WO2014122983A1 - 二酸化塩素ガスの捕捉方法、濃度測定方法、及び捕捉剤 - Google Patents

二酸化塩素ガスの捕捉方法、濃度測定方法、及び捕捉剤 Download PDF

Info

Publication number
WO2014122983A1
WO2014122983A1 PCT/JP2014/051114 JP2014051114W WO2014122983A1 WO 2014122983 A1 WO2014122983 A1 WO 2014122983A1 JP 2014051114 W JP2014051114 W JP 2014051114W WO 2014122983 A1 WO2014122983 A1 WO 2014122983A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
dioxide gas
concentration
aqueous solution
iodine
Prior art date
Application number
PCT/JP2014/051114
Other languages
English (en)
French (fr)
Inventor
麻田茂雄
中原弘一
田口和彦
Original Assignee
大幸薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大幸薬品株式会社 filed Critical 大幸薬品株式会社
Priority to CN201480007344.3A priority Critical patent/CN104995132B/zh
Priority to US14/765,739 priority patent/US9677980B2/en
Priority to JP2014560708A priority patent/JP6400482B2/ja
Priority to KR1020157022748A priority patent/KR102275969B1/ko
Priority to EP14749434.8A priority patent/EP2955155A4/en
Publication of WO2014122983A1 publication Critical patent/WO2014122983A1/ja
Priority to HK16100346.3A priority patent/HK1212314A1/xx
Priority to HK16102204.0A priority patent/HK1214237A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4044Concentrating samples by chemical techniques; Digestion; Chemical decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/19Halogen containing

Definitions

  • the present invention relates to a trapping method, a concentration measuring method, and a trapping agent for chlorine dioxide gas contained in air at a low concentration.
  • Chlorine dioxide gas is a powerful oxidant. For example, in indoor air environments, it may decompose and deodorize malodorous components, or remove and sterilize viruses and bacteria that may float in the room and cause air infection. It is used for such as. Examples of conventional methods for measuring the concentration of chlorine dioxide gas in the air include a method using an electrolytic sensor utilizing a redox reaction and a gas absorption method using an iodine solution (for example, Non-Patent Document 1).
  • Chlorine dioxide gas is an unstable substance and easily decomposes, and it has been very difficult to use it as a standard gas in a method using an electrolytic sensor (hereinafter abbreviated as a sensor method). Therefore, in the sensor method, in most cases, chlorine gas is used as the standard gas instead of chlorine dioxide gas. However, when chlorine gas is used as the standard gas, conversion is necessary because it is not a direct measurement. The conversion coefficient varies from 0.5 to 2.5 due to the influence of pH or the like, or varies depending on the conditions for generating chlorine gas, and thus has a problem that measurement errors are likely to occur.
  • the chlorine dioxide gas reacts with the iodide in the iodine solution, thereby producing iodine. Is released, and the concentration of chlorine dioxide gas is measured by analyzing the iodine by iodine titration method, colorimetric method or the like.
  • chlorine dioxide gas used in indoor air is often set to a very low concentration.
  • concentration is at most about 10 ppm at the highest, and may be 10 ppb or less when the concentration is lower.
  • ozone (O 3 ) present in the air reacts with iodide (for example, potassium iodide) to generate iodine.
  • iodide for example, potassium iodide
  • An object of the present invention is to enable accurate measurement of the concentration of chlorine dioxide gas contained in air at a low concentration, for example, to be used for calibration of a highly sensitive continuous measuring device of chlorine dioxide gas concentration. There is to do.
  • the first characteristic configuration in the chlorine dioxide gas capturing method of the present invention is that it includes a step of using an aqueous solution containing an alkaline substance and iodide and bringing the aqueous solution containing chlorine dioxide gas into contact with the aqueous solution.
  • the aqueous solution in this structure contains an alkaline substance, it shows alkalinity.
  • chlorine dioxide gas and iodide react as shown in the following chemical reaction formulas (4) to (6), and stable iodic acid Salts and / or iodates (which are present as very stable iodate and / or iodate ions in alkaline aqueous solutions) are produced.
  • the ozone can be decomposed by an alkaline substance in the aqueous solution, so that the ozone is usually about 10 ppb to 30 ppb, which is usually present in the atmosphere. If it is ozone, the production
  • the second characteristic configuration is that the concentration of chlorine dioxide gas contained in the air is 0.0002 ppm to 5 ppm.
  • the third characteristic configuration is that the concentration of the alkaline substance in the aqueous solution is 0.01 N or more.
  • a fourth characteristic configuration is that the concentration of iodide in the aqueous solution is 0.2 g / L or more.
  • a characteristic configuration of the chlorine dioxide gas concentration measuring method of the present invention is a chlorine dioxide gas concentration measuring method using the chlorine dioxide gas trapping method according to any one of the first to fourth characteristic configurations, wherein the chlorine dioxide gas
  • the method includes a step of measuring the concentration of iodate and / or iodate in an aqueous solution in contact with air containing ion by ion chromatography.
  • the concentration of iodate and / or iodate in the aqueous solution can be directly measured by concentration using an ion chromatography method.
  • the concentration of chlorine gas can be accurately measured with higher accuracy.
  • a characteristic configuration of the chlorine dioxide gas concentration measuring method of the present invention is a chlorine dioxide gas concentration measuring method using the chlorine dioxide gas trapping method according to any one of the first to fourth characteristic configurations, wherein the chlorine dioxide gas
  • the method includes the step of acidifying an aqueous solution contacted with air to liberate iodine and the step of measuring the iodine concentration by a colorimetric method or iodine titration method.
  • the characteristic constitution of the chlorine dioxide gas scavenger of the present invention is that it is an aqueous solution containing an alkaline substance and iodide.
  • the aqueous solution of this structure contains an alkaline substance, it shows alkalinity.
  • chlorine dioxide gas is absorbed into an alkaline aqueous solution containing iodide, chlorine dioxide gas and iodide react as shown in the above chemical reaction formulas (4) to (6), and stable iodic acid Salts and / or iodates (which are present as very stable iodate and / or iodate ions in alkaline aqueous solutions) are produced.
  • the ozone can be decomposed by an alkaline substance in the aqueous solution, so that the ozone is usually about 10 ppb to 30 ppb, which is usually present in the atmosphere. If it is ozone, the production
  • the chlorine dioxide gas scavenger according to the present invention is an aqueous solution containing an alkaline substance and iodide.
  • the alkaline substance that can be used include, but are not limited to, lithium hydroxide, potassium hydroxide, sodium hydroxide, and the like.
  • the concentration of the alkaline substance in the aqueous solution is preferably 0.01 N or more, more preferably 0.1 N to 2 N.
  • the iodide that can be used include, but are not limited to, potassium iodide, sodium iodide and the like.
  • the concentration of iodide in the aqueous solution is preferably 0.2 g / L or more, more preferably 2 g / L to 50 g / L.
  • the chlorine dioxide gas trapping method according to the present invention includes a step of bringing air containing chlorine dioxide gas into contact with the chlorine dioxide gas trapping agent containing an alkaline substance and iodide.
  • Examples of the contact method include a method of sucking air using a known air pump and supplying the sucked air to the chlorine dioxide gas scavenger and bubbling.
  • a suction speed of 0.1 L / min to 1.0 L / min is used for 2 hours to 200 hours. Suction and bubbling should be performed.
  • the method for capturing chlorine dioxide gas according to the present invention can measure air containing chlorine dioxide gas at a very low concentration of 0.0002 ppm to 5 ppm. Of course, it can be applied to air containing chlorine dioxide gas at a higher concentration. It can also be applied to.
  • Chlorine dioxide gas concentration measurement method (1) Ion chromatographic method Chlorine dioxide gas captured using the above-described chlorine dioxide gas scavenger and chlorine dioxide gas scavenging method is a highly stable iodate ion in a chlorine dioxide gas scavenger which is an alkaline aqueous solution. It exists as iodate ion. Therefore, the concentration of chlorine dioxide gas in the air can be measured by directly measuring the concentration of these ions using a known ion chromatographic method. Since ion chromatography has higher detection sensitivity than iodine titration, it can be measured with an air suction amount of about 1/10 of the air suction amount when the iodine titration method is used.
  • Chlorine dioxide gas captured using the above-described chlorine dioxide gas scavenger and chlorine dioxide gas scavenging method is a highly stable iodate ion and / or a chlorine dioxide gas scavenger which is an alkaline aqueous solution. Or they exist as iodate ions.
  • the chlorine dioxide gas scavenger is made acidic by adding, for example, 1N to 18N sulfuric acid or the like, iodine is immediately liberated as shown in the above chemical reaction formulas (7) and (8).
  • the colorimetric method has a relatively high detection sensitivity as compared with the iodine titration method, it can be measured with an air suction amount of about 1/2 of the air suction amount when the iodine titration method is used.
  • Chlorine dioxide gas captured using the above-described chlorine dioxide gas scavenger and chlorine dioxide gas scavenging method is a highly stable iodate ion and / or a chlorine dioxide gas scavenger which is an alkaline aqueous solution. Or they exist as iodate ions.
  • the chlorine dioxide gas scavenger is made acidic by adding, for example, 1N to 18N sulfuric acid or the like, iodine is immediately liberated as shown in the above chemical reaction formulas (7) and (8).
  • Example 1 Using an electrolytic chlorine dioxide gas generator “Lispath S” (manufactured by Daiko Pharmaceutical Co., Ltd.), chlorine dioxide gas was continuously operated to generate a gas flow rate of 300 mL / min and a generation amount of 5 mg / hr.
  • Part of the generated gas is extracted with a corrosion-resistant air pump at 50 mL / min, diluted with 3 L / min of diluted air, and this diluted gas is extracted with a corrosion-resistant air pump at 50 mL / min to be 2.5 L / min.
  • a corrosion-resistant air pump at 50 mL / min, diluted with 3 L / min of diluted air, and this diluted gas is extracted with a corrosion-resistant air pump at 50 mL / min to be 2.5 L / min.
  • An aqueous solution of potassium iodine: 50 g / L and potassium hydroxide: 50 g / L was prepared as a chlorine dioxide gas scavenger, and 20 mL of the scavenger was injected into a 30 mL capacity impinger.
  • Each of the scavengers in the first and second impingers was placed in a flask, 2N sulfuric acid was added to make it acidic with sulfuric acid, and titrated with 0.01 mol / L sodium thiosulfate standard solution.
  • the titration constant was 0.55 mL for the first column, and 0.00mL for the second column.
  • the factor of the sodium thiosulfate standard solution was 1.005, and when calculated, the first column was 29.6 ppb (therefore, the theoretical value was 31.9 ppb), and the second column was 0 ppb.
  • Example 2 In the chlorine dioxide gas (flow rate: 2.55 L / min, concentration: about 30 ppb) generated from the chlorine dioxide gas generator used in Example 1, an ozone generator (ModeL 1410 manufactured by Direc Co., Ltd., air cleaner: ModeL1400, Monitor: Mode L1150) Ozone concentration: 50 ppb of air was mixed at 2.5 L / min, and measurement was performed in the same manner as in Example 1.
  • an ozone generator ModeL 1410 manufactured by Direc Co., Ltd., air cleaner: ModeL1400, Monitor: Mode L1150
  • the drop constant was 1st tower: 0.30 mL and 2nd tower: 0.00 mL.
  • the factor of the sodium thiosulfate standard solution was 1.005, and it was calculated to be 16.1 ppb for the first column and 0 ppb for the second column.
  • Example 3 As in Example 1, air containing approximately 30 ppb of chlorine dioxide gas was continuously generated. An aqueous solution of potassium iodine: 10 g / L and potassium hydroxide: 2 g / L was prepared as an absorbing solution, and 20 mL of the absorbing solution was injected into a 30 mL capacity impinger.
  • the drop constant was 1st tower: 0.53 mL and 2nd tower: 0.00 mL.
  • the factor of the standard solution was 1.005, and it was calculated to be 28.5 ppb for the first column and 0 ppb for the second column.
  • Example 4 In the same manner as in Example 2, air having an ozone concentration of 50 ppb was mixed at 2.5 L / min, and measurement was performed in the same manner as in Example 2.
  • the supply gas concentration is chlorine dioxide gas: 14.9 ppb and ozone: 24.8 ppb.
  • An aqueous solution of potassium iodide: 10 g / L and potassium hydroxide 2 g / L was prepared as an absorbing solution, and 20 mL of the absorbing solution was injected into a 30 mL capacity impinger.
  • the drop constant was 1st tower: 0.28 mL and 2nd tower: 0.00 mL.
  • the factor of the standard solution was 1.005, and when calculated, the first column was 14.1 ppb and the second column was 0 ppb.
  • Example 1 (conventional method) As in Example 1, air containing approximately 30 ppb of chlorine dioxide gas was continuously generated. An aqueous solution of potassium iodine: 10 g / L was prepared as an absorbing solution, and 20 mL of the absorbing solution was injected into a 30 mL capacity impinger.
  • the drop constant was 1st tower: 0.42 mL and 2nd tower: 0.07 mL.
  • the factor of the standard solution was 1.005, and the calculated value was 22.6 ppb for the first column and 3.8 ppb for the second column.
  • the absorption and capture of chlorine dioxide gas became insufficient, and the measured value in the first column had a large negative error.
  • Example 2 (conventional method, under neutral conditions) As in Example 1, air containing approximately 30 ppb of chlorine dioxide gas was continuously generated. Potassium iodine as an absorbing solution: Potassium dihydrogen phosphate and dipotassium hydrogen phosphate buffer solution are added to an aqueous solution of 10 g / L, pH is adjusted to 7-8, and the above-mentioned absorbing solution is added to a prepared 30 mL capacity impinger. 20 mL was injected.
  • the first and second towers of the impinger absorption liquid were placed in flasks, made acidic with 2N sulfuric acid, and titrated with 0.01 mol / L sodium thiosulfate standard solution.
  • the drop constant was 1st tower: 0.43 mL and 2nd tower: 0.06 mL.
  • the factor of the standard solution was 1.005, and when calculated, the first column was 23.1 ppb and the second column was 3.2 ppb. Compared with Example 3, the absorption and capture of chlorine dioxide gas became insufficient, and the measured value in the first column had a large negative error.
  • the drop constant was 1st tower: 0.34 mL and 2nd tower: 0.04 mL.
  • the factor of the standard solution was 1.005, and when calculated, the first column was 18.3 ppb and the second column was 2.2 ppb.
  • the measured value of the first tower had a large positive error.
  • the concentration of chlorine dioxide gas contained in indoor air at a low concentration can be accurately measured, for example, a deodorant that releases chlorine dioxide gas into the room and decomposes malodorous components, It can be suitably used for evaluating and confirming the performance of agents that remove and sterilize viruses and bacteria floating in the room, and for calibrating a highly sensitive continuous measuring device of chlorine dioxide gas concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)

Abstract

 アルカリ性物質とヨウ化物とを含有する水溶液を使用して、該水溶液に二酸化塩素ガスを含む空気を接触させる工程を含む二酸化塩素ガス捕捉方法。

Description

二酸化塩素ガスの捕捉方法、濃度測定方法、及び捕捉剤
 本発明は、空気中に低濃度で含まれる二酸化塩素ガスの、捕捉方法、濃度測定方法、及び捕捉剤に関する。
 二酸化塩素ガスは強力な酸化剤であり、例えば、室内空気環境中では、悪臭成分を分解して消臭したり、室内に浮遊して空気感染する虞のあるウィルスや細菌を除去・殺菌する場合などに使用されている。
 空気中の二酸化塩素ガス濃度を測定するための従来の方法としては、例えば、酸化還元反応を利用する電解式センサーを使用する方法や、ヨウ素溶液を使用するガス吸収法を挙げることができる(例えば、非特許文献1参照)。
国立医薬品食品衛生研究所 安全情報部、2007国際化学物質簡潔評価文書No.37二酸化塩素(ガス)、3.1作業環境の空気モニタリング、第8頁
 二酸化塩素ガスは、不安定な物質で分解し易く、電解式センサーを使用する方法(以下、センサー法と略称する)において標準ガスとして使用することが非常に困難であった。そのため、当該センサー法では、標準ガスとして、二酸化塩素ガスの替わりに塩素ガスを使用する場合がほとんどであるが、塩素ガスを標準ガスとして使用する場合には直接測定ではないため換算する必要があり、その換算係数は、pH等の影響によって0.5~2.5と変化したり、あるいは塩素ガスを発生させる条件等によっても変化するため、測定誤差が生じ易いという問題を抱えている。
 一方、ヨウ素溶液を使用する従来のガス吸収法は、以下の化学反応式(1)及び(2)に示すように、二酸化塩素ガスと、ヨウ素溶液中のヨウ化物とが反応することによって、ヨウ素が遊離し、このヨウ素をヨウ素滴定法や比色法等により分析することによって、二酸化塩素ガスとしての濃度を測定するものである。
 酸性条件下における二酸化塩素とヨウ化物(ヨウ化カリウム)との反応
 2ClO2+10KI+8HCl→5I2+10KCl+4H2O・・(1)
 中性条件下における二酸化塩素とヨウ化物(ヨウ化カリウム)との反応
 2ClO2+2KI→I2+2KClO2・・・・・・・・・・・・・(2)
 しかしながら、例えば、室内空気中で使用する二酸化塩素ガスは、非常に低い濃度に設定されることが多い。例えば、その濃度は、高くともせいぜい10ppm程度であり、さらに低い場合には10ppb以下の場合もある。
 従来のガス吸収法では、低濃度の二酸化塩素ガスをヨウ素溶液に吸収させるために長時間を要する場合が多く、その間、生成したヨウ素はヨウ化カリウム等により安定化されるが、平衡状態では遊離状態のヨウ素が存在し、この遊離状態のヨウ素が気化して空気中に逃げ出してしまうため、マイナスの測定誤差を生じさせる原因となっていた。
 さらに、以下の化学反応式(3)に示すように、空気中に存在するオゾン(O3)とヨウ化物(例えば、ヨウ化カリウム)とが反応してヨウ素が生成されてしまうため、このオゾンの存在は、プラスの測定誤差を生じさせる原因となっていた。尚、大気中に通常存在するオゾン(O3)は約10ppb~30ppb程度と言われている。
 O3+2KI+H2O→I2+2KOH+O2・・・・・・・・・・・(3)
 本発明の目的は、空気中に低濃度で含まれる二酸化塩素ガスの濃度を正確に測定することを可能とし、例えば、高感度な二酸化塩素ガス濃度の連続測定器の校正等に利用できるようにすることにある。
 本発明の二酸化塩素ガス捕捉方法における第1特徴構成は、アルカリ性物質とヨウ化物とを含有する水溶液を使用して、該水溶液に二酸化塩素ガスを含む空気を接触させる工程を含む点にある。
〔作用及び効果〕
 本構成における水溶液はアルカリ性物質を含むためアルカリ性を示す。
 ヨウ化物を含むアルカリ性の水溶液に二酸化塩素ガスが吸収されると、以下の化学反応式(4)~(6)に示すように、二酸化塩素ガスとヨウ化物とが反応して、安定なヨウ素酸塩及び/又は亜ヨウ素酸塩(アルカリ性の水溶液中では、非常に安定なヨウ素酸イオン及び/又は亜ヨウ素酸イオンとして存在する)が生成される。
 2ClO2+2KI+2KOH→KIO2+KIO3+2KCl+H2O・・・(4)
 6ClO2+5KI+6KOH→5KIO3+6KCl+3H2O・・・(5)
 4ClO2+5KI+4KOH→5KIO2+4KCl+2H2O・・・(6)
 即ち、本構成によれば、一時的にヨウ素が生成されたとしても、そのヨウ素はただちに安定なヨウ素酸塩及び/又は亜ヨウ素酸塩となる。そのため、低濃度の二酸化塩素ガスを含む空気を水溶液に長時間接触させたとしても、ヨウ素が気化して喪失する虞がない。
 また、たとえ空気中に存在するオゾン(O3)が水溶液に吸収された場合も、当該オゾンは水溶液中のアルカリ性物質によって分解され得るため、特に、大気中に通常存在する約10ppb~30ppb程度のオゾンであれば、オゾンとヨウ化物との反応によるヨウ素の生成を略完全に防止することができる。
 以上より、本構成の二酸化塩素ガス捕捉方法を使用すれば、ヨウ素気化による測定誤差の発生とオゾンによる測定誤差の発生のいずれも防止することができるため、低濃度の二酸化塩素ガスを含む空気を正確に測定することができる。
 第2特徴構成は、前記空気中に含まれる二酸化塩素ガスの濃度が、0.0002ppm~5ppmである点にある。
〔作用及び効果〕
 本構成によれば、二酸化塩素ガスをイオン化して吸収補足するために長時間吸引してもその間にヨウ素が空気中に放散することがないので、空気中に0.0002ppm~5ppmという非常に低い濃度で含まれる二酸化塩素ガスの濃度を正確に測定することができる。
 第3特徴構成は、前記水溶液中のアルカリ性物質の濃度が、0.01N以上である点にある。
〔作用及び効果〕 水溶液中のアルカリ性物質濃度が0.01N未満の場合、吸収した二酸化塩素ガスがヨウ化物と反応してヨウ素が遊離し易くなると共に、イオン化(上述の二酸化塩素ガスとヨウ化物との反応による安定なヨウ素酸塩及び/又は亜ヨウ素酸塩の生成)するための時間が長くなるため、測定誤差が大きくなる虞がある。しかしながら、アルカリ性物質濃度が0.01N以上であれば、吸収した二酸化塩素ガスのほとんどがヨウ化物と迅速に反応してイオン化するため、測定誤差の発生をより確実に防止することができる。
 第4特徴構成は、前記水溶液中のヨウ化物の濃度が、0.2g/L以上である点にある
〔作用及び効果〕
 水溶液中のヨウ化物の濃度を0.2g/L以上に設定することによって、吸収した二酸化塩素ガスが、ヨウ化物とより確実に反応するようになるため、測定誤差の発生をさらにより確実に防止することができる。
 本発明の二酸化塩素ガス濃度測定方法における特徴構成は、上記第1~第4特徴構成のいずれかに記載の二酸化塩素ガス捕捉方法を使用する二酸化塩素ガス濃度測定方法であって、前記二酸化塩素ガスを含む空気を接触させた水溶液におけるヨウ素酸塩及び/又は亜ヨウ素酸塩の濃度をイオンクロマトグラフ法によって測定する工程を含む点にある。
〔作用及び効果〕
 本構成によれば、水溶液におけるヨウ素酸塩及び/又は亜ヨウ素酸塩の濃度を、イオンクロマトグラフ法を用いて濃縮することによって直接測定することができるため、空気中に低濃度で含まれる二酸化塩素ガスの濃度を、より高い精度で正確に測定することができる。
 本発明の二酸化塩素ガス濃度測定方法における特徴構成は、上記第1~第4特徴構成のいずれかに記載の二酸化塩素ガス捕捉方法を使用する二酸化塩素ガス濃度測定方法であって、前記二酸化塩素ガスを含む空気を接触させた水溶液を酸性にしてヨウ素を遊離させる工程と、前記ヨウ素の濃度を比色法又はヨウ素滴定法によって測定する工程とを含む点にある。
〔作用及び効果〕
 本構成によれば、水溶液を酸性にすることによって、以下の化学反応式(7)及び(8)に示すように、水溶液中のヨウ素酸塩及び/又は亜ヨウ素酸塩から直ちにヨウ素を遊離させることができる。そのため、当該水溶液に対して公知の比色法やヨウ素滴定法を用いることによってヨウ素濃度を測定することが可能となり、これにより空気中に低濃度で含まれる二酸化塩素ガスの濃度をより簡便に求めることができる。
 2KIO2+4H2SO4+6KI→4I2+4K2SO4+4H2O・・・(7)
 KIO3+3H2SO4+5KI→3I2+3K2SO4+3H2O・・・・(8)
 本発明の二酸化塩素ガス捕捉剤の特徴構成は、アルカリ性物質とヨウ化物とを含有する水溶液である点にある。
〔作用及び効果〕
 本構成の水溶液はアルカリ性物質を含むためアルカリ性を示す。
 ヨウ化物を含むアルカリ性の水溶液に二酸化塩素ガスが吸収されると、上述の化学反応式(4)~(6)に示すように、二酸化塩素ガスとヨウ化物とが反応して、安定なヨウ素酸塩及び/又は亜ヨウ素酸塩(アルカリ性の水溶液中では、非常に安定なヨウ素酸イオン及び/又は亜ヨウ素酸イオンとして存在する)が生成される。
 即ち、本構成の水溶液において、一時的にヨウ素が生成されたとしても、そのヨウ素はただちに安定なヨウ素酸塩及び/又は亜ヨウ素酸塩となる。そのため、低濃度の二酸化塩素ガスを含む空気を水溶液に長時間接触させたとしても、ヨウ素が気化して喪失する虞がない。
 また、たとえ空気中に存在するオゾン(O3)が水溶液に吸収された場合も、当該オゾンは水溶液中のアルカリ性物質によって分解され得るため、特に、大気中に通常存在する約10ppb~30ppb程度のオゾンであれば、オゾンとヨウ化物との反応によるヨウ素の生成を略完全に防止することができる。
 以上より、本構成の二酸化塩素ガス捕捉剤によれば、ヨウ素の気化損失や、オゾンによるヨウ素の生成をほとんど伴わずに、空気中に低濃度で含まれる二酸化塩素ガスを確実に捕捉することができる。
[実施形態]
 以下、本発明の実施の形態を説明する。
(二酸化塩素ガス捕捉剤)
 本発明に係る二酸化塩素ガス捕捉剤は、アルカリ性物質とヨウ化物とを含有する水溶液である。
 使用可能なアルカリ性物質としては、例えば、水酸化リチウム、水酸化カリウム、水酸化ナトリウム等が挙げられるが、これらに限定されるものではない。また、水溶液におけるアルカリ性物質の濃度は、好ましくは0.01N以上であり、より好ましくは、0.1N~2Nである。
 使用可能なヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム等が挙げられるが、これらに限定されるものではない。また、水溶液におけるヨウ化物の濃度は、好ましくは0.2g/L以上であり、より好ましくは、2g/L~50g/Lである。
(二酸化塩素ガス捕捉方法)
 本発明に係る二酸化塩素ガス捕捉方法は、アルカリ性物質とヨウ化物とを含有する上記二酸化塩素ガス捕捉剤に対して、二酸化塩素ガスを含む空気を接触させる工程を含む。
 接触方法としては、例えば、公知のエアーポンプを使用して空気を吸引し、吸引した空気を上記二酸化塩素ガス捕捉剤に供給してバブリングする方法が挙げられる。例えば、ヨウ素滴定法で二酸化塩素ガス濃度を測定する場合は、50m3以上の容積を有する室内空間においては、0.1L/分~1.0L/分の吸引速度で、2時間~200時間の吸引・バブリングを行うと良い。
 本発明に係る二酸化塩素ガス捕捉方法は、二酸化塩素ガスを0.0002ppm~5ppmという非常に低い濃度で含む空気について測定することが可能であり、勿論、より高い濃度で二酸化塩素ガスを含む空気に対しても適用することができる。
(二酸化塩素ガス濃度測定方法)
 (1)イオンクロマトグラフ法
 上述の二酸化塩素ガス捕捉剤及び二酸化塩素ガス捕捉方法を用いて捕捉した二酸化塩素ガスは、アルカリ性の水溶液である二酸化塩素ガス捕捉剤において、非常に安定なヨウ素酸イオン及び/又は亜ヨウ素酸イオンとして存在する。そのため、これらのイオンの濃度を公知のイオンクロマトグラフ法を用いて直接測定することによって、空気中の二酸化塩素ガスの濃度を測定することができる。尚、イオンクロマトグラフ法はヨウ素滴定法と比べて検出感度が高いため、ヨウ素滴定法を用いる場合の空気吸引量の約1/10程度の空気吸引量で測定することが可能である。
 (2)比色法
 上述の二酸化塩素ガス捕捉剤及び二酸化塩素ガス捕捉方法を用いて捕捉した二酸化塩素ガスは、アルカリ性の水溶液である二酸化塩素ガス捕捉剤において、非常に安定なヨウ素酸イオン及び/又は亜ヨウ素酸イオンとして存在する。
 当該二酸化塩素ガス捕捉剤に対して、例えば、1N~18Nの硫酸等を加えて酸性にすると、上述の化学反応式(7)及び(8)に示すように、直ちにヨウ素が遊離する。
 そのため、デンプン水溶液やDPD試薬等の発色試薬と比色計を用いる、公知の比色法によってヨウ素濃度を測定することが可能となり、これにより空気中に低濃度で含まれる二酸化塩素ガスの濃度をより簡便に求めることができる。尚、比色法はヨウ素滴定法と比べて検出感度が比較的高いため、ヨウ素滴定法を用いる場合の空気吸引量の約1/2程度の空気吸引量で測定することが可能である。
 (3)ヨウ素滴定法
 上述の二酸化塩素ガス捕捉剤及び二酸化塩素ガス捕捉方法を用いて捕捉した二酸化塩素ガスは、アルカリ性の水溶液である二酸化塩素ガス捕捉剤において、非常に安定なヨウ素酸イオン及び/又は亜ヨウ素酸イオンとして存在する。
 当該二酸化塩素ガス捕捉剤に対して、例えば、1N~18Nの硫酸等を加えて酸性にすると、上述の化学反応式(7)及び(8)に示すように、直ちにヨウ素が遊離する。
 そのため、チオ硫酸ナトリウム標準液(ハイポ液)で滴定する、公知のヨウ素滴定法によってヨウ素濃度を測定することが可能となり、これにより空気中に低濃度で含まれる二酸化塩素ガスの濃度をより簡便に求めることができる。
 以下に本発明の実施例を示し、本発明をより詳細に説明する。但し、本発明がこれらの実施例に限定されるものではない。
(実施例1)
 電解式二酸化塩素ガス発生装置「リスパスS」(大幸薬品株式会社製)を使用して二酸化塩素ガスを連続運転してガス流量:300mL/min、発生量:5mg/hrを発生させた。
 発生したガスの一部を耐食性のエアーポンプで50mL/minを抜き出し、3L/minの希釈エアーで希釈し、更にこの希釈ガスを耐食性のエアーポンプで50mL/minを抜き出して2.5L/minの希釈エアーで希釈することにより、おおよそ30ppbの二酸化塩素ガスを含むエアーを連続発生させた。
 二酸化塩素ガス捕捉剤としてヨウ素カリウム:50g/L、水酸化カリウム:50g/Lの水溶液を用意して、30mL容量のインピンジャーに上記捕捉剤を20mL注入した。
 注入したインピンジャーを2本直列に接続し、500mL/minの吸引速度で上記二酸化塩素ガスを30時間吸引した。
 1塔目及び2塔目のインピンジャー内の捕捉剤のそれぞれをフラスコに入れて2N硫酸を入れて硫酸酸性とし、0.01moL/Lのチオ硫酸ナトリウム標準液にて滴定した。滴定数は、1塔目:0.55mLであり、2塔目:0.00mLであった。チオ硫酸ナトリウム標準液のファクターは1.005であり、計算すると1塔目は29.6ppb(因みに、理論値は31.9ppb)となり、2塔目は0ppbとなった。
(実施例2)
 実施例1で使用した二酸化塩素ガス発生装置から発生している二酸化塩素ガス(流速:2.55L/min、濃度:およそ30ppb)にオゾン発生器(ダイレック株式会社製ModeL1410、空気清浄機:ModeL1400、モニター:ModeL1150)から発生するオゾン濃度:50ppbのエアーを2.5L/minで混合して、実施例1と同様に測定を行った。
 供給ガスにおける二酸化塩素ガス濃度とオゾン濃度を計算すると、二酸化塩素ガスは2.55/(2.55+2.5)×29.6=14.9ppbとなり、オゾンは2.5/(2.55+2.5)×50=24.8ppbとなる。
 滴定数は、1塔目:0.30mLであり、2塔目:0.00mLであった。チオ硫酸ナトリウム標準液のファクターは1.005であり、計算すると1塔目は16.1ppbとなり、2塔目は0ppbとなった。
(実施例3)
 実施例1と同様におおよそ30ppbの二酸化塩素ガスを含むエアーを連続発生させた。吸収液としてヨウ素カリウム:10g/L、水酸化カリウム:2g/Lの水溶液を用意して、30mL容量のインピンジャーに上記吸収液を20mL注入した。
 注入したインピンジャーを2本直列に接続し、500mL/minの吸引速度で上記二酸化塩素ガスを30時間吸引した。インピンジャーの吸収液の1塔目、及び2塔目をそれぞれフラスコに入れて2N硫酸を入れて硫酸酸性とし、0.01moL/Lのチオ硫酸ナトリウム標準液にて滴定した。
 滴定数は、1塔目:0.53mLであり、2塔目:0.00mLであった。標準液のファクターは1.005であり、計算すると1塔目は28.5ppbとなり、2塔目は0ppbとなった。
(実施例4)
 実施例2と同様にオゾン濃度50ppbのエアーを2.5L/minで混合して、実施例2と同様に測定を行った。
 供給ガス濃度は二酸化塩素ガス:14.9ppbであり、オゾン:24.8ppbとなる。吸収液としてヨウ素カリウム:10g/L、水酸化カリウム2g/Lの水溶液を用意して、30mL容量のインピンジャーに上記吸収液を20mL注入した。
 注入したインピンジャーを2本直列に接続し、500mL/minの吸引速度で上記二酸化塩素ガスを30時間吸引した。インピンジャーの吸収液の1塔目、及び2塔目をそれぞれフラスコに入れて2N硫酸を入れて硫酸酸性とし、0.01moL/Lのチオ硫酸ナトリウム標準液にて滴定した。
 滴定数は、1塔目:0.28mLであり、2塔目:0.00mLであった。標準液のファクターは1.005であり、計算すると1塔目は14.1ppbとなり、2塔目は0ppbとなった。
(比較例1(従来法))
 実施例1と同様におおよそ30ppbの二酸化塩素ガスを含むエアーを連続発生させた。吸収液としてヨウ素カリウム:10g/Lの水溶液を用意して、30mL容量のインピンジャーに上記吸収液を20mL注入した。
 注入したインピンジャーを2本直列に接続し、500mL/minの吸引速度で上記二酸化塩素ガスを30時間吸引した。インピンジャーの吸収液の1塔目、及び2塔目をそれぞれフラスコに入れて2N硫酸を入れて硫酸酸性とし、0.01moL/Lのチオ硫酸ナトリウム標準液にて滴定した。
 滴定数は、1塔目:0.42mLであり、2塔目:0.07mLであった。標準液のファクターは1.005であり、計算すると、1塔目は22.6ppbとなり、2塔目は3.8ppbとなった。実施例3と比較して、二酸化塩素ガスの吸収捕捉が不十分なものとなり、1塔目の測定値はマイナスの誤差が大きくなった。
(比較例2(従来法、中性条件下))
 実施例1と同様におおよそ30ppbの二酸化塩素ガスを含むエアーを連続発生させた。吸収液としてヨウ素カリウム:10g/Lの水溶液にリン酸二水素カリウム、及びリン酸水素二カリウム緩衝液を加え、pHを7~8に調整し、用意した30mL容量のインピンジャーに上記吸収液を20mL注入した。
 注入したインピンジャーを2本直列に接続し、500mL/minの吸引速度で上記二酸化塩素ガスを30時間吸引した。インピンジャーの吸収液の1塔目、及び2塔目をそれぞれフラスコに入れて2N硫酸を入れて硫酸酸性とし、0.01moL/L、チオ硫酸ナトリウム標準液にて滴定した。
 滴定数は、1塔目:0.43mLであり、2塔目:0.06mLであった。標準液のファクターは1.005であり、計算すると1塔目は23.1ppbとなり、2塔目は3.2ppbとなった。実施例3と比較して、二酸化塩素ガスの吸収捕捉が不十分なものとなり、1塔目の測定値はマイナスの誤差が大きくなった。
(比較例3(従来法))
 実施例2と同様な方法で二酸化塩素ガス:14.9ppb、オゾン:24.8ppbとなるガスを供給し、吸収液としてヨウ素カリウム:10g/Lの水溶液を用意して、30mL容量のインピンジャーに上記吸収液を20mL注入した。
 滴定数は、1塔目:0.34mLであり、2塔目:0.04mLであった。標準液のファクターは1.005であり、計算すると1塔目は18.3ppbとなり、2塔目は2.2ppbとなった。実施例4と比較して、オゾンの影響を受けたため、1塔目の測定値はプラスの誤差が大きくなった。
 本発明によれば、室内空気中に低濃度で含まれる二酸化塩素ガスの濃度を正確に測定することができるため、例えば、二酸化塩素ガスを室内に放出して悪臭成分を分解する消臭剤や、室内に浮遊するウィルスや細菌を除去・殺菌する薬剤などの性能を評価・確認する場合や、高感度な二酸化塩素ガス濃度の連続測定器を校正する場合などに好適に利用することができる。

Claims (7)

  1.  アルカリ性物質とヨウ化物とを含有する水溶液を使用して、該水溶液に二酸化塩素ガスを含む空気を接触させる工程を含む二酸化塩素ガス捕捉方法。
  2.  前記空気中に含まれる二酸化塩素ガスの濃度が、0.0002ppm~5ppmである請求項1に記載の二酸化塩素ガス捕捉方法。
  3.  前記水溶液中のアルカリ性物質の濃度が、0.01N以上である請求項1又は2に記載の二酸化塩素ガス捕捉方法。
  4.  前記水溶液中のヨウ化物の濃度が、0.2g/L以上である請求項1又は2に記載の二酸化塩素ガス捕捉方法。
  5.  請求項1~4のいずれか1項に記載の二酸化塩素ガス捕捉方法を使用する二酸化塩素ガス濃度測定方法であって、
     前記二酸化塩素ガスを含む空気を接触させた水溶液におけるヨウ素酸塩及び/又は亜ヨウ素酸塩の濃度をイオンクロマトグラフ法によって測定する工程を含む二酸化塩素ガス濃度測定方法。
  6.  請求項1~4のいずれか1項に記載の二酸化塩素ガス捕捉方法を使用する二酸化塩素ガス濃度測定方法であって、
     前記二酸化塩素ガスを含む空気を接触させた水溶液を酸性にしてヨウ素を遊離させる工程と、前記ヨウ素の濃度を比色法又はヨウ素滴定法によって測定する工程とを含む二酸化塩素ガス濃度測定方法。
  7.  アルカリ性物質とヨウ化物とを含有する水溶液である、二酸化塩素ガス捕捉剤。
PCT/JP2014/051114 2013-02-05 2014-01-21 二酸化塩素ガスの捕捉方法、濃度測定方法、及び捕捉剤 WO2014122983A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480007344.3A CN104995132B (zh) 2013-02-05 2014-01-21 二氧化氯气体的捕捉方法、浓度测定方法及捕捉剂
US14/765,739 US9677980B2 (en) 2013-02-05 2014-01-21 Method of entrapping chlorine dioxide gas, method of determining concentration of chlorine dioxide and entrapping agent for chlorine dioxide
JP2014560708A JP6400482B2 (ja) 2013-02-05 2014-01-21 二酸化塩素ガスの捕捉方法、濃度測定方法、及び捕捉剤
KR1020157022748A KR102275969B1 (ko) 2013-02-05 2014-01-21 이산화염소 가스의 포착방법, 농도 측정방법, 및 포착제
EP14749434.8A EP2955155A4 (en) 2013-02-05 2014-01-21 METHOD FOR CAPTURING CHLORINE DIOXIDE GAS, METHOD FOR MEASURING THE CONCENTRATION OF CHLORINE DIOXIDE GAS AND MEANS FOR THE ABSORPTION OF CHLORINE DIOXIDE GAS
HK16100346.3A HK1212314A1 (en) 2013-02-05 2016-01-13 Method for trapping chlorine dioxide gas, method for measuring concentration of chlorine dioxide gas, and trapping agent for chlorine dioxide gas
HK16102204.0A HK1214237A1 (zh) 2013-02-05 2016-02-25 二氧化氯氣體的捕捉方法、濃度測量方法,以及捕集劑

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-020674 2013-02-05
JP2013020674 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014122983A1 true WO2014122983A1 (ja) 2014-08-14

Family

ID=51299580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051114 WO2014122983A1 (ja) 2013-02-05 2014-01-21 二酸化塩素ガスの捕捉方法、濃度測定方法、及び捕捉剤

Country Status (8)

Country Link
US (1) US9677980B2 (ja)
EP (1) EP2955155A4 (ja)
JP (1) JP6400482B2 (ja)
KR (1) KR102275969B1 (ja)
CN (1) CN104995132B (ja)
HK (2) HK1212314A1 (ja)
TW (1) TWI636006B (ja)
WO (1) WO2014122983A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403661A (zh) * 2015-12-18 2016-03-16 深圳市清时捷科技有限公司 一种五步碘量法
CN115436558A (zh) * 2022-08-03 2022-12-06 浙江衢化氟化学有限公司 一种用离子色谱测定氯系氧化物含量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534455A (ja) * 2003-07-11 2007-11-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 装置およびそれを用いる方法
JP2009122077A (ja) * 2007-11-19 2009-06-04 Taiko Pharmaceutical Co Ltd 亜塩素酸イオンの測定方法
JP2010077004A (ja) * 2008-09-29 2010-04-08 Taikoo:Kk 亜塩素酸塩溶液の安定化方法、安定化亜塩素酸塩溶液、二酸化塩素の発生方法および除去方法
WO2012165466A1 (ja) * 2011-05-31 2012-12-06 ダイソー株式会社 二酸化塩素剤及び二酸化塩素の発生方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110580A (en) * 1989-09-14 1992-05-05 Iolab Corporation Method and apparatus for chlorine dioxide manufacture
US6663902B1 (en) * 2000-09-19 2003-12-16 Ecolab Inc. Method and composition for the generation of chlorine dioxide using Iodo-Compounds, and methods of use
US20050005868A1 (en) 2003-07-11 2005-01-13 Shepard Allan T. Animal drinking water production
US20050008554A1 (en) 2003-07-11 2005-01-13 Nowosielski-Slepowron Marek Stefan Apparatus and process therewith
WO2010009064A2 (en) 2008-07-15 2010-01-21 Basf Corporation Non-cytotoxic chlorine dioxide fluids
CN102458487B (zh) 2009-06-04 2015-11-25 萨布尔知识产权控股有限责任公司 使用气态二氧化氯给被包围空间去污染

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534455A (ja) * 2003-07-11 2007-11-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 装置およびそれを用いる方法
JP2009122077A (ja) * 2007-11-19 2009-06-04 Taiko Pharmaceutical Co Ltd 亜塩素酸イオンの測定方法
JP2010077004A (ja) * 2008-09-29 2010-04-08 Taikoo:Kk 亜塩素酸塩溶液の安定化方法、安定化亜塩素酸塩溶液、二酸化塩素の発生方法および除去方法
WO2012165466A1 (ja) * 2011-05-31 2012-12-06 ダイソー株式会社 二酸化塩素剤及び二酸化塩素の発生方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Monitoring of Working Environment", 2007, NATIONAL INSTITUTE OF HEALTH SCIENCES, pages: 8
See also references of EP2955155A4 *

Also Published As

Publication number Publication date
US20150369713A1 (en) 2015-12-24
EP2955155A4 (en) 2016-11-02
US9677980B2 (en) 2017-06-13
HK1212314A1 (en) 2016-06-10
CN104995132A (zh) 2015-10-21
TWI636006B (zh) 2018-09-21
CN104995132B (zh) 2017-03-15
KR20150117276A (ko) 2015-10-19
HK1214237A1 (zh) 2016-07-22
TW201446640A (zh) 2014-12-16
JP6400482B2 (ja) 2018-10-03
JPWO2014122983A1 (ja) 2017-02-02
EP2955155A1 (en) 2015-12-16
KR102275969B1 (ko) 2021-07-13

Similar Documents

Publication Publication Date Title
Wong et al. Observations and impacts of bleach washing on indoor chlorine chemistry
JPH05196597A (ja) ガス感知器
CN102183478B (zh) 一种测定卷烟主流烟气气相中硫化氢的方法
JP6400482B2 (ja) 二酸化塩素ガスの捕捉方法、濃度測定方法、及び捕捉剤
CN101532998B (zh) 一种检测生活饮用水中二氧化氯含量的方法
US20080076185A1 (en) Device for determining chlorine dioxide and method
JP2009122077A (ja) 亜塩素酸イオンの測定方法
CN102200525B (zh) 二氧化氯测量组件,含该组件的气体传感器和测量方法
JP2010060437A (ja) 過酢酸濃度測定用試薬及び過酢酸濃度測定方法
ES2616980T3 (es) Procedimiento de preparación, almacenaje, transporte y análisis de soluciones de dióxido de cloro
JP2007240437A (ja) ガスセンサ
JP2001289816A (ja) 定電位電解式ガスセンサ
JP4166104B2 (ja) 定電位電解式酸性ガス検出器
JP5260446B2 (ja) ふっ素濃度自動測定方法、およびふっ素濃度自動測定装置
JP5392918B2 (ja) 定電位電解式酸性ガス検出器
JP2005300198A (ja) 低濃度硫化水素の分析方法
CN118033037A (zh) 一种次氯酸钠溶液中氯酸盐含量的检测方法
JP2005164498A (ja) 過酢酸の定量方法
CN112098592A (zh) 一种二氧化硫气体中二甲基亚砜含量的测定方法
Singh et al. Silica gel detector tubes for toxic chemicals and their evaluation
JP2006292512A (ja) Of2ガスの分析方法
Gordon et al. Lower detection limits found for chlorine dioxide contaminants
Gengan et al. New spectrophotometric method with KMnO4 for determination of hypochlorite in commercial bleaches
JP2004184085A (ja) 有効塩素を含有する塩化ナトリウム水溶液中の有効塩素の濃度の測定方法
JP2003130845A (ja) 塩化水素濃度測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560708

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014749434

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157022748

Country of ref document: KR

Kind code of ref document: A