude from the outer circumferential surface of the rotor housing 110 , and may include a rotor housing protrusion 117 contacting the first cover housing 120 and the second cover housing 130 .
  • the rotor housing protrusion 117 may not be coupled to a separate fastening member.
  • the rotor hole 670 may be formed by penetrating the rotor housing protrusion 117 in the longitudinal direction of the rotation shaft 300 .
  • the rotor housing protrusion 117 may be formed to contact the first sealing protrusion 1235 and the second sealing protrusion 1315 .
  • the rotor hole 670 may be provided to contact the first sealing groove 620 and the second sealing groove 640 . Accordingly, the rotor hole 670 may be provided to communicate with the first sealing groove 620 and the second sealing groove 640 , and the rotor hole 670 is formed between the first cooling space C1 and the second cooling space (C1). C2) can be connected.
  • a component eg, a fan
  • the air passes through the first cover housing 120 and moves through the first After flowing through the cooling space (C1), it may flow (P1) to the rotor housing (110). Air flowing through the rotor hole 670 formed in the rotor housing 110 may flow P2 through the second cooling space C2 while passing through the second cover housing 130 .
  • the air may cool the housing 100 by sequentially cooling the first cover housing 120 , the rotor housing 110 , and the second cover housing 130 .
  • the cooling flow path P of the air may form a flow path separated from the accommodation space S in which fuel, etc. is burned by the rotor 200 .
  • the cooling flow path P of the air formed by the housing cooling unit 600 may be formed to be spaced apart from the accommodation space (S).
  • the above description relates to the housing cooling unit 600 , and rather than directly cooling the rotor 200 , the focus is on cooling the housing 100 provided to surround the rotor 200 .
  • the rotor 200 is provided to rotate eccentrically on the inner circumferential surface of the rotor housing 110 . Accordingly, the path in which the rotor 200 moves in the interior (accommodating space) of the rotor housing 110 is formed the same for every rotation. (For example, by eccentric gear and rotor bearing gear)
  • FIG. 9 is a diagram illustrating a trajectory of the rotor 200 moving as it rotates once.
  • the rotor 200 rotates within the accommodation space S, and is provided to be in contact with the inner peripheral surface 110a of the rotor housing.
  • the trajectory T formed by one rotation of the outer surface of the rotor 200 may include an overlapping portion R that forms an overlapping region despite the rotation of the rotor 200 .
  • the air flow path formed by the rotor cooling unit 700 to cool the rotor 200 does not pass through the space between the outer surface of the rotor 200 and the inner circumferential surface 110a of the rotor housing.
  • the flow path formed by the rotor cooling unit 700 is preferably formed to flow inside the rotor 200 . This is because, in the space formed between the inner circumferential surface 110a of the rotor housing and the outer surface of the rotor 200, the above-described four strokes are continuously performed.
  • the air passage formed by the rotor cooling unit 700 may be provided to flow in the overlapping portion R.
  • FIG 10 is a view showing an air flow path P3 formed by the rotor cooling unit 700 .
  • the rotor cooling unit 700 passes the first body hole 710 and the second cover housing 130 formed by penetrating the first cover housing 120 in the longitudinal direction of the rotating shaft 300 in the longitudinal direction of the rotating shaft 300 . It may include a second body hole 720 formed through the .
  • the first body hole 710 may be formed through the first exterior body 1211 and the first sealing body 1231 to communicate the outside of the first cover housing 120 with the accommodating space S.
  • a plurality of first body holes 710 may be provided. When a plurality of first body holes 710 are provided, any one 711 of the first body holes 710 may be formed to extend from the first bearing part 125 in the radial direction of the rotation shaft 300 . . In addition, the other one 713 of the first body holes 710 may extend from the first bearing portion 125 in a direction away from the first body hole 711 .
  • the rotor cooling unit 700 prevents the air flow path P3 formed by the rotor cooling unit 700 from interfering with the air flow paths P1 and P2 formed by the housing cooling unit 600,
  • a first body hole frame 730 provided to surround at least a portion of the first body hole 710 may be included.
  • the first body hole frame 730 protrudes from the first exterior frame 121 and the first sealing frame 123 toward the first cooling space C1 to form a space separated from the first cooling space C1.
  • the first body hole frame 730 may be provided to surround at least a portion of the first body hole 710 to connect the first exterior frame 121 and the first sealing frame 123 .
  • the flow path of the air flowing through the first cooling space C1 and the flow path of the air flowing through the first body hole 710 may not interfere with each other.
  • the air located outside the first cover housing 120 may communicate with the receiving space (S).
  • the second body hole 720 may be formed to pass through the second sealing body 1311 and the second exterior body 1331 to communicate the outside of the second cover housing 130 with the accommodating space S.
  • a plurality of second body holes 720 may be provided. When a plurality of second body holes 720 are provided, any one 721 of the second body holes 720 may be provided to be spaced apart from the second bearing portion 135 , and the second body hole 720 . The other one 723 may be provided to be spaced apart from the second body hole 721 in a direction away from the second bearing portion 135 .
  • the rotor cooling unit 700 is configured so that the air flow path P3 formed by the rotor cooling unit 700 does not interfere with the air flow paths P1 and P2 formed by the housing cooling unit 600 ,
  • a second body hole frame 740 provided to surround at least a portion of the second body hole 720 may be included.
  • the second body hole frame 740 extends from the second sealing frame 131 to the second exterior frame 133 to connect the second sealing frame 131 and the second exterior frame 133, or the second exterior frame. It may extend from 133 to the second sealing frame 131 .
  • the second body hole frame 740 is provided between the second sealing frame 131 and the second exterior frame 133 so that the second cooling space C2 and the second body hole 720 do not communicate with each other. thickness can be formed.
  • the thickness may mean a predetermined length formed in the longitudinal direction of the rotation shaft 300 .
  • the flow path of the air flowing through the second cooling space C2 and the flow path of the air flowing through the second body hole 720 may not interfere with each other.
  • the air located outside the second cover housing 130 may communicate with the receiving space (S).
  • first body hole 710 and the second body hole 720 are preferably formed smaller than the overlapping portion R described above in FIG. 9 .
  • the first body hole 710 and the second body hole 720 are the first cover housing 120 and the second to guide the air located outside the rotary engine 10 to the inside of the overlapping portion R. It may be formed to penetrate through the cover housing 130 .
  • the air located outside the first cover housing 120 passes through the first body hole ( It can be guided to the accommodation space (S) through the 710). Air cooled by the rotor 200 in the accommodation space S may be discharged to the outside of the second cover housing 130 through the second body hole 720 .
  • the rotor cooling unit 700 may form an air flow path P3 that does not interfere with the air cooling flow paths P1 and P2 formed by the housing cooling unit 600 .
  • the rotary engine 10 may be cooled by including at least one of the housing cooling unit 600 and the rotor cooling unit 700 .
  • the rotary engine 10 may include both the housing cooling unit 600 and the rotor cooling unit 700 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

본 발명은 하우징 냉각부 또는 로터 냉각부 중 적어도 어느 하나를 포함하여 로터리 엔진의 주변 공기를 통해 로터와 하우징을 냉각하는 로터리 엔진에 관한 것이다.

Description

로터리 엔진
본 발명은 로터리 엔진에 관한 것이다. 보다 상세하게는, 로터리 엔진의 효율이 떨어지는 것을 방지하고자 로터리 엔진을 냉각시키는 구성을 포함하는 로터리 엔진에 관한 것이다.
일반적으로 로터리 엔진은 회전운동으로 동력을 생산하는 엔진을 지칭한다. 로터리엔진은 피스톤엔진에 비해 단순한 구조를 가지고 있어 소형화가 쉽고, 연속적인 연소행정이 가능하여 적은 배기량으로 높은 출력을 내는 특징이 있다. 또한, 로터리 엔진의 회전력을 균일하여 피스톤엔진에 비해 진동 및 소음이 적고, 질소산화물을 적게 배출하는 장점을 가지고 있다.
따라서, 근래의 로터리 엔진은 그 장점으로 인해 자동차, 항공기 등의 주요 엔진으로 적용될 뿐만 아니라, 단순한 구조로 인해 히트 펌프 시스템의 압축기에도 적용되고 있다.
로터리 엔진은 동력을 생산하기 위해 내부면이 에피트로코이드 곡선으로 이루어진 하우징 및 하우징 내에서 회전하는 로터를 포함하며, 상기 로터의 형상이 삼각기둥으로 이루어진 경우 로터와 하우징으로 3개의 연소실을 형성할 수 있다.
각각의 연소실에는 흡입, 압축, 연소 및 팽창, 배기로 이루어진 4행정이 진행되며, 이에 따라 로터가 1회전 시 상기 4행정은 3회 진행된다.
특히, 로터리 엔진의 경우 연료 또는 공기 등을 연소실에 주입하는 흡기밸브와 연료 또는 공기를 연소실로부터 배출시키는 배기밸브가 별도로 구비되지 않는 경우가 많다. 따라서, 흡기 및 배기가 보다 부드럽게 진행될 수 있고, 가스 교환의 효율이 좋다.
한편, 로터리 엔진의 경우 연료 또는 공기 등이 연소실에 주입되며 폭발 행정을 일으킴에 따라, 과도한 열이 발생하는 경우가 있다. 따라서, 로터리 엔진의 온도가 상승될 수 있으며, 로터리 엔진의 온도 상승은 로터리 엔진의 전체적인 효율을 저감시킬 수 있다.
로터리 엔진을 냉각시키기 위한 방법으로는 오일을 순환시켜 냉각시키는 유냉(oil-cooling) 방식과, 공기를 순환시켜 대류 또는 전도를 통해 냉각시키는 공랭(air-cooling) 방식을 고려할 수 있다.
다만, 상기 유냉 방식은 상기 오일을 순환시키기 위한 별도의 구성이 추가로 구비된다는 점에서 단점이 있고, 상기 공랭 방식은 공기와 연료가 섞인 채 온도가 상승하여 체적효율이 감소한다는 단점이 있다.
상기 유냉 방식과 상기 공랭 방식의 단점을 극복하고자, 미국 공개공보 2010/0313844A1(이하, 선행문헌으로 약칭함.)는 블로바이가스(blow-by gas)를 이용하여 로터의 냉각시키는 구성을 게시한다. 여기에서, 블로바이가스라 함은 로터리 엔진의 팽창행정 및 압축행정에서 발생하는 높은 압력의 가스가 로터의 측면에 설치된 싸이드 씰을 통해 로터 내부로 유입된 가스를 의미한다.(상기 선행문헌 참조)
보다 구체적으로, 상기 선행문헌은 블로바이가스를 순환시켜 로터에 공급하되, 블로바이가스가 순환되는 경로에 오일펌프를 배치시켜 오일을 공급한다. 따라서, 오일은 블로바이가스와 함께 유동하여 로터리 엔진을 윤활함과 동시에 냉각시킬 수 있다.
다만, 전술한 선행문헌에 의해서도 추가적인 구성이 필요하며,(예컨대, 상기 오일펌프), 특히 로터의 냉각에만 집중되어 로터를 둘러싸도록 형성되는 하우징은 상기 블로바이가스(공기와 연료가 혼합된 혼합기)에 의해 냉각될 수 없다.
따라서, 로터의 냉각뿐만 아니라, 로터를 수용하며 연료가 연소되거나 폭발하는 공간을 형성하는 하우징의 냉각을 하되 추가적인 구성 없이 냉각함이 요구된다.
본 발명의 일 실시예는 로터리 엔진을 냉각시키는 것을 목적으로 한다.
본 발명의 일 실시예는 로터리 엔진을 냉각시키기 위해 추가되는 구성이 없는 것을 목적으로 한다.
본 발명의 일 실시예는 로터리 엔진을 냉각시키기 위해 로터의 궤적을 고려하는 것을 목적으로 한다.
본 발명의 일 실시예는 로터리 엔진을 냉각시키기 위해 로터를 둘러싸도록 구비되는 하우징을 냉각시키는 것을 목적으로 한다.
본 발명의 일 실시예는 상기 목적을 달성하기 위해, 로터 회전시 발생하는 로터 내부공간의 중첩공간을 이용하여 로터의 냉각을 위한 공기가 공급 및 배출될 수 있는 커버하우징을 포함하는 로터리 엔진을 제공할 수 있다.
본 발명의 일 실시예는 상기 목적을 달성하기 위해, 커버하우징에 공기가 공급될 수 있는 입구를 가지고, 상기 커버하우징의 내부에는 공급된 공기와 열교환하여 상기 커버하우징을 냉각할 수 있는 방열구조를 포함하는 로터리 엔진을 제공할 수 있다.
본 발명의 일 실시예는 상기 목적을 달성하기 위해, 상기 커버하우징의 내부에서 열교환된 공기가 상기 커버하우징의 외부로 배출될 수 있는 방열구조를 포함하는 로터리 엔진을 제공할 수 있다.
본 발명의 일 실시예는 상기 목적을 달성하기 위해, 내부에 연료가 연소되는 수용공간을 형성하는 로터하우징, 상기 로터하우징에 결합되어 상기 수용공간을 밀폐시키는 커버하우징, 상기 커버하우징과 상기 수용공간을 관통하도록 형성되는 회전축 및 상기 회전축과 결합되어 상기 수용공간에 회전 가능하게 구비되며, 상기 연료를 이동시키거나 압축하는 로터를 포함하며, 상기 커버하우징은, 상기 수용공간과 마주보는 밀폐프레임 및 상기 밀폐프레임에서 상기 수용공간과 멀어지는 방향으로 결합되는 외관프레임을 포함하여 내부에 냉각공간을 형성하며, 상기 밀폐프레임은 상기 밀폐프레임을 관통하여 형성되는 밀폐홀을 포함하고 상기 외관프레임은 상기 외관프레임을 관통하여 형성되는 외관홀을 포함하여, 상기 냉각공간과 상기 커버하우징의 외부를 연통시키는 로터리 엔진을 제공할 수 있다.
상기 커버하우징은 상기 로터하우징의 일측에 결합되는 제1커버하우징 및 상기 제1커버하우징과 이격되도록 상기 로터하우징의 타측에 결합되는 제2커버하우징을 포함할 수 있다.
상기 제1커버하우징은 상기 수용공간과 마주보도록 구비되는 제1밀폐프레임 및 상기 제1밀폐프레임에서 상기 수용공간과 멀어지는 방향으로 결합되는 제1외관프레임을 포함하여 내부에 제1냉각공간을 형성할 수 있다.
상기 제1외관프레임은 상기 회전축이 관통하는 제1외관바디, 상기 제1외관바디의 외주면에서 돌출 형성되어 상기 제1밀폐프레임과 결합되는 제1외관체결부 및 상기 제1외관바디를 관통하도록 형성되어 상기 제1커버하우징의 외부와 상기 제1냉각공간을 연통시키는 제1외관홀을 포함할 수 있다.
상기 제1밀폐프레임은 상기 회전축이 관통하는 제1밀폐바디, 상기 제1밀폐바디의 외주면에서 돌출 형성되어 상기 제1외관프레임과 결합되는 제1밀폐돌출부, 상기 제1밀폐바디의 외주면을 관통하여 상기 제1밀폐돌출부와 상기 제1냉각공간을 연통시키는 제1가이드부 및 상기 제1밀폐돌출부를 관통하여 형성되어 상기 제1냉각공간과 상기 제1커버하우징의 외부를 연통시키는 제1밀폐홀을 포함할 수 있다.
상기 제1커버하우징은 상기 제1밀폐바디에서 상기 제1외관바디를 향해 돌출되어 연장되는 제1방열핀을 더 포함할 수 있다.
상기 제1방열핀은 복수 개로 구비되며 상기 제1방열핀 중 일부가 연장되는 방향은 상기 제1방열핀 중 나머지 일부가 연장되는 방향과 다르게 형성될 수 있다.
상기 제2커버하우징은 상기 수용공간과 마주보도록 구비되는 제2밀폐프레임 및 상기 제2밀폐프레임에서 상기 수용공간과 멀어지는 방향으로 결합되는 제2외관프레임을 포함하여 내부에 제2냉각공간을 형성할 수 있다.
상기 제2밀폐프레임은 상기 회전축이 관통하는 제2밀폐바디, 상기 제2밀폐바디의 외주면에서 돌출 형성되는 제2밀폐돌출부 및 상기 제2밀폐돌출부를 관통하여 형성되는 제2밀폐홀을 포함하여, 상기 제2냉각공간과 상기 제2커버하우징을 연통시킬 수 있다.
상기 제2외관프레임은 상기 회전축이 관통하는 제2외관바디, 상기 제2외관바디의 외주면에서 돌출 형성되어 상기 제2밀폐프레임과 결합되는 제2외관체결부 및 상기 제2외관바디를 관통하여 형성되는 제2외관홀;을 포함하여, 상기 제2냉각공간과 상기 제2커버하우징의 외부를 연통시킬 수 있다.
상기 제2커버하우징은 상기 제2외관바디에서 상기 제2밀폐바디를 향해 돌출되어 연장되는 제2방열핀을 더 포함할 수 있다.
상기 제2방열핀은 복수 개로 구비되며 상기 제2방열핀 중 일부가 연장되는 방향은 상기 제2방열핀 중 나머지 일부가 연장되는 방향과 다르게 형성될 수 있다.
상기 로터하우징은 상기 회전축이 관통하는 로터바디, 상기 로터바디의 외주면에서 돌출되어 상기 제1밀폐돌출부 및 상기 제2밀폐돌출부와 접촉하도록 구비되는 로터돌출부 및 상기 로터돌출부를 관통하도록 형성되어 상기 제1냉각공간과 상기 제2냉각공간을 연통시키는 로터홀을 포함할 수 있다.
상기 커버하우징은 상기 회전축을 회전지지하는 축수부 및 상기 커버하우징을 상기 회전축의 길이 방향으로 관통하여 형성되되, 상기 축수부의 적어도 일부를 둘러싸도록 구비되는 바디홀을 포함하여, 상기 수용공간을 상기 로터리 엔진의 외부와 연통시킬 수 있다.
상기 바디홀은 상기 제1커버하우징을 관통하여 형성되는 제1바디홀 및 상기 제2커버하우징을 관통하여 형성되는 제2바디홀을 포함할 수 있다.
상기 축수부는 상기 제1커버하우징에 구비되는 제1축수부 및 상기 제2커버하우징에 구비되는 제2축수부를 포함하며, 상기 제1바디홀은 상기 제1축수부에서 상기 회전축과 멀어지는 방향으로 연장되어 형성될 수 있다.
상기 제2바디홀은 상기 제2축수부와 이격되어 구비될 수 있다.
본 발명의 일 실시예에 따르면, 커버하우징에 로터의 내부만 냉각시킬 수 있는 공기 연통홀이 확보될 수 있다.
본 발명의 일 실시예에 따르면, 로터리 엔진의 주변 공기를 이용하여 로터와 하우징을 동시에 냉각할 수 있다.
본 발명의 일 실시예에 따르면, 커버하우징의 냉각이 효율적으로 수행되어 로터리 엔진의 내구성이 향상될 수 있다.
본 발명의 일 실시예에 따르면, 커버하우징 및 로터를 냉각시키기 위한 별도의 구성 없이 커버하우징과 로터를 효율적으로 냉각시킬 수 있다.
도 1은 로터리 엔진이 도시된 도면,
도 2는 로터리 엔진의 행정이 도시된 도면,
도 3은 본 발명의 일 실시예에 따른 로터리 엔진의 분해 사시도가 도시된 도면,
도 4는 본 발명의 일 실시예에 따른 제1커버하우징이 도시된 도면,
도 5는 본 발명의 일 실시예에 따른 제1커버하우징을 유동하는 공기의 유동경로가 도시된 도면,
도 6은 본 발명의 일 실시예에 따른 제2커버하우징이 도시된 도면,
도 7은 본 발명의 일 실시예에 따른 제2커버하우징을 유동하는 공기의 유동경로가 도시된 도면,
도 8은 본 발명의 일 실시예에 따른 로터하우징이 도시된 도면,
도 9는 본 발명의 일 실시예에 따른 로터의 궤적이 도시된 도면,
도 10은 본 발명의 일 실시예에 따른 로터냉각부에 의해 공기가 로터의 내부를 냉각시키는 모습이 도시된 도면이다.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 이하의 상세한 설명은 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.
도 1은 로터리 엔진(10)이 도시된 도면이다.
도 1을 참조하면, 로터리 엔진(10)은 연료와 공기가 유동할 수 있는 공간을 제공하는 하우징(100), 하우징(100)의 내부에 회전 가능하게 구비되어 연료와 공기를 이동시키는 로터(200), 로터(200)와 결합되어 로터(200)를 회전시키는 회전축(300)을 포함한다.
하우징(100)은 양단이 개구되어 로터(200)가 회전할 수 있는 수용공간(S)을 제공하는 로터하우징(110), 로터하우징(110)의 양단에 결합되어 수용공간(S)을 밀폐시키는 커버하우징을 포함할 수 있다.
커버하우징은 로터하우징(110)의 일단에 결합되는 제1커버하우징(120), 상기 로터하우징(110)의 타단에 결합되어 제1커버하우징(120)과 이격되도록 구비되는 제2커버하우징(130)을 포함할 수 있다.
이 때, 제1커버하우징(120)과 제2커버하우징(130)은 서로 마주보게 구비될 수 있다.
로터하우징(110)은 연료 또는 공기가 수용공간(S)가 유입될 수 있도록 수용공간(S)과 로터하우징(110)의 외부를 연통시키는 흡입구(111) 및 연료 또는 공기가 수용공간(S)에서 로터하우징(110)의 외부로 배출되도록 수용공간(S)과 로터하우징(110)의 외부를 연통시키는 배출구(113)를 포함할 수 있다.
흡입구(111)와 배출구(113)는 로터하우징(110)을 관통하여 형성될 수 있다.
로터하우징(110)은 수용공간(S)을 형성하며 흡입구(111)와 배출구(113)가 형성되는 로터하우징바디(115) 및 로터하우징바디(115)의 외주면에서 돌출되어 커버하우징과 체결되는 로터하우징체결부(119)를 포함할 수 있다.
달리 말하면, 로터하우징체결부(119)는 로터하우징바디(115)보다 외측에 구비될 수 있고, 회전축(300)과 더 떨어지도록 구비될 수 있다.
로터하우징체결부(119)는 로터하우징바디(115)에서 회전축(300)과 멀어지는 방향으로 돌출되되, 회전축(300)의 길이방향으로 관통 형성된 관통홀을 포함하여 커버하우징과 체결될 수 있다.
로터(200)는 수용공간(S)에 회전하도록 구비되어, 수용공간(S)을 구획할 수 있다.
이를 위해, 로터(200)는 수용공간(S)을 구획하며 수용공간(S)에서 편심회전하도록 구비되는 로터바디(210)를 포함한다.
한편, 로터(200)의 형상은 다양하게 구비될 수 있다. 로터(200)의 형상이 변경됨에 따라, 수용공간(S)을 형성하는 로터하우징(110)의 내주면 형상도 변경되어야 한다.
다만, 이하에서는 설명의 편의를 위해 로터(200)가 삼각기둥 형상 또는 이와 유사한 형상으로 구비되어 수용공간(S)을 3개의 공간으로 구획하는 것으로 설명한다.
로터바디(210)는 로터바디(210)의 일측면을 형성하는 제1측면(211), 로터바디(210)의 타측면을 형성하는 제2측면(213) 및 제1측면(211)과 제2측면(213)을 연결하도록 형성되는 제3측면(215)를 포함할 수 있다.
제1측면 내지 제3측면(211, 213, 215) 중 어느 하나는 다른 나머지 두 개의 측면과 연결되도록 구비될 수 있다. 즉, 제1측면 내지 제3측면(211, 213, 215)은 각각 면을 형성하여 내측에 공간이 형성되도록 연결될 수 있다.
로터(200)는 연료와 공기가 연소될 수 있는 공간을 제공하도록 로터바디(210)에서 함몰 형성된 연소실(220)을 포함할 수 있다.
연소실(220)은 로터바디(210)의 외면에서 로터바디(210)의 내측을 향해 함몰 형성될 수 있다.
또한, 연소실(220)은 로터바디(210)의 각각에 구비될 수 있다. 즉, 연소실(220)은 제1측면(211)에 형성되는 제1연소실(221), 제2측면(213)에 형성되는 제2연소실(223) 및 제3측면(215)에 형성되는 제3연소실(225)를 포함할 수 있다.
도 2에서 후술하겠지만, 로터(200)는 수용공간(S)의 내부에서 편심 회전하도록 구비되며, 로터하우징(110)의 내주면과 밀착되도록 회전한다. 따라서, 연소실(220)은 로터(200)가 로터하우징(110)의 내주면과 밀착된 상태에서 연료와 공기가 연소될 수 있는 공간을 제공할 수 있다.
한편, 로터(200)가 수용공간(S)을 3개의 공간으로 구획함에 따라, 상기 3개의 공간은 서로 기밀이 유지되어야 한다. 각각의 공간에는 서로 다른 행정들이 진행되기 때문에, 공간 간의 공기 또는 연료가 이동하는 경우에는 로터리 엔진의 효율이 저하될 수 있기 때문이다.
특히, 로터(200)는 로터하우징(110)의 내주면과 밀착되는 부분을 형성하여 수용공간(S)을 3개의 공간으로 구획할 수 있다.
따라서, 로터(200)는 로터(200)가 편심 회전함에 따라 로터하우징(110)의 내주면과 밀착되는 단부(230)를 포함할 수 있다.
단부(230)는 제1측면(211)과 제2측면(213)이 접해 형성되는 제1단부(231), 제2측면(213)과 제3측면(215)이 접해 형성되는 제2단부(233) 및 제3측면(215)과 제1측면(211)이 접해 형성되는 제3단부(235)를 포함할 수 있다.
달리 말하면, 단부(230)는 제1측면 내지 제3측면(211, 213, 215)가 연결되는 부분을 지칭할 수 있다.
다만, 로터(200)가 단부(230)를 포함하고, 로터하우징(110)의 내주면이 로터(200)와 밀착되도록 형성된다 하더라도(예컨대, 에피트로코이드 곡선을 포함하도록), 로터(200)에 의해 수용공간(S)에서 구획된 공간들 간에 기밀이 형성되기 어려울 수 있다.
로터(200) 또는 로터하우징(110)의 제작에 있어서 공차는 필연적으로 발생할 수 있고, 로터(200)에 의해 구획된 수용공간(S) 간에는 상당한 압력 차이가 발생할 수 있기 때문이다.
따라서, 로터(200)는 단부(230)에서 로터하우징(110)의 내주면을 향해 결합되는 씰부(240)를 포함할 수 있다.
씰부(240)는 제1단부(231)에 결합되어 로터하우징(110)의 내주면과 밀착되도록 구비되는 제1씰(241), 제2단부(233)에 결합되어 로터하우징(110)의 내주면과 밀착되도록 구비되는 제2씰(243) 및 제3단부(235)에 결합되어 로터하우징(110)의 내주면과 밀착되도록 구비되는 제3씰(245)를 포함할 수 있다.
한편, 씰부(240)에는 씰부(240)에게 로터하우징(110)의 내주면을 향하는 탄성력을 제공하는 탄성부재가 더 결합될 수 있다.
로터(200)는 로터바디(210)의 내측에 위치하여 회전축(300)과 결합되는 로터축수부(250)를 포함할 수 있다.
로터축수부(250)는 회전축(300)과 대응되는 형상으로 구비될 수 있으며, 속이 빈 원기둥 형상 또는 이와 유사한 형상으로 구비될 수 있다. 특히, 로터축수부(250)는 후술하는 편심부(310)와 결합될 수 있으므로, 편심부(310)와 대응되는 형상으로 구비될 수 있다.
또한, 로터축수부(250)는 로터바디(210)의 내측에 구비되되, 로터바디(210)와 이격되도록 구비될 수 있다. 즉, 로터축수부(250)는 로터바디(210)에서 연소실(220)이 형성된 방향으로 더 이격되어 구비될 수 있다.
로터(200)는 로터축수부(250)와 로터바디(210) 사이를 연결하여 로터축수부(250)와 로터바디(210)를 지지하는 리브(260)를 포함할 수 있다.
리브(260)는 로터축수부(250)에서 방사상으로 연장되어 로터바디(210)와 결합될 수 있다. 이로써, 리브(260)는 로터(200)의 신뢰성 또는 내구성을 향상시킬 수 있다.
회전축(300)은 하우징(100)과 로터(200)를 관통하도록 형성되며, 로터(200)와 결합되어 로터(200)를 회전시킬 수 있다.
보다 구체적으로, 회전축(300)은 제1커버하우징(120), 수용공간(S) 및 제2커버하우징(130)을 순차적으로 관통하여 형성될 수 있다.
회전축(300)은 로터축수부(250)와 결합되는 편심부(310), 편심부(310)에서 제2커버하우징(130)과 멀어지는 방향으로 연장되어 제1커버하우징(120)과 결합되는 제1연장부(320) 및 편심부(310)에서 제1커버하우징(120)과 멀어지는 방향으로 연장되어 제2커버하우징(130)과 결합되는 제2연장부(330)를 포함할 수 있다.
편심부(310)는 제1연장부(320) 및 제2연장부(330)보다 직경이 크게 형성될 수 있다. 즉, 편심부(310)는 제1연장부(320) 및 제2연장부(330)를 연결하며 제1연장부(320) 및 제2연장부(330)와 직경이 동일하게 형성되는 중심부(311) 및 중심부(311)에서 중심부(311)의 반경 방향 외측으로 연장 형성되어 편심을 유발하는 확장부(313)를 포함할 수 있다.
따라서, 로터(200)는 편심부(310)에 결합되어 편심 회전하도록 구비될 수 있다.
제1커버하우징(120)은 제1연장부(320)가 관통되는 제1축수부(125)를 포함할 수 있고, 제2커버하우징(130)은 제2연장부(330)과 관통되는 제2축수부(135)를 포함할 수 있다.
한편, 로터리 엔진(10)은 하우징(100), 로터(200) 또는 회전축(300)과 결합되는 동력부(400) 및 회전축(300)의 회전모멘트를 상쇄시키는 밸런서(500)를 포함할 수 있다.
동력부(400)는 편심부(310) 및 로터축수부(250)에 결합되어 로터축수부(250)의 내주면에서 회전축(300)을 회전지지하는 로터베어링(410), 제1연장부(320)와 제1축수부(125) 사이에서 제1연장부(320)를 회전지지하는 제1커버베어링(420) 및 제2연장부(330)와 제2축수부(135) 사이에서 제2연장부(330)을 회전지지하는 제2커버베어링(430)을 포함할 수 있다.
로터베어링(410)은 로터축수부(250)의 내주면보다 직경이 작거나 동일하게 형성되어 로터축수부(250)와 결합될 수 있다. 즉, 로터베어링(410)의 외주면은 로터축수부(250)의 내주면과 결합될 수 있다.
더하여, 로터베어링(410)은 로터베어링(410)의 내주면에 구비되어 후술하는 편심부기어(450)와 맞물리도록 구비되는 로터베어링기어(411)을 포함할 수 있다.
동력부(400)는 로터하우징(110)에 결합되어 연료를 연소시키는 점화플러그(440) 및 로터베어링기어(411)와 맞물리도록 결합되는 편심부기어(450)를 포함할 수 있다.
점화플러그(440)는 로터하우징(110)에 결합되되 복수개로 구비되어 수용공간(S)에 스파크를 유발할 수 있다.
또한, 점화플러그(440)는 로터하우징(110)에 형성되어 연료 또는 공기를 수용공간(S)과 연통시키는 흡입구(111) 및 배출구(113)와 이격되도록 형성될 수 있다.
흡입구(111)와 배출구(113)는 연료 또는 공기의 효율을 고려하여 인접하게 구비됨이 바람직하다.
또한, 흡입구(111)를 통해 수용공간(S)의 내부로 유동한 연료 또는 공기가 곧바로 폭발하지 않는 점을 고려할 때, 점화플러그(440)는 흡입구(111) 및 배출구(113)와 마주보도록 형성되는 것이 바람직하다.
편심부기어(450)는 로터베어링기어(411)와 맞물리기만 하면 어떤 형태로 결합되도 상관 없으며, 일 예로 회전축(300)과 결합되어 로터베어링기어(411)와 맞물릴 수 있다.
편심부기어(450)와 로터베어링기어(411)가 맞물림에 따라 로터(200)가 회전하면서 형성하는 궤적이 정해질 수 있다.
밸런서(500)는 한 개로 구비될 수도 있으나, 바람직하게는 복수 개로 구비될 수 있다.
밸런서(500)가 복수 개로 구비되는 경우, 밸런서(500)는 회전축(300)의 일측에 결합되는 제1밸런서(510) 및 회전축(300)의 타측에 결합되는 제2밸런서(520)를 포함할 수 있다.
제1밸런서(510)와 제2밸런서(520)는 각각 회전축(300)과 결합되는 제1밸런서바디(511), 제2밸런서바디(521)를 포함할 수 있다. 또한, 제1밸런서(510)는 제1밸런서바디(511)에서 편심부(310)가 유발하는 회전모멘트를 상쇄시킬 수 있는 방향으로 연장되는(회전축의 직경방향으로) 제1밸런서연장부(513)를 포함할 수 있다. 제2밸런서(520)는 제2밸런서바디(521)에서 편심부(310)가 유발하는 회전모멘트를 상쇄시킬 수 있는 방향으로 연장되는(회전축의 직경방향으로) 제2밸런서연장부(523)를 포함할 수 있다.
밸런서(500)가 보다 효율적으로 회전축(300)의 편심모멘트를 상쇄시키기 위해서는, 밸런서(500)는 편심부(310)와 이격될수록 유리하다.
따라서, 제1밸런서(510)는 제1축수부(125)에서 편심부(310)와 멀어지는 방향에서 회전축(300)과 결합할 수 있고, 제2밸런서(520)는 제2축수부(135)에서 편심부(310)와 멀어지는 방향에서 회전축(300)과 결합될 수 있다.
회전축(300)은 제1연장부(320)에서 편심부(310)와 멀어지는 방향으로 연장되는 제1밸런서결합부(321) 및 제2연장부(330)에서 편심부(310)와 멀어지는 방향으로 연장되는 제2밸런서결합부(331)을 포함할 수 있다.
한편, 제1밸런서결합부(321)는 제1연장부(320)보다 직경이 작게 형성될 수 있고, 제2밸런서결합부(331)는 제2연장부(330)보다 직경이 작게 형성될 수 있다. 이로써, 제1밸런서결합부(321) 및 제2밸런서결합부(331)에 각각 형성되는 제1밸런서연장부(513) 및 제2밸런서연장부(523)가 충분한 질량을 형성할 수 있다.
이하, 도 2를 참조하여 로터리 엔진(10)의 작동 과정을 설명한다. 도 2는 로터리 엔진(10)의 행정이 도시된 도면이다.
도 2(a)를 참조하면, 흡기홀에서 연료(f)가 흡입되는 흡기행정이 수행되며, 도 2(b)를 참조하면, 상기 흡입행정에서 로터(200)가 회전하면 연료(f)는 로터(200)의 단부(230)를 따라 이동하며 로터하우징(110)에 밀착되어 압축되는 압축행정이 수행된다.
도 2(c)를 참조하면, 상기 압축행정에서 압축된 연료는 점화플러그(440)에서 발생하는 스파크(spark)로 인해 폭발하여 부피가 폭발적으로 증가하기 시작하는 폭발행정이 수행된다.
도 2(d)를 참조하면, 상기 폭발행정의 반발력으로 인해 상기 로터(200)는 고속으로 회전하면서, 연료(f)의 산화물을 배기홀로 배출시키는 배출행정이 수행된다. 이후, 로터(200)는 관성으로 인해 회전하면서 전술한 흡기행정을 다시 수행한다.
이 때, 로터(200)의 궤적은 로터베어링기어(411)와 편심부기어(450)의 형상에 의해 결정될 수 있다.
이로써, 흡기행정, 압축행정, 폭발행정 및 배출행정은 순차적이며 연속으로 행해질 수 있다. 다만, 전술한 행정들은 로터(200)에 의해 구획되는 연소실(220) 중 어느 하나에서 순차적으로 진행될 수 있고, 로터(200)에 의해 구획되는 연소실(220) 중 다른 하나에서는 상기 어느 하나의 연소실(220)에서 진행되는 행정과 다른 행정이 진행된다.
특히, 로터(200)에 의해 구획된 수용공간(S) 중 어느 하나에는 점화플러그(440)에 의한 폭발행정이 일어나는 동시에, 로터(200)에 의해 구획된 수용공간(S) 중 다른 하나에는 연료가 압축되는 압축행정이 일어난다.
따라서, 수용공간(S)의 온도는 상승될 수 밖에 없고 지나친 온도의 상승은 로터리 엔진(10)의 효율을 저하시킬 수 있다.
본 발명에서는 로터리 엔진(10)을 냉각시키기 위해, 별도의 구성 없이 로터리 엔진(10)을 냉각시키면서도 효율적으로 냉각시키기 위한 구성을 게시한다.
보다 구체적으로, 로터리 엔진(10)에서 냉각이 가장 필요한 구성은 로터(200)이나, 로터(200)를 둘러싸도록 구비되며 수용공간(S)을 형성하는 하우징(100)의 경우에도 냉각이 필요하다.
특히, 하우징(100)의 냉각이 수행되는 경우, 로터(200) 및 수용공간(S)을 냉각하는 효과도 기대할 수 있다.
따라서, 이하에서는 하우징(100)의 냉각을 수행하는 하우징 냉각부(600) 및 로터(200)의 냉각을 수행하는 로터 냉각부(700) 중 적어도 하나를 포함하여 로터리 엔진(10)의 냉각을 수행하는 본 발명의 일 실시예를 설명한다.
도 3은 본 발명의 일 실시예에 따른 하우징 냉각부(600) 및 로터 냉각부(700)가 도시된 도면이다.
도 3을 참조하면, 하우징 냉각부(600) 및 로터 냉각부(700)는 로터리 엔진(10)의 주변에 위치한 공기를 이용하여 각각 하우징(100) 및 로터(200)를 냉각시킬 수 있다.
이를 위해, 하우징 냉각부(600)는 로터하우징(110) 및 커버하우징(120, 130)에 형성되어 하우징(100)을 냉각시키는 공기의 유로(이하, 하우징 냉각유로로 약칭함.)를 형성할 수 있다. 또한, 로터 냉각부(700)는 커버하우징(120, 130)에 형성되어 로터(200)를 냉각시키는 공기의 유로(이하, 로터 냉각유로로 약칭함.)를 형성할 수 있다.
상기 하우징 냉각유로와 로터 냉각유로는 별개의 유로로 형성될 수 있다. 즉, 하우징 냉각유로와 로터 냉각유로는 별개의 유로로 형성되어 서로 간섭 없이 로터리 엔진(10)을 냉각시킬 수 있다.
한편, 본 발명의 일 실시예는 하우징 냉각부(600) 및 로터 냉각부(700)를 제외하고는 도 1에서 설명한 구성을 동일하게 포함하는 로터리 엔진(10)이므로, 중복되는 설명은 생략한다.
이하에서는, 도 4 내지 도 5를 참조하여 제1커버하우징(120)에 구비되어 제1커버하우징(120)을 냉각시키는 하우징 냉각부(600)를 설명한다.
도 4 에서 왼쪽 도면은 제1커버하우징(120)의 전면을 정면에서 바라본 모습이 도시된 도면이며, 도 4에서 오른쪽 도면은 제1커버하우징(120)의 배면을 정면에서 바라본 모습이 도시된 도면이다.
도 4를 참조하면, 제1커버하우징(120)은 내부에 제1냉각공간(C1)을 형성할 수 있다. 상기 제1냉각공간(C1)은 공기가 유동할 수 있는 공간을 의미하는 것으로, 프레임들의 결합에 의해 형성될 수 있다.
즉, 제1냉각공간(C1)은 제1커버하우징(120)의 내부 공간을 의미할 수 있고, 수용공간(S)과 분리된 공간을 형성할 수 있다.
이를 위해, 제1커버하우징(120)은 수용공간(S)과 마주보게 형성되는 제1밀폐프레임(123) 및 제1밀폐프레임(120)에서 수용공간(S)과 멀어지는 방향으로 결합되는 제1외관프레임(121)을 포함할 수 있다.
또한, 제1외관프레임(121)과 제1밀폐프레임(123)은 서로 마주보게 형성될 수 있다.
제1외관프레임(121)과 제1밀폐프레임(123)이 결합되어 내부에 제1냉각공간(C1)을 형성하기 위해, 제1외관프레임(121)과 제1밀폐프레임(123)은 각각 두께가 다르게 형성되는 바디 및 체결부를 포함할 수 있다.
구체적으로, 제1외관프레임(121)은 회전축(300)이 관통하는 제1외관바디(1211) 및 제1외관바디(1211)의 외주면에서 돌출되어 제1밀폐프레임(123) 또는 로터하우징(110) 또는 제2커버하우징(130) 중 적어도 어느 하나와 결합되는 제1외관체결부(1213)을 포함할 수 있다.
제1외관체결부(1213)는 제1외관바디(1211)의 외주면에서 돌출되되, 회전축(300)의 직경 방향으로 돌출되어 형성될 수 있다. 달리 말하면, 제1외관체결부(1213)는 제1외관바디(1211)의 외주면에서 회전축(300)과 멀어지는 방향으로 돌출되어 형성될 수 있다.
제1외관체결부(1213)는 제1외관바디(1211)가 형성하는 두께보다 더 큰 두께를 형성할 수 있다. 여기에서 두께란 회전축(300)의 길이방향으로 형성되는 소정의 길이를 의미할 수 있다.
이로써, 제1외관체결부(1213)와 제1외관바디(1211)가 결합되면, 제1커버하우징(120)의 내부에는 제1냉각공간(C1)이 형성될 수 있다.
제1밀폐프레임(123)은 회전축(300)이 관통하는 제1밀폐바디(1231) 및 제1밀폐바디(1231)의 외주면에서 돌출되어 제1외관프레임(121) 또는 로터하우징(110) 또는 제2커버하우징(130) 중 적어도 하나와 결합되는 제1밀폐체결부(1233)을 포함할 수 있다.
제1밀폐체결부(1233)는 제1외관체결부(1213)와 접촉되도록 형성되어 제1외관체결부(1213)와 결합될 수 있다.
제1밀폐체결부(1233)의 두께는 제1밀폐바디(1231)의 두께보다 크게 형성될 수 있다. 여기에서 두께란, 회전축(300)의 길이 방향으로 형성되는 소정의 길이를 의미할 수 있다.
이로써, 제1커버하우징(120)의 내부에 형성되는 제1냉각공간(C1)은 충분한 부피를 가질 수 있다.
하우징 냉각부(600)는 제1냉각공간(C1)과 제1커버하우징(120)의 외부를 연통시키기 위해, 제1커버하우징(120)을 관통하도록 형성하는 홀을 포함할 수 있다.
상기 제1커버하우징(120)을 관통하도록 형성되는 홀이 회전축(300)의 길이 방향으로 제1커버하우징(120)을 관통하는 경우, 하우징 냉각부(600)는 제1외관프레임(121)을 관통하여 형성되는 제1외관홀(610)과 제1밀폐프레임(123)을 관통하여 형성되는 제1밀폐홀(620)을 포함할 수 있다.
다만, 제1커버하우징(120)의 외부에서 제1커버하우징(120)의 내부로 유입되어 제1냉각공간(C1)을 유동하는 공기가 보다 많이 제1커버하우징(120)을 냉각시키기 위해, 제1외관홀(610)과 제1밀폐홀(620)은 서로 이격되어 구비될 수 있다.
즉, 바람직하게 제1외관홀(610)과 제1밀폐홀(620)은 서로 대응되는 위치에 형성되지 않고, 회전축(300)의 직경 방향 또는 회전축(300)의 회전 방향으로 이격되어 형성될 수 있다.
구체적으로, 제1외관홀(610) 및 제1밀폐홀(620) 중 어느 하나가 제1커버하우징(120)의 외측에 구비되는 경우, 제1외관홀(610) 및 제1밀폐홀(620) 중 다른 하나는 제1커버하우징(120)의 내측에 구비될 수 있다.
여기에서, 제1커버하우징(120)의 외측은 제1커버하우징(120)의 내측보다 회전축(300)과 떨어진 거리가 큰 것을 의미할 수 있다.
일 예로, 제1외관홀(610)이 제1외관바디(1211)에 형성되는 경우, 제1밀폐홀(620)은 제1밀폐바디(1231)의 외주면에서 회전축(300)과 멀어지는 방향으로 이격되어 구비될 수 있다.
제1밀폐홀(620)은 제1밀폐바디(1231)의 외주면에서 회전축(300)과 멀어지는 방향으로 돌출된 제1밀폐돌출부(1235)에 형성될 수 있다.
즉, 제1밀폐프레임(123)은 제1밀폐바디(1231)의 외주면에서 돌출 형성되는 제1밀폐돌출부(1235)를 포함할 수 있고, 제1밀폐홀(620)은 제1밀폐돌출부(1235)를 회전축(300)의 길이 방향으로 관통하여 형성될 수 있다.
다만, 전술한 바와 같이 제1외관체결부(1213)와 제1밀폐체결부(1233)가 형성하는 두께는 각각 제1외관바디(1211)와 제1밀폐바디(1231)의 두께보다 크게 형성되므로 제1냉각공간(C1)을 유동하는 공기는 제1밀폐홀(620)과 연통되기 어려울 수 있다.
이를 위해, 하우징 냉각부(600)는 제1밀폐체결부(1233) 또는 제1밀폐바디(1231)의 외주면을 회전축(300)의 직경방향 또는 회전축(300)과 멀어지는 방향으로 관통하여 제1냉각공간(C1)과 제1밀폐홀(620)을 연통시키는 제1가이드부(621)를 포함할 수 있다.
제1가이드부(621)는 제1밀폐돌출부(1235)와 대응되는 위치에서 제1밀폐체결부(1233)을 관통하여 형성될 수 있다.
이로써, 제1냉각공간(C1)에 위치한 공기는 제1가이드부(621)를 통해 제1밀폐홀(620)로 안내될 수 있고, 제1커버하우징(120)의 외부에 위치한 공기는 제1밀폐홀(620)로 유입되고 제1가이드부(621)를 통해 제1냉각공간(C1)으로 안내될 수 있다.
따라서, 제1외관홀(610)과 제1밀폐홀(620)은 제1커버하우징(120)의 내부(제1냉각공간)과 제1커버하우징(120)의 외부를 연통시킬 수 있다.
한편, 제1외관홀(610)과 제2밀폐홀(620)은 복수 개로 구비됨이 바람직하다.
제1외관홀(610)이 복수개로 구비되는 경우, 복수 개의 제1외관홀 중 어느 하나는 회전축(300) 또는 제1축수부(125)에서 일측으로 이격되어 구비(611, 613)될 수 있고, 복수 개의 제1외관홀 중 다른 하나는 회전축(300) 또는 제1축수부(125)의 타측으로 이격(615, 617)되어 구비될 수 있다.
바람직하게는, 상기 복수 개의 제1외관홀 중 다른 하나는 회전축(300) 또는 제1축수부(125)에서 상기 복수 개의 제1외관홀 중 어느 하나와 멀어지는 방향으로 이격되어 구비될 수 있다.
제1밀폐돌출부(1235)가 복수 개로 구비되는 경우, 복수 개의 제1밀폐돌출부 중 어느 하나(1235a)는 회전축(300) 또는 제1축수부(125)에서 일측으로 이격되어 구비될 수 있고, 복수 개의 제1밀폐돌출부 중 다른 하나(1235b)는 회전축(300) 또는 제1축수부(125)에서 상기 복수 개의 제1밀폐돌출부 중 어느 하나와 멀어지는 방향으로 이격되어 구비될 수 있다.
이때, 제1밀폐홈 중 어느 하나(620a)는 상기 제1밀폐돌출부(1235a)를 관통하도록 형성되고, 제1밀폐홈 중 다른 하나(620b)는 상기 제1밀폐돌출부(1235b)를 관통하도록 형성될 수 있다.
한편, 제1커버하우징(120)의 내부로 유입된 공기는 전도(conduction) 또는 대류(convection)에 의해 제1커버하우징(120)을 냉각시킬 수 있다.
따라서, 하우징 냉각부(600)는, 열교환 효율을 증가시키기 위해 제1외관프레임(121) 및 제1밀폐프레임(123) 중 적어도 어느 하나에서 제1냉각공간(C1)을 향해 돌출되어 연장되는 제1방열핀(630)을 포함할 수 있다.
제1방열핀(630)이 제1외관프레임(121)에 구비되는 경우, 제1방열핀(630)은 제1외관프레임(121)의 내면에서 제1밀폐프레임(123)을 향해 돌출 형성되고 연장될 수 있다.
제1방열핀(630)이 제1밀폐프레임(123)에 구비되는 경우, 제1방열핀(630)은 제1밀폐프레임(123)의 내면에서 제1외관프레임(121)을 향해 돌출 형성되어 연장될 수 있다.
제1방열핀(630)은 복수 개로 구비될 수 있다. 제1방열핀(630)이 복수 개로 구비되는 경우, 제1방열핀(630) 중 일부는 제1냉각공간(C1)으로 돌출되어 제1방향으로 연장(631)될 수 있고, 제1방열핀(630) 중 나머지는 제1냉각공간(C1)으로 돌출되어 상기 제1방향과 다른 방향인 제2방향으로 연장(633)될 수 있다.
도 5를 참조하여 공기의 냉각유로(P1)를 설명하면, 공기는 제1외관프레임(121), 제1냉각공간(C1) 및 제1밀폐프레임(123)을 순차적으로 거쳐 제1커버하우징(120)을 냉각시킬 수 있다.
다만, 전술한 바와 다르게 공기는 제1밀폐프레임(123), 제1냉각공간(C1) 및 제1외관프레임(121)을 순차적으로 거쳐 제1커버하우징(120)을 냉각시킬 수 있다. 이는 기류를 형성시키는 구성(예컨대, 팬)의 위치에 따라 변경될 수 있다.
또한, 제1외관홀(610)과 제1밀폐홀(620)이 회전축(300)의 회전 방향 또는 회전축(300)의 직경 방향으로 이격됨에 따라, 제1커버하우징(120)의 내부로 유입된 공기는 제1냉각공간(C1)에서 절곡되어 유동할 수 있다.
달리 말해, 제1외관홀(610)과 제1밀폐홀(620)의 위치에 따라 제1커버하우징(120)의 외부에서 제1커버하우징(120)의 내부로 유입된 공기가 다시 제1커버하우징(120)의 외부로 유동하는 동안 형성하는 유로는 보다 길게 형성될 수 있다.
이하, 도 6 내지 도 7을 참조하여 제2커버하우징(130)을 냉각시키는 하우징 냉각부(600)를 설명한다.
도 6은 제2밀폐프레임(131) 및 제2외관프레임(133)이 도시된 도면이며, 도 7은 제2커버하우징(130)을 냉각시키는 공기의 유로가 도시된 도면이다.
제2커버하우징(130)은 내부에 제2수용공간(C2)이 형성될 수 있다. 이를 위해, 제2커버하우징(130)은 수용공간(S)과 마주보게 위치하는 제2밀폐프레임(131) 및 제2밀폐프레임(131)에서 수용공간(S)과 멀어지는 방향으로 결합되는 제2외관프레임(133)을 포함할 수 있다.
제2밀폐프레임(131)은 회전축(300)이 관통하는 제2밀폐바디(1311) 및 제2밀폐바디(1311)의 외주면에서 돌출되어 제2밀폐프레임(131) 또는 로터하우징(110) 또는 제1커버프레임(120) 중 적어도 하나와 결합되는 제2밀폐체결부(1313)을 포함할 수 있다.
제2밀폐체결부(1313)는 제2밀폐프레임(131)의 외주면에서 회전축(300)의 직경방향 또는 회전축(300)과 멀어지는 방향으로 돌출되어 형성될 수 있다.
제2밀폐체결부(1313)와 제2밀폐바디(1311)는 서로 다른 두께를 형성할 수 있다. 보다 바람직하게는, 제2밀폐체결부(1313)의 두께는 제2밀폐바디(1311)의 두께보다 크게 형성될 수 있다.
여기에서 두께는 회전축(300)의 길이방향으로 형성되는 소정의 길이를 의미할 수 있다.
따라서, 제2커퍼하우징(130)의 내부에는 제2밀폐체결부(1313)에서 회전축(300) 또는 제2축수부(135)를 향하는 방향으로 형성되는 공간인 제2냉각공간(C2)을 형성시킬 수 있다.
제2외관프레임(133)은 회전축(300)이 관통하는 제2외관바디(1331) 및 제2외관바디(1331)의 외주면에서 돌출되어 상기 제2밀폐프레임(131) 또는 로터하우징(110) 또는 제1커버하우징(120) 중 적어도 하나와 결합되는 제2외관체결부(1333)를 포함할 수 있다.
즉, 제2외관체결부(1333)는 제2밀폐체결부(1313)와 접촉되도록 형성되어 제2밀폐체결부(1313)와 결합될 수 있다.
제2냉각공간(C2)의 부피를 보다 확장시키기 위해, 제2외관바디(1331)의 두께와 제2외관체결부(1333)의 두께는 서로 다르게 형성될 수 있다.
바람직하게는, 제2외관바디(1331)의 두께는 제2외관체결부(1333)의 두께보다 작게 형성될 수 있다.
이로써, 제2외관체결부(1333)와 제2밀폐체결부(1313)가 결합되는 경우, 제2커버하우징(130)의 내측에 구비되는 제2냉각공간(C2)의 부피가 증가할 수 있다.
하우징 냉각부(600)는 제2커버하우징(130)의 내부에 위치한 제2냉각공간(C2)과 제2커버하우징(130)의 외부를 연통시키기 위한 홀을 포함할 수 있다.
즉, 하우징 냉각부(600)는 제2밀폐프레임(131)을 관통하도록 형성되는 제2밀폐홀(640) 및 제2외관프레임(133)을 관통하도록 형성되는 제2외관홀(650)을 포함할 수 있다.
따라서, 제2커버하우징(130)의 외부에 위치한 공기는 제2냉각공간(C2)으로 유동할 수 있고, 제2냉각공간(C2)에 위치한 공기는 제2커버하우징(130)의 외부로 유동할 수 있다.
다만, 제2냉각공간(C2)을 유동하는 공기의 유로를 증가시키기 위해, 제2밀폐홀(640)과 제2외관홀(650)은 회전축(300)의 반경 방향 또는 회전축(300)의 회전 방향으로 이격되어 배치될 수 있다.
달리 말해, 제2밀폐홀(640)과 제2외관홀(650) 중 어느 하나는 제2커버하우징(130)의 내측에 형성될 수 있고, 제2밀폐홀(640)과 제2외관홀(650) 중 나머지 하나는 제2커버하우징(130)의 외측에 형성될 수 있다.
여기에서, 제2커버하우징(130)의 내측은 회전축(300)이나 제2축수부(135)에 가까운 위치를 의미하는 것으로, 제2커버하우징(130)의 외측보다 회전축(300)이나 제2축수부(135)에 상대적으로 가까운 것을 의미할 수 있다.
일 예로, 제2밀폐홀(640)이 제2커버하우징(130)의 외측에 형성되고, 제2외관홀(650)이 제2커버하우징(130)의 내측에 형성될 수 있다.
달리 말하면, 제2밀폐홀(640)은 제2외관홀(650)보다 회전축(300) 또는 제2축수부(135)에 먼 위치에 구비될 수 있다. 또는, 제2밀폐홀(640)은 제2외관홀(650)에서 회전축(300)의 직경 방향 또는 회전축(300)의 회전 방향으로 이격되어 구비될 수 있다.
제2밀폐프레임(131)은 제2밀폐프레임(131)의 외주면에서 회전축(300) 또는 제2축수부(135)와 멀어지는 방향으로 돌출 형성되는 제2밀폐돌출부(1315)를 포함할 수 있다.
제2밀폐홀(640)은 제2밀폐돌출부(1315)를 회전축(300)의 길이 방향으로 관통하여 형성되어, 제2커버하우징(130)와 제2냉각공간(C2)을 연통시킬 수 있다.
다만, 전술한 바와 같이 제2밀폐체결부(1313)는 제2밀폐바디(1311)보다 두꺼운 두께를 형성하므로, 제2밀폐홀(640)을 통해 유동한 공기가 제2냉각공간(C2)과 연통되기 어려운 경우가 발생할 수 있다.
이를 위해, 하우징 냉각부(600)는 제2밀폐체결부(1313) 또는 제2밀폐바디(1311)의 외주면을 회전축(300)의 반경 방향 또는 회전축(300)과 멀어지는 방향으로 관통 형성하여 제2밀폐홀(640)과 제2냉각공간(C2)을 연통시키는 제2가이드부(641)를 포함할 수 있다.
제2가이드부(640)는 제2밀폐돌출부(1315)와 대응되는 위치에서 회전축(300)의 반경 방향 또는 회전축(300)과 멀어지는 방향으로 관통 형성될 수 있다.
이로써, 제2커버하우징(130)의 외부에 위치한 공기는 제2밀폐홀(640)을 통해 제2냉각공간(C2)으로 유동할 수 있고, 제2냉각공간(C2)에 위치한 공기는 제2밀폐홀(640)을 통해 제2커버하우징(130)의 외부로 유동할 수 있다.
제2외관홀(650)은 제2밀폐홀(640)보다 내측에 구비될 수 있다. 달리 말해, 제2외관홀(650)이 회전축(300) 또는 제2축수부(135)와 이격된 거리는 제2밀폐홀(640)이 회전축(300) 또는 제2축수부(135)와 이격된 거리보다 작게 형성될 수 있다.
일 예로, 제2외관홀(650)은 제2외관바디(1331)를 회전축(300)의 길이 방향으로 관통하여 형성될 수 있다.
한편, 제2외관프레임(133)은 제2외관바디(1331)의 외주면에서 돌출 형성되어 제2밀폐돌출부(1315)와 접촉되도록 형성되는 제2외관돌출부(1335)를 포함할 수 있다.
하우징 냉각부(600)는 제2외관바디(1331)의 외주면 또는 제2외관체결부(1333)를 회전축(300)의 반경 방향 또는 회전축(300)과 멀어지는 방향으로 관통하여 제2외관돌출부(1335)와 제2냉각공간(C2)을 연통시키는 제3가이드부(651)을 포함할 수 있다.
달리 말하면, 제3가이드부(651)는 제2외관돌출부(1335)가 돌출된 위치에서 제2외관바디(1331)의 외주면 또는 제2외관체결부(1333)를 관통하여 형성될 수 있다.
이로써, 제3가이드부(651)는 제2가이드부(641)와 접촉되도록 형성될 수 있다.
한편, 하우징 냉각부(600)는 제2밀폐프레임(131) 또는 제2외관프레임(133) 중 적어도 하나에서 제2냉각공간(C2)을 향해 돌출되어 연장되는 제2방열핀(660)을 포함할 수 있다.
제2방열핀(660)은 제2밀폐프레임(131) 또는 제2외관프레임(133) 중 적어도 어느 하나에서 돌출되어 제2냉각공간(C2)과 제2커버하우징(130)이 접촉되는 부분을 증가시킬 수 있다.
공기가 제2커버하우징(130)의 외부와 제2커버하우징(130)의 내부(제2냉각공간)을 유동하면서, 전도 또는 대류에 의해 제2커버하우징(130)을 냉각시킬 수 있음을 고려할 때, 제2방열핀(660)은 전도 또는 대류에 의한 열교환 효율을 증가시킬 수 있다.
제2방열핀(660)은 복수 개로 구비될 수 있다. 제2방열핀(660)이 복수 개로 구비되는 경우, 보다 넓은 면적에서 제2커버하우징(130)과 제2냉각공간(C2) 간의 열교환을 수행할 수 있다.
또한, 제2방열핀(660)이 복수 개로 구비되는 경우, 제2방열핀(660)은 제2냉각공간(C2)을 향해 돌출되어 제1방향으로 연장되는 제2방열핀(661) 및 제2냉각공간(C2)을 향해 돌출되어 제2방향으로 연장되는 제2방열핀(663)을 포함할 수 있다.
상기 제1방향과 상기 제2방향은 서로 다르게 구비될 수 있다.
이로써, 제2커버하우징(130)의 외부와 제2냉각공간(C2)을 유동하는 공기는 보다 효율적으로 제2커버하우징(130)을 냉각시킬 수 있다.
한편, 제2밀폐홀(640)과 제2외관홀(650)은 각각 복수 개로 구비될 수 있다.
제2밀폐홀(640)이 복수 개로 구비되는 경우, 제2밀폐홀(640) 중 어느 하나(640a)는 회전축(300) 또는 제2축수부(135)에서 일측으로 이격되어 구비될 수 있고, 제2밀폐홀 중 다른 하나(640b)는 회전축(300) 또는 제2축수부(135)에서 상기 제2밀폐홀(640a)과 멀어지는 방향으로 이격되어 구비될 수 있다.
제2외관홀(650)이 복수개로 구비되는 경우, 제2외관홀(650) 중 어느 하나(650a)는 회전축(300) 또는 제2축수부(135)에서 일측으로 이격되어 구비될 수 있고, 제2외관홀(650) 중 다른 하나(650b)는 회전축(300) 또는 제2축수부(135)에서 상기 제2외관홀(650a)과 멀어지는 방향으로 이격되어 구비될 수 있다.
이로써, 제2커버하우징(130)의 외부에 위치한 공기는 보다 많은 유량으로 제2냉각공간(C2)으로 유동 가능하며, 제2냉각공간(C2)에 위치한 공기는 보다 많은 유량으로 제2커버하우징(130)의 외부로 유동할 수 있다.
도 7을 참조하면, 제2커버하우징(130)을 유동하는 공기의 냉각 유로(P2)가 도시된다.
공기는 제2밀폐프레임(131)에 구비된 제2밀폐홀(640)을 통해 제2냉각공간(C2)으로 유동하고, 제2냉각공간(C2)으로 유입된 공기는 제2냉각공간(C2)에서 절곡되어 유동 한 후, 제2외관프레임(133)에 구비된 제2외관홀(650)을 통해 제2커버하우징(130)의 외부로 유동할 수 있다.
전술한 바와 같이, 제2밀폐홀(640)과 제2외관홀(650)이 각각 제2커버하우징(130)의 내측과 외측에 위치함에 따라, 공기는 제2냉각공간(C2)에서 절곡되어 유동할 수 있다.
한편, 도 7에 도시된 공기의 냉각 유로(P2)는 제2밀페프레임(131), 제2냉각공간(C2) 및 제2외관프레임(133)을 순차적으로 유동하는 모습이 도시되나 이는 공기의 기류를 형성하는 구성(예컨대, 팬)에 의해 다르게 형성될 수 있다.
이로써, 공기는 제1커버하우징(120)의 내부와 외부를 유동하여 제1커버하우징(120)을 냉각시킬 수 있다. 또한, 공기는 제2커버하우징(130)의 내부와 외부를 유동하여 제2커버하우징(130)을 냉각시킬 수 있다.
다만, 제1커버하우징(120)과 제2커버하우징(130)을 유동하는 공기의 기류를 형성하기 위해서 전술한 바와 같이 별도의 구성(예컨대, 팬)이 요구될 수 있다.
따라서, 기류를 형성하기 위한 구성은 제1커버하우징(120)에도 인접하게 구비되어야 하며, 제2커버하우징(130)에도 인접하게 구비되어야 한다.
특히, 제1커버하우징(120)과 제2커버하우징(130) 사이에는 로터하우징(110)이 위치함을 고려할 때, 제1커버하우징(120)에서 형성되는 기류와 제2커버하우징(130)에서 형성되는 기류의 방향은 동일하거나 유사하게 형성됨이 바람직하다.
달리 말해, 바람직하게 제1냉각공간(C1)과 제2냉각공간(C2)은 서로 연통될 수 있다.
도 8은 로터하우징(110)을 통해 제1냉각공간(C1)과 제2냉각공간(C2)을 연통시키는 모습이 도시된 도면이다.
도 8을 참조하면, 하우징 냉각부(600)는 제1냉각공간(C1)과 제2냉각공간(C2)을 연통시키도록 로터하우징(110)을 관통하여 형성되는 로터홀(670)을 포함할 수 있다.
이를 위해, 로터하우징(110)은 로터하우징(110)의 외주면에서 돌출 형성되어 제1커버하우징(120)과 제2커버하우징(130)과 접촉되는 로터하우징돌출부(117)를 포함할 수 있다.
로터하우징돌출부(117)는 로터하우징체결부(119)와 다르게 별도의 체결부재가 결합되지 않을 수 있다.
로터홀(670)은 로터하우징돌출부(117)를 회전축(300)의 길이 방향으로 관통하여 형성될 수 있다.
또한, 로터하우징돌출부(117)는 제1밀폐돌출부(1235) 및 제2밀폐돌출부(1315)와 접촉되도록 형성될 수 있다.
따라서, 로터홀(670)은 제1밀폐홈(620) 및 제2밀폐홈(640)과 접촉하도록 구비될 수 있다. 이로써, 로터홀(670)은 제1밀폐홈(620) 및 제2밀폐홈(640)과 연통되도록 구비될 수 있고, 로터홀(670)은 제1냉각공간(C1)과 제2냉각공간(C2)을 연통시킬 수 있다.
기류를 형성하는 구성(예컨대, 팬)이 제1커버하우징(120)에서 제2커버하우징(130)을 향하는 공기의 흐름을 형성시키는 경우, 공기는 제1커버하우징(120)을 거치면서 제1냉각공간(C1)을 유동한 후, 로터하우징(110)으로 유동(P1)할 수 있다. 로터하우징(110)에 형성된 로터홀(670)을 유동한 공기는 제2커버하우징(130)을 거치면서 제2냉각공간(C2)을 유동(P2)할 수 있다.
이로써, 공기는 제1커버하우징(120), 로터하우징(110) 및 제2커버하우징(130)을 순차적으로 냉각시켜 하우징(100)을 냉각시킬 수 있다. 공기의 냉각유로(P)는 로터(200)에 의해 연료 등이 연소되는 수용공간(S)와 분리된 유로를 형성할 수 있다.
달리 말해, 하우징 냉각부(600)에 의해 형성되는 공기의 냉각유로(P)는 수용공간(S)과 이격되도록 형성될 수 있다.
한편, 전술한 내용은 하우징 냉각부(600)에 관한 것으로, 로터(200)를 직접적으로 냉각시키기 보다는 로터(200)를 둘러싸도록 구비되는 하우징(100)을 냉각시키는 것에 중점을 뒀다.
이하에서는 로터(200)를 냉각시키기 위한 로터 냉각부(700)를 설명한다.
로터(200)는 로터하우징(110)의 내주면에서 편심 회전하도록 구비된다. 따라서, 로터(200)가 로터하우징(110)의 내부(수용공간)에서 운동하는 경로는 매 회전별로 동일하게 형성된다. (예컨대, 편심부기어와 로터베어링기어에 의해)
도 9는 로터(200)가 일 회전함에 따라 운동하는 궤적이 도시된 도면이다. 도 9를 참조하면, 로터(200)는 수용공간(S) 내에서 회전하되, 로터하우징의 내주면(110a)과 접촉되도록 구비된다.
로터(200)의 외면이 일 회전에 따라 형성하는 궤적(T)은 로터(200)의 회전에도 불구하고 중첩되는 영역을 형성하는 중첩부(R)를 포함할 수 있다.
로터 냉각부(700)가 로터(200)를 냉각시키기 위해 형성하는 공기의 유로는 로터(200)의 외면과 로터하우징의 내주면(110a) 사이의 공간을 지나도록 형성되지 않는 것이 바람직하다.
달리 말해, 로터 냉각부(700)에 의해 형성되는 유로는 로터(200)의 내부를 유동하도록 형성됨이 바람직하다. 로터하우징의 내주면(110a)과 로터(200)의 외면 사이에 형성되는 공간에는 전술한 4행정이 연속적으로 진행되기 때문이다.
따라서, 로터 냉각부(700)에 의해 형성되는 공기의 유로는 상기 중첩부(R) 내를 유동하도록 구비될 수 있다.
이하, 도 4 내지 7 그리고 도 10을 참조하여 로터 냉각부(700)를 보다 상세하게 설명한다.
도 10은 로터 냉각부(700)에 의해 형성되는 공기의 유로(P3)가 도시된 도면이다.
로터 냉각부(700)는 제1커버하우징(120)을 회전축(300)의 길이 방향으로 관통하여 형성되는 제1바디홀(710) 및 제2커버하우징(130)을 회전축(300)의 길이 방향으로 관통하여 형성되는 제2바디홀(720)을 포함할 수 있다.
제1바디홀(710)은 제1외관바디(1211) 및 제1밀폐바디(1231)를 관통하여 형성되어 제1커버하우징(120)의 외부와 수용공간(S)을 연통시킬 수 있다.
제1바디홀(710)은 복수 개로 구비 될 수 있다. 제1바디홀(710)이 복수 개로 구비되는 경우, 제1바디홀(710) 중 어느 하나(711)는 제1축수부(125)에서 회전축(300)의 반경 방향으로 연장되어 형성될 수 있다. 또한, 제1바디홀(710) 중 다른 하나(713)는 제1축수부(125)에서 상기 제1바디홀(711)과 멀어지는 방향으로 연장되어 형성될 수 있다.
한편, 로터 냉각부(700)는 로터 냉각부(700)에 의해 형성되는 공기의 유로(P3)가 하우징 냉각부(600)에 의해 형성되는 공기의 유로(P1, P2)가 서로 간섭되지 않도록, 제1바디홀(710)의 적어도 일부를 둘러싸게 구비되는 제1바디홀프레임(730)을 포함할 수 있다.
제1바디홀프레임(730)은 제1외관프레임(121) 및 제1밀폐프레임(123)에서 제1냉각공간(C1)을 향해 돌출되어 제1냉각공간(C1)과 분리된 공간을 형성할 수 있다.
달리 말해, 제1바디홀프레임(730)은 제1바디홀(710)의 적어도 일부를 둘러싸게 구비되어 제1외관프레임(121)과 제1밀폐프레임(123)을 연결하도록 구비될 수 있다.
이로써, 제1냉각공간(C1)을 유동하는 공기의 유로와 제1바디홀(710)을 유동하는 공기의 유로는 서로 간섭되지 않을 수 있다. 또한, 제1커버하우징(120)의 외부에 위치한 공기는 수용공간(S)과 연통될 수 있다.
제2바디홀(720)은 제2밀폐바디(1311) 및 제2외관바디(1331)을 관통하도록 형성되어 제2커버하우징(130)의 외부와 수용공간(S)을 연통시킬 수 있다.
제2바디홀(720)은 복수 개로 구비될 수 있다. 제2바디홀(720)이 복수 개로 구비되는 경우, 제2바디홀(720) 중 어느 하나(721)는 제2축수부(135)와 이격되도록 구비될 수 있고, 제2바디홀(720) 중 다른 하나(723)는 제2축수부(135)에서 상기 제2바디홀(721)과 멀어지는 방향으로 이격되어 구비될 수 있다.
한편, 로터 냉각부(700)는 로터 냉각부(700)에 의해 형성되는 공기의 유로(P3)가 하우징 냉각부(600)에 의해 형성되는 공기의 유로(P1, P2)와 간섭되지 않도록, 제2바디홀(720)의 적어도 일부를 둘러싸게 구비되는 제2바디홀프레임(740)을 포함할 수 있다.
제2바디홀프레임(740)은 제2밀폐프레임(131) 및 제2외관프레임(133)을 연결하도록 제2밀폐프레임(131)에서 제2외관프레임(133)으로 연장되거나, 제2외관프레임(133)에서 제2밀폐프레임(131)으로 연장될 수 있다.
달리 말하면, 제2바디홀프레임(740)은 제2냉각공간(C2)과 제2바디홀(720)이 연통되지 않도록 제2밀폐프레임(131)과 제2외관프레임(133) 사이에서 소정의 두께를 형성할 수 있다.
여기에서 두께란 회전축(300)의 길이 방향으로 형성되는 소정의 길이를 의미할 수 있다.
이로써, 제2냉각공간(C2)을 유동하는 공기의 유로와 제2바디홀(720)을 유동하는 공기의 유로는 서로 간섭되지 않을 수 있다. 또한, 제2커버하우징(130)의 외부에 위치한 공기는 수용공간(S)과 연통될 수 있다.
한편, 제1바디홀(710) 및 제2바디홀(720)은 도 9에서 전술한 중첩부(R)보다 작게 형성됨이 바람직하다. 달리 말해, 제1바디홀(710) 및 제2바디홀(720)은 로터리 엔진(10)의 외부에 위치한 공기를 중첩부(R)의 내부로 안내하도록 제1커버하우징(120)과 제2커버하우징(130)을 관통하도록 형성될 수 있다.
제1커버하우징(120), 로터하우징(110) 및 제2커버하우징(130)을 순차적으로 유동하도록 기류가 형성되는 경우, 제1커버하우징(120)의 외부에 위치한 공기는 제1바디홀(710)을 거쳐 수용공간(S)으로 안내될 수 있다. 수용공간(S)에서 로터(200)를 냉각한 공기는 제2바디홀(720)을 거쳐 제2커버하우징(130)의 외부로 배출될 수 있다.
이로써, 로터 냉각부(700)는 하우징 냉각부(600)에 의해 형성되는 공기의 냉각유로(P1, P2)와 간섭되지 않는 공기의 유로(P3)를 형성할 수 있다.
따라서, 로터리 엔진(10)은 하우징 냉각부(600)와 로터 냉각부(700) 중 적어도 어느 하나를 포함하여 냉각될 수 있다. 바람직하게는, 로터리 엔진(10)은 하우징 냉각부(600) 및 로터 냉각부(700) 모두를 포함할 수 있다.
더하여, 로터리 엔진(10)의 주변 공기를 이용하여 로터(200) 및 하우징(100)을 냉각할 수 있으므로, 냉각수 또는 오일 등을 순환시킬 수 있는 별도의 구성이 요구되지 않는다.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (17)

  1. 내부에 연료가 연소되는 수용공간을 형성하는 로터하우징;
    상기 로터하우징에 결합되어 상기 수용공간을 밀폐시키는 커버하우징;
    상기 커버하우징과 상기 수용공간을 관통하도록 형성되는 회전축; 및
    상기 회전축과 결합되어 상기 수용공간에 회전 가능하게 구비되며, 상기 연료를 이동시키거나 압축하는 로터;를 포함하며,
    상기 커버하우징은,
    상기 수용공간과 마주보는 밀폐프레임; 및
    상기 밀폐프레임에서 상기 수용공간과 멀어지는 방향으로 결합되는 외관프레임;을 포함하여 내부에 냉각공간을 형성하며,
    상기 밀폐프레임은 상기 밀폐프레임을 관통하여 형성되는 밀폐홀을 포함하고 상기 외관프레임은 상기 외관프레임을 관통하여 형성되는 외관홀을 포함하여, 상기 냉각공간과 상기 커버하우징의 외부를 연통시키는 것을 특징으로 하는 로터리 엔진.
  2. 제1항에 있어서,
    상기 커버하우징은,
    상기 로터하우징의 일측에 결합되는 제1커버하우징; 및
    상기 제1커버하우징과 이격되도록 상기 로터하우징의 타측에 결합되는 제2커버하우징;을 포함하는 것을 특징으로 하는 로터리 엔진.
  3. 제2항에 있어서,
    상기 제1커버하우징은,
    상기 수용공간과 마주보도록 구비되는 제1밀폐프레임; 및
    상기 제1밀폐프레임에서 상기 수용공간과 멀어지는 방향으로 결합되는 제1외관프레임;을 포함하여 내부에 제1냉각공간을 형성하는 것을 특징으로 하는 로터리 엔진.
  4. 제3항에 있어서,
    상기 제1외관프레임은,
    상기 회전축이 관통하는 제1외관바디;
    상기 제1외관바디의 외주면에서 돌출 형성되어 상기 제1밀폐프레임과 결합되는 제1외관체결부; 및
    상기 제1외관바디를 관통하도록 형성되어 상기 제1커버하우징의 외부와 상기 제1냉각공간을 연통시키는 제1외관홀;을 포함하는 것을 특징으로 하는 로터리 엔진.
  5. 제4항에 있어서,
    상기 제1밀폐프레임은,
    상기 회전축이 관통하는 제1밀폐바디;
    상기 제1밀폐바디의 외주면에서 돌출 형성되어 상기 제1외관프레임과 결합되는 제1밀폐돌출부;
    상기 제1밀폐바디의 외주면을 관통하여 상기 제1밀폐돌출부와 상기 제1냉각공간을 연통시키는 제1가이드부; 및
    상기 제1밀폐돌출부를 관통하여 형성되어 상기 제1냉각공간과 상기 제1커버하우징의 외부를 연통시키는 제1밀폐홀;을 포함하는 것을 특징으로 하는 로터리 엔진.
  6. 제5항에 있어서,
    상기 제1커버하우징은 상기 제1밀폐바디에서 상기 제1외관바디를 향해 돌출되어 연장되는 제1방열핀을 더 포함하는 것을 특징으로 하는 로터리 엔진.
  7. 제6항에 있어서,
    상기 제1방열핀은 복수 개로 구비되며,
    상기 제1방열핀 중 일부가 연장되는 방향은 상기 제1방열핀 중 나머지 일부가 연장되는 방향과 다른 것을 특징으로 하는 로터리 엔진.
  8. 제5항에 있어서,
    상기 제2커버하우징은,
    상기 수용공간과 마주보도록 구비되는 제2밀폐프레임; 및
    상기 제2밀폐프레임에서 상기 수용공간과 멀어지는 방향으로 결합되는 제2외관프레임;을 포함하여 내부에 제2냉각공간을 형성하는 것을 특징으로 하는 로터리 엔진.
  9. 제8항에 있어서,
    상기 제2밀폐프레임은,
    상기 회전축이 관통하는 제2밀폐바디;
    상기 제2밀폐바디의 외주면에서 돌출 형성되는 제2밀폐돌출부; 및
    상기 제2밀폐돌출부를 관통하여 형성되는 제2밀폐홀;을 포함하여, 상기 제2냉각공간과 상기 제2커버하우징을 연통시키는 것을 특징으로 하는 로터리 엔진.
  10. 제9항에 있어서,
    상기 제2외관프레임은,
    상기 회전축이 관통하는 제2외관바디;
    상기 제2외관바디의 외주면에서 돌출 형성되어 상기 제2밀폐프레임과 결합되는 제2외관체결부; 및
    상기 제2외관바디를 관통하여 형성되는 제2외관홀;을 포함하여, 상기 제2냉각공간과 상기 제2커버하우징의 외부를 연통시키는 것을 특징으로 하는 로터리 엔진.
  11. 제10항에 있어서,
    상기 제2커버하우징은 상기 제2외관바디에서 상기 제2밀폐바디를 향해 돌출되어 연장되는 제2방열핀을 더 포함하는 것을 특징으로 하는 로터리 엔진.
  12. 제11항에 있어서,
    상기 제2방열핀은 복수 개로 구비되며,
    상기 제2방열핀 중 일부가 연장되는 방향은 상기 제2방열핀 중 나머지 일부가 연장되는 방향과 다른 것을 특징으로 하는 로터리 엔진.
  13. 제10항에 있어서,
    상기 로터하우징은,
    상기 회전축이 관통하는 로터바디;
    상기 로터바디의 외주면에서 돌출되어 상기 제1밀폐돌출부 및 상기 제2밀폐돌출부와 접촉하도록 구비되는 로터돌출부; 및
    상기 로터돌출부를 관통하도록 형성되어 상기 제1냉각공간과 상기 제2냉각공간을 연통시키는 로터홀;을 포함하는 것을 특징으로 하는 로터리 엔진.
  14. 제13항에 있어서,
    상기 커버하우징은,
    상기 회전축을 회전지지하는 축수부; 및
    상기 커버하우징을 상기 회전축의 길이 방향으로 관통하여 형성되되, 상기 축수부의 적어도 일부를 둘러싸도록 구비되는 바디홀;을 포함하여, 상기 수용공간을 상기 로터리 엔진의 외부와 연통시키는 것을 특징으로 하는 로터리 엔진.
  15. 제14항에 있어서,
    상기 바디홀은,
    상기 제1커버하우징을 관통하여 형성되는 제1바디홀; 및
    상기 제2커버하우징을 관통하여 형성되는 제2바디홀;을 포함하는 것을 특징으로 하는 로터리 엔진.
  16. 제15항에 있어서,
    상기 축수부는,
    상기 제1커버하우징에 구비되는 제1축수부; 및
    상기 제2커버하우징에 구비되는 제2축수부;를 포함하며,
    상기 제1바디홀은 상기 제1축수부에서 상기 회전축과 멀어지는 방향으로 연장되어 형성되는 것을 특징으로 하는 로터리 엔진.
  17. 제16항에 있어서,
    상기 제2바디홀은 상기 제2축수부와 이격되어 구비되는 것을 특징으로 하는 로터리 엔진.
PCT/KR2021/002599 2020-03-27 2021-03-03 로터리 엔진 WO2021194113A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200037276A KR102278846B1 (ko) 2020-03-27 2020-03-27 로터리 엔진
KR10-2020-0037276 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021194113A1 true WO2021194113A1 (ko) 2021-09-30

Family

ID=77126027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002599 WO2021194113A1 (ko) 2020-03-27 2021-03-03 로터리 엔진

Country Status (2)

Country Link
KR (1) KR102278846B1 (ko)
WO (1) WO2021194113A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102511792B1 (ko) 2022-05-13 2023-03-17 김병우 사인 로터리 기관
KR102563972B1 (ko) 2023-03-14 2023-08-03 김병우 고효율 사인 로터리 기관
CN117469023A (zh) * 2023-12-28 2024-01-30 陕西众科源泰动力科技有限公司 一种带涂层的三角转子活塞及转子发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289714A (en) * 1976-01-16 1977-07-27 Outboard Marine Corp Rotary engine cooled by suction air
JP2003524722A (ja) * 1998-12-17 2003-08-19 モラー・インターナショナル・インコーポレーテッド 給気冷却および潤滑が強化されたロータリ・エンジン
KR20150108852A (ko) * 2013-01-25 2015-09-30 리퀴드피스톤 인크. 공랭식 로터리 엔진
US9243554B2 (en) * 2013-02-20 2016-01-26 Ceramic Rotary Engines, Inc. Rotary engine comprising a ceramic material
US20200040813A1 (en) * 2015-12-18 2020-02-06 Pratt & Whitney Canada Corp. Rotary engine casing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457456A (en) 2008-02-13 2009-08-19 David Walker Garside A Rotary Piston Internal Combustion Engine Cooling Arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289714A (en) * 1976-01-16 1977-07-27 Outboard Marine Corp Rotary engine cooled by suction air
JP2003524722A (ja) * 1998-12-17 2003-08-19 モラー・インターナショナル・インコーポレーテッド 給気冷却および潤滑が強化されたロータリ・エンジン
KR20150108852A (ko) * 2013-01-25 2015-09-30 리퀴드피스톤 인크. 공랭식 로터리 엔진
US9243554B2 (en) * 2013-02-20 2016-01-26 Ceramic Rotary Engines, Inc. Rotary engine comprising a ceramic material
US20200040813A1 (en) * 2015-12-18 2020-02-06 Pratt & Whitney Canada Corp. Rotary engine casing

Also Published As

Publication number Publication date
KR102278846B1 (ko) 2021-07-19

Similar Documents

Publication Publication Date Title
WO2021194113A1 (ko) 로터리 엔진
WO2017111311A1 (ko) 로터리 엔진
WO2016195148A1 (ko) 전동기용 케이스 및 그의 제조방법, 전동기용 케이스를 구비한 전동기
WO2018182117A1 (ko) 모터
WO2018147574A1 (ko) 리니어 압축기
WO2019059650A1 (ko) 냉장고
WO2015163661A1 (ko) 흡입기, 동력발생기, 흡입기와 동력발생기를 이용한 외연기관 시스템, 흡입기와 동력발생기를 이용한 내연기관 시스템, 흡입기와 동력발생기를 이용한 에어 하이브리드 동력발생 시스템.
WO2019117631A1 (ko) 가스 히트펌프 시스템
WO2017026744A1 (en) Compressor
WO2010062131A2 (ko) 열기관
WO2021015439A1 (ko) 스크롤 압축기
WO2020159033A1 (ko) 유체 이송 장치
WO2021015456A1 (ko) 열교환기
WO2021066522A1 (en) Air conditioner
WO2021206238A1 (en) Refrigerator
WO2021206241A1 (en) Refrigerator
WO2022149669A1 (ko) 리니어 압축기
WO2021194117A1 (ko) 로터리 엔진
WO2021215734A1 (ko) 압축기
WO2023054843A1 (ko) 밸브 장치
EP4250973A1 (en) Aerosol-generating device
WO2020017917A1 (ko) 가변 용량 사판식 압축기
WO2021215733A1 (ko) 압축기
WO2023243761A1 (ko) 왕복동식 압축기
WO2022019420A1 (ko) 로터리 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21777006

Country of ref document: EP

Kind code of ref document: A1