WO2014014182A1 - 베인 로터리 압축기 - Google Patents

베인 로터리 압축기 Download PDF

Info

Publication number
WO2014014182A1
WO2014014182A1 PCT/KR2013/002527 KR2013002527W WO2014014182A1 WO 2014014182 A1 WO2014014182 A1 WO 2014014182A1 KR 2013002527 W KR2013002527 W KR 2013002527W WO 2014014182 A1 WO2014014182 A1 WO 2014014182A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
rotor
oil
rotary compressor
vane rotary
Prior art date
Application number
PCT/KR2013/002527
Other languages
English (en)
French (fr)
Inventor
곽정명
홍선주
임권수
신인철
Original Assignee
한라비스테온공조 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한라비스테온공조 주식회사 filed Critical 한라비스테온공조 주식회사
Publication of WO2014014182A1 publication Critical patent/WO2014014182A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/40Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member
    • F04C18/44Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing

Definitions

  • the present invention relates to a vane rotary compressor in which a fluid such as a refrigerant is compressed while the volume of the compression chamber is reduced during rotation of the rotor. More specifically, the space between the cylinder and the housing is divided into a high pressure chamber through which high pressure refrigerant is discharged, and a refrigerant. It relates to a vane rotary compressor configured by dividing into an oil storage compartment in which the contained oil is stored separately.
  • the vane rotary compressor is used in an air conditioner and the like and compresses a fluid such as a refrigerant and supplies it to the outside.
  • FIG. 1 is a cross-sectional view schematically showing a conventional vane rotary compressor disclosed in Japanese Patent Laid-Open No. 2010-31759 (2010.02.12), and FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
  • the vane rotary compressor 10 As shown in FIG. 1, the vane rotary compressor 10 according to the related art has a housing H composed of a rear housing 11 and a front housing 12, and has a cylindrical shape inside the rear housing 11.
  • the cylinder 13 of is accommodated.
  • the inner peripheral surface of the cylinder 13 has an elliptical cross-sectional shape as shown in FIG.
  • the front cover 14 is coupled to the front of the cylinder 13
  • the rear cover 15 is coupled to the rear of the cylinder 13.
  • a discharge space Da is formed between the outer circumferential surface of the cylinder 13 and the inner circumferential surface of the rear housing 11 facing the cylinder 13, the front cover 14, and the rear cover 15.
  • the rotating shaft 17 is rotatably installed through the cylinder 13 at the front cover 14 and the rear cover 15.
  • a cylindrical rotor 18 is coupled to the rotary shaft 17 to rotate in the cylinder 13 together with the rotary shaft 17 when the rotary shaft 17 rotates.
  • the compression chamber 21 which consists of the opposing surface 15a of the rear cover 15 is formed in several divisions.
  • a stroke in which the volume of the compression chamber 21 is enlarged in accordance with the rotational direction of the rotor 18 is a suction stroke
  • a stroke in which the volume of the compression chamber 21 is reduced is a compression stroke
  • a suction port 24 is formed at an upper portion of the front housing 12, and a suction space Sa communicating with the suction port 24 is formed inside the front housing 12. Is formed.
  • the front cover 14 is provided with a suction port 14b communicating with the suction space Sa, and a suction passage 13b communicating with the suction port 14b is formed through the axial direction of the cylinder 13.
  • the discharge chamber 13d recessed inward is formed on both sides of the outer circumferential surface of the cylinder 13.
  • the pair of discharge chambers 13d communicate with the compression chamber 21 by the discharge holes 13a and form part of the discharge space Da.
  • the rear housing 11 is formed with a high pressure chamber 30 which is partitioned by the rear cover 15 and into which the compressed refrigerant flows. That is, the inside of the rear housing 11 is partitioned into the discharge space Da and the high pressure chamber 30 by the rear cover 15. At this time, the discharge port 15e communicating with the high pressure chamber 30 is formed in any one of the pair of discharge chambers 13d.
  • the refrigerant compressed according to the volume reduction of the compression chamber 21 is discharged into the discharge chamber 13d through the discharge hole 13a, flows into the high pressure chamber 30 through the discharge port 15e, and discharge port 31 It is supplied to outside through).
  • the high pressure chamber 30 is provided with an oil separator 40 for separating the lubricating oil from the compressed refrigerant introduced into the high pressure chamber (30).
  • the oil separation pipe 43 is installed on the upper portion of the case 41, the oil separation chamber 42 in which the separated oil falls is formed in the lower portion of the oil separation pipe 43.
  • the oil of the oil separation chamber 42 flows down to the oil storage chamber 32 formed under the high pressure chamber 30 through the oil passage 41b.
  • the oil stored in the oil storage chamber 32 lubricates the sliding surfaces of the rear cover 15 and the rotor 18 through the lubrication space of the bush supporting the rear end of the rotary shaft 17 through the oil supply passage 15d. Done. Thereafter, the oil flows back into the discharge port 15e through the oil return groove 45 by the pressure difference between the discharge space Da and the high pressure chamber 30.
  • the present invention has been made to solve the above problems, an embodiment of the present invention, a cylinder, a housing in which the cylinder portion for accommodating the cylinder and the first head portion for closing one side of the cylinder portion is integrally formed; And a two-piece vane rotary compressor comprising a second head portion closing the other side of the cylinder portion.
  • the vane rotary compressor is formed in the space between the inner circumferential surface of the cylinder and the outer circumferential surface of the cylinder, the high pressure chamber for discharging the high-pressure refrigerant, and the oil storage chamber for separating and storing the oil contained in the refrigerant;
  • one embodiment of the present invention relates to a vane rotary compressor in which a decompression structure is formed using a gap between the rotor and the head.
  • a hollow cylinder A housing in which a cylinder portion is formed so that the cylinder is installed, and a first head portion integrally closing one side of the cylinder portion in an axial direction; A second head portion closing the other axial side of the cylinder portion; A rotor installed in the cylinder and rotating by receiving power from a driving source; A plurality of vanes which emerge from the outer circumferential surface of the rotor in the direction of the inner circumferential surface of the cylinder and partition the hollow of the cylinder into a plurality of compression chambers; A high pressure chamber formed at one side of the housing, in which a high pressure refrigerant compressed in the compression chamber is discharged, and a discharge hole communicating with the discharge port is formed; And an oil storage chamber formed on the other side of the housing and storing oil separated by an oil separation pipe provided in the discharge port.
  • the high pressure chamber includes a muffler space protruding on one side of the outer peripheral surface of the cylinder portion, and the discharge hole is formed on one side of the muffler space.
  • the oil storage chamber is formed to protrude radially on the outer peripheral surface of the housing.
  • the oil induction hole is formed extending from one side of the oil storage chamber to one side of the mounting groove in which the rear end of the rotary shaft of the rotor is mounted.
  • the first expansion groove is formed along the edge of the mounting groove.
  • the second expansion groove may extend in the form of an involute curve from one side of the first expansion groove to the radially outer side.
  • the rotor also has a plurality of oil passages formed therethrough in the axial direction so as to communicate with the second expansion grooves, and the second expansion grooves are formed at positions corresponding to the oil passages.
  • the expansion groove is formed along the edge of the insertion hole into which the front end of the rotary shaft is inserted so as to communicate with the oil flow path.
  • At least one second expansion groove may be formed along the circumferential direction to be spaced radially outward from the first expansion groove.
  • the second expansion groove is formed in an arc shape corresponding to the region between the suction hole and the discharge port formed on one side of the cylinder in the compression rotation direction of the rotor.
  • the rotor also has a plurality of oil passages formed therethrough in the axial direction so as to communicate with the second expansion grooves, and the second expansion grooves are formed at positions corresponding to the oil passages.
  • the expansion groove is formed along the edge of the insertion hole into which the front end of the rotary shaft is inserted so as to communicate with the oil flow path.
  • one end of the vane is hinged to one side of the outer circumferential surface of the rotor, and the other end contacts the inner circumferential surface of the cylinder as the rotor rotates.
  • the hollow inner peripheral surface of the cylinder may be made in the form of an involute curve along the circumferential direction.
  • FIG. 1 is a cross-sectional view schematically showing a conventional vane rotary compressor.
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
  • FIG 3 is a perspective view of a vane rotary compressor according to an embodiment of the present invention.
  • Figure 4 is a longitudinal cross-sectional view of the vane rotary compressor according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a housing according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a cylinder and a rotor mounted on the housing of FIG. 5;
  • FIG. 7 is a cross-sectional view schematically showing the coupling of the cylinder and the rotor according to another embodiment of the present invention.
  • FIG. 8 is a perspective view of a second head unit according to an embodiment of the present invention.
  • FIG. 9 is a perspective view of the vane rotary compressor according to an embodiment of the present invention viewed from the rear;
  • FIG. 10 is a partially enlarged view showing an oil pressure reducing structure according to an embodiment of the present invention.
  • 11 to 14 are schematic views showing various examples of the second expansion groove formed in the second head portion.
  • a vane rotary compressor forms a three-piece structure by a cylinder, a housing in which one side is opened to accommodate the cylinder, and a second head part covering and closing the opening of the housing.
  • the housing includes a cylinder part in which a space part is formed to accommodate the cylinder, and a first head part integrally formed on one side of the cylinder part to close one side of the space part of the cylinder part.
  • the housing according to the embodiment of the present invention is the front head portion And the cylinder portion may be formed integrally, or the rear head portion and the cylinder portion may be formed integrally.
  • the embodiment of the present invention shown in Figs. 3 to 10 shows an example in which the front head portion (in the embodiment below, 'first head portion') and the cylinder portion integrally form a housing, Therefore, it is a matter of course that the rear head portion (in the embodiment below, the 'second head portion') and the cylinder portion may form a housing integrally.
  • FIG 3 is a perspective view of a vane rotary compressor according to an embodiment of the present invention
  • Figure 4 is a longitudinal cross-sectional view of the vane rotary compressor according to an embodiment of the present invention.
  • the vane rotary compressor 100 according to an embodiment of the present invention, the combination of the housing 300 and the second head portion 400 of the vane rotary compressor 100
  • the overall appearance is formed.
  • the housing 300 is formed integrally with the cylinder portion 310 in which the space portion 311 is formed, and the cylinder portion 310 in front of the cylinder portion 310 in the axial direction. It includes a first head portion 320 for closing the front of the, the space portion 311 is equipped with a hollow cylinder 200.
  • a plurality of vanes 600 are mounted on the outer circumferential surface of the vanes 600.
  • the second head portion 400 is coupled to the axial rear of the housing 300 to close the rear of the space 311.
  • the outer peripheral surface of the first head portion 320 of the housing 300, the suction port 330 for sucking the refrigerant from the outside, and the discharge port 340 for discharging the high-pressure refrigerant compressed in the cylinder 200 to the outside Are spaced apart from each other in the circumferential direction.
  • the pulley coupling portion 910 is extended to the front center of the first head portion 320 so that the pulley 900 of the electronic clutch (not shown) is coupled.
  • Figure 5 is a perspective view of the housing according to the embodiment of the present invention from the rear.
  • the housing 300 As shown in Figure 5, the housing 300 according to an embodiment of the present invention, the cylinder portion 310 of the cylindrical form formed with a space portion 311 therein to accommodate the cylinder 200, the cylinder portion A first head 320 is formed integrally at the front of the 310 to close the front of the space 311.
  • the insertion hole 321 through which the front end of the rotary shaft 530 is inserted is formed in the center of the first head portion 320, the suction port 330 and the inner side of the first head portion 320
  • the suction groove 323 is formed to extend a predetermined angle in the circumferential direction (C).
  • an expansion groove 322 is formed on the inner surface of the first head portion 320 at a predetermined angle along the edge of the insertion hole 321, which is for lubrication of the rotating shaft 530, which will be described later. Shall be.
  • the muffler space 710 is protruded from one side of the outer peripheral surface of the cylinder portion 310, the discharge hole 711 is formed in communication with the discharge port 340 on one side of the muffler space 710.
  • the refrigerant compressed to high pressure in the compression chamber 210 to be described later flows in the direction of the discharge port 340 through the discharge hole 711 after the pulsation and noise is reduced while entering the muffler space 710. .
  • the first oil storage chamber 810 is formed to protrude to the outside, the oil separation pipe 350, 6 in the discharge port 340 in the first oil storage chamber 810 Oil separated in) is introduced and stored.
  • FIG. 6 is a cross-sectional view illustrating a cylinder and a rotor mounted on the housing of FIG. 5.
  • the thick arrows shown in FIG. 6 indicate the intake and discharge directions of the refrigerant
  • the solid arrows indicate the rotational direction of the rotating shaft
  • the dashed-dotted arrows indicate the flow of the refrigerant compressed at high pressure
  • the dotted arrows It shows the flow of refrigerant through which the oil is separated as it passes through the oil pipe.
  • the hollow of the cylinder 200 is slightly eccentrically formed to one side from the center of the cylinder 200 in which the rotating shaft 530 is installed.
  • the rotor 500 having the vanes 600 is inserted into the hollow of the cylinder 200, so that the hollow of the cylinder 200 forms a compressed space in which the introduced refrigerant is compressed by the rotation of the rotor 500.
  • the suction hole 220 is formed at one side of the cylinder 200.
  • one side of the suction hole 220 is in communication with the suction groove 323 of the first head portion 320, the other side is in communication with one side of the compression space in the cylinder (200).
  • the refrigerant sucked through the suction port 330 from the outside passes through the suction groove 323 of the first head part 320 and the suction hole 220 of the cylinder 200 in order to provide a compression space of the cylinder 200. It goes into the hollow.
  • the rotor 500 is coupled to a rotation shaft 530 connected to a driving motor (not shown) or a clutch (not shown) driven by an engine belt (not shown) to rotate along with the rotation shaft 530.
  • a plurality of oil passages 510 are formed in the rotor 500 in the axial direction.
  • the rotating shaft 530 is mounted along the central axis of the cylinder 200. Therefore, the rotor 500 is slightly deviated to one side from the center of the hollow of the cylinder 200, and is eccentrically rotated in the hollow of the cylinder 200.
  • vanes 600 having a cantilever shape are spaced apart from each other, and a plurality of hinges are coupled to each other.
  • one side of the vane 600 is hinged to the outer peripheral surface slot 520 of the rotor 500, the other end of the vane 600 when the rotor 500 rotates in the direction of the inner peripheral surface of the cylinder 200 by the pressure of the refrigerant Unfolded to partition the compression space into a plurality of compression chamber (210).
  • each compression chamber 210 is formed by a space formed by a pair of adjacent vanes 600, the outer circumferential surface of the rotor 500, and the inner circumferential surface of the cylinder 200, wherein the compression chamber 210 is The front end is sealed by the first head part 320 and the rear end of the compression chamber 210 by the second head part 400.
  • the gap between the outer peripheral surface of the rotor 500 and the hollow inner wall is gradually narrowed, the volume of the compression chamber 210 is reduced, trapped in the compression chamber 210 The refrigerant is compressed.
  • a discharge part 720 through which the compressed high-pressure refrigerant is discharged is recessed.
  • a plurality of discharge ports 721 communicating with the compression chamber 210 are formed through one side of the discharge part 720, and a guide for guiding the high pressure refrigerant toward the discharge port 340 on the other side of the discharge part 720.
  • the flow path 730 is formed.
  • the muffler space 710 formed in the cylinder portion 310 of the housing 300 described above is positioned to correspond to one side of the guide flow path 730.
  • the high-pressure refrigerant discharged to the discharge unit 720 through the discharge port 721 enters the muffler space 710 along the guide flow path 730 and then toward the discharge port 340 through the discharge hole 711. Will flow.
  • the high pressure refrigerant passing through the discharge hole 711 is rotated along the outer circumferential surface of the oil separation pipe 350, and the oil contained in the refrigerant is separated into the lower portion of the oil separation pipe 350.
  • the separated oil flows and is stored in the first oil storage chamber 810 formed in the cylinder part 310 of the housing 300.
  • the other side of the outer circumferential surface of the cylinder 200 is recessed in a predetermined shape, and a second oil storage chamber 820 communicating with the first oil storage chamber 810 is formed below the first oil storage chamber 810.
  • the discharge part 720, the guide flow path 730, and the muffler space 710 form a high pressure chamber 700 in which a high pressure refrigerant flows in the vane rotary compressor 100.
  • the high pressure chamber 700 is formed at one side of the space between the cylinder portion 310 and the cylinder 200.
  • oil storage chamber 800 including the first oil storage chamber 810 and the second oil storage chamber 820 is formed at the other side of the space between the cylinder portion 310 and the cylinder 200.
  • the high pressure chamber 700 and the oil storage chamber 800 are divided by the contact surface 230 in which the outer circumferential surface of the cylinder 200 and the inner circumferential surface of the cylinder portion 310 are in close contact.
  • the oil storage chamber 800 which is formed in the rear head, is formed in the cylinder part 310 of the housing 300 together with the high pressure chamber 700. .
  • the package of the vane rotary compressor 100 according to an embodiment of the present invention can be compactly configured.
  • the upper space between the cylinder portion 310 and the cylinder 200 of the housing 300 is utilized as the high pressure chamber 700, and the lower space between the cylinder portion 310 and the cylinder 200 is the oil storage chamber 800. Is utilized.
  • FIG. 7 is a cross-sectional view schematically showing the coupling of the cylinder and the rotor according to another embodiment of the present invention.
  • the hollow inner circumferential surface of the cylinder 200 ′ may have an involute curve shape.
  • the rotor 500 is installed in the hollow of the cylinder 200 'such that the inner circumferential surface of the cylinder 200' and the outer circumferential surface of the rotor 500 are concentric in cross section. That is, the involute curve drawn along the inner circumferential surface of the cylinder 200 ′ has the center of the starting point and the ending point coinciding with the center of the rotor 500, thus reducing vibration and noise due to the eccentric arrangement of the rotor 500. You can.
  • the inner circumferential surface of the cylinder 200 ' is formed in an involute curve shape in which the diameter gradually decreases from the suction hole 220 toward the discharge port 721.
  • the gap between the inner circumferential surface of the cylinder 200 'and the outer circumferential surface of the rotor 500 is narrowed, so that the compression chamber 210 is formed between the vanes 600.
  • the volume gradually decreases, resulting in compression of the refrigerant.
  • FIG 8 is a perspective view of a second head unit according to an embodiment of the present invention
  • Figure 9 is a perspective view of the vane rotary compressor according to an embodiment of the present invention viewed from the rear.
  • the second head portion 400 is coupled to the rear of the housing 300 to close the rear of the space portion 311 at the axial rear of the cylinder portion 310.
  • the shaft accommodating part 420 protrudes outward from the center of the outer side surface of the second head part 400.
  • a mounting groove 410 corresponding to the shaft accommodating part 420 is formed at the center of the inner side of the second head part 400, and the rotating shaft 530 is formed in the mounting groove 410. The rear end of) is inserted and mounted.
  • the first expansion groove 430 is formed along the edge of the mounting groove 410, and the second expansion groove 440 is spaced radially outward from the first expansion groove 430, the circumferential direction (C) Formed accordingly.
  • the second expansion groove 440 is a compression region between the suction hole 220 and the discharge port 721 formed on one side of the cylinder 200 along the compression rotation direction of the rotor 500, and among them, the compression chamber 210. It is preferable to be formed in an arc shape corresponding to the region in which the intermediate pressure is formed.
  • the term “medium pressure” refers to the pressure of the compression chamber 210 in which the refrigerant is introduced through the suction hole 220 and the compression starts among the plurality of compression chambers 210, and the compression stroke is completed, so that the refrigerant is discharged. Refers to an intermediate pressure of the pressure of the compression chamber 210 discharged through the 721.
  • the first expansion groove 430 and the second expansion groove 440 is for depressurizing the oil made on the sliding surface of the rotor 500 and the second head portion 400, which will be described later.
  • the oil stored in the oil storage chamber 800 is to flow to the shaft receiving portion 420, for this purpose one side is in communication with the oil storage chamber 800 and the other side is in communication with the mounting groove 410 of the shaft receiving portion 420.
  • the oil guide hole 421 is formed on one side of the inner surface of the second head portion 400.
  • FIG. 10 is a partially enlarged view showing an oil pressure reducing structure according to an embodiment of the present invention, the arrow indicated by the dashed line indicates the flow direction of the oil.
  • the oil stored in the oil storage chamber 800 flows through the oil induction hole 421 to the mounting groove 410 of the shaft accommodating part 420 to lubricate the rear end of the rotary shaft 530, and the outer circumferential surface of the rotary shaft 530. Flows forward along.
  • the oil is primarily depressurized by a gap formed between the outer circumferential surface of the rotary shaft 530 and the inner circumferential surface of the mounting groove 410 and expands while being introduced into the first expansion groove 430.
  • the oil introduced into the first expansion groove 430 may lubricate the sliding surfaces of the rotor 500 and the second head part 400 while spreading radially outward by the rotation of the rotor 500.
  • the oil is secondary pressure reduced by the gap between the rotor 500 and the second head part 400, expands again while flowing into the second expansion groove 440, and then spreads to the outside of the rotor 500.
  • the third pressure is reduced in the sliding surface of the second head portion 400.
  • Oil for lubricating the sliding surface of the rotor 500 and the second head portion 400 is in communication with the second expansion groove 440 and the oil flow path 510, through the oil flow path 510 of the rotor 500 By moving forward, the sliding surfaces of the rotor 500 and the first head part 320 are lubricated.
  • the oil flows into the insertion hole 321 through the expansion groove 322 in communication with the oil passage 510 to lubricate the front end of the rotary shaft 530.
  • the oil is depressurized again by the gap between the outer circumferential surface of the front end of the rotary shaft 530 and the inner circumferential surface of the insertion hole 321, and then is sucked into the compression chamber 210 together with the refrigerant to undergo the above-described process again.
  • the vacuum decompression passage of the oil is configured in multiple stages through the gap between the rotor 500 and the second head part 400 and the expansion grooves 430 and 440.
  • 11 to 14 are schematic views showing various examples of the second expansion groove formed in the second head portion.
  • a plurality of second expansion grooves 440 may be formed in the circumferential direction to locally concentrate lubrication of a desired area on the sliding surfaces of the rotor 500 and the second head part 400. It would be.
  • the example shown in Figure 12 is configured so that the oil can be discharged under reduced pressure over both the suction stroke and the compression stroke.
  • connection groove 450 further connecting the first expansion groove 430 and the second expansion groove 440 in a radial direction is further formed. An example is shown.
  • FIG. 14 illustrates an example in which the second expansion groove 440 extends outwardly in the form of an involute curve in the first expansion groove 430. As it is continuously formed radially outwardly there is an advantage that the decompression effect is increased.
  • the entire housing is composed of a three-piece structure of the cylinder, the housing, and the second head portion, it is possible to reduce the cost of parts and to reduce the weight of the vehicle. .
  • the compressor can be miniaturized according to the reduction of the overall package length. Do.
  • the pressure reducing passage is formed using the gap between the sliding surface of the rotor and the head and the expansion groove of the head portion, there is no need for complicated processing for forming the pressure reducing passage as in the prior art, thereby reducing the manufacturing cost.

Abstract

본 발명은 로터 회전시 압축실의 체적이 감소되면서 냉매 등의 유체가 압축되는 베인 로터리 압축기에 관한 것으로, 본 발명의 일실시예는, 실린더와 하우징 사이의 공간을, 고압의 냉매가 토출되는 고압실과, 냉매에 포함된 오일이 분리 저장되는 오일저장실로 구분하여 구성하고, 로터와 헤드부 사이의 갭을 이용하여 오일의 감압구조를 적용한 베인 로터리 압축기에 관한 것이다.

Description

베인 로터리 압축기
본 발명은 로터 회전시 압축실의 체적이 감소되면서 냉매 등의 유체가 압축되는 베인 로터리 압축기에 관한 것으로, 더욱 상세하게는 실린더와 하우징 사이의 공간을, 고압의 냉매가 토출되는 고압실과, 냉매에 포함된 오일이 분리 저장되는 오일저장실로 구분하여 구성한 베인 로터리 압축기에 관한 것이다.
베인 로터리 압축기는 공기조화기 등에 사용되며, 냉매 등의 유체를 압축하여 외부로 공급한다.
도 1은 일본공개특허 제2010-31759호(2010.02.12)에 개시된 종래의 베인 로터리 압축기를 개략적으로 도시한 단면도이고, 도 2는 도 1의 A-A선 단면도이다.
도 1에 도시한 바와 같이, 종래의 베인 로터리 압축기(10)는 리어 하우징(11)과 프론트 하우징(12)으로 구성되는 하우징(H)이 외관을 이루며, 리어 하우징(11)의 내부에는 원통 형상의 실린더(13)가 수용된다.
이때, 실린더(13)의 내주면은 도 2에 도시된 바와 같이 타원 단면 형상으로 이루어진다.
또한, 리어 하우징(11)의 내부에 있어서, 실린더(13)의 전방에는 프론트 커버(14)가 결합되고, 실린더(13)의 후방에는 리어 커버(15)가 결합된다.
이때, 실린더(13)의 외주면과, 이와 대향하는 리어 하우징(11)의 내주면, 프론트 커버(14), 및 리어 커버(15) 사이에 토출공간(Da)이 형성된다.
프론트 커버(14) 및 리어 커버(15)에는 회전축(17)이 실린더(13)를 관통하여 회전 가능하게 설치된다.
또한, 회전축(17)에는 원통 형상의 로터(18)가 결합되어 회전축(17)의 회전시 회전축(17)과 함께 실린더(13) 내에서 회전하게 된다.
이때, 도 2에 도시된 바와 같이, 로터(18)의 외주면에는 방사상으로 다수의 슬롯(18a)이 형성되고, 각각의 슬롯(18a)에는 베인(20)이 슬라이드 이동 가능하게 수용되며, 슬롯(18a) 내에는 윤활유가 공급된다.
회전축(17)의 회전에 의해 로터(18)가 회전하게 되면, 베인(20)의 선단부가 슬롯(18a)의 외측으로 돌출되어 실린더(13)의 내주면에 밀착된다.
이때, 로터(18)의 외주면과, 실린더(13)의 내주면, 및 서로 인접하는 한 쌍의 베인(20)과, 실린더(13)와 대향하는 프론트 커버(14)의 대향면(14a), 및 리어 커버(15)의 대향면(15a)으로 이루어지는 압축실(21)이 복수 개 구획 형성된다.
여기서, 베인 로터리 압축기의 경우, 로터(18)의 회전방향에 따라 압축실(21)의 체적이 확대되는 행정이 흡입행정이며, 압축실(21)의 체적이 감소되는 행정이 압축행정이 된다.
또한, 도 1에 도시된 바와 같이, 프론트 하우징(12)의 상부에는 흡입포트(24)가 형성되고, 이 흡입포트(24)와 연통되는 흡입공간(Sa)이 프론트 하우징(12)의 내부에 형성된다.
그리고, 프론트 커버(14)에는 흡입공간(Sa)과 연통되는 흡입구(14b)가 형성되며, 흡입구(14b)와 연통하는 흡입통로(13b)가 실린더(13)의 축방향으로 관통 형성된다.
아울러, 도 2에 도시된 바와 같이, 실린더(13)의 외주면 양측에는 내측으로 함몰된 토출실(13d)이 형성된다.
이때, 이들 한 쌍의 토출실(13d)은 토출공(13a)에 의해 압축실(21)과 연통되며, 토출공간(Da)의 일부를 형성한다.
또한, 리어 하우징(11)에는 리어 커버(15)에 의해 구획되며 압축된 냉매가 유입되는 고압실(30)이 형성된다. 즉, 리어 하우징(11)의 내부는 리어 커버(15)에 의해 토출공간(Da)과 고압실(30)로 구획된다. 이때, 한 쌍의 토출실(13d) 중 어느 하나에는 고압실(30)과 연통되는 토출구(15e)가 형성된다.
따라서, 회전축(17) 회전시 로터(18)와 베인(20)이 회전하면, 냉매가 흡입공간(Sa)으로부터 흡입구(14b) 및 흡입통로(13b)를 거쳐 각각의 압축실(21)로 흡입된다.
이후, 압축실(21)의 체적감소에 따라 압축된 냉매는 토출공(13a)을 통해 토출실(13d)로 토출되어 토출구(15e)를 통해 고압실(30)로 유입되고, 배출포트(31)를 통해 외부로 공급된다.
한편, 고압실(30)에는 고압실(30)로 유입된 압축냉매에서 윤활유를 분리하기 위한 유분리기(40)가 구비된다.
이때, 케이스(41)의 상부에 유분리 파이프(43)가 설치되고, 유분리 파이프(43)의 하부에는 분리된 오일이 떨어지는 유분리실(42)이 형성된다.
이때, 유분리실(42)의 오일은 오일통로(41b)를 통해 고압실(30) 하부에 형성되는 오일저장실(32)로 흘러내리게 된다.
오일저장실(32)에 저장된 오일은 오일공급통로(15d)를 통해 회전축(17)의 후단을 지지하는 부시(bush)의 윤활공간을 거쳐 리어 커버(15)와 로터(18)의 습동면을 윤활하게 된다. 이후, 토출공간(Da)과 고압실(30)의 압력차에 의해 오일리턴홈(45)을 통해 오일이 다시 토출구(15e)로 유입된다.
그런데, 종래의 베인 로터리 압축기와 같이 리어 하우징(11), 프론트 하우징(12), 실린더(3), 프론트 커버(14) 및 리어 커버(15) 등 하우징의 개수가 많아지면, 제작 공수의 증대를 초래할 뿐만 아니라 각 하우징 사이 결합부위를 실링(sealing)해야 하므로, 실링 관리가 어렵고 비용 증가가 뒤따르게 된다.
또한, 리어 하우징(11)에 오일저장실(32)이 형성됨에 따라 전체 패키지의 전장이 증가하는 문제가 있으며, 냉매에서 분리된 오일이 회전축(17) 후단에서 토출구(15e)에 이르기까지 감압구조가 복잡하여 가공공수 증가에 따른 비용 상승의 문제가 있다.
본 발명은 상술한 바와 같은 문제를 해결하기 위해 안출된 것으로, 본 발명의 일실시예는, 실린더, 실린더를 수용하는 실린더부와 상기 실린더부의 일측을 폐쇄하는 제1헤드부가 일체로 형성되는 하우징, 및 상기 실린더부의 타측을 폐쇄하는 제2헤드부를 포함하는 3 피스(piece) 구조의 베인 로터리 압축기와 관련된다.
또한, 본 발명의 일실시예는, 실린더부의 내주면과 실린더의 외주면 사이 공간에, 고압의 냉매가 토출되는 고압실과, 냉매에 포함된 오일이 분리 저장되는 오일저장실이 각각 분리 형성되는 베인 로터리 압축기와 관련된다.
아울러, 본 발명의 일실시예는, 로터와 헤드부 사이의 갭(gap)을 이용하여 감압구조가 형성되는 베인 로터리 압축기와 관련된다.
본 발명의 바람직한 일실시예에 의하면, 중공 형상의 실린더; 실린더가 설치되도록 공간부가 형성되는 실린더부와, 실린더부의 축방향 일측을 폐쇄하는 제1헤드부가 일체로 형성되는 하우징; 실린더부의 축방향 타측을 폐쇄하는 제2헤드부; 실린더 내에 설치되며 구동원의 동력을 전달받아 회전하는 로터; 로터의 외주면으로부터 실린더의 내주면 방향으로 출몰하며 실린더의 중공을 복수의 압축실로 구획하는 복수의 베인; 하우징의 일측에 형성되고, 압축실에서 압축된 고압의 냉매가 토출되며, 토출포트로 연통되는 토출공이 형성되는 고압실; 및 하우징의 타측에 형성되고, 토출포트에 구비되는 유분리 파이프에 의해 유분리된 오일을 저장하는 오일저장실을 포함하는 베인 로터리 압축기가 제공된다.
여기서, 고압실은, 실린더부의 외주면 일측에 돌출 형성되는 머플러 공간을 포함하며, 토출공은 머플러 공간의 일측에 형성된다.
또한, 오일저장실은, 하우징의 외주면에 반경방향으로 돌출 형성된다.
이때, 오일저장실의 일측으로부터 로터의 회전 샤프트 후단이 장착되는 장착홈의 일측으로 오일유도홀이 연장 형성된다.
또한, 장착홈의 테두리를 따라 제1팽창홈이 형성된다.
이때, 제1팽창홈의 일측으로부터 반경방향 외측으로 제2팽창홈이 인벌류트 곡선의 형태로 연장 형성될 수 있다.
또한, 로터에는 제2팽창홈과 연통하도록 복수의 오일유로가 축방향으로 관통 형성되고, 제2팽창홈은 오일유로와 대응되는 위치에 형성된다.
이때, 오일유로와 연통하도록, 회전 샤프트의 전단이 삽입되는 삽입홀의 테두리를 따라 확장홈이 형성된다.
한편, 제1팽창홈으로부터 반경방향 외측으로 이격하여 적어도 하나 이상의 제2팽창홈이 원주방향을 따라 형성될 수 있다.
이때, 제2팽창홈은, 로터의 압축 회전방향으로, 실린더의 일측에 형성되는 흡입홀과 토출구 사이 영역에 대응하여 원호 형태로 형성된다.
또한, 로터에는 제2팽창홈과 연통하도록 복수의 오일유로가 축방향으로 관통 형성되고, 제2팽창홈은 오일유로와 대응되는 위치에 형성된다.
이때, 오일유로와 연통하도록, 회전 샤프트의 전단이 삽입되는 삽입홀의 테두리를 따라 확장홈이 형성된다.
또한, 베인은, 로터의 외주면 일측에 일단이 힌지 결합되고, 로터의 회전에 따라 타단이 실린더의 내주면에 접촉된다.
이때, 실린더의 중공 내주면이 원주방향을 따라 인벌류트 곡선 형태로 이루어질 수 있다.
도 1은 종래의 베인 로터리 압축기를 개략적으로 도시한 단면도.
도 2는 도 1의 A-A선 단면도.
도 3은 본 발명의 일실시예에 따른 베인 로터리 압축기의 사시도.
도 4는 본 발명의 일실시예에 따른 베인 로터리 압축기의 길이방향 단면도.
도 5는 본 발명의 일실시예에 따른 하우징의 사시도.
도 6은 도 5의 하우징에 실린더와 로터가 장착된 모습을 보인 단면도.
도 7은 본 발명의 다른 실시예에 따른 실린더와 로터의 결합을 개략적으로 도시한 단면도.
도 8은 본 발명의 일실시예에 따른 제2헤드부의 사시도.
도 9는 본 발명의 일실시예에 따른 베인 로터리 압축기를 후방에서 바라본 사시도.
도 10은 본 발명의 일실시예에 따른 오일 감압구조를 보인 부분 확대도.
도 11 내지 도 14는 제2헤드부에 형성되는 제2팽창홈의 다양한 예를 보인 개략도.
이하, 본 발명의 일실시예에 따른 베인 로터리 압축기의 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 하여 내려져야 할 것이다.
아울러, 아래의 실시예는 본 발명의 권리범위를 한정하는 것이 아니라 본 발명의 청구범위에 제시된 구성요소의 예시적인 사항에 불과하며, 본 발명의 명세서 전반에 걸친 기술사상에 포함되고 청구범위의 구성요소에서 균등물로서 치환 가능한 구성요소를 포함하는 실시예는 본 발명의 권리범위에 포함될 수 있다.
실시예
본 발명의 일실시예에 따른 베인 로터리 압축기는, 실린더와, 실린더가 수용되도록 일측이 개방된 하우징과, 하우징의 개방부를 덮어서 폐쇄하는 제2헤드부에 의해 3피스 구조를 형성한다.
여기서, 하우징은, 실린더가 수용되도록 내부에 공간부가 형성되는 실린더부와, 실린더부의 공간부 일측을 폐쇄하도록 실린더부의 일측에 일체로 형성되는 제1헤드부를 포함한다.
이때, 실린더부의 공간부를 전방에서 폐쇄하는 헤드부를 '프론트 헤드부'라 하고, 실린더부의 공간부를 후방에서 폐쇄하는 헤드부를 '리어 헤드부'라고 하면, 본 발명의 실시예에 따른 하우징은 프론트 헤드부와 실린더부가 일체로 형성될 수도 있고, 리어 헤드부와 실린더부가 일체로 형성되는 것도 가능하다.
따라서, 도 3 내지 도 10에 도시된 본 발명의 실시예는, 프론트 헤드부(아래 실시예에서, '제1헤드부')와 실린더부가 일체로 하우징을 형성하는 예를 도시하고 있으나, 필요에 따라 리어 헤드부(아래 실시예에서, '제2헤드부')와 실린더부가 일체로 하우징을 형성할 수 있음은 물론이다.
이하, 도 3 내지 도 10에 도시된 실시예를 참고하여 본 발명을 상세히 설명하기로 한다.
도 3은 본 발명의 일실시예에 따른 베인 로터리 압축기의 사시도이고, 도 4는 본 발명의 일실시예에 따른 베인 로터리 압축기의 길이방향 단면도이다.
도 3과 도 4에 도시된 바와 같이, 본 발명의 일실시예에 따른 베인 로터리 압축기(100)는, 하우징(300)과 제2헤드부(400)의 결합에 의해 베인 로터리 압축기(100)의 전체적인 외관이 형성된다.
그리고, 하우징(300)은, 내부에 공간부(311)가 형성되는 실린더부(310)와, 실린더부(310)의 축방향 전방에서 실린더부(310)와 일체로 형성되어 공간부(311)의 전방을 폐쇄하는 제1헤드부(320)를 포함하며, 공간부(311)에는 중공 형태의 실린더(200)가 장착된다.
이때, 실린더(200) 내부에는 구동원의 동력에 의해 회전하는 회전 샤프트(530)와, 회전 샤프트(530)의 회전력을 전달받아 회전 샤프트(530)와 함께 회전하는 로터(500)와, 로터(500)의 외주면에 출몰 가능하게 결합되는 복수의 베인(600)이 장착된다.
또한, 하우징(300)의 축방향 후방에는 제2헤드부(400)가 결합되어 공간부(311)의 후방을 폐쇄한다.
한편, 하우징(300)의 제1헤드부(320) 외주면에는 외부로부터 냉매를 흡입하는 흡입포트(330)와, 실린더(200) 내에서 압축된 고압의 냉매를 외부로 토출하는 토출포트(340)가 원주방향으로 서로 이격하여 구비된다.
이때, 제1헤드부(320)의 전방 중앙에는 전자클러치(미도시)의 풀리(900)가 결합되도록, 풀리결합부(910)가 연장 형성된다.
도 5는 본 발명의 일실시예에 따른 하우징을 후방에서 바라본 사시도이다.
도 5에 도시된 바와 같이, 본 발명의 일실시예에 따른 하우징(300)은, 실린더(200)를 수용하도록 내부에 공간부(311)가 형성된 원통 형태의 실린더부(310)와, 실린더부(310)의 전방에서 일체로 형성되어 공간부(311)의 전방을 폐쇄하는 제1헤드부(320)를 포함한다.
이때, 제1헤드부(320)의 중앙에는 회전 샤프트(530)의 전단이 삽입되는 삽입홀(321)이 관통 형성되며, 제1헤드부(320)의 내측면 일측에는 흡입포트(330)와 연통하는 흡입홈(323)이 원주방향(C)으로 소정 각도 연장 형성된다.
또한, 제1헤드부(320)의 내측면에는 삽입홀(321)의 테두리를 따라 소정 각도로 확장홈(322)이 연장 형성되는데, 이는 회전 샤프트(530)의 윤활을 위한 것으로 이에 대하여는 후술하기로 한다.
실린더부(310)의 외주면 일측에는 머플러 공간(710)이 돌출 형성되며, 머플러 공간(710)의 일측에는 토출포트(340)와 연통되는 토출공(711)이 형성된다.
이때, 후술하는 압축실(210)에서 고압으로 압축된 냉매는 이 머플러 공간(710)으로 유입되면서 맥동과 소음이 저하된 후, 토출공(711)을 통해 토출포트(340) 방향으로 유동하게 된다.
한편, 실린더부(310)를 이루는 측벽의 일측에는 제1오일저장실(810)이 외측으로 돌출 형성되며, 이 제1오일저장실(810)에는 토출포트(340)에서 유분리 파이프(350, 도 6 참조)에 의해 분리된 오일이 유입되어 저장된다.
도 6은 도 5의 하우징에 실린더와 로터가 장착된 모습을 보인 단면도이다.
여기서, 도 6에 도시된 굵은 화살표는 냉매의 흡입 및 토출방향을 표시하고, 실선 화살표는 회전 샤프트의 회전방향을 표시하며, 일점쇄선 화살표는 고압으로 압축된 냉매의 유동을 표시하고, 점선 화살표는 오일파이프를 지나면서 오일이 분리되는 냉매의 유동을 표시한 것이다.
도 6에 도시된 바와 같이, 실린더(200)의 중공은 회전 샤프트(530)가 설치되는 실린더(200)의 중심에서 일측으로 약간 편심되어 형성된다.
이때, 실린더(200)의 중공에 베인(600)을 가진 로터(500)가 삽입 장착됨으로써, 실린더(200)의 중공은 유입된 냉매가 로터(500) 회전에 의해 압축되는 압축공간을 이루게 된다.
실린더(200)의 일측에는 흡입홀(220)이 형성된다.
이때, 흡입홀(220)의 일측은 제1헤드부(320)의 흡입홈(323)과 연통되고, 타측은 실린더(200) 내 압축공간의 일측과 연통된다.
따라서, 외부로부터 흡입포트(330)를 통해 흡입된 냉매는 제1헤드부(320)의 흡입홈(323)과 실린더(200)의 흡입홀(220)을 차례로 거쳐 압축공간인 실린더(200)의 중공으로 들어가게 된다.
로터(500)는 구동모터(미도시), 혹은 엔진벨트(미도시)에 의해 구동되는 클러치(미도시)와 연결된 회전 샤프트(530)에 결합되어 회전 샤프트(530)와 함께 축회전한다. 이때, 로터(500)에는 복수의 오일유로(510)가 축방향으로 관통 형성된다.
또한, 회전 샤프트(530)는 실린더(200)의 중심 축선을 따라 장착된다. 따라서, 로터(500)는 실린더(200) 중공의 중심으로부터 일측으로 약간 벗어나, 실린더(200) 중공 내에서 편심 회전하게 된다.
로터(500)의 외주면에는 외팔보 형태의 베인(600)이 서로 이격하여 복수 개 힌지 결합된다. 이때, 베인(600)의 일측은 로터(500)의 외주면 슬롯(520)에 힌지 결합되며, 로터(500) 회전시 베인(600)의 타측 선단부가 냉매의 압력에 의해 실린더(200)의 내주면 방향으로 펼쳐져서 압축공간을 다수의 압축실(210)로 구획한다.
즉, 인접하는 한 쌍의 베인(600)과, 로터(500)의 외주면, 및 실린더(200)의 내주면으로 이루어지는 공간에 의해 각각의 압축실(210)이 형성되며, 이때 압축실(210)의 전단은 제1헤드부(320)에 의해, 그리고 압축실(210)의 후단은 제2헤드부(400)에 의해 밀폐된다.
로터(500) 회전시 베인(600)의 선단부는 중공 내측벽을 따라 로터(500)의 회전방향으로 함께 회전한다.
이때, 로터(500)가 중공 내에 편심하여 위치함에 따라, 로터(500)의 외주면과 중공 내측벽 사이의 간격이 점점 좁아지면서 압축실(210)의 체적이 감소하고, 압축실(210)에 갇힌 냉매가 압축된다.
실린더(200)의 외주면 일측에는 압축된 고압의 냉매가 토출되는 토출부(720)가 함몰 형성된다. 이 토출부(720)의 일측에는 압축실(210)과 연통되는 복수의 토출구(721)가 관통 형성되며, 토출부(720)의 타측에는 고압의 냉매를 토출포트(340) 방향으로 안내하는 가이드 유로(730)가 형성된다.
이때, 전술한 하우징(300)의 실린더부(310)에 형성된 머플러 공간(710)이 가이드 유로(730)의 일측에 대응하도록 위치하게 된다.
따라서, 토출구(721)를 통해 토출부(720)로 토출된 고압의 냉매는 가이드 유로(730)를 따라 머플러 공간(710)으로 들어간 후, 토출공(711)을 통해 토출포트(340) 방향으로 유동하게 된다.
토출공(711)을 통과한 고압의 냉매는, 유분리 파이프(350)의 외주면을 따라 선회하면서 냉매에 포함된 오일이 유분리 파이프(350)의 하부로 분리된다. 그리고, 분리된 오일은 하우징(300)의 실린더부(310)에 형성되는 제1오일저장실(810)로 유동하여 저장된다.
이때, 실린더(200)의 외주면 타측이 소정 형상으로 함몰되어, 제1오일저장실(810)의 하측에 제1오일저장실(810)과 연통되는 제2오일저장실(820)이 형성된다.
여기서, 토출부(720)와 가이드 유로(730) 및 머플러 공간(710)은 베인 로터리 압축기(100)에서 고압의 냉매가 유동하는 고압실(700)을 이룬다. 이 고압실(700)은 실린더부(310)와 실린더(200) 사이 공간의 일측에 형성된다.
또한, 제1오일저장실(810)과 제2오일저장실(820)을 포함하는 오일저장실(800)은 실린더부(310)와 실린더(200) 사이 공간의 타측에 형성된다.
이때, 고압실(700)과 오일저장실(800)은 실린더(200)의 외주면과 실린더부(310)의 내주면이 밀착하는 밀착면(230)에 의해 구분된다.
즉, 본 발명의 일실시예에 따른 베인 로터리 압축기(100)는, 종래 리어 헤드에 형성되었던 오일저장실(800)이 고압실(700)과 함께 하우징(300)의 실린더부(310)에 형성된다.
이에 따라, 본 발명의 일실시예에 따른 베인 로터리 압축기(100)의 패키지를 컴팩트하게 구성할 수 있게 된다.
이때, 대체로 하우징(300)의 실린더부(310)와 실린더(200) 사이 상측 공간은 고압실(700)로 활용되고, 실린더부(310)와 실린더(200) 사이 하측 공간은 오일저장실(800)로 활용된다.
도 7은 본 발명의 다른 실시예에 따른 실린더와 로터의 결합을 개략적으로 도시한 단면도이다.
본 발명의 다른 실시예에 의하면, 도 7에 도시된 바와 같이 실린더(200')의 중공 내주면이 인벌류트 곡선 형태로 이루어지는 것도 가능하다.
이 경우, 실린더(200')의 내주면과 로터(500)의 외주면이 단면상 동심을 이루도록 실린더(200')의 중공에 로터(500)가 설치된다. 즉, 실린더(200')의 내주면을 따라 그려지는 인벌류트 곡선은, 시작점과 종료점의 중심이 로터(500)의 중심과 일치하게 되며, 따라서 로터(500)의 편심 배치에 따른 진동과 소음을 감소시킬 수 있다.
이때, 실린더(200')의 내주면이 흡입홀(220)에서 토출구(721) 방향으로 갈수록 점차 직경이 감소하는 인벌류트 곡선 형태로 이루어진다.
따라서, 화살표로 도시된 로터(500)의 압축 회전 방향을 따라, 실린더(200')의 내주면과 로터(500)의 외주면 사이 간격이 좁혀지면서 베인(600) 사이에 형성되는 압축실(210)의 체적이 점차 감소하여, 냉매의 압축이 이루어지게 된다.
도 8은 본 발명의 일실시예에 따른 제2헤드부의 사시도이고, 도 9는 본 발명의 일실시예에 따른 베인 로터리 압축기를 후방에서 바라본 사시도이다.
본 발명의 일실시예에 따른 제2헤드부(400)는 하우징(300)의 후방에 결합되어 실린더부(310)의 축방향 후방에서 공간부(311)의 후방을 폐쇄한다.
이때, 제2헤드부(400)의 외측면 중앙에는 도 9에 도시된 바와 같이 샤프트 수용부(420)가 외측으로 돌출 형성된다. 또한, 도 8에 도시된 바와 같이 제2헤드부(400)의 내측면 중앙에는 샤프트 수용부(420)에 대응되는 장착홈(410)이 형성되고, 이 장착홈(410)에 회전 샤프트(530)의 후단이 삽입 장착된다.
이때, 장착홈(410)의 테두리를 따라 제1팽창홈(430)이 형성되고, 제1팽창홈(430)으로부터 반경방향 외측으로 이격하여 제2팽창홈(440)이 원주방향(C)을 따라 형성된다.
제2팽창홈(440)은 로터(500)의 압축 회전방향을 따라, 실린더(200)의 일측에 각각 형성되는 흡입홀(220)과 토출구(721) 사이의 압축 영역, 그 중에서도 압축실(210)에서 중간압이 형성되는 영역에 대응하여 원호 형태로 형성되는 것이 바람직하다.
여기서 '중간압'이라 함은, 복수의 압축실(210) 중, 흡입홀(220)을 통해 냉매가 유입되어 압축이 시작되는 압축실(210)의 압력과, 압축 행정이 완료되어 냉매가 토출구(721)를 통해 토출되는 압축실(210)의 압력의 중간 압력을 일컫는다.
이때, 제1팽창홈(430)과 제2팽창홈(440)은 로터(500)와 제2헤드부(400)의 습동면에서 이루어지는 오일의 감압을 위한 것으로, 이에 대하여는 후술하기로 한다.
한편, 오일저장실(800)에 저장된 오일은 샤프트 수용부(420)로 유동하게 되는데, 이를 위해 일측이 오일저장실(800)과 연통되고 타측이 샤프트 수용부(420)의 장착홈(410)으로 연통되는 오일유도홀(421)이 제2헤드부(400)의 내측면 일측에 형성된다.
도 10은 본 발명의 일실시예에 따른 오일 감압구조를 보인 부분 확대도이며, 일점쇄선으로 표시된 화살표는 오일의 유동방향을 가리킨다.
오일저장실(800)에 저장된 오일은 오일유도홀(421)을 통해 샤프트 수용부(420)의 장착홈(410)으로 유동하여 회전 샤프트(530)의 후단부를 윤활하며, 회전 샤프트(530)의 외주면을 따라 전방으로 유동한다.
이때, 회전 샤프트(530)의 외주면과 장착홈(410)의 내주면 사이에 형성되는 갭(gap)에 의해 오일은 1차 감압되고, 제1팽창홈(430)으로 유입되면서 팽창한다.
제1팽창홈(430)으로 유입된 오일은, 로터(500)의 회전에 의해 반경방향 외측으로 퍼지면서 로터(500)와 제2헤드부(400)의 습동면을 윤활하게 된다.
이때, 로터(500)와 제2헤드부(400) 사이의 갭에 의해 오일은 2차 감압되고, 제2팽창홈(440)으로 유입되면서 다시 팽창한 후, 외측으로 퍼지면서 로터(500)와 제2헤드부(400)의 습동면에서 3차 감압된다.
로터(500)와 제2헤드부(400)의 습동면을 윤활하는 오일은 제2팽창홈(440)과 오일유로(510)가 연통함에 따라, 로터(500)의 오일유로(510)를 통해 전방으로 이동하여 로터(500)와 제1헤드부(320)의 습동면을 윤활하게 된다.
이때, 오일유로(510)와 연통하는 확장홈(322)을 통해 오일이 삽입홀(321)로 유동하여 회전 샤프트(530)의 전단부를 윤활하게 된다.
이때, 회전 샤프트(530) 전단부의 외주면과 삽입홀(321) 내주면 사이의 갭에 의해 오일은 다시 감압되고, 이후 냉매와 함께 압축실(210)로 흡입되어 전술한 과정을 다시 거치게 된다.
즉, 본 발명의 일실시예에 따른 베인 로터리 압축기(100)는, 로터(500)와 제2헤드부(400) 사이의 갭과 팽창홈(430,440)을 통해 오일의 감압유로를 다단으로 구성함으로써, 종래와 같이 복잡한 감압유로의 형성을 위해 별도의 부품을 필요로 하거나, 가공비용이 증대되는 문제를 피할 수 있게 된다.
이때, 제2팽창홈(440)의 형태를 적절히 선택함으로써, 로터(500)와 제2헤드부(400)의 습동면 중 어느 영역을 국부적으로 집중 윤활하거나, 2차, 3차 감압이 연속적으로 이루어지게끔 할 수 있다.
도 11 내지 도 14는 제2헤드부에 형성되는 제2팽창홈의 다양한 예를 보인 개략도이다.
여기서, 도 11에 도시된 예는 제2팽창홈(440)을 원주방향으로 복수 개 형성하여, 로터(500)와 제2헤드부(400)의 습동면에서 원하는 영역을 국부적으로 집중 윤활할 수 있도록 한 것이다.
또한, 도 12에 도시된 예는 흡입행정과 압축행정 모두에 걸쳐 오일이 감압되어 토출될 수 있도록 구성한 것이다.
아울러, 도 13에 도시된 예는 도 11의 (b)에 도시된 예에서, 제1팽창홈(430)과 제2팽창홈(440)을 반경방향으로 연결하는 연결홈(450)이 더 형성되는 예를 도시한 것이다.
한편, 도 14에 도시된 예는 제1팽창홈(430)에서 제2팽창홈(440)이 인벌류트 곡선의 형태로 외측으로 연장 형성되는 예를 도시한 것으로, 제2팽창홈(440)이 반경방향 외측으로 연속하여 형성됨에 따라 감압효과가 증대되는 장점이 있다.
본 발명의 바람직한 일실시예에 따른 베인 로터리 압축기에 의하면, 실린더, 하우징, 제2헤드부의 3피스 구조로 전체 하우징이 구성되므로, 부품수 감소에 따른 비용 절감과, 자동차 경량화에 일조할 수 있게 된다.
또한, 하우징의 실린더부와 실린더 사이 공간에, 고압의 냉매가 토출되는 고압실과, 냉매에 포함된 오일이 분리 저장되는 저압의 오일저장실이 각각 분리 형성되므로, 패키지 전장 축소에 따른 압축기의 소형화가 가능하다.
아울러, 로터와 헤드부 사이 습동면의 갭과 헤드부의 팽창홈을 이용하여 감압유로를 형성하게 되므로, 종래와 같이 감압유로 형성을 위한 복잡한 가공이 필요없어 제작비용이 절감되는 효과가 있다.

Claims (14)

  1. 중공 형상의 실린더(200,200');
    상기 실린더(200,200')가 설치되도록 공간부(311)가 형성되는 실린더부(310)와, 상기 실린더부(310)의 축방향 일측을 폐쇄하는 제1헤드부(320)가 일체로 형성되는 하우징(300);
    상기 실린더부(310)의 축방향 타측을 폐쇄하는 제2헤드부(400);
    상기 실린더(200,200') 내에 설치되며 구동원의 동력을 전달받아 회전하는 로터(500);
    상기 로터(500)의 외주면으로부터 상기 실린더(200,200')의 내주면 방향으로 출몰하며 상기 실린더(200,200')의 중공을 복수의 압축실(210)로 구획하는 복수의 베인(600);
    상기 하우징(300)의 일측에 형성되고, 상기 압축실(210)에서 압축된 고압의 냉매가 토출되며, 토출포트(340)로 연통되는 토출공(711)이 형성되는 고압실(700); 및
    상기 하우징(300)의 타측에 형성되고, 상기 토출포트(340)에 구비되는 유분리 파이프(350)에 의해 유분리된 오일을 저장하는 오일저장실(800)을 포함하는 베인 로터리 압축기.
  2. 청구항 1에 있어서, 상기 고압실(700)은,
    상기 실린더부(310)의 외주면 일측에 돌출 형성되는 머플러 공간(710)을 포함하며, 상기 토출공(711)은 상기 머플러 공간(710)의 일측에 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  3. 청구항 1에 있어서, 상기 오일저장실(800)은,
    상기 하우징(300)의 외주면에 반경방향으로 돌출 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  4. 청구항 1에 있어서,
    상기 오일저장실(800)의 일측으로부터 상기 로터(500)의 회전 샤프트(530) 후단이 장착되는 장착홈(410)의 일측으로 오일유도홀(421)이 연장 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  5. 청구항 4에 있어서,
    상기 장착홈(410)의 테두리를 따라 제1팽창홈(430)이 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  6. 청구항 5에 있어서,
    상기 제1팽창홈(430)의 일측으로부터 반경방향 외측으로 제2팽창홈(440)이 인벌류트 곡선의 형태로 연장 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  7. 청구항 6에 있어서,
    상기 로터(500)에는 상기 제2팽창홈(440)과 연통하도록 복수의 오일유로(510)가 축방향으로 관통 형성되고, 상기 제2팽창홈(440)은 상기 오일유로(510)와 대응되는 위치에 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  8. 청구항 7에 있어서,
    상기 오일유로(510)와 연통하도록, 상기 회전 샤프트(530)의 전단이 삽입되는 삽입홀(321)의 테두리를 따라 확장홈(322)이 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  9. 청구항 5에 있어서,
    상기 제1팽창홈(430)으로부터 반경방향 외측으로 이격하여 적어도 하나 이상의 제2팽창홈(440)이 원주방향을 따라 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  10. 청구항 9에 있어서, 상기 제2팽창홈(440)은,
    상기 로터(500)의 압축 회전방향으로, 상기 실린더(200,200')의 일측에 형성되는 흡입홀(220)과 토출구(721) 사이 영역에 대응하여 원호 형태로 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  11. 청구항 9에 있어서,
    상기 로터(500)에는 상기 제2팽창홈(440)과 연통하도록 복수의 오일유로(510)가 축방향으로 관통 형성되고, 상기 제2팽창홈(440)은 상기 오일유로(510)와 대응되는 위치에 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  12. 청구항 11에 있어서,
    상기 오일유로(510)와 연통하도록, 상기 회전 샤프트(530)의 전단이 삽입되는 삽입홀(321)의 테두리를 따라 확장홈(322)이 형성되는 것을 특징으로 하는 베인 로터리 압축기.
  13. 청구항 1에 있어서, 상기 베인(600)은,
    상기 로터(500)의 외주면 일측에 일단이 힌지 결합되고, 상기 로터(500)의 회전에 따라 타단이 상기 실린더(200,200')의 내주면에 접촉되는 것을 특징으로 하는 베인 로터리 압축기.
  14. 청구항 13에 있어서,
    상기 실린더(200')의 중공 내주면이 원주방향을 따라 인벌류트 곡선 형태로 이루어지는 것을 특징으로 하는 베인 로터리 압축기.
PCT/KR2013/002527 2012-07-17 2013-03-27 베인 로터리 압축기 WO2014014182A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0077689 2012-07-17
KR1020120077689A KR101519698B1 (ko) 2012-07-17 2012-07-17 베인 로터리 압축기

Publications (1)

Publication Number Publication Date
WO2014014182A1 true WO2014014182A1 (ko) 2014-01-23

Family

ID=49946703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002527 WO2014014182A1 (ko) 2012-07-17 2013-03-27 베인 로터리 압축기

Country Status (3)

Country Link
US (1) US20140023538A1 (ko)
KR (1) KR101519698B1 (ko)
WO (1) WO2014014182A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094410A (ko) 2017-02-15 2018-08-23 엘지전자 주식회사 로터리 압축기
KR20180094411A (ko) 2017-02-15 2018-08-23 엘지전자 주식회사 로터리 압축기
KR102608742B1 (ko) 2017-02-15 2023-12-01 엘지전자 주식회사 로터리 압축기
KR102591415B1 (ko) 2017-02-17 2023-10-19 엘지전자 주식회사 로터리 압축기
KR102361320B1 (ko) 2017-06-27 2022-02-10 엘지전자 주식회사 2단 압축구조를 가지는 로터리 압축기
KR102258397B1 (ko) 2019-08-30 2021-06-02 코우테크 주식회사 압축기와 다단 압축 모듈 및 이를 이용한 학습 지능형 제어 압축 시스템
KR102538954B1 (ko) * 2021-11-30 2023-06-02 엘지전자 주식회사 로터리 압축기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048080A (ja) * 2000-08-07 2002-02-15 Seiko Instruments Inc 気体圧縮機
KR20050118392A (ko) * 2004-06-14 2005-12-19 기아자동차주식회사 로터리식 진공 펌프
JP2008240602A (ja) * 2007-03-27 2008-10-09 Calsonic Compressor Inc 気体圧縮機
JP2010116905A (ja) * 2008-11-14 2010-05-27 Daikin Ind Ltd 圧縮機
JP2012026330A (ja) * 2010-07-22 2012-02-09 Valeo Japan Co Ltd ベーン型圧縮機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956904A (en) * 1975-02-03 1976-05-18 The Rovac Corporation Compressor-expander for refrigeration having dual rotor assembly
US4248575A (en) * 1979-01-29 1981-02-03 Robert Bosch Gmbh Rotary fluid pressure biased vane compressor with pressure release means
JPS56106088A (en) * 1980-01-29 1981-08-24 Matsushita Electric Ind Co Ltd Rotary type fluid equipment
JPS58193086U (ja) * 1982-06-18 1983-12-22 株式会社ボッシュオートモーティブ システム ベ−ン型圧縮機におけるベ−ンの背圧調整装置
JP2585380Y2 (ja) * 1992-11-20 1998-11-18 カルソニック株式会社 ロータリコンプレッサ
JP2002021726A (ja) 2000-07-07 2002-01-23 Seiko Instruments Inc 気体圧縮機
US6599101B2 (en) * 2001-03-12 2003-07-29 Seiko Instruments Inc. Gas compressor
JP5104644B2 (ja) * 2008-08-19 2012-12-19 株式会社豊田自動織機 圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048080A (ja) * 2000-08-07 2002-02-15 Seiko Instruments Inc 気体圧縮機
KR20050118392A (ko) * 2004-06-14 2005-12-19 기아자동차주식회사 로터리식 진공 펌프
JP2008240602A (ja) * 2007-03-27 2008-10-09 Calsonic Compressor Inc 気体圧縮機
JP2010116905A (ja) * 2008-11-14 2010-05-27 Daikin Ind Ltd 圧縮機
JP2012026330A (ja) * 2010-07-22 2012-02-09 Valeo Japan Co Ltd ベーン型圧縮機

Also Published As

Publication number Publication date
US20140023538A1 (en) 2014-01-23
KR20140011077A (ko) 2014-01-28
KR101519698B1 (ko) 2015-05-12

Similar Documents

Publication Publication Date Title
WO2014014182A1 (ko) 베인 로터리 압축기
WO2016190490A1 (ko) 오일회수 수단을 구비한 압축기
WO2017188558A1 (ko) 스크롤 압축기
WO2018194294A1 (ko) 로터리 압축기
WO2012128499A2 (en) Scroll compressor
WO2018117682A1 (ko) 스크롤 압축기
WO2011019116A1 (ko) 압축기
WO2019045454A1 (ko) 스크롤 압축기
EP3625459A1 (en) Scroll compressor
WO2017188557A1 (ko) 스크롤 압축기
WO2017188576A1 (ko) 스크롤 압축기
EP2659142A1 (en) Compressor
WO2014123325A1 (ko) 베인 로터리 압축기
WO2018147562A1 (en) Hermetic compressor
WO2017164539A1 (ko) 압축기
WO2016143951A1 (ko) 전동압축기
WO2020116781A1 (ko) 고압식 스크롤 압축기
WO2021167288A1 (ko) 스크롤 압축기
WO2009108007A9 (ko) 오일분리형 구동축을 가지는 스크롤 압축기
WO2015178636A1 (ko) 모터 유닛, 펌프 유닛, 및 이를 이용한 전동식 오일펌프
WO2018174449A1 (en) Hermetic compressor
WO2013005906A1 (en) Scroll compressor
WO2015129961A1 (en) Vane rotary compressor
WO2018151538A1 (ko) 전동압축기
WO2009108006A2 (ko) 인버터형 스크롤 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819839

Country of ref document: EP

Kind code of ref document: A1