WO2021194117A1 - 로터리 엔진 - Google Patents

로터리 엔진 Download PDF

Info

Publication number
WO2021194117A1
WO2021194117A1 PCT/KR2021/002643 KR2021002643W WO2021194117A1 WO 2021194117 A1 WO2021194117 A1 WO 2021194117A1 KR 2021002643 W KR2021002643 W KR 2021002643W WO 2021194117 A1 WO2021194117 A1 WO 2021194117A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
rotor
oil
housing
rotary engine
Prior art date
Application number
PCT/KR2021/002643
Other languages
English (en)
French (fr)
Inventor
유병훈
오휘성
장수호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021194117A1 publication Critical patent/WO2021194117A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/12Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotary engine. More particularly, it relates to a rotary engine including a configuration for reducing the supply amount of oil for lubricating the rotary engine by recycling the oil flowing into the combustion chamber of the rotary engine.
  • a rotary engine refers to an engine that produces power through rotational motion.
  • the rotary engine has a simple structure compared to the piston engine, so it is easy to miniaturize it, and it has the characteristics of producing a high output with a small displacement because of the continuous combustion stroke.
  • vibration and noise are less than that of a piston engine, and it has the advantage of emitting less nitrogen oxide.
  • the recent rotary engine is applied not only to the main engines of automobiles and aircraft due to its advantages, but also to the compressor of the heat pump system due to its simple structure.
  • a rotary engine includes a housing having an epitrochoid curve on an inner surface to produce power, and a rotor rotating within the housing. .
  • each combustion chamber four strokes consisting of intake, compression, combustion and expansion, and exhaust are performed, and accordingly, when the rotor rotates once, the four strokes are performed three times.
  • an intake valve for injecting fuel or air into the combustion chamber and an exhaust valve for discharging fuel or air from the combustion chamber are not separately provided in many cases. Therefore, intake and exhaust can proceed more smoothly, and the efficiency of gas exchange is good.
  • an oil-cooling method that circulates oil to cool it or lubricates a component such as a rotating shaft
  • an air-cooling method that circulates air and cools it through convection or conduction
  • the efficiency of the rotary engine is improved by adding a configuration for recovering the supplied oil to prevent oil from leaking or to reduce the amount of leaked oil.
  • Republic of Korea Publication No. 10-2018-0112604 (hereinafter, abbreviated as prior literature.) has a crankshaft, N lobe accommodating parts disposed to surround the crankshaft, and a combustion chamber communicating with each of the lobe accommodating parts.
  • a housing that rotates eccentrically with the crankshaft and has N-1 lobes each continuously accommodated in the lobe accommodating part; a seating part formed to be recessed from a surface facing the rotor;
  • a housing cover that is received to be fixed to and provided with a guide gear having teeth formed along an inner circumferential surface, the housing cover coupled to the housing so as to cover the lobe receiving portion, a flange portion interposed between the rotor and the housing cover and fixed to the rotor;
  • a lubrication unit having a rotor gear protruding from the flange portion and having a gear portion formed to mesh with the guide gear, and an oil supply passage formed in the housing cover to supply oil to the guide gear and the gear portion, A lubricating flow path for lubricating the rotary engine is formed.
  • the prior art further includes a lubrication recovery passage to recover the supplied oil to prevent the supplied oil from being wasted.
  • the recovered oil is only a part of the oil supplied to lubricate a portion where excessive stress or heat may be concentrated, such as a rotating shaft. That is, it is not taken into account that oil supplied to a structure that is subjected to cooling as well as lubrication, such as a rotor, is burned and lost in the combustion chamber.
  • An embodiment of the present invention aims to reduce the amount of oil supplied to a rotary engine.
  • An embodiment of the present invention aims to recover metering oil supplied from a metering pump of a rotary engine.
  • An embodiment of the present invention aims to recover oil leaking through a side surface of a rotor.
  • An embodiment of the present invention aims to recover the oil supplied to the rotary engine without a separate additional part.
  • an embodiment of the present invention is a rotary engine including a hole for recovery in the wall surface of the rotor housing in order to recover metering oil flowing into the combustion chamber and oil leaking through the oil seal on the side of the rotor.
  • One embodiment of the present invention may provide a rotary engine including an oil recovery hole for recovering oil pushed by the apex seal.
  • An embodiment of the present invention may provide a rotary engine in which the positions of a recovery hole for recovering oil and a resupply hole for re-supplying oil are set between the center of the rotary engine and the end of the intake section.
  • An embodiment of the present invention is provided to be eccentrically rotatable in the receiving space, including a housing that forms a receiving space in which fuel is burned, and a contact portion that maintains a state in close contact with the receiving space, and divides the receiving space. and a rotor for moving or compressing the fuel, an oil supply unit provided in the housing and lubricating the contact unit by supplying oil to the receiving space, and an oil supply unit provided in the housing to recover the oil supplied from the oil supply unit to the contact unit a recycling unit for re-supplying, wherein the recycling unit is provided to communicate with the receiving space and recovers oil pushed out by the contact unit; It is possible to provide a rotary engine including a resupply unit for resupplying oil to the contact unit, and a connection unit connecting the recovery unit and the resupply unit to guide the recovered oil to the resupply unit.
  • the housing may include a rotor housing provided to surround the rotor and a cover housing coupled to the rotor housing to seal the accommodation space, and the recycling unit may be provided on an inner circumferential surface of the rotor housing.
  • the cover housing includes a first cover housing coupled to one side of the rotor housing and a second cover housing coupled to the other side of the rotor housing so as to be spaced apart from the first cover housing, wherein the oil supply unit includes the first cover housing Or it may be provided in at least one of the second cover housing.
  • the rotary engine is formed in the cover housing and is formed in the cover housing and an intake port that communicates the outside of the cover housing with the accommodation space so that the fuel can be introduced into the accommodation space, and the fuel is discharged to the outside of the accommodation space.
  • the accommodating space communicates with the outside of the cover housing to be discharged, and further includes an exhaust port formed to be spaced apart from the intake port, and the recycling unit may be positioned between the intake port and the exhaust port.
  • the recycling unit may be provided to be spaced apart from the exhaust port.
  • the rotary engine may further include a spark plug coupled to the rotor housing to burn the fuel, and the spark plug may be formed at a position facing the intake port and the exhaust port.
  • the recycling unit may be formed at a position facing the spark plug.
  • the rotary engine may be coupled to the rotor to rotate the rotor and further include a rotation shaft formed to pass through the housing, and the recovery unit and the re-supply unit may be positioned to be spaced apart from each other in a rotational direction of the rotation shaft.
  • the recycling unit may be provided in plurality, and the plurality of recycling units may be disposed to be spaced apart from each other in the longitudinal direction of the rotation shaft.
  • Any one of the plurality of recycling parts may be disposed to be spaced apart from the other one of the plurality of recycling parts in the rotational direction of the rotation shaft.
  • the recovery unit and the resupply unit may extend from an inner circumferential surface of the rotor housing in a direction away from the accommodation space, and the connection unit may extend from the recovery unit to the resupply unit.
  • the recycling unit may further include a first bent part that connects the recovery part and the connection part but is formed by bending, and a second bent part that connects the connection part and the re-supply part but is formed by bending.
  • a diameter of the connection part may be larger than a diameter of at least one of the recovery part and the resupply part.
  • the recycling unit may further include a backflow prevention unit provided in the connection unit to prevent oil flowing through the recycling unit from flowing from the re-supply unit to the recovery unit.
  • the backflow prevention part may be provided on an inner circumferential surface of the connection part and may be provided such that a diameter thereof is gradually decreased along an extension direction of the connection part.
  • a portion of the oil supplied to cool the end of the rotor may be recovered.
  • FIG. 1 is an exploded perspective view of a rotary engine
  • FIG. 2 is a view showing a rotor
  • FIG. 3 is a view showing the operation process of the rotary engine
  • FIG. 4 is a view showing a flow path of oil supplied to a rotating shaft in a rotary engine
  • FIG. 5 is a view showing a state in which the oil supplied to the rotating shaft leaks to the outside of the rotor
  • FIG. 6 is an exploded perspective view of a rotary engine provided with a recycling unit according to an embodiment of the present invention
  • FIG. 7 is a view showing a recycling unit according to an embodiment of the present invention.
  • FIG. 8 is a view showing the operating principle of the recycling unit according to an embodiment of the present invention.
  • FIG. 9 is a view showing the position of the recycling unit according to an embodiment of the present invention.
  • FIG. 10 is a view showing a state in which a plurality of recycling units are formed according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a deformed shape of a recycling unit according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a rotary engine
  • FIG. 2 is a view showing a contact portion of the rotor.
  • the rotary engine 10 includes a housing 100 forming an accommodating space, a rotor 200 provided to rotate eccentrically inside the housing 100, and the rotor 200 coupled to the rotor It may include a rotating shaft 300 for rotating 200 .
  • the housing 100 includes a rotor housing 110 having both ends open to form an accommodating space S, a first cover housing 120 coupled to one end of the rotor housing 110 to seal the accommodating space S, and It may include a second cover housing 130 coupled to the other end of the rotor housing 110 to seal the accommodation space (S).
  • the first cover housing 120 and the second cover housing 130 may be respectively coupled to the rotor housing 110 to face each other, and may be provided at a spaced apart position. Accordingly, the first cover housing 120 and the second cover housing 130 may seal the accommodation space S formed by the rotor housing 110 .
  • At least one of the rotor housing 110 or the cover housings 120 and 130 has an intake port for guiding fuel or air to the accommodation space (S) and fuel or air located in the accommodation space (S) in the accommodation space (S).
  • An exhaust port for discharging to the outside of the may be provided. The intake port and the exhaust port will be described later with reference to FIG. 9 .
  • the rotor 200 may be eccentrically rotatably provided inside the rotor housing 110 .
  • the rotor 200 may be located in the receiving space (S).
  • the rotor housing 110 may be provided to surround at least a portion of the rotor 200 .
  • the shape of the rotor 200 may be provided in various ways. As will be described later in detail, since the shape of the rotor 200 determines the shape of the inner circumferential surface of the rotor housing 110 , if the shape of the rotor 200 is changed, the shape of the rotor housing 110 will also be deformed.
  • the rotor 200 includes a rotor body 210 that is eccentrically rotatably provided in the interior or accommodation space S of the rotor housing 110 .
  • the rotor body 210 includes a first side 211 forming one side of the rotor body 210, a second side 213 and a first side 211 forming the other side of the rotor body 210, and A third side surface 215 provided to connect the second side surface 213 may be included.
  • first to third sides 211 , 213 , and 215 may mean at least a portion of the outer surface of the rotor 200 .
  • the rotor 200 may include a combustion chamber 220 recessed in the rotor body 210 to provide a space in which fuel and air can be combusted.
  • the combustion chamber 220 may be recessed from the outer surface of the rotor body 210 toward the inside of the rotor body 210 .
  • the combustion chamber 220 may be provided on the first to third sides (211, 213, 215), respectively. That is, the combustion chamber 220 is a first combustion chamber 221 recessed from the first side 211 , a second combustion chamber 223 recessed from the second side 213 , and a depression formed from the third side 215 . It may include a third combustion chamber 225 that is.
  • the rotor 200 is provided to rotate eccentrically in the receiving space S, and rotates so as to be in close contact with the inner circumferential surface 111 of the rotor housing 110 . Accordingly, the combustion chamber 220 may provide a space in which fuel and air may be combusted while the rotor 200 is in close contact with the inner circumferential surface 111 of the rotor housing 110 .
  • the rotor 200 may divide the accommodation space S into three spaces.
  • the three spaces must be kept airtight from each other.
  • the efficiency of the rotary engine may decrease when air or fuel between the spaces moves from one space to another.
  • the rotor 200 may form a portion in close contact with the inner circumferential surface 111 of the rotor housing 110 to divide the accommodation space S into three spaces.
  • the rotor 200 has a first end 231 formed in contact with a first side 211 and a second side 213, and a second side 213 and a third side 215 formed in contact with each other.
  • the second end 233 and the third side 215 may include a third end 235 formed in contact with the first side 211 .
  • the end 230 may refer to a portion to which the first to third sides 211 , 213 , and 215 are connected.
  • the rotor 200 is a contact part that maintains a state in close contact with the inner circumferential surface 111 of the rotor housing 110 . (240).
  • the contact portion 240 is formed at the end 230 and is coupled to the corner seal 241 and the rotor body 210 connecting the plurality of side surfaces 211 , 213 and 215 to the inner peripheral surface 111 of the rotor housing 110 and It may include an apex seal 243 provided to be in close contact.
  • Apex seal 243 is a contact portion 2433 in contact with the inner peripheral surface 111 of the rotor housing 110 so as to be in close contact, and an elastic portion 2431 coupled to the contact portion 2433 to provide an elastic force to the contact portion 2433. may include.
  • the contact portion 2433 may be coupled from the rotor body 210 to the inner circumferential surface 111 of the rotor housing 110 to be in contact with the inner circumferential surface 111 of the rotor housing 110 . However, in order to maintain the contact portion 2433 in contact with the inner circumferential surface 111 of the rotor housing 110, the contact portion 2433 may require a force provided toward the inner circumferential surface 111 of the rotor housing 110.
  • the elastic part 2431 applies a force in the direction toward the inner circumferential surface 111 of the rotor housing 110 to the contact part 2433 so that the contact part 2433 is always in close contact with the inner circumferential surface 111 of the rotor housing 110 . (2433) may be provided.
  • the elastic part 2431 may be provided inside the rotor 200 rather than the contact part 2433 .
  • the rotor 200 may include a rotor shaft portion 250 that forms an inner circumferential surface of the rotor body 210 and is coupled to the rotation shaft 300 .
  • the rotor 200 is formed on the rotor body 210 and may include a side seal 260 provided to face the outer peripheral surface of the rotor body 210 .
  • the side seal 260 is provided so that one end is in contact with any one of the plurality of ends 231, 233, and 235 and the other end is in contact with the other of the plurality of ends 231, 233, 235 between the ends 230. connection can be made.
  • the rotor shaft part 250 may be provided in a shape corresponding to the rotation shaft 300 , and may be provided in a hollow cylindrical shape or a shape similar thereto. In particular, since the rotor shaft part 250 may be coupled to the eccentric part 310 to be described later, the rotor shaft part 250 may be provided in a shape corresponding to the eccentric part 310 .
  • the rotating shaft 300 is formed to pass through the housing 100 and the rotor 200 , and is coupled to the rotor 200 to rotate the rotor 200 .
  • the rotation shaft 300 may be formed to sequentially pass through the first cover housing 120 , the accommodation space S and the second cover housing 130 .
  • the rotating shaft 300 is an eccentric part 310 coupled to the rotor shaft part 250, and the eccentric part 310 extends in a direction away from the second cover housing 130 to be coupled to the first cover housing 120.
  • the first extension portion 320 and the eccentric portion 310 may include a second extension portion 330 extending in a direction away from the first cover housing 120 and coupled to the second cover housing 130 .
  • the eccentric portion 310 may have a larger diameter than the first extension portion 320 and the second extension portion 330 . That is, the eccentric part 310 connects the first extension part 320 and the second extension part 330, and the first extension part 320 and the second extension part 330 have the same diameter as the central part ( 311 ) and an extension portion 313 extending from the central portion 311 to a radially outward direction of the central portion 311 to induce eccentricity.
  • the rotor 200 may be coupled to the eccentric portion 310 to rotate eccentrically.
  • the first cover housing 120 may include a first bearing portion 125 through which the first extension portion 320 passes, and the second cover housing 130 includes a second extension portion 330 penetrating through it. It may include a biaxial part 135 .
  • the rotary engine 10 may include an ignition device 400 for exploding or burning fuel flowing inside the accommodation space (S).
  • the ignition device 400 is provided in the housing 100 to pass through the spark plug 420 provided to communicate with the accommodation space S and the housing 100 to provide a space in which the spark plug 420 can be installed. It may include an insertion hole 410 provided.
  • the insertion hole 410 may be provided through at least one of the rotor housing 110 , the first cover housing 120 , and the second cover housing 130 . However, hereinafter, for convenience of description, a case in which the insertion hole 410 is provided in the rotor housing 110 is limited.
  • the insertion hole 410 may pass through the inner circumferential surface 111 and the outer circumferential surface of the rotor housing 110 to provide a space in which the spark plug 420 is installed.
  • the spark plug 420 may be installed in the insertion hole 410 to cause a spark in the accommodation space S. Accordingly, the fuel located in the accommodation space S may be exploded or combusted by the spark plug 420 .
  • a plurality of spark plugs 420 may be provided. As a plurality of spark plugs 420 are provided, a plurality of insertion holes 410 may also be provided.
  • the rotor 200 can be eccentrically rotated by dividing the receiving space S into three spaces inside the housing 100 .
  • each of the three spaces partitioned by the rotor 200 may be kept airtight by the contact portion 240 .
  • a portion of the rotor 200 rotates while always maintaining a state in close contact with the inner peripheral surface 111 of the rotor housing 110 . Accordingly, excessive heat may be generated in the rotor 200 , and the excessive heat may reduce reliability of the rotor 200 .
  • the rotary engine 10 lubricates the rotor 200 by supplying oil to the rotor 200 , and may include an oil supply unit 500 capable of cooling the rotor 200 .
  • the oil supply unit 500 may be provided in the housing 100 to supply oil to the rotor 200 .
  • the oil supply unit 500 is provided in the housing and includes a supply passage 570 through which oil moves, a sealing portion 530 provided in contact with the rotor 200 to selectively close the supply passage 570, and a sealing portion. It may include an elastic part 520 for pressing the 530 toward the receiving space (S).
  • the supply passage 570 may be formed through the inside of the housing 100 . Accordingly, it is possible to reduce the volume of the oil supply unit 500 compared to the case where the supply passage 570 is exposed to the outside, and it is possible to prevent the supply passage 570 from being damaged in advance.
  • the oil supply unit 500 not only prevents the elastic unit 520 or the sealing unit 530 from being separated from the housing 100 , but also blocks the supply path 570 from being exposed to the outside to prevent lubricating oil or fuel.
  • the support part 510 , the elastic part 520 , and the sealing part 530 are provided in at least one of the first cover housing 120 and the second cover housing 130 to lubricate the rotor 200 . can be cooled or cooled.
  • the oil supply unit 500 forms a space in which oil is stored, and circulates the oil stored in the oil storage tank 550 and the oil storage tank 550 provided to be spaced apart from the housing 100 to supply the rotary engine 10 .
  • An oil pump 540 may be further included.
  • the oil supply unit 500 is disposed in the oil flow path and the oil heat exchanger 560 for lowering the temperature of the oil flowing through the oil pump 540 to exclude foreign substances mixed with the oil.
  • An oil filter 570 may be included.
  • the above-described support part 510 , the elastic part 520 , and the sealing part 530 may be connected to the oil pump 540 to receive oil from the oil pump 540 .
  • oil may be supplied through a separate pump.
  • 3 is a diagram illustrating four strokes of the rotary engine 10 .
  • an intake stroke in which fuel f is sucked from the intake port is performed.
  • fuel f is transferred to the rotor.
  • a compression stroke is performed in close contact with the rotor housing 110 while moving along the end 230 or the contact portion 240 of the 200 .
  • the fuel compressed in the compression stroke explodes due to a spark generated from the spark plug 420 , and an explosion stroke in which the volume starts to increase explosively is performed.
  • the rotor 200 rotates at a high speed due to the repulsive force of the explosion stroke, and the discharge stroke of discharging the oxide of the fuel f to the exhaust port is performed. Thereafter, the rotor 200 performs the above-described intake stroke again while rotating due to inertia.
  • the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke can be sequentially and continuously performed.
  • the above-described strokes may be sequentially performed in any one of the combustion chambers 220 partitioned by the rotor 200, and in the other one of the combustion chambers 220 partitioned by the rotor 200, any one of the combustion chambers ( 220) and a different administration from the one proceeded.
  • the contact portion 240 should be provided to be in close contact with the inner peripheral surface of the rotor housing 110 in order to maintain airtightness between the receiving spaces S partitioned by the rotor 200 . That is, the contact portion 240 needs to be continuously lubricated or cooled.
  • the rotary engine 10 may lubricate or cool the rotary engine 10 including the above-described oil supply unit 500 .
  • it may be difficult to recover the entire amount of oil supplied to the rotary engine 10 by the oil supply unit 500 .
  • this is because, when the supplied oil flows into the accommodation space S, the oil may also be burned along with the combustion of the fuel.
  • FIG. 4 is a view showing a state in which the rotation shaft 300 is lubricated by the oil supply unit 500
  • FIG. 5 is a view showing a state in which oil leaks into the receiving space (S).
  • the oil pump 550 may suck at least a portion of the oil located in the oil storage tank 550 and guide it to the rotation shaft 300 .
  • Oil flowing by the oil pump 550 may be supplied to the rotation shaft 300 by flowing at least one of the oil heat exchanger 560 and the oil filter 570 . That is, the oil heat exchanger 560 and the oil filter 570 may be positioned before the rotation shaft 300 in the oil flow path formed by the oil pump 540 to exchange oil or remove foreign substances contained in the oil. .
  • the oil that has passed through the oil heat exchanger 560 and the oil filter 570 sequentially passes through the first extension part 320, the eccentric part 310 and the second extension part 330 of the rotation shaft 300 to the rotation shaft 300. It is possible to lubricate a portion in contact with the rotor 200 .
  • the oil that has been sequentially passed through the first extension part 320 , the eccentric part 310 , and the second extension part 330 lubricates the contact portion between the rotating shaft 300 and the rotor 200 , and then the oil storage tank 550 . ) and can be recovered.
  • the oil pump 540 may pull up the oil located in the oil storage tank 550 again and supply it to the rotation shaft 300 .
  • the support part 510 , the elastic part 520 , and the sealing part 530 may receive oil from the oil pump 540 and supply oil to the contact part 240 .
  • the contacts 240 can be cooled or lubricated.
  • the oil lubricating the rotating shaft 300 may leak (L) into the receiving space (S) by the eccentric rotation of the rotor ( 200 ). More specifically, when the rotor 200 rotates, the rotor 200 may generate centrifugal force, and the oil flowing between the rotor 200 and the rotation shaft 300 receives the centrifugal force of the rotor 200 and the rotor 200 . You can move (L) to the outside of
  • oil may flow largely through two oil passages in the accommodation space (S).
  • One oil flow path may be formed by the oil supplied to the accommodation space S to cool or lubricate the contact part 240 , and the other oil flow path includes oil for lubricating the rotating shaft 300 in the rotor 200 .
  • the other oil flow path includes oil for lubricating the rotating shaft 300 in the rotor 200 .
  • the oil flowing through the accommodation space S may be burned and lost together with the fuel during combustion of the fuel. That is, the entire amount of oil supplied to the accommodation space S may not be recovered and some may be lost.
  • oil needs to be continuously supplied to the oil storage tank 550 in which the oil is stored.
  • the continuous supply of oil may increase the maintenance cost of the rotary engine 10 and cause a problem of excessively discharging exhaust gas pollutants.
  • the rotary engine 10 may include a recycling unit 600 capable of reducing the amount of continuously supplied oil by reusing at least a portion of the oil that has flowed into the receiving space (S).
  • a recycling unit 600 capable of reducing the amount of continuously supplied oil by reusing at least a portion of the oil that has flowed into the receiving space (S).
  • FIG. 6 is an exploded perspective view of the rotary engine 10 in which the recycling unit 600 is formed
  • FIG. 7 is a view showing the recycling unit 600 .
  • the recycling unit 600 may be provided by being coupled in a direction away from the receiving space S on the inner circumferential surface 111 of the rotor housing 110 .
  • the recycling unit 600 may be located in the space between the outer peripheral surface and the inner peripheral surface 111 of the rotor housing 110, but extends away from the receiving space S on the inner peripheral surface 111 of the rotor housing 110 in the direction away from the rotor It may be provided at a position farther from the rotation shaft 300 than the outer circumferential surface of the housing 110 .
  • the recycling unit 600 may be provided to form an oil flow path.
  • the recycling unit 600 may be provided in a pipe shape like a hollow cylinder to form an oil flow path.
  • the recycling unit 600 extends in a direction away from the receiving space S or the rotation shaft 300 from the inner circumferential surface 111 of the rotor housing 110 to recover the oil located in the receiving space S 610,
  • a resupply unit 630 and a recovery unit 610 extending from the inner circumferential surface 111 of the rotor housing 110 in a direction away from the receiving space S or the rotation shaft 300 to supply the recovered oil back to the receiving space S.
  • a connection unit 620 for connecting the resupply unit 630 may be included.
  • the recovery unit 610 and the resupply unit 630 may be formed to communicate with the receiving space (S).
  • the recovery unit 610 and the resupply unit 630 are formed on the inner circumferential surface 111 of the rotor housing 110 , and protrude from the inner circumferential surface 111 of the rotor housing 110 toward the receiving space S or the rotation shaft 300 . It is preferable not to This is to prevent interference between the contact unit 240 , the recovery unit 610 , and the resupply unit 630 .
  • the recovery unit 610 may have one end formed on the inner circumferential surface 111 of the rotor housing 110 and may extend from the one end in a direction away from the receiving space S. That is, the other end of the recovery unit 610 may be formed at a position spaced apart from the receiving space S on the inner circumferential surface 111 of the rotor housing 110 in a direction away from it.
  • One end of the resupply unit 630 may be formed on the inner circumferential surface 111 of the rotor housing 110 and extend in a direction away from the receiving space S from the one end. That is, the other end of the resupply unit 630 may be formed at a position spaced apart from the receiving space S on the inner circumferential surface 111 of the rotor housing 110 in a direction away from it.
  • the recovery unit 610 and the resupply unit 630 may be provided to be spaced apart along the rotational direction of the rotation shaft 300 or the rotor 200 . As will be described in detail in FIG. 8 , the oil flowing from the receiving space S to the recovery unit 610 may be pushed by the contact unit 240 to flow. In other words, it is preferable that the recovery unit 610 and the resupply unit 630 are not disposed to be spaced apart from each other in the longitudinal direction of the rotation shaft 300 .
  • the resupply unit 630 may be formed to be spaced apart from the recovery unit 610 in the rotational direction of the rotating shaft 300 or the rotor 200 , and the recovery unit 610 may be configured to rotate the rotating shaft 300 from the resupply unit 630 . Alternatively, it may be formed to be spaced apart from the direction opposite to the rotation direction of the rotor 200 .
  • the extension part 620 may be formed by connecting the recovery part 610 and the resupply part 630 to guide the oil flowing from the accommodation space S to the recovery part 610 to the resupply part 630 .
  • the recycling unit 600 may include a bent part 640 so that the oil flow resistance formed by the extension part 620 can be reduced.
  • the bending part 640 connects the recovery part 610 and the connection part 620 but with a first bent part 641 which is bent, and the connection part 620 and the re-supply part 630 are connected with the second bent part which is bent. part 643 .
  • the first bent part 641 may be provided such that one end contacts the recovery part 610 , and is bent from one end toward the connection part 620 , so that the other end contacts the connection part 620 .
  • the second bent part 643 may be provided such that one end contacts the connection part 620 , and is bent toward the resupply part 630 at one end so that the other end contacts the resupply part 630 .
  • the bent part 640 can reduce the flow resistance of the oil flowing through the recycling part 600 so that the oil in the accommodating space S flows more smoothly through the recycling part 600 .
  • FIG. 8 is a view showing the operation principle of the recycling unit 600.
  • the rotor 200 may divide the accommodation space S formed inside the housing 100 into a plurality of spaces.
  • the airtightness of the plurality of partitioned spaces could be maintained by the contact part 640 , and oil could flow in the accommodation space S by two flow passages.
  • Oil located in the receiving space (S) may come into contact with the rotor 200 and flow toward the outer surface of the rotor 200 .
  • centrifugal force may act on the rotor 200 , and the oil in contact with the rotor 200 may receive centrifugal force from the rotor 200 and move to the outside of the rotor 200 .
  • the oil located in the rotor 200 may gradually flow to the outside of the rotor 200 and flow to the end 230 or the contact portion 240 .
  • the contact portion 240 contacts the inner circumferential surface 111 of the rotor housing 110 , the oil flowing through the end portion 230 may gradually flow to the contact portion 240 .
  • the oil flowing to the contact part 240 may flow along the inner circumferential surface 111 of the rotor housing 110 by the contact part 240 . That is, the oil located in the accommodating space (S) may be pushed by the contact part 240 to flow through the inner circumferential surface 111 of the rotor housing 110 .
  • the pushed oil may be introduced into the recovery unit 610 extending from the inner circumferential surface 111 of the rotor housing 110 in a direction away from the receiving space S to form an oil flow path.
  • the oil flowing to the recovery unit 610 may be pushed by the oil that came in later than the oil, and the connection unit 620 and the resupply unit 630 may be sequentially moved and re-supplied to the receiving space S. More specifically, the oil flowing into the receiving space S through the resupply unit 630 may lubricate the contact unit 640 .
  • connection unit 620 may guide the oil located in the recovery unit 610 to the resupply unit 630 , and the oil located in the resupply unit 630 may be supplied to the receiving space S.
  • the oil located in the accommodation space S may lubricate the rotor 200 again. Accordingly, the amount of oil lost by combustion or explosion of fuel is reduced, so that the amount of oil periodically supplied to the rotary engine 10 can be reduced.
  • the recycling unit 600 is a means for recovering oil and re-supplying oil, it is preferable that the recycling unit 600 is formed at a position corresponding to the intake stroke among the four strokes described above.
  • the recycle unit 600 is formed at a position corresponding to the compression stroke among the four strokes described above, the pressure in the combustion chamber 220 is higher than the pressure around the combustion chamber 220, so not only the oil but also the mixer recycle unit 600 because it can flow. In particular, when a mixture of air and fuel flows through the recycling unit 600 , the volumetric efficiency of the rotary engine 10 may be lost.
  • FIG. 9 is a view illustrating the position of the recycling unit 600 in consideration of the stroke of the rotary engine 10 .
  • the rotary engine 10 is provided in the housing 100 so as to allow fuel or air to flow into the accommodation space S, the intake port and the housing 100 for communicating the accommodation space S and the outside of the accommodation space S. It is provided in the accommodation space (S) may include an exhaust port for communicating the outside of the accommodation space (S) and the accommodation space (S) so that the fuel or air located in the accommodation space (S) to flow out of the accommodation space (S).
  • the intake and exhaust ports may be provided in at least one of the rotor housing 110 and the cover housings 120 and 130 to communicate fuel or air with the accommodating space S.
  • the intake port 131 and the exhaust port 133 may be formed through at least a portion of the second cover housing 130 to communicate the accommodation space S with the outside of the housing 100 . Accordingly, fuel or air may be introduced into the accommodation space S through the intake port 131 during the intake stroke and the exhaust stroke of the 4th stroke, and from the accommodation space S through the exhaust port 133 to the outside of the housing 100 . can be emitted.
  • the intake port 131 and the exhaust port 133 are provided in the second cover housing 130, and may be provided to be spaced apart from each other. This is to maintain airtightness between the receiving spaces S partitioned by the rotor 200 and to secure sufficient intake and exhaust strokes.
  • the intake port 131 and the exhaust port 133 are spaced apart from each other, and preferably formed at a position facing the spark plug 420 . This is because an explosion stroke may occur in a space in which the spark plug 420 is located among the accommodation spaces S partitioned by the rotor 200 . Therefore, after the mixture in which fuel and air are mixed is sucked into the accommodation space S, an explosion stroke may occur after forming a sufficient flow distance.
  • the intake port 131 and the exhaust port 133 may be formed to be spaced apart from the spark plug 420 in a direction away from the rotation shaft 300 .
  • the inner circumferential surface 111 of the rotor housing 110 may include two curved portions (eg, including an epitrochoid shape) and a point where the two curved portions are in contact (hereinafter abbreviated as tangent lines). ( see Fig. 10)
  • the two tangent lines C1 and C2 may be formed at positions facing each other, and the first curved portion E1 may be provided to connect the two tangent lines C1 and C2 from one side, and the second curved portion E1 may be provided with a second curved portion ( E2) may be provided to connect the two tangent lines C1 and C2 from the other side.
  • any one of the two tangent lines C1 may be located between the intake port 131 and the exhaust port 133 .
  • the intake port 131 may be formed at a position spaced apart from one of the two tangent lines (C1) in the rotational direction of the rotation shaft 300
  • the exhaust port 133 is located at one of the two tangent lines (C1) from the rotation axis ( 300) may be formed at a position spaced apart from the direction opposite to the rotation direction.
  • the recycling unit 600 may be positioned between the intake port 131 and the exhaust port 133 .
  • the recycling unit 600 is positioned between the intake port 131 and the exhaust port 133 , but may be provided at a position spaced apart from the exhaust port 133 . Accordingly, the recycling unit 600 may be formed at a position facing the spark plug 420 to be spaced apart from the spark plug 420 .
  • the recycling unit 600 may be located between the intake port 131 and one of the two tangent lines (C1).
  • one of the two tangent lines (C1) means a tangent line (C1) that is spaced apart from the exhaust port 133 in the rotational direction of the rotation shaft 300 but does not reach the intake port 131 .
  • the recycling unit 600 recovers and re-supply oil during the intake stroke, it may be less affected by fuel and air. In addition, since it is provided to be spaced apart from the exhaust port 133, it can be less affected by the exhaust stroke.
  • the recycling unit 600 may be provided in plurality in order to sufficiently secure the amount of oil recovered and re-supplied in the accommodation space (S).
  • FIG. 10 is a diagram illustrating a state in which a plurality of recycling units 600 are provided.
  • the recycling unit 600 may be provided in plurality while being spaced apart along the longitudinal direction of the rotation shaft 300 .
  • the recycle unit 600 includes the first recycle unit 600a, the second recycle unit 600b, the third recycle unit 600c, and the fourth recycle unit 600d sequentially along the longitudinal direction of the rotation shaft 300 . It may be provided in plurality so as to be spaced apart from each other.
  • a second recycling part 600b and a third recycling part 600c may be provided between the first recycling part 600a and the fourth recycling part 600d.
  • the first recycling part 600a may be provided to be spaced apart from the fourth recycling part 600d in the second recycling part 600b
  • the fourth recycling part 600d may be provided with the third recycling part ( 600c) may be provided to be spaced apart from the first recycling unit 600a in a direction away from each other.
  • FIG. 10(a) shows a state in which four recycling units 600 are provided
  • the number of recycling units 600 is not limited thereto, and may be provided in two or three, or in a number exceeding four.
  • FIG. 10( b ) shows a state in which the first to fourth recycling parts 600a , 600b , 600c , and 600d are spaced apart from each other in the rotational direction of the rotating shaft 300 or the rotor 200 .
  • any one of the first to fourth recycling parts 600a, 600b, 600c, and 600d is a rotation shaft 300 in the other of the first to fourth recycling parts 600a, 600b, 600c, and 600d. It may be provided spaced apart in the direction of rotation.
  • FIG. 10(b) shows that the second to third recycling parts 600b and 600c are spaced apart from the first recycling part and the fourth recycling part 600a and 600d in the rotational direction of the rotating shaft 300 in the rotational direction.
  • the figure is shown, but is not necessarily limited thereto.
  • first recycling part and the third recycling part 600a and 600c may be spaced apart from the second recycling part and the fourth recycling part 600b and 600d in the rotational direction of the rotation shaft 300 .
  • the recycling unit 600 is formed in plurality, so that more oil can be recovered from the accommodation space S during the intake stroke and supplied back to the accommodation space S.
  • the shape of the recycling unit 600 may be deformed or may further include one configuration. have.
  • FIG. 11 is a view showing various modifications of the recycling unit 600 .
  • the recycling unit 600 may further include a backflow prevention unit 650 for preventing the oil flowing from the recovery unit 610 toward the resupply unit 630 from flowing backward.
  • the backflow prevention unit 650 may be provided in at least one of the recovery unit 610 , the connection unit 620 , and the resupply unit 630 to block the reverse flow of oil flowing through the recycling unit 600 .
  • the backflow prevention part 650 may be formed in the connection part 620 . This is because, when the backflow prevention part 650 is provided in either the recovery part 610 or the resupply part 630, the flow resistance is increased to prevent the smooth flow of oil.
  • the backflow prevention part 650 may be provided on the inner peripheral surface of the connection part 620 .
  • the backflow prevention part 650 may be formed to gradually decrease in width along the extending direction of the connection part 620 from the inner circumferential surface of the connection part 620 .
  • the backflow prevention part 650 may be formed to gradually decrease in diameter along the extending direction of the connection part 620 from the inner circumferential surface of the connection part 620 .
  • one end of the backflow prevention part 650 is provided to be in contact with the inner peripheral surface of the connection part 620, and the other end formed by extending in the extending direction of the connection part 620 from the one end is spaced apart from the inner peripheral surface of the connection part 620, can be provided.
  • the diameter D2 of the connection part 620 may be greater than at least any one of the diameter D1 of the recovery part 610 and the diameter D3 of the resupply part 630. .
  • the diameter D2 of the connection part 620 is formed to be larger than the diameter D1 of the recovery part 610 or the diameter D3 of the resupply part 620, it flows from the receiving space S to the recycling part 600 The amount of oil that can be made can be increased.
  • connection part 620 may be bent to increase the amount of oil flowing through the connection part 620 .
  • connection part 620 may include a flow path extension part 621 formed by bending at least one time along the extending direction of the connection part 620 .
  • the flow path extension part 621 may recover more oil from the accommodation space S and deliver it to the resupply part 630 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

본 발명은 수용공간 내에 위치한 오일을 회수한 후 수용공간에 다시 공급하는 리싸이클부를 포함하여 로터리 엔진에 공급되는 오일의 양을 줄일 수 있는 로터리 엔진에 관한 것이다.

Description

로터리 엔진
본 발명은 로터리 엔진에 관한 것이다. 보다 상세하게는, 로터리 엔진의 연소실 내부로 유입되는 오일을 재활용하여 로터리 엔진을 윤활하기 위한 오일의 공급량을 줄이기 위한 구성을 포함하는 로터리 엔진에 관한 것이다.
일반적으로 로터리 엔진은 회전운동으로 동력을 생산하는 엔진을 지칭한다. 로터리엔진은 피스톤엔진에 비해 단순한 구조를 가지고 있어 소형화가 쉽고, 연속적인 연소행정이 가능하여 적은 배기량으로 높은 출력을 내는 특징이 있다. 또한, 로터리 엔진의 회전력을 균일하여 피스톤엔진에 비해 진동 및 소음이 적고, 질소산화물을 적게 배출하는 장점을 가지고 있다.
따라서, 근래의 로터리 엔진은 그 장점으로 인해 자동차, 항공기 등의 주요 엔진으로 적용될 뿐만 아니라, 단순한 구조로 인해 히트 펌프 시스템의 압축기에도 적용되고 있다.
로터리 엔진은 동력을 생산하기 위해 내부면이 에피트로코이드 곡선으로 이루어진 하우징 및 하우징 내에서 회전하는 로터를 포함하며, 상기 로터의 형상이 삼각기둥으로 이루어진 경우 로터와 하우징으로 3개의 연소실을 형성할 수 있다.
각각의 연소실에는 흡입, 압축, 연소 및 팽창, 배기로 이루어진 4행정이 진행되며, 이에 따라 로터가 1회전 시 상기 4행정은 3회 진행된다.
특히, 로터리 엔진의 경우 연료 또는 공기 등을 연소실에 주입하는 흡기밸브와 연료 또는 공기를 연소실로부터 배출시키는 배기밸브가 별도로 구비되지 않는 경우가 많다. 따라서, 흡기 및 배기가 보다 부드럽게 진행될 수 있고, 가스 교환의 효율이 좋다.
한편, 로터리 엔진의 경우 연료 또는 공기 등이 연소실에 주입되며 폭발 행정을 일으킴에 따라, 과도한 열이 발생하는 경우가 있다. 따라서, 로터리 엔진의 온도가 상승될 수 있으며, 로터리 엔진의 온도 상승은 로터리 엔진의 전체적인 효율을 저감시킬 수 있다.
로터리 엔진을 냉각시키기 위한 방법으로는 오일을 순환시켜 냉각시키거나 회전축과 같은 구성을 윤활시키는 유냉(oil-cooling) 방식과, 공기를 순환시켜 대류 또는 전도를 통해 냉각시키는 공랭(air-cooling) 방식을 고려할 수 있다.
특히, 오일을 순환시켜 로터리 엔진을 냉각시키는 유냉 방식의 경우, 주기적으로 오일을 공급해줘야 하는 문제가 있다. 오일이 로터리 엔진을 윤활시키면서 연소실에 누설되는 경우가 발생할 수 있고, 연소실로 누설된 오일은 연료와 함께 연소되어 소실될 수 있기 때문이다.
근자에는 오일이 누설되는 것을 방지하거나, 누설되는 오일의 양을 감소시키기 위해 공급된 오일을 회수하는 구성을 더하여 로터리 엔진의 효율을 도모한다.
대한민국 공개공보 제10-2018-0112604호(이하, 선행문헌으로 약칭함.)는 크랭크 축, 상기 크랭크 축을 둘러싸도록 배치되는 N개의 로브 수용부와, 각각의 상기 로브 수용부와 연통되는 연소실을 구비하는 하우징, 상기 크랭크 축과 편심되어 회전하고 각각 상기 로브 수용부에 연속적으로 수용되는 N-1개의 로브를 구비하는 로터, 상기 로터와 마주보는 면에서 리세스되도록 형성되는 안착부와, 상기 안착부에 고정되도록 수용되고 내주면을 따라 톱니가 형성되는 가이드 기어를 구비하며, 상기 로브 수용부를 덮도록 상기 하우징에 결합되는 하우징 덮개, 상기 로터와 하우징 덮개 사이에 개재되고 상기 로터와 고정되는 플랜지부와, 상기 플랜지부에서 돌출되어 상기 가이드 기어와 맞물리도록 형성되는 기어부를 구비하는 로터기어 및 상기 가이드 기어 및 기어부에 오일을 공급하도록 상기 하우징 덮개에 형성되는 오일 공급 유로를 구비하는 윤활 유닛을 포함하여, 로터리 엔진를 윤활시키는 윤활 유로를 형성한다.
더하여, 상기 선행문헌은 윤활 회수 유로를 더 포함하여 공급된 오일을 회수하여 공급된 오일이 낭비되는 것을 방지한다.
다만, 상기 선행문헌에 의하면, 회수되는 오일은 회전축과 같이 과도한 응력 또는 열이 집중될 수 있는 부분을 윤활시키기 위해 공급되는 오일 중 일부에 불과하다. 즉, 로터와 같이 윤활뿐만 아니라 냉각의 대상이 되는 구성에 공급되는 오일이 연소실에서 연소되어 소실되는 것이 고려되지 않았다.
따라서, 로터의 단부를 냉각시키기 위해 공급되는 오일 중 연소실로 유동하는 오일을 회수할 수 있는 구성이 요구된다.
본 발명의 일 실시예는 로터리 엔진에 공급되는 오일의 양을 감소시키는 것을 목적으로 한다.
본 발명의 일 실시예는 로터리 엔진의 미터링 펌프로부터 공급되는 미터링 오일을 회수하는 것을 목적으로 한다.
본 발명의 일 실시예는 로터의 측면을 통해 누설되는 오일을 회수하는 것을 목적으로 한다.
본 발명의 일 실시예는 별도의 추가적인 부품 없이 로터리 엔진에 공급된 오일을 회수하는 것을 목적으로 한다.
본 발명의 일 실시예는 상기 목적을 달성하기 위해 연소실 내부로 유입되는 미터링 오일 및 로터 측면의 오일 씰을 통해 누설되는 오일을 회수학ㅣ 위해 로터하우징의 벽면에 회수를 위한 홀을 포함하는 로터리 엔진을 제공할 수 있다.
본 발명의 일 실시예는 에이펙스 씰에 의해 밀려난 오일을 회수하는 오일 회수홀을 포함하는 로터리 엔진을 제공할 수 있다.
본 발명의 일 실시예는 오일을 회수하는 위한 회수홀과 오일을 재공급하기 위한 재공급홀의 위치를 로터리 엔진의 중심부에서 흡기구간 말미 사이로 설정한 로터리 엔진을 제공할 수 있다.
본 발명의 일 실시예는 내부에 연료가 연소되는 수용공간을 형성하는 하우징, 상기 수용공간과 밀착된 상태를 유지하는 접촉부를 포함하여 상기 수용공간에 편심회전 가능하게 구비되며, 상기 수용공간을 구획하고 상기 연료를 이동시키거나 압축하는 로터, 상기 하우징에 구비되며 상기 수용공간에 오일을 공급하여 상기 접촉부를 윤활시키는 오일공급부 및 상기 하우징에 구비되어 상기 오일공급부에서 공급된 오일을 회수하여 상기 접촉부에 재공급하는 리싸이클부를 포함하며, 상기 리싸이클부는, 상기 수용공간과 연통되도록 구비되어 상기 접촉부에 의해 밀려난 오일을 회수하는 회수부, 상기 수용공간과 연통되도록 구비되되 상기 회수부와 이격되어, 회수된 오일을 상기 접촉부에 재공급하는 재공급부 및 상기 회수부와 상기 재공급부를 연결시켜 회수된 오일을 상기 재공급부로 안내하는 연결부를 포함하는 로터리 엔진을 제공할 수 있다.
상기 하우징은 상기 로터를 둘러싸도록 구비되는 로터하우징 및 상기 로터하우징에 결합되어 상기 수용공간을 밀폐시키는 커버하우징을 포함하며, 상기 리싸이클부는 상기 로터하우징의 내주면에 구비될 수 있다.
상기 커버하우징은 상기 로터하우징의 일측에 결합되는 제1커버하우징 및 상기 제1커버하우징과 이격되도록 상기 로터하우징의 타측에 결합되는 제2커버하우징을 포함하며, 상기 오일공급부는 상기 제1커버하우징 또는 상기 제2커버하우징 중 적어도 어느 하나에 구비될 수 있다.
상기 로터리 엔진은 상기 커버하우징에 형성되어 상기 연료가 상기 수용공간으로 유입될 수 있도록 상기 커버하우징의 외부와 상기 수용공간을 연통시키는 흡기구 및 상기 커버하우징에 형성되어 상기 연료가 상기 수용공간의 외부로 배출되도록 상기 수용공간과 상기 커버하우징의 외부를 연통시키며, 상기 흡기구와 이격되도록 형성되는 배기구를 더 포함하며, 상기 리싸이클부는 상기 흡기구와 상기 배기구의 사이에 위치할 수 있다.
상기 리싸이클부는 상기 배기구와 이격되어 구비될 수 있다.
상기 로터리 엔진은 상기 로터하우징에 결합되어 상기 연료를 연소시키는 점화플러그를 더 포함하며, 상기 점화플러그는 상기 흡기구 및 상기 배기구와 마주보는 위치에 형성될 수 있다.
상기 리싸이클부는 상기 점화플러그와 마주보는 위치에 형성될 수 있다.
상기 로터리 엔진은 상기 로터와 결합되어 상기 로터를 회전시키며, 상기 하우징을 관통하도록 형성되는 회전축을 더 포함하며, 상기 회수부와 상기 재공급부는 상기 회전축의 회전 방향으로 이격되어 위치할 수 있다.
상기 리싸이클부는 복수 개로 구비되며 상기 복수 개의 리싸이클부는 각각 회전축의 길이방향을 따라 이격되어 배치될 수 있다.
상기 복수 개의 리싸이클부 중 어느 하나는 상기 복수 개의 리싸이클부 중 다른 하나와 회전축의 회전 방향으로 이격되어 배치될 수 있다.
상기 회수부와 상기 재공급부는 상기 로터하우징의 내주면에서 상기 수용공간과 멀어지는 방향으로 연장되어 형성되며, 상기 연결부는 상기 회수부에서 상기 재공급부로 연장되어 형성될 수 있다.
상기 리싸이클부는 상기 회수부와 상기 연결부를 연결하되 절곡되어 형성되는 제1절곡부 및 상기 연결부와 상기 재공급부를 연결하되 절곡되어 형성되는 제2절곡부를 더 포함할 수 있다.
상기 연결부의 직경은 상기 회수부 및 상기 재공급부 중 적어도 어느 하나의 직경보다 크게 형성될 수 있다.
상기 리싸이클부는 상기 연결부에 구비되어 상기 리싸이클부를 유동하는 오일이 상기 재공급부에서 상기 회수부로 유동하는 것을 방지하는 역류방지부를 더 포함할 수 있다.
상기 역류방지부는 상기 연결부의 내주면에 구비되며 상기 연결부의 연장방향을 따라 직경이 점차 감소되도록 구비될 수 있다.
본 발명의 일 실시예에 따르면, 로터의 단부를 냉각시키기 위해 공급되는 오일의 일부를 회수할 수 있다.
본 발명의 일 실시예에 따르면, 회전축에 공급되어 연소실로 누설되는 오일 중 일부를 회수할 수 있다.
본 발명의 일 실시예에 따르면, 로터리 엔진에 공급되는 오일의 양을 감소시킬 수 있다.
본 발명의 일 실시예에 따르면, 연소실로 과다하게 공급되는 오일 중 적어도 일부의 오일을 재사용할 수 있다.
도 1은 로터리 엔진의 분해 사시도가 도시된 도면,
도 2는 로터가 도시된 도면,
도 3은 로터리 엔진의 작동과정이 도시된 도면,
도 4는 로터리 엔진에서 회전축에 공급되는 오일의 유로가 도시된 도면,
도 5는 회전축에 공급된 오일이 로터의 외부로 누설되는 모습이 도시된 도면,
도 6은 본 발명의 일 실시예에 따른 리싸이클부가 구비된 로터리 엔진의 분해 사시도가 도시된 도면,
도 7은 본 발명의 일 실시예에 따른 리싸이클부가 도시된 도면,
도 8은 본 발명의 일 실시예에 따른 리싸이클부의 작동원리가 도시된 도면,
도 9는 본 발명의 일 실시예에 따른 리싸이클부의 위치가 도시된 도면,
도 10은 본 발명의 일 실시예에 따른 리싸이클부가 복수 개 형성된 모습이 도시된 도면,
도 11은 본 발명의 일 실시예에 따른 리싸이클부의 형상이 변형된 모습이 도시된 도면이다.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 이하의 상세한 설명은 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.
도 1은 로터리 엔진의 분해사시도가 도시된 도면이며, 도 2는 로터의 접촉부가 도시된 도면이다.
도 1 내지 도 2를 참조하면, 로터리 엔진(10)은 수용공간을 형성하는 하우징(100), 하우징(100)의 내부에서 편심 회도록 구비되는 로터(200), 로터(200)와 결합되어 로터(200)를 회전시키는 회전축(300)을 포함할 수 있다.
하우징(100)은 양단이 개구되어 수용공간(S)을 형성하는 로터하우징(110), 로터하우징(110)의 일단에 결합되어 상기 수용공간(S)을 밀폐시키는 제1커버하우징(120) 및 로터하우징(110)의 타단에 결합되어 상기 수용공간(S)을 밀폐시키는 제2커버하우징(130)을 포함할 수 있다.
제1커버하우징(120)과 제2커버하우징(130)은 로터하우징(110)에 각각 결합되어 서로 마주보며, 이격되는 위치에 구비될 수 있다. 따라서, 제1커버하우징(120)과 제2커버하우징(130)은 로터하우징(110)이 형성하는 수용공간(S)을 밀폐시킬 수 있다.
한편, 로터하우징(110) 또는 커버하우징(120, 130) 중 적어도 어느 하나에는 연료 또는 공기를 수용공간(S)으로 안내하는 흡기구 및 수용공간(S)에 위치한 연료 또는 공기를 수용공간(S)의 외부로 배출하는 배기구가 구비될 수 있다. 상기 흡기구 및 상기 배기구는 도 9에서 후술한다.
로터(200)는 로터하우징(110)의 내부에 편심 회전 가능하게 구비될 수 있다. 달리 말해, 로터(200)는 수용공간(S)에 위치할 수 있다. 또한, 로터하우징(110)은 로터(200)의 적어도 일부를 둘러싸도록 구비될 수 있다.
한편, 로터(200)의 형상은 다양하게 구비될 수 있다. 상세히 후술하겠지만, 로터(200)의 형상은 로터하우징(110)의 내주면 형상을 결정하게 되므로, 로터(200)의 형상이 변경되면 로터하우징(110)의 형상 또한 변형된다고 볼 것이다.
다만, 이하에서는 설명의 편의를 위해, 로터(200)가 삼각기둥 형상 또는 이와 유사한 형상으로 구비되는 경우를 설명한다.
로터(200)는 로터하우징(110)의 내부 또는 수용공간(S)에 편심회전 가능하게 구비되는 로터바디(210)를 포함한다.
로터바디(210)는 로터바디(210)의 일측면을 형성하는 제1측면(211), 로터바디(210)의 타측면을 형성하는 제2측면(213) 및 제1측면(211)과 제2측면(213)을 연결하도록 구비되는 제3측면(215)를 포함할 수 있다.
한편, 제1측면 내지 제3측면(211, 213, 215)는 로터(200)의 외면 중 적어도 일부를 의미할 수 있다.
로터(200)는 연료와 공기가 연소될 수 있는 공간을 제공하도록 로터바디(210)에서 함몰 형성된 연소실(220)을 포함할 수 있다.
연소실(220)은 로터바디(210)의 외면에서 로터바디(210)의 내측을 향해 함몰 형성될 수 있다.
또한, 연소실(220)은 제1측면 내지 제3측면(211, 213, 215)에 각각 구비될 수 있다. 즉, 연소실(220)은 제1측면(211)에서 함몰 형성되는 제1연소실(221), 제2측면(213)에서 함몰 형성되는 제2연소실(223) 및 제3측면(215)에서 함몰 형성되는 제3연소실(225)을 포함할 수 있다.
로터(200)는 수용공간(S)의 내부에서 편심회전하도록 구비되어 로터하우징(110)의 내주면(111)과 밀착되도록 회전한다. 따라서, 연소실(220)은 로터(200)가 로터하우징(110)의 내주면(111)과 밀착된 상태에서 연료와 공기가 연소될 수 있는 공간을 제공할 수 있다.
로터(200)가 3개의 측면(211, 213, 215)를 포함함에 따라, 로터(200)는 수용공간(S)을 3개의 공간으로 구획할 수 있다. 또한, 상기 3개의 공간은 서로 기밀이 유지되어야 한다. 상세히 후술하겠지만, 상기 3개의 공간 각각에는 서로 다른 행정이 진행되기 때문에, 공간 간의 공기 또는 연료가 일 공간에서 타 공간으로 이동하는 경우 로터리 엔진의 효율이 저하 될 수 있다.
특히, 로터(200)는 로터하우징(110)의 내주면(111)과 밀착되는 부분을 형성하여 수용공간(S)을 3개의 공간으로 구획할 수 있다.
보다 구체적으로, 로터(200)는 제1측면(211)과 제2측면(213)이 접해 형성되는 제1단부(231), 제2측면(213)과 제3측면(215)이 접해 형성되는 제2단부(233) 및 제3측면(215)과 제1측면(211)이 접해 형성되는 제3단부(235)를 포함할 수 있다.
달리 말해, 단부(230)는 제1측면 내지 제3측면(211, 213, 215)가 연결되는 부분을 지칭할 수 있다.
로터(200)에 의해 수용공간(S)에서 3개의 공간으로 구획된 공간들 간에 기밀을 유지하기 위해, 로터(200)는 로터하우징(110)의 내주면(111)과 밀착된 상태를 유지시키는 접촉부(240)를 포함할 수 있다.
접촉부(240)는 단부(230)에 형성되어 복수 개의 측면(211, 213, 215)를 연결하는 코너씰(241) 및 로터바디(210)에 결합되어 로터하우징(110)의 내주면(111)과 밀착되도록 구비되는 에이펙스 씰(243)을 포함할 수 있다.
에이펙스 씰(243)은 로터하우징(110)의 내주면(111)과 밀착되도록 접촉되는 밀착부(2433) 및 밀착부(2433)에 결합되어 밀착부(2433)에 탄성력을 제공하는 탄성부(2431)을 포함할 수 있다.
밀착부(2433)은 로터바디(210)에서 로터하우징(110)의 내주면(111)을 향하도록 결합되어 로터하우징(110)의 내주면(111)과 접촉될 수 있다. 다만, 밀착부(2433)가 로터하우징(110)의 내주면(111)과 접촉된 상태를 유지하기 위해서는 밀착부(2433)에는 로터하우징(110)의 내주면(111)을 향해 제공되는 힘이 요구될 수 있다.
탄성부(2431)는 밀착부(2433)가 로터하우징(110)의 내주면(111)과 항상 밀착되도록 밀착부(2433)에 로터하우징(110)의 내주면(111)을 향하는 방향의 힘을 밀착부(2433)에 제공할 수 있다.
따라서, 탄성부(2431)은 밀착부(2433)보다 로터(200)의 내측에 구비될 수 있다.
로터(200)는 로터바디(210)의 내주면을 형성하며 회전축(300)과 결합되는 로터축수부(250)를 포함할 수 있다.
로터(200)는 로터바디(210)에 형성되며 로터바디(210)의 외주면을 바라보게 구비되는 싸이드 씰(260)을 포함할 수 있다.
싸이드 씰(260)은 일단이 복수 개의 단부(231, 233, 235) 중 어느 하나와 접촉되며 타단이 복수 개의 단부(231, 233, 235) 중 다른 어느 하나와 접촉되도록 구비되어 단부(230) 간의 연결을 수행할 수 있다.
로터축수부(250)는 회전축(300)과 대응되는 형상으로 구비될 수 있으며, 속이 빈 원기둥 형상 또는 이와 유사한 형상으로 구비될 수 있다. 특히, 로터축수부(250)는 후술하는 편심부(310)와 결합될 수 있으므로, 로터축수부(250)는 편심부(310)와 대응되는 형상으로 구비될 수 있다.
회전축(300)은 하우징(100)과 로터(200)를 관통하도록 형성되며, 로터(200)와 결합되어 로터(200)를 회전시킬 수 있다.
보다 구체적으로, 회전축(300)은 제1커버하우징(120), 수용공간(S) 및 제2커버하우징(130)을 순차적으로 관통하여 형성될 수 있다.
회전축(300)은 로터축수부(250)와 결합되는 편심부(310), 편심부(310)에서 제2커버하우징(130)과 멀어지는 방향으로 연장되어 제1커버하우징(120)과 결합되는 제1연장부(320) 및 편심부(310)에서 제1커버하우징(120)과 멀어지는 방향으로 연장되어 제2커버하우징(130)과 결합되는 제2연장부(330)를 포함할 수 있다.
편심부(310)는 제1연장부(320) 및 제2연장부(330)보다 직경이 크게 형성될 수 있다. 즉, 편심부(310)는 제1연장부(320) 및 제2연장부(330)를 연결하며 제1연장부(320) 및 제2연장부(330)와 직경이 동일하게 형성되는 중심부(311) 및 중심부(311)에서 중심부(311)의 반경 방향 외측으로 연장 형성되어 편심을 유발하는 확장부(313)를 포함할 수 있다.
따라서, 로터(200)는 편심부(310)에 결합되어 편심 회전하도록 구비될 수 있다.
제1커버하우징(120)은 제1연장부(320)가 관통되는 제1축수부(125)를 포함할 수 있고, 제2커버하우징(130)은 제2연장부(330)과 관통되는 제2축수부(135)를 포함할 수 있다.
한편, 로터리 엔진(10)은 수용공간(S)의 내부를 유동하는 연료를 폭발시키거나 연소시키기 위한 점화장치(400)를 포함할 수 있다.
점화장치(400)는 하우징(100)에 구비되어 수용공간(S)과 연통되도록 구비되는 점화플러그(420) 및 하우징(100)을 관통하도록 형성되어 점화플러그(420)가 설치될 수 있는 공간을 제공하는 삽입홀(410)을 포함할 수 있다.
삽입홀(410)은 로터하우징(110), 제1커버하우징(120) 및 제2커버하우징(130) 중 적어도 어느 하나를 관통하여 구비될 수 있다. 다만, 이하에서는 설명의 편의를 위해 삽입홀(410)이 로터하우징(110)에 구비되는 경우를 한정하여 설명한다.
삽입홀(410)은 로터하우징(110)의 내주면(111)과 외주면을 관통하여 점화플러그(420)가 설치되는 공간을 제공할 수 있다.
점화플러그(420)는 삽입홀(410)에 설치되어 수용공간(S)에 스파크(spark)를 유발할 수 있다. 따라서, 수용공간(S)에 위치한 연료는 점화플러그(420)에 의해 폭발 또는 연소될 수 있다.
점화플러그(420)는 복수 개로 구비될 수 있다. 점화플러그(420)가 복수 개로 구비됨에 따라, 삽입홀(410) 또한 복수 개로 구비될 수 있다.
이로써, 로터(200)는 하우징(100)의 내부에서 수용공간(S)을 3개의 공간으로 구획하며 편심회전할 수 있다. 또한, 로터(200)에 의해 구획된 상기 3개의 공간 각각은 접촉부(240)에 의해 기밀이 유지될 수 있다.
다만, 전술한 바와 같이 로터(200)의 일부는 로터하우징(110)의 내주면(111)과 항상 밀착된 상태를 유지하면서 회전하게 된다. 이에 따라, 로터(200)에는 과도한 열이 발생될 수 있고, 과도한 열은 로터(200)의 신뢰성을 감소시킬 수 있다.
이를 위해, 로터리 엔진(10)은 로터(200)에 오일을 공급하여 로터(200)를 윤활시키며, 로터(200)를 냉각시킬 수 있는 오일공급부(500)를 포함할 수 있다.
오일공급부(500)는 하우징(100)에 구비되어 로터(200)에 오일을 공급하도록 구비될 수 있다. 오일공급부(500)는 하우징에 구비되어 오일이 이동하는 공급유로(570)와, 로터(200)에 접촉 가능하게 구비되어 공급유로(570)를 선택적으로 폐쇄하는 실링부(530)와, 실링부(530)를 수용공간(S)을 향해 가압시키는 탄성부(520)를 포함할 수 있다.
공급유로(570)는 하우징(100)의 내부를 관통하여 형성될 수 있다. 이로써, 공급유로(570)가 외부에 노출되는 경우보다 오일공급부(500)의 부피를 감소시킬 수 있고, 공급유로(570)가 파손되는 것을 미연에 방지할 수 있다.
또한, 오일공급부(500)는 탄성부(520)나 실링부(530)가 하우징(100)에서 이탈하는 것을 방지할 뿐만 아니라, 공급유로(570)가 외부에 노출되는 것을 차단하여 윤활오일이나 연료가 누설되는 것을 방지하도록 탄성부(520)를 지지하는 지지부(510)를 포함할 수 있다.
한편, 상기 지지부(510), 상기 탄성부(520) 및 상기 실링부(530)는 제1커버하우징(120) 또는 제2커버하우징(130) 중 적어도 어느 하나에 구비되어 로터(200)를 윤활시키거나 냉각시킬 수 있다.
오일공급부(500)는 오일이 저유되는 공간을 형성하며, 하우징(100)과 이격되도록 구비되는 저유조(550) 및 저유조(550)에 저유된 오일을 순환시켜 로터리 엔진(10)에 공급하는 오일펌프(540)를 더 포함할 수 있다.
도 4에서 구체적으로 후술하겠지만, 오일공급부(500)는 오일펌프(540)를 통해 유동하는 오일의 온도를 하강시키는 오일열교환기(560) 및 오일의 유로에 배치되어 오일에 섞인 이물 등을 배제시키는 오일필터(570)를 포함할 수 있다.
한편, 전술한 지지부(510), 탄성부(520) 및 실링부(530)는 오일펌프(540)와 연결되어 오일펌프(540)로부터 오일을 공급받을 수 있다. 그러나, 반드시 이에 제한되지 않고 별도의 펌프를 통해 오일을 공급받을 수 있다.
이하, 도 3을 참조하여 로터리 엔진(10)의 작동 과정을 설명한다. 도 3은 로터리 엔진(10)의 4행정이 도시된 도면이다.
도 3(a)를 참조하면, 흡기구에서 연료(f)가 흡입되는 흡기행정이 수행되며, 도 3(b)를 참조하면, 상기 흡입행정에서 로터(200)가 회전하면 연료(f)는 로터(200)의 단부(230) 또는 접촉부(240)를 따라 이동하며 로터하우징(110)에 밀착되어 압축되는 압축행정이 수행된다.
도 3(c)를 참조하면, 상기 압축행정에서 압축된 연료는 점화플러그(420)에서 발생하는 스파크(spark)로 인해 폭발하여 부피가 폭발적으로 증가하기 시작하는 폭발행정이 수행된다.
도 3(d)를 참조하면, 상기 폭발행정의 반발력으로 인해 상기 로터(200)는 고속으로 회전하면서, 연료(f)의 산화물을 배기구로 배출시키는 배출행정이 수행된다. 이후, 로터(200)는 관성으로 인해 회전하면서 전술한 흡기행정을 다시 수행한다.
이로써, 흡기행정, 압축행정, 폭발행정 및 배출행정은 순차적이며 연속으로 행해질 수 있다. 다만, 전술한 행정들은 로터(200)에 의해 구획되는 연소실(220) 중 어느 하나에서 순차적으로 진행될 수 있고, 로터(200)에 의해 구획되는 연소실(220) 중 다른 하나에서는 상기 어느 하나의 연소실(220)에서 진행되는 행정과 다른 행정이 진행된다.
따라서, 접촉부(240)는 로터(200)에 의해 구획된 수용공간(S)들 간의 기밀을 유지하기 위해 로터하우징(110)의 내주면과 밀착되도록 구비되어야 한다. 즉, 접촉부(240)는 지속적으로 윤활되거나 냉각될 필요가 있다.
이를 위해, 로터리 엔진(10)은 전술한 오일공급부(500)를 포함하여 로터리 엔진(10)을 윤활시키거나 냉각시킬 수 있다. 다만, 오일공급부(500)에 의해 로터리 엔진(10)으로 공급된 오일은 전량 회수되기 어려울 수 있다. 특히, 공급된 오일이 수용공간(S)으로 유동하는 경우, 연료의 연소와 함께 오일도 연소될 수 있기 때문이다.
이하, 도 4 내지 도 5를 참조하여 수용공간(S) 내로 유동할 수 있는 오일의 유로를 설명한다.
도 4는 오일공급부(500)에 의해 회전축(300)이 윤활되는 모습이 도시된 도면이며, 도 5는 오일이 수용공간(S)으로 누설되는 모습이 도시된 도면이다.
우선, 도 4를 참조하면, 오일펌프(550)는 저유조(550)에 위치한 오일의 적어도 일부를 흡입하여 회전축(300)으로 안내할 수 있다. 오일펌프(550)에 의해 유동하는 오일은 오일열교환기(560) 및 오일필터(570) 중 적어도 어느 하나를 유동하여 회전축(300)으로 공급될 수 있다. 즉, 오일열교환기(560) 및 오일필터(570)는 오일펌프(540)에 의해 형성되는 오일 유로 중 회전축(300)의 전에 위치하여 오일을 열교환시키거나 오일에 포함된 이물을 제거할 수 있다.
오일열교환기(560) 및 오일필터(570)를 거친 오일은 회전축(300)의 제1연장부(320), 편심부(310) 및 제2연장부(330)를 순차적으로 거쳐 회전축(300)과 로터(200)가 접촉되는 부분을 윤활시킬 수 있다.
또한, 제1연장부(320), 편심부(310) 및 제2연장부(330)를 순차적으로 거친 오일은 회전축(300)과 로터(200)의 접촉부분을 윤활시킨 후, 저유조(550)로 이동하여 회수될 수 있다.
따라서, 오일펌프(540)는 저유조(550)에 위치한 오일을 다시 끌어올려 회전축(300)에 공급할 수 있다.
또한, 지지부(510), 탄성부(520) 및 실링부(530)는 오일펌프(540)로부터 오일을 공급받아 접촉부(240)에 오일을 공급할 수 있다. 이로써, 접촉부(240)는 냉각되거나 윤활될 수 있다.
이하, 도 5를 참조하면, 회전축(300)을 윤활하는 오일은 로터(200)의 편심회전에 의해 수용공간(S)으로 누설(L)될 수 있다. 보다 구체적으로, 로터(200)가 회전하는 경우 로터(200)는 원심력을 발생할 수 있고, 로터(200)와 회전축(300) 사이를 유동하는 오일은 로터(200)의 원심력을 받아 로터(200)의 외측으로 이동(L)할 수 있다.
따라서, 수용공간(S)에는 크게 2개의 오일 유로에 의해 오일이 유동할 수 있다. 하나의 오일유로는 접촉부(240)를 냉각 또는 윤활시키기 위해 수용공간(S)에 공급된 오일에 의해 형성될 수 있고, 다른 하나의 오일유로는 회전축(300)을 윤활시키기 위한 오일이 로터(200)의 원심력을 받아 수용공간(S)으로 이동하는 오일에 의해 형성될 수 있다.
다만, 전술한 바와 같이 수용공간(S)을 유동하는 오일은 연료의 연소 시 연료와 함께 연소되어 소실될 수 있다. 즉, 수용공간(S)으로 공급된 오일은 전량 회수되지 못하고 일부가 유실될 수 있다.
따라서, 오일이 저유되는 저유조(550)에는 오일이 지속적으로 공급될 필요가 있다. 다만, 지속적인 오일의 공급은 로터리 엔진(10)의 유지비를 증가시킬 수 있으며, 배기가스 오염물질을 과다 배출하는 문제를 야기한다.
이에, 본 발명의 일 실시예에 따른 로터리 엔진(10)은 수용공간(S)으로 유동한 오일의 적어도 일부를 재사용하여 지속적으로 공급되는 오일의 양을 줄일 수 있는 리싸이클부(600)를 포함할 수 있다.
도 6 내지 도 7을 참조하여, 본 발명의 일 실시예에 따른 리싸이클부(600)를 설명한다. 도 6은 리싸이클부(600)가 형성된 로터리 엔진(10)의 분해사시도가 도시된 도면이며, 도 7은 리싸이클부(600)가 도시된 도면이다.
리싸이클부(600)는 로터하우징(110)의 내주면(111)에서 수용공간(S)과 멀어지는 방향으로 결합되어 구비될 수 있다.
리싸이클부(600)는 로터하우징(110)의 외주면과 내주면(111) 사이의 공간에 위치할 수 있으나, 로터하우징(110)의 내주면(111)에서 수용공간(S)과 멀어지는 방향으로 연장되어 로터하우징(110)의 외주면보다 회전축(300)과 멀리 떨어진 위치에 구비될 수 있다.
리싸이클부(600)는 오일의 유로를 형성하도록 구비될 수 있다. 구체적으로, 리싸이클부(600)는 속이 빈 원기둥과 같이 파이프 형상으로 구비되어 오일의 유로를 형성할 수 있다.
리싸이클부(600)는 로터하우징(110)의 내주면(111)에서 수용공간(S) 또는 회전축(300)과 멀어지는 방향으로 연장되어 수용공간(S) 내에 위치한 오일을 회수하는 회수부(610), 로터하우징(110)의 내주면(111)에서 수용공간(S) 또는 회전축(300)과 멀어지는 방향으로 연장되어 회수된 오일을 수용공간(S)에 다시 공급하는 재공급부(630) 및 회수부(610)와 재공급부(630)를 연결하는 연결부(620)를 포함할 수 있다.
따라서, 회수부(610) 및 재공급부(630)는 수용공간(S)과 연통되도록 형성될 수 있다.
회수부(610)와 재공급부(630)는 로터하우징(110)의 내주면(111)에 형성되되, 로터하우징(110)의 내주면(111)에서 수용공간(S) 또는 회전축(300)을 향해 돌출되지 않는 것이 바람직하다. 접촉부(240)와 회수부(610) 및 재공급부(630)가 간섭되는 것을 방지하기 위함이다.
회수부(610)는 일단이 로터하우징(110)의 내주면(111)에 형성되어 상기 일단에서 수용공간(S)과 멀어지는 방향으로 연장될 수 있다. 즉, 회수부(610)의 타단은 로터하우징(110)의 내주면(111)에서 수용공간(S)과 멀어지는 방향으로 이격된 위치에 형성될 수 있다.
재공급부(630)는 일단이 로터하우징(110)의 내주면(111)에 형성되어 상기 일단에서 수용공간(S)과 멀어지는 방향으로 연장될 수 있다. 즉, 재공급부(630)의 타단은 로터하우징(110)의 내주면(111)에서 수용공간(S)과 멀어지는 방향으로 이격된 위치에 형성될 수 있다.
회수부(610)와 재공급부(630)는 회전축(300) 또는 로터(200)의 회전 방향을 따라 이격되어 구비될 수 있다. 도 8에서 구체적으로 설명하겠지만, 수용공간(S)에서 회수부(610)로 유동하는 오일은 접촉부(240)에 의해 밀려서 유동할 수 있기 때문이다. 달리 말하면, 회수부(610)와 재공급부(630)는 회전축(300)의 길이방향으로 이격되어 배치되지 않는 것이 바람직하다.
즉, 재공급부(630)는 회수부(610)에서 회전축(300) 또는 로터(200)의 회전 방향으로 이격되어 형성될 수 있고, 회수부(610)는 재공급부(630)에서 회전축(300) 또는 로터(200)의 회전 방향과 반대 방향으로 이격되어 형성될 수 있다.
연장부(620)는 수용공간(S)에서 회수부(610)로 유동하는 오일을 재공급부(630)로 안내하도록 회수부(610)와 재공급부(630)를 연결하여 형성될 수 있다.
다만, 연장부(620)에 의해 형성되는 오일의 유로 저항이 적어질 수 있도록 리싸이클부(600)는 절곡부(640)를 포함할 수 있다.
절곡부(640)는 회수부(610)와 연결부(620)를 연결하되 절곡 형성되는 제1절곡부(641)과, 연결부(620)와 재공급부(630)를 연결하되 절곡 형성되는 제2절곡부(643)를 포함할 수 있다.
제1절곡부(641)는 일단이 회수부(610)에 접촉하며 상기 일단에서 연결부(620)를 향해 절곡 형성되어 타단이 연결부(620)에 접촉하도록 구비될 수 있다.
제2절곡부(643)는 일단이 연결부(620)와 접촉하고, 상기 일단에서 재공급부(630)를 향해 절곡 형성되어 타단이 재공급부(630)와 접촉하도록 구비될 수 있다.
이로써, 절곡부(640)는 리싸이클부(600)를 유동하는 오일의 유로 저항을 줄여 수용공간(S) 내의 오일이 리싸이클부(600)를 보다 원활하게 유동하도록 할 수 있다.
이하, 도 8을 참조하여 리싸이클부(600)의 작동원리를 설명한다. 도 8은 리싸이클부(600)의 작동원리가 도시된 도면이다.
전술한 바와 같이, 로터(200)는 하우징(100)의 내부에 형성되는 수용공간(S)을 복수 개의 공간으로 구획시킬 수 있다. 또한, 구획된 복수 개의 공간들은 접촉부(640)에 의해 기밀이 유지될 수 있었으며, 수용공간(S)에는 크게 2개의 유로에 의해 오일이 유동할 수 있었다.
수용공간(S)에 위치한 오일은 로터(200)와 접촉되어 로터(200)의 외면을 향해 유동할 수 있다. 로터(200)가 회전체임을 고려할 때 로터(200)에는 원심력이 작용할 수 있으며, 로터(200)에 접촉한 오일은 로터(200)로부터 원심력을 받아 로터(200)의 외측으로 이동할 수 있다.
즉, 로터(200)에 위치한 오일은 점차 로터(200)의 외측으로 유동하여 단부(230) 또는 접촉부(240)로 유동할 수 있다. 접촉부(240)가 로터하우징(110)의 내주면(111)에 접촉하는 점을 고려할 때, 단부(230)를 유동하는 오일은 점차 접촉부(240)로 유동할 수 있다.
접촉부(240)로 유동한 오일은 접촉부(240)에 의해 로터하우징(110)의 내주면(111)을 따라 유동할 수 있다. 즉, 수용공간(S) 내에 위치한 오일은 접촉부(240)에 의해 밀려 로터하우징(110)의 내주면(111)을 유동할 수 있다.
따라서, 로터하우징(110)의 내주면(111)에서 수용공간(S)과 멀어지는 방향으로 연장되어 오일의 유로를 형성하는 회수부(610)에 밀린 오일이 유입될 수 있다.
회수부(610)로 유동한 오일은 상기 오일보다 후에 들어온 오일에 의해 밀려 연결부(620) 및 재공급부(630)를 순차적으로 이동하고 다시 수용공간(S)으로 재공급될 수 있다. 보다 구체적으로 재공급부(630)를 통해 수용공간(S)으로 유동한 오일은 접촉부(640)를 윤활시킬 수 있다.
따라서, 연결부(620)는 회수부(610)에 위치한 오일을 재공급부(630)로 안내할 수 있고, 재공급부(630)에 위치한 오일은 수용공간(S)으로 공급될 수 있다.
이로써, 수용공간(S)에 위치한 오일 중 적어도 일부는 로터(200)를 다시 윤활시킬 수 있다. 따라서, 연료의 연소 또는 폭발에 의해 소실되는 오일의 양이 줄어들게 되어 로터리 엔진(10)에 주기적으로 공급하는 오일의 양이 줄어들 수 있다.
한편, 리싸이클부(600)가 오일의 회수 및 오일의 재공급을 위한 수단임을 고려할 때, 리싸이클부(600)는 전술한 4행정 중 흡기행정과 대응되는 위치에 형성됨이 바람직하다.
만일, 리싸이클부(600)가 전술한 4행정 중 압축행정과 대응되는 위치에 형성되는 경우, 연소실(220)의 압력이 연소실(220)의 주변의 압력보다 높아 오일뿐만 아니라 혼합기까지 리싸이클부(600)를 유동할 수 있기 때문이다. 특히, 공기와 연료가 혼합된 혼합기가 리싸이클부(600)를 유동하는 것은 로터리 엔진(10)의 체적효율의 손실을 유발할 수 있다.
이하, 도 9를 참조하여 리싸이클부(600)의 구체적인 위치를 설명한다. 도 9는 로터리 엔진(10)의 행정을 고려한 리싸이클부(600)의 위치가 도시된 도면이다.
로터리 엔진(10)은 하우징(100)에 구비되어 연료 또는 공기가 수용공간(S)의 내부로 유동 가능하도록 수용공간(S)과 수용공간(S)의 외부를 연통시키는 흡기구 및 하우징(100)에 구비되어 수용공간(S)에 위치한 연료 또는 공기가 수용공간(S)의 외부로 유동하도록 수용공간(S)과 수용공간(S)의 외부를 연통시키는 배기구을 포함할 수 있다.
흡기구 및 배기구은 로터하우징(110) 또는 커버하우징(120, 130) 중 적어도 어느 하나에 구비되어 연료 또는 공기를 수용공간(S)과 연통시킬 수 있다.
이하에서는, 설명의 편의를 위해 제2커버하우징(130)에 흡기구(131) 및 배기구(133)이 형성된 경우를 설명한다.
흡기구(131) 및 배기구(133)은 제2커버하우징(130)의 적어도 일부를 관통하여 형성되어 수용공간(S)과 하우징(100)의 외부를 연통시킬 수 있다. 따라서, 4행정 중 흡기행정과 배기행정 중에 연료 또는 공기는 흡기구(131)을 통해 수용공간(S)으로 유입될 수 있고, 배기구(133)을 통해 수용공간(S)에서 하우징(100)의 외부로 배출될 수 있다.
흡기구(131)과 배기구(133)은 제2커버하우징(130)에 구비되되, 서로 이격되어 구비될 수 있다. 로터(200)에 의해 구획된 수용공간(S)들 간의 기밀을 유지하며, 충분한 흡기행정과 배기행정을 확보하기 위함이다.
또한, 흡기구(131)과 배기구(133)은 서로 이격되되, 점화플러그(420)와 마주보는 위치에 형성됨이 바람직하다. 로터(200)에 의해 구획된 수용공간(S) 중 점화플러그(420)가 위치한 공간은 폭발행정이 일어날 수 있기 때문이다. 따라서, 연료와 공기가 혼합된 혼합기가 수용공간(S) 내로 흡기 된 후, 충분한 유동 거리를 형성한 후에 폭발행정이 일어날 수 있다.
달리 말하면, 흡기구(131)과 배기구(133)은 회전축(300)에서 점화플러그(420)와 멀어지는 방향으로 이격되어 형성될 수 있다.
한편, 로터하우징(110)의 내주면(111)은 2개의 곡면부(예컨대, 에피트로코이드 형상을 포함하는) 및 상기 2개의 곡면부가 접하는 지점(이하, 접선으로 약칭함)을 포함할 수 있다.(도 10 참조)
2개의 접선(C1, C2)은 서로 마주보는 위치에 형성될 수 있으며, 제1곡면부(E1)는 2개의 접선(C1, C2)을 일측에서 연결하도록 구비될 수 있고, 제2곡면부(E2)는 2개의 접선(C1, C2)을 타측에서 연결하도록 구비될 수 있다.
2개의 접선 중 어느 하나(C1)는 흡기구(131)과 배기구(133) 사이에 위치할 수 있다. 달리 말하면, 흡기구(131)은 2개의 접선 중 하나(C1)에서 회전축(300)의 회전방향으로 이격된 위치에 형성될 수 있고, 배기구(133)은 2개의 접선 중 하나(C1)에서 회전축(300)의 회전방향과 반대방향으로 이격된 위치에 형성될 수 있다.
리싸이클부(600)는 흡기구(131)과 배기구(133)의 사이에 위치할 수 있다. 바람직하게, 리싸이클부(600)는 흡기구(131)과 배기구(133)의 사이에 위치하되, 배기구(133)과 이격된 위치에 구비될 수 있다. 따라서, 리싸이클부(600)는 점화플러그(420)와 마주보는 위치에 형성되어 점화플러그(420)와 이격되도록 구비될 수 있다.
다만, 보다 바람직하게 리싸이클부(600)는 흡기구(131)과 2개의 접선 중 하나(C1)의 사이에 위치할 수 있다. 여기에서 2개의 접선 중 하나(C1)란 배기구(133)에서 회전축(300)의 회전방향으로 이격되되 흡기구(131)에는 미치지 못한 접선(C1)을 의미한다.
이로써, 리싸이클부(600)는 흡기행정 중에 오일을 회수하여 재공급하므로 연료와 공기에 의해 영향을 적게 받을 수 있다. 또한, 배기구(133)과 이격되어 구비되므로 배기행정에 의한 영향을 적게 받을 수 있다.
한편, 리싸이클부(600)는 수용공간(S)에서 회수 및 재공급된 오일의 양을 충분히 확보하기 위해 복수 개로 구비될 수 있다.
도 10은 리싸이클부(600)가 복수 개로 구비된 모습이 도시된 도면이다.
도 10(a)를 참조하면, 리싸이클부(600)는 회전축(300)의 길이 방향을 따라 이격되어 복수개로 구비될 수 있다.
즉, 리싸이클부(600)는 제1리싸이클부(600a), 제2리싸이클부(600b), 제3리싸이클부(600c) 및 제4리싸이클부(600d)가 회전축(300)의 길이 방향을 따라 순차적으로 이격 배치되도록 복수 개로 구비될 수 있다.
제1리싸이클부(600a)와 제4리싸이클부(600d) 사이에는 제2리싸이클부(600b)와 제3리싸이클부(600c)가 구비될 수 있다. 달리 말하면, 제1리싸이클부(600a)는 제2리싸이클부(600b)에서 제4리싸이클부(600d)와 멀어지는 방향으로 이격되어 구비될 수 있고, 제4리싸이클부(600d)는 제3리싸이클부(600c)에서 제1리싸이클부(600a)와 멀어지는 방향으로 이격되어 구비될 수 있다.
한편, 도 10(a)에는 리싸이클부(600)가 4개로 구비된 모습이 도시되나, 이에 제한되지 않고 2개 또는 3개로 구비되거나, 4개를 초과한 개수로 구비될 수 있다.
도 10(b)는 제1리싸이클부 내지 제4리싸이클부(600a, 600b, 600c, 600d)가 회전축(300) 또는 로터(200)의 회전방향으로 이격된 모습이 도시된다.
즉, 제1리싸이클부 내지 제4리싸이클부(600a, 600b, 600c, 600d) 중 어느 하나는 제1리싸이클부 내지 제4리싸이클부(600a, 600b, 600c, 600d) 중 다른 하나에서 회전축(300)의 회전방향으로 이격되어 구비될 수 있다.
도 10(b)에 도시된 도면은 제2리싸이클부 내지 제3리싸이클부(600b, 600c)가 제1리싸이클부 및 제4리싸이클부(600a, 600d)에서 회전축(300)의 회전방향으로 이격된 모습이 도시되나, 반드시 이에 제한되지는 않는다.
예컨대, 제1리싸이클부 및 제3리싸이클부(600a, 600c)가 제2리싸이클부 및 제4리싸이클부(600b, 600d)에서 회전축(300)의 회전방향으로 이격될 수도 있다.
이로써, 리싸이클부(600)는 복수 개로 형성되어 흡기행정 중 보다 많은 오일을 수용공간(S)에서 회수하여 수용공간(S)에 다시 공급할 수 있다.
한편, 리싸이클부(600)가 수용공간(S)에 위치한 오일을 회수하여 다시 수용공간(S)에 공급하는 수단임을 고려할 때, 리싸이클부(600)의 형상은 변형되거나 일 구성을 더 포함할 수 있다.
도 11은 리싸이클부(600)의 다양한 변형예가 도시된 도면이다.
도 11(a)를 참조하면, 리싸이클부(600)는 회수부(610)에서 재공급부(630)를 향해 유동하는 오일이 역류하는 것을 방지하는 역류방지부(650)를 더 포함할 수 있다.
역류방지부(650)는 회수부(610), 연결부(620) 및 재공급부(630) 중 적어도 어느 하나에 구비되어 리싸이클부(600)를 유동하는 오일이 역류하는 것을 차단할 수 있다.
다만, 바람직하게 역류방지부(650)는 연결부(620)에 형성될 수 있다. 회수부(610) 또는 재공급부(630) 중 어느 하나에 역류방지부(650)가 구비되는 경우 유로저항을 증가시켜 오일의 원활한 유동을 저지할 수 있기 때문이다.
따라서, 역류방지부(650)는 연결부(620)의 내주면에 구비될 수 있다. 구체적으로, 역류방지부(650)는 연결부(620)의 내주면에서 연결부(620)의 연장방향을 따라 점차 폭이 작아지도록 형성될 수 있다.
달리 말하면, 역류방지부(650)는 연결부(620)의 내주면에서 연결부(620)의 연장방향을 따라 직경이 점차 작아지도록 형성될 수 있다. 또한, 역류방지부(650)의 일단은 연결부(620)의 내주면과 접촉하도록 구비되되, 상기 일단에서 연결부(620)의 연장방향을 따라 연장되어 형성되는 타단은 연결부(620)의 내주면과 이격되어 구비될 수 있다.
도 11(b)를 참조하면, 연결부(620)의 직경(D2)은 회수부(610)의 직경(D1) 또는 재공급부(630)의 직경(D3) 중 적어도 어느 하나보다 크게 형성될 수 있다.
연결부(620)의 직경(D2)이 회수부(610)의 직경(D1) 또는 재공급부(620)의 직경(D3)보다 크게 형성됨에 따라, 수용공간(S)에서 리싸이클부(600)로 유동할 수 있는 오일의 양이 증가될 수 있다.
도 10(c)를 참조하면, 연결부(620)는 연결부(620) 내부를 유동하는 오일의 양을 증가시키도록 절곡되어 형성될 수 있다.
연결부(620)는 연결부(620)의 연장 방향을 따라 적어도 1회 이상 절곡되어 형성되는 유로확장부(621)를 포함할 수 있다. 연결부(620)의 직경(D2)이 동일하게 형성되는 경우, 유로확장부(621)는 보다 많은 오일을 수용공간(S)에서 회수하여 재공급부(630)로 전달할 수 있다.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 내부에 연료가 연소되는 수용공간을 형성하는 하우징;
    상기 수용공간과 밀착된 상태를 유지하는 접촉부를 포함하여 상기 수용공간에 편심회전 가능하게 구비되며, 상기 수용공간을 구획하고 상기 연료를 이동시키거나 압축하는 로터;
    상기 하우징에 구비되며 상기 수용공간에 오일을 공급하여 상기 접촉부를 윤활시키는 오일공급부; 및
    상기 하우징에 구비되어 상기 오일공급부에서 공급된 오일을 회수하여 상기 접촉부에 재공급하는 리싸이클부;를 포함하며,
    상기 리싸이클부는,
    상기 수용공간과 연통되도록 구비되어 상기 접촉부에 의해 밀려난 오일을 회수하는 회수부;
    상기 수용공간과 연통되도록 구비되되 상기 회수부와 이격되어, 회수된 오일을 상기 접촉부에 재공급하는 재공급부; 및
    상기 회수부와 상기 재공급부를 연결시켜 회수된 오일을 상기 재공급부로 안내하는 연결부;를 포함하는 것을 특징으로 하는 로터리 엔진.
  2. 제1항에 있어서,
    상기 하우징은,
    상기 로터를 둘러싸도록 구비되는 로터하우징; 및
    상기 로터하우징에 결합되어 상기 수용공간을 밀폐시키는 커버하우징;을 포함하며,
    상기 리싸이클부는 상기 로터하우징의 내주면에 구비되는 것을 특징으로 하는 로터리 엔진.
  3. 제2항에 있어서,
    상기 커버하우징은,
    상기 로터하우징의 일측에 결합되는 제1커버하우징; 및
    상기 제1커버하우징과 이격되도록 상기 로터하우징의 타측에 결합되는 제2커버하우징;을 포함하며,
    상기 오일공급부는 상기 제1커버하우징 또는 상기 제2커버하우징 중 적어도 어느 하나에 구비되는 것을 특징으로 하는 로터리 엔진.
  4. 제3항에 있어서,
    상기 로터리 엔진은,
    상기 커버하우징에 형성되어 상기 연료가 상기 수용공간으로 유입될 수 있도록 상기 커버하우징의 외부와 상기 수용공간을 연통시키는 흡기구; 및
    상기 커버하우징에 형성되어 상기 연료가 상기 수용공간의 외부로 배출되도록 상기 수용공간과 상기 커버하우징의 외부를 연통시키며, 상기 흡기구와 이격되도록 형성되는 배기구;를 더 포함하며,
    상기 리싸이클부는 상기 흡기구와 상기 배기구의 사이에 위치하는 것을 특징으로 하는 로터리 엔진.
  5. 제4항에 있어서,
    상기 리싸이클부는 상기 배기구와 이격되어 구비되는 것을 특징으로 하는 로터리 엔진.
  6. 제4항에 있어서,
    상기 로터리 엔진은,
    상기 로터하우징에 결합되어 상기 연료를 연소시키는 점화플러그를 더 포함하며,
    상기 점화플러그는 상기 흡기구 및 상기 배기구와 마주보는 위치에 형성되는 것을 특징으로 하는 로터리 엔진.
  7. 제6항에 있어서,
    상기 리싸이클부는 상기 점화플러그와 마주보는 위치에 형성되는 것을 특징으로 하는 로터리 엔진.
  8. 제2항에 있어서,
    상기 로터리 엔진은,
    상기 로터와 결합되어 상기 로터를 회전시키며, 상기 하우징을 관통하도록 형성되는 회전축;을 더 포함하며,
    상기 회수부와 상기 재공급부는 상기 회전축의 회전 방향으로 이격되어 위치하는 것을 특징으로 하는 로터리 엔진.
  9. 제8항에 있어서,
    상기 리싸이클부는 복수 개로 구비되며,
    상기 복수 개의 리싸이클부는 각각 회전축의 길이방향을 따라 이격되어 배치되는 것을 특징으로 하는 로터리 엔진.
  10. 제9항에 있어서,
    상기 복수 개의 리싸이클부 중 어느 하나는 상기 복수 개의 리싸이클부 중 다른 하나와 회전축의 회전 방향으로 이격되어 배치되는 것을 특징으로 하는 로터리 엔진.
  11. 제2항에 있어서,
    상기 회수부와 상기 재공급부는 상기 로터하우징의 내주면에서 상기 수용공간과 멀어지는 방향으로 연장되어 형성되며,
    상기 연결부는 상기 회수부에서 상기 재공급부로 연장되어 형성되는 것을 특징으로 하는 로터리 엔진.
  12. 제11항에 있어서,
    상기 리싸이클부는,
    상기 회수부와 상기 연결부를 연결하되 절곡되어 형성되는 제1절곡부; 및
    상기 연결부와 상기 재공급부를 연결하되 절곡되어 형성되는 제2절곡부;를 더 포함하는 것을 특징으로 하는 로터리 엔진.
  13. 제11항에 있어서,
    상기 연결부의 직경은 상기 회수부 및 상기 재공급부 중 적어도 어느 하나의 직경보다 크게 형성되는 것을 특징으로 하는 로터리 엔진.
  14. 제11항에 있어서,
    상기 리싸이클부는 상기 연결부에 구비되어 상기 리싸이클부를 유동하는 오일이 상기 재공급부에서 상기 회수부로 유동하는 것을 방지하는 역류방지부;를 더 포함하는 것을 특징으로 하는 로터리 엔진.
  15. 제14항에 있어서,
    상기 역류방지부는 상기 연결부의 내주면에 구비되며 상기 연결부의 연장방향을 따라 직경이 점차 감소되는 것을 특징으로 하는 로터리 엔진.
PCT/KR2021/002643 2020-03-27 2021-03-04 로터리 엔진 WO2021194117A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200037277A KR102278847B1 (ko) 2020-03-27 2020-03-27 로터리 엔진
KR10-2020-0037277 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021194117A1 true WO2021194117A1 (ko) 2021-09-30

Family

ID=77126005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002643 WO2021194117A1 (ko) 2020-03-27 2021-03-04 로터리 엔진

Country Status (2)

Country Link
KR (1) KR102278847B1 (ko)
WO (1) WO2021194117A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062561A (ja) * 1992-06-19 1994-01-11 Mazda Motor Corp ロータリピストンエンジンの潤滑装置
KR19980084937A (ko) * 1997-05-27 1998-12-05 김영귀 연소실로 오일 유입 방지 통로를 구비한 자동차 엔진
JP2013256934A (ja) * 2012-06-13 2013-12-26 Takeshi Hatanaka ロータリー熱機関及びロータリー熱機関駆動発電装置
KR20180112604A (ko) * 2017-04-04 2018-10-12 엘지전자 주식회사 로터리 엔진
US20200040813A1 (en) * 2015-12-18 2020-02-06 Pratt & Whitney Canada Corp. Rotary engine casing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062561A (ja) * 1992-06-19 1994-01-11 Mazda Motor Corp ロータリピストンエンジンの潤滑装置
KR19980084937A (ko) * 1997-05-27 1998-12-05 김영귀 연소실로 오일 유입 방지 통로를 구비한 자동차 엔진
JP2013256934A (ja) * 2012-06-13 2013-12-26 Takeshi Hatanaka ロータリー熱機関及びロータリー熱機関駆動発電装置
US20200040813A1 (en) * 2015-12-18 2020-02-06 Pratt & Whitney Canada Corp. Rotary engine casing
KR20180112604A (ko) * 2017-04-04 2018-10-12 엘지전자 주식회사 로터리 엔진

Also Published As

Publication number Publication date
KR102278847B1 (ko) 2021-07-19

Similar Documents

Publication Publication Date Title
WO2017111311A1 (ko) 로터리 엔진
WO2021194113A1 (ko) 로터리 엔진
WO2021015439A1 (ko) 스크롤 압축기
WO2018186628A1 (en) Rotary engine
WO2021194117A1 (ko) 로터리 엔진
WO2014014182A1 (ko) 베인 로터리 압축기
WO2014123325A1 (ko) 베인 로터리 압축기
WO2015163661A1 (ko) 흡입기, 동력발생기, 흡입기와 동력발생기를 이용한 외연기관 시스템, 흡입기와 동력발생기를 이용한 내연기관 시스템, 흡입기와 동력발생기를 이용한 에어 하이브리드 동력발생 시스템.
JP2840353B2 (ja) 4ストローク放射状ピストンエンジン
WO2014196774A1 (en) Scroll compressor
WO2021040271A1 (ko) 스크롤 압축기
US5447130A (en) Thermally insulating engine
WO2021215652A1 (ko) 압축기
WO2021246712A1 (ko) 선박 이중연료엔진의 가스공급펌프
WO2022211331A1 (ko) 로터리 압축기
WO2012044051A2 (ko) 로터리 엔진 및 이를 이용한 다단 로터리 엔진
WO2019098655A1 (ko) 로터리 엔진
WO2020242230A1 (ko) 배기가스 재순환 시스템 및 이를 구비하는 선박
US11459891B2 (en) Rotary engine
WO2020017917A1 (ko) 가변 용량 사판식 압축기
WO2022103163A1 (en) Device for compressing a gaseous fluid
WO2019221400A1 (ko) 일체형 밸브 시트와 스토퍼 시트가 구비되는 압축기
WO2024181635A1 (ko) 로터리 압축기
WO2020050689A1 (ko) 액체 추진제 로켓 엔진의 추진장치
WO2022114755A1 (ko) 전기 모터 일체형 로켓 엔진 펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774233

Country of ref document: EP

Kind code of ref document: A1