WO2014119709A1 - ガラス基板の製造方法、及びガラス基板製造装置 - Google Patents

ガラス基板の製造方法、及びガラス基板製造装置 Download PDF

Info

Publication number
WO2014119709A1
WO2014119709A1 PCT/JP2014/052213 JP2014052213W WO2014119709A1 WO 2014119709 A1 WO2014119709 A1 WO 2014119709A1 JP 2014052213 W JP2014052213 W JP 2014052213W WO 2014119709 A1 WO2014119709 A1 WO 2014119709A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
temperature
glass substrate
clarification tank
platinum
Prior art date
Application number
PCT/JP2014/052213
Other languages
English (en)
French (fr)
Inventor
諒 鈴木
哲郎 君嶋
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to JP2014559764A priority Critical patent/JP6067755B2/ja
Priority to CN201480006501.9A priority patent/CN104968617B/zh
Priority to KR1020157020615A priority patent/KR101716996B1/ko
Publication of WO2014119709A1 publication Critical patent/WO2014119709A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass substrate manufacturing method and a glass substrate manufacturing apparatus for manufacturing a glass substrate by melting a glass raw material. In particular, it is related with the clarification process in the manufacturing method of a glass substrate.
  • a glass substrate is generally manufactured through a process of forming molten glass from a glass raw material and then forming the molten glass into a glass substrate.
  • the above process includes a process of removing minute bubbles contained in the molten glass (hereinafter also referred to as clarification).
  • the clarification is performed by passing the molten glass in which the clarification agent is blended into the clarification tank main body (hereinafter also simply referred to as the main body) while heating the tubular clarification tank main body, and by the oxidation-reduction reaction of the clarification agent. This is done by removing the foam.
  • the temperature of the molten glass that has been melted further is raised to allow the fining agent to function and the bubbles to rise and defoam, and then the temperature is lowered to melt the relatively small bubbles that remain without being defoamed.
  • the glass is made to absorb. That is, clarification includes a process for floating and defoaming bubbles (hereinafter also referred to as a defoaming process or a defoaming process) and a process for absorbing small bubbles into molten glass (hereinafter also referred to as an absorption process or an absorption process).
  • As 2 O 3 has been commonly used as a fining agent, but SnO 2 or the like has come to be used from the viewpoint of environmental burden in recent years.
  • the inner wall of the member in contact with the molten glass needs to be made of an appropriate material according to the temperature of the molten glass in contact with the member, the required quality of the glass substrate, and the like.
  • a platinum group metal such as platinum or a platinum alloy is usually used as the material constituting the clarification tank body (Patent Document 1). Platinum or a platinum alloy is expensive but has a high melting point and excellent corrosion resistance against molten glass.
  • the temperature at which the clarification tank body is heated during the defoaming step is about 1600 to 1700 ° C., although it varies depending on the composition of the glass substrate to be formed.
  • a technique for heating the clarification tank body for example, a technique is known in which a pair of flange-shaped electrodes are provided in the clarification tank body and a voltage is applied to the electrode pair to energize and heat the clarification tank body ( Patent Document 2).
  • the flange-shaped electrode is provided with a water-cooled tube made of copper or nickel.
  • the present invention intends to provide a glass substrate manufacturing method and a glass substrate manufacturing apparatus capable of reducing platinum foreign matter in glass products.
  • the present invention has the following aspects.
  • a glass substrate manufacturing method including a melting step, a refining step, and a forming step
  • the clarification tank used in the clarification step is composed of platinum or a platinum alloy, and has a flange-like electrode for energizing and heating the clarification tank.
  • Defoaming is performed by adjusting the liquid level so as to have a gas phase space and passing the molten glass through the energized and heated clarification tank, Cooling the electrode to suppress heat generation of the electrode, The cooling of the electrode is controlled so that the temperature of the wall of the clarification tank is in a range exceeding the temperature at which platinum vapor generated in the gas phase space of the clarification tank is condensed. Production method.
  • the electrode has a cooling pipe for allowing the refrigerant to pass therethrough
  • the clarification step includes The method for producing a glass substrate according to any one of aspects 1 to 4, wherein the amount of cooling is adjusted by increasing or decreasing the amount of refrigerant passed through the cooling pipe.
  • a glass substrate manufacturing apparatus including a melting tank, a clarification tank, and a molding apparatus,
  • the clarification tank is composed of platinum or a platinum alloy, and has a flange-shaped electrode for energizing and heating the clarification tank,
  • the electrode is cooled to suppress heat generation of the electrode;
  • the cooling of the electrode is controlled so that the temperature of the wall of the clarification tank is in a range exceeding the temperature at which platinum vapor generated in the gas phase space of the clarification tank is condensed. .
  • the glass substrate manufacturing method and glass substrate manufacturing apparatus of the present invention it is possible to reduce platinum foreign matter in glass products.
  • FIG. 1 is a flowchart showing the steps of the glass substrate manufacturing method of the present embodiment.
  • the glass substrate mainly comprises a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a forming step (ST5), and a slow cooling step (ST6). It is produced through a cutting step (ST7).
  • FIG. 2 is a schematic view of the glass substrate manufacturing apparatus of the present embodiment manufactured through the above-described melting process (ST1) to cutting process (ST7), and schematically shows the arrangement of apparatuses used in each process. It shows. As shown in FIG.
  • the glass substrate manufacturing apparatus 200 heats a glass raw material and produces
  • it has the glass supply pipe
  • the glass supply pipes 43a, 43b, 43c, the clarification tank 41, and the stirring device 100 that connect the devices from the melting device 40 to the forming device 42 are made of a platinum group metal.
  • the melting apparatus 40 is comprised with refractories, such as a refractory brick. Further, the melting device 40 is provided with a heating means such as a burner that emits a flame by burning a combustion gas that is a mixture of fuel and oxygen (not shown).
  • a heating means such as a burner that emits a flame by burning a combustion gas that is a mixture of fuel and oxygen (not shown).
  • a glass raw material MG such as SnO 2
  • the glass raw material is supplied to the liquid surface of the molten glass using a raw material charging apparatus (not shown). The glass material is heated by radiant heat from the flame of the burner.
  • the glass raw material is heated and melted gradually by the heating means described above, and melted in the molten glass MG.
  • the heating means may be at least one pair of electrodes made of, for example, molybdenum, platinum, tin oxide, or the like.
  • the molten glass MG may be heated by being energized by passing an electric current between the electrodes to increase the temperature.
  • the glass raw material thrown into the melting apparatus 40 is suitably prepared according to the composition of the glass substrate to be manufactured.
  • the glass composition constituting the glass substrate is displayed in mass%, SiO 2 : 50 to 70%, Al 2 O 3 : 0 to 25%, B 2 O 3 : 1 to 15%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5-30% (where R is the total amount of Mg, Ca, Sr and Ba), It is preferable that it is an alkali free glass containing.
  • the glass substrate may be a glass containing a trace amount of alkali containing a trace amount of alkali metal.
  • the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K) It is preferable that the glass substrate contains at least one kind. Of course, the total of R ′ 2 O may be lower than 0.10%.
  • the glass composition is represented by mass% in addition to the above components, and SnO 2 : 0.01 to 1% (preferably 0.01 To 0.5%), Fe 2 O 3 : 0 to 0.2% (preferably 0.01 to 0.08%), and considering the environmental burden, As 2 O 3 , Sb 2 O 3 And you may prepare a glass raw material so that PbO may not be included substantially.
  • the next clarification step (ST2) is performed in the clarification tank 41.
  • the liquid level of the molten glass MG is adjusted so as to have the gas phase space in the clarification tank 41, and the molten glass MG is allowed to pass through.
  • the molten glass MG in the clarification tank 41 is heated to a predetermined temperature (in the case of glass having the above composition, for example, 1600 ° C. or higher), whereby O 2 , CO 2 or SO 2 contained in the molten glass MG is changed.
  • the contained bubbles for example, grow by absorbing O 2 generated by the reduction reaction of a clarifying agent such as SnO 2 , float on the liquid surface of the molten glass MG, and are released.
  • the glass components are homogenized by stirring the molten glass MG in the stirring device 100 supplied through the glass supply pipe 43b using a stirrer described later.
  • the stirring device 100 stirs the molten glass MG using one stirrer, but can also stir the molten glass MG using two or more stirrers.
  • the molten glass MG is supplied to the molding apparatus 42 through the glass supply pipe 43c.
  • the molten glass is cooled so as to have a temperature suitable for molding (for example, about 1200 ° C. in the case of glass having the above composition) in the glass supply pipe 43c when it is sent from the clarification tank 41 to the molding apparatus.
  • a molding step (ST5) and a slow cooling step (ST6) are performed.
  • the forming step (ST5) the molten glass MG is formed into a sheet glass 44, and a flow of the sheet glass 44 is created.
  • the slow cooling step (ST6) the sheet-like glass 44 that is formed and flows is cooled to have a desired thickness and no internal distortion occurs.
  • a sheet glass 44 supplied from the forming device 42 is cut into a predetermined length by a cutting device (not shown) to obtain a plate-like glass substrate.
  • the cut glass substrate is further cut into a predetermined size to produce a glass substrate of a target size.
  • the end surface of the glass substrate is ground and polished, and the glass substrate is cleaned. Further, after checking for defects such as bubbles, scratches, and dirt, the glass substrate that has passed the inspection is packed as a final product.
  • FIG. 3 is a schematic diagram illustrating the configuration of the fining tank 41 of the embodiment.
  • the temperature of the wall of the clarification tank 41 is controlled to be in a range exceeding the temperature at which platinum vapor generated in the gas phase space of the clarification tank 41 is condensed.
  • the clarification tank 41 has a cylindrical shape and is made of platinum or a platinum alloy. Electrodes 50 a and 50 b are welded to the outer peripheral surfaces of both ends of the clarification tank 41. The electrodes 50 a and 50 b are used to energize and heat the clarification tank 41 and are connected to the power supply device 52.
  • the clarification tank 41 When a voltage is applied between the electrodes 50a and 50b, a current flows in the clarification tank 41 between the electrodes 50a and 50b, and the clarification tank 41 is energized and heated.
  • the clarification tank 41 is heated to about 1650 ° C. to 1700 ° C., for example, and the molten glass MG supplied from the glass supply pipe 43a is heated to a temperature suitable for defoaming, for example, about 1600 ° C. to 1700 ° C. Heated.
  • refrigerant supply devices 54a and 54b, temperature measuring devices 56a and 56b, and control devices 58a and 58b are connected to the electrodes 50a and 50b, respectively.
  • Cooling tubes 502a and 502b are provided on the outer periphery of the electrodes 50a and 50b.
  • the electrode 50a is an electrode 50b
  • the cooling pipe 502a is a cooling pipe 502b
  • the refrigerant supply device 54a is a refrigerant supply device 54b
  • the temperature measurement device 56a is a temperature measurement device 56b
  • the control device 58a is a control device 58b.
  • the electrodes 50a and 50b are collectively referred to as the electrode 50
  • the refrigerant supply devices 54a and 54b are collectively referred to as the refrigerant supply device 54
  • the temperature measurement devices 56a and 56b are collectively referred to as the temperature measurement device 56
  • cooling is performed.
  • the pipes 502a and 502b are collectively referred to as the cooling pipe 502
  • the control devices 58a and 58b are collectively referred to as the control device 58.
  • the electrode 50 is made of platinum or a platinum alloy. In the present embodiment, the case where the electrode 50 is made of platinum or a platinum alloy will be described as a specific example. However, a part of the electrode 50 is made of other metal such as palladium, silver, or copper. Also good. For example, since platinum or platinum alloy is expensive, palladium, silver, copper, or the like may be used in a place where the temperature of the electrode 50 is relatively low.
  • the electrodes 50 are formed in a plate shape and are welded and installed on the outer peripheral surfaces of both ends of the fining tank 41 so that the electrodes 50 (50a, 50b) are substantially parallel to each other.
  • the electrode 50 is provided with a protruding portion that is partially protruded so as to be connected to the power supply device 52 to form a flange shape. Since this protrusion part protrudes from the clarification tank 41, it is cooled by the outside air of the clarification tank 41. For this reason, the clarification tank 41 in the vicinity of the electrode 50 is cooled.
  • the shape, installation position, and installation method of the electrode 50 are arbitrary as long as the current flowing from the power supply device 52 can flow through the electrode 50 and the clarification tank 41 to heat the molten glass MG.
  • a temperature measuring device 56 is connected to the electrode 50.
  • the temperature measuring device 56 is composed of a thermocouple.
  • Each temperature measuring device 56 measures the temperature of the electrode 50 and outputs the measured result to the control device 58.
  • the temperature measured by the temperature measuring device 56 may be used for controlling the cooling of the electrode 50 described later by measuring the temperature of the fining tank (wall) in the vicinity of the electrode 50 instead of the temperature of the electrode 50.
  • the vicinity of the electrode 50 means within a range of 50 cm from the position of the electrode 50.
  • a cooling pipe 502 is provided so as to contact the periphery of the electrode 50. That is, the electrode 50 is cooled by the cooling pipe 502 and heat generation is suppressed. That is, the fact that the electrode 50 is cooled and the heat generation of the electrode 50 is suppressed means that the heat of the electrode 50 generated by the current is cooled and the temperature is suppressed.
  • the cooling pipe 502 is connected to the refrigerant supply device 54.
  • the cooling pipe 502 is configured in a tubular shape, and has an inlet for receiving the refrigerant supplied from the refrigerant supply device 54 and an outlet for discharging the supplied refrigerant to the refrigerant supply device 54. That is, the cooling pipe 502 is configured to cool the electrode 50 provided so as to contact the cooling pipe 502 by allowing the refrigerant supplied from the refrigerant supply device 54 to pass therethrough.
  • the refrigerant may be a liquid such as water or a gas such as air.
  • the refrigerant is more preferably a gas.
  • the refrigerant is a liquid such as water
  • the cooling ability is high, and therefore the temperature locally decreases in the vicinity of the electrode 50 of the clarification tank 41.
  • the clarification tank comprised from platinum or a platinum alloy has a gaseous phase space, platinum or a platinum alloy volatilizes.
  • the refrigerant is preferably a gas.
  • the cooling pipe 502 is made of metal.
  • the refrigerant supplied from the refrigerant supply device 54 is a liquid such as water, the cooling ability is high, so copper, nickel, or the like may be used as the metal, and it can be used.
  • the refrigerant supplied from the refrigerant supply device 54 is a gas, the cooling ability is lower than that of the liquid. Therefore, it is preferable to use a material that is not oxidized in the high-temperature air for the metal. Specifically, platinum, rhodium, silver, palladium, gold, or an alloy thereof is preferable. Silver is the cheapest of these materials and has a low electrical resistance, so heat generation can be suppressed.
  • the metal preferably contains silver, more preferably 90% by mass or more.
  • the cooling tube material is preferably a material having a low electrical resistivity and functioning as a current bypass.
  • copper, silver, or platinum can be used.
  • the energized current is smaller than 3000 amperes, the problem of resistance heat generation of the cooling tube material is small, so stainless steel, nickel, cobalt, etc. can be used. That is, the cooling pipe 502 may be configured to include any of silver, platinum, copper, rhodium, palladium, gold, iron, cobalt, and nickel.
  • the cooling pipe 502 can be protected by covering the periphery of the cooling pipe 502 with a refractory material such as refractory bricks.
  • the refrigerant supply device 54 is connected to the control device 58 and supplies the refrigerant to the cooling pipe 502 according to the control of the control device 58.
  • the refrigerant for example, compressed air can be used.
  • the control device 58 is composed of a computer including a CPU, a memory, and the like. As described above, the control device 58 receives the result of the temperature measured by the temperature measurement device 56 and controls the refrigerant supply device 54 based on the measurement result. Thereby, the cooling amount of the electrode 50 is adjusted. For example, when the result of the temperature measured by the temperature measuring device 56 is outside the predetermined temperature range, the control device 58 controls the refrigerant supply device 54 to adjust the cooling amount. For example, the refrigerant supply amount is increased or decreased by a predetermined amount. When the temperature is within a predetermined temperature range, the refrigerant supply device 54 is controlled so that the refrigerant supply amount supplied by the refrigerant supply device 54 is not changed.
  • the control device 58 stores a temperature range including at least one of an upper limit value and a lower limit value in a memory in advance. Further, the control device 58 stores in advance a predetermined amount of refrigerant increase and decrease in the memory. When the temperature measured by the temperature measuring device 56 exceeds the upper limit value, the control device 58 refers to the memory to determine the refrigerant increase amount. Further, the control device 58 controls the refrigerant supply device 54 to increase the refrigerant supply amount by the determined refrigerant increase amount. On the other hand, when the lower limit is exceeded, the refrigerant decrease amount is determined with reference to the memory. Further, the control device 58 controls the refrigerant supply device 54 to decrease the refrigerant supply amount by the determined amount.
  • the upper limit value is a temperature at which the electrode 50 does not break due to heat generation.
  • fusing point 1768 degreeC of platinum is an upper limit. Since the electrode 50 can be made of palladium or the like as described above, the upper limit value is the melting point of the material constituting the electrode 50.
  • the lower limit value is a temperature at which platinum vapor generated in the gas phase space of the clarification tank 41 is not condensed. The temperature at which platinum vapor generated in the gas phase space of the fining tank 41 does not condense is equal to or higher than the temperature at which the molten glass MG exhibits the fining of the fining agent (for example, tin oxide). This temperature must be a temperature at which tin oxide fining is manifested.
  • the upper limit value mentioned above is specifically 1720 ° C.
  • the lower limit mentioned above is specifically 1300 degreeC, Preferably, it is 1400 degreeC.
  • the present inventor has found that if the temperature of the flange-shaped electrode 50 is controlled to be 1300 ° C. or higher, platinum does not condense (precipitate) in the clarification tank. Further, the present inventor has found that the temperature of the flange-shaped electrode 50 may be controlled to be 1400 ° C. or higher in order to prevent platinum from condensing (depositing) more reliably. Therefore, in this embodiment, the lower limit mentioned above is 1300 degreeC, and it is more preferable that it is 1400 degreeC.
  • FIG. 4 is a flowchart showing an example of a method in which the control device 58 adjusts cooling of the electrode 50 in the fining step ST2 according to the present embodiment.
  • the control device 58 accepts the temperature (measured temperature) measured by the temperature measuring device 56 in a state where the refrigerant supply device 54 starts supplying the refrigerant.
  • the temperature of the electrode 50 is the lowest at the position where it contacts the cooling pipe 502, and gradually increases toward the position where it contacts the clarification tank 41.
  • FIG. 5 is a diagram showing an example of the temperature distribution in the longitudinal direction (flow direction) of the clarification tank 41.
  • the temperature measuring device 56 measures the temperature T1 that is the lowest in the vicinity of the electrodes 50a and 50b.
  • the control apparatus 58 determines whether temperature T1 exists in the range of an upper limit from a lower limit in the step mentioned later. As described above, the cooling of the electrodes 50a and 50b is controlled so that the temperature of the wall of the fining tank 41 exceeds the temperature at which platinum vapor generated in the gas phase space GP is condensed.
  • the coolant supply amount may be an arbitrary amount.
  • the control device 58 may store an initial refrigerant supply amount in a memory, and may control the refrigerant supply device 54 so as to be the initial refrigerant supply amount.
  • step 12 the control device 58 determines whether or not the measured temperature input from the temperature measuring device 56 exceeds the upper limit value.
  • the control device 58 proceeds to the process of ST13, and otherwise (ST12; N), the process proceeds to the process of ST21.
  • the control device 58 cools the electrode 50 in step 13 (ST13).
  • the measured temperature does not exceed the upper limit value (ST12; N)
  • the temperature is appropriately controlled and there is no possibility that the electrode 50 breaks. Therefore, in step 21 (ST21), does the measured temperature fall below the lower limit value? Determine whether or not.
  • step 13 the control device 58 refers to the memory and determines the amount of refrigerant to be increased. Further, the control device 58 controls the refrigerant supply device 54 to increase the refrigerant supply amount by the determined amount.
  • FIG. 6 is a diagram illustrating an example of the relationship between the temperature of the electrode 50 and time. When the control device 58 determines that the measured temperature measured by the temperature measurement device 56 has exceeded the upper limit value at time t1 (ST12; Y), as shown in FIG. Then, the refrigerant supply amount is increased, and the temperature of the electrode 50 is controlled to be lower than the upper limit value.
  • the method of lowering the temperature of the electrode 50 includes a method of increasing the refrigerant supply amount per unit time supplied by the refrigerant supply device 54, as well as extending the refrigerant supply time (control execution time), and lowering the refrigerant temperature.
  • a method of reducing the amount of current supplied by the power supply device 52 may be used.
  • step 21 the control device 58 determines whether or not the measured temperature input from the temperature measuring device 56 is less than the lower limit value.
  • the control device 58 proceeds to the process of ST22, and otherwise (ST21; N), the process is terminated.
  • control device 58 refers to the memory to determine the amount of refrigerant to be reduced. Further, the control device 58 controls the refrigerant supply device 54 to decrease the refrigerant supply amount by the determined amount. If the control device 58 determines that the measured temperature measured by the temperature measurement device 56 has fallen below the lower limit value at time t2 (ST21; Y), as shown in FIG. 6, the control device 58 controls the refrigerant supply device 54 after time t2. Then, the cooling amount is decreased, and the temperature of the electrode 50 is controlled to exceed the lower limit value.
  • the control device 58 controls the refrigerant supply device 54 to reduce the cooling amount, the temperature of the electrode 50 decreases as shown by the dotted line shown in FIG.
  • the method of raising the temperature of the electrode 50 is not only a method of reducing the refrigerant supply amount per unit time supplied by the refrigerant supply device 54 but also the refrigerant supply time (control execution time) is shortened, and the refrigerant temperature is raised. Alternatively, a method of increasing the amount of current supplied by the power supply device 52 may be used. By repeating the above processing, the temperature of the electrode 50 can be controlled to be within the range from the upper limit value to the lower limit value, and platinum foreign matter in the glass product can be reduced.
  • the clarification step when a voltage is applied between the electrodes 50a and 50b, a current flows through the clarification tank 41 between the electrodes 50a and 50b, and the clarification tank 41 is heated by energization.
  • molten glass MG passes through heated clarification tank 41, molten glass MG is included in molten glass MG by being heated to a predetermined temperature (for example, 1600 ° C. or higher in the case of glass having the above composition).
  • the bubble containing O 2 , CO 2 or SO 2 grows by absorbing O 2 generated by the reduction reaction of a clarifying agent such as SnO 2 and floats to the liquid surface of the molten glass MG and is released. .
  • a cooling pipe 502 is provided so as to contact the periphery of the electrode 50.
  • the cooling pipe 502 is connected to the refrigerant supply device 54. That is, the cooling pipe 502 cools the electrode 50 provided in contact with the cooling pipe 502 by allowing the refrigerant supplied from the refrigerant supply device 54 to pass therethrough.
  • the cooling pipe 502 also plays a role of making the current density in the clarification tank 41 uniform. When the cooling pipe 502 is not used, the current tends to be directed to the clarification tank 41 at the shortest distance only with the plate-like electrode 50, and the current density in the clarification tank 41 is biased upward.
  • the cooling pipe 502 is designed to reduce the electric resistance, and by guiding the current to the lower side of the clarification tank 41 through the cooling pipe 502, the current can be bypassed and the current bias can be reduced.
  • the gas phase space of the fining tank 41 has platinum vapor volatilized on the inner surface of the fining tank 41.
  • the electrode 50 is provided with a temperature measuring device 56, and the control device 58 controls the electrode 50 so as to have a predetermined temperature or higher.
  • the predetermined temperature is a temperature exceeding the temperature at which platinum vapor generated in the gas phase space of the clarification tank 41 is condensed.
  • the electrode 50 is controlled to be in a range exceeding the temperature at which platinum vapor generated in the gas phase space of the clarification tank 41 is condensed. Therefore, it is possible to prevent the platinum vapor generated in the gas phase space of the clarification tank 41 from condensing, and to prevent the platinum foreign matter from being mixed into the glass.
  • the example in which the refrigerant supply devices 54a and 54b, the temperature measuring devices 56a and 56b, and the control devices 58a and 58b are connected to the electrodes 50a and 50b has been described as a specific example.
  • the refrigerant supply device 54 (54a, 54b), the temperature measuring device 56 (56a, 56b), and the control device 58 (58a, 58b) may be connected to only one of these.
  • the clarification tank 41 demonstrated as an example the case where it has a pair of flange-shaped electrodes 50a and 50b, for example, you may have only 50b.
  • the glass supply pipe 43a is provided with an electrode (not shown), and a current is passed between the electrode 50b provided in the clarification tank 41 and the electrode provided in the glass supply pipe 43a.
  • the tank 41 may be heated by energization.
  • the control device 58 stores in advance a predetermined amount of refrigerant increase and decrease in the memory.
  • the control device 58 may store the refrigerant increase amount and the decrease amount according to the temperature in the memory in advance, for example. That is, the control device 58 may determine the refrigerant increase amount and the decrease amount according to the measured temperature input from the temperature measurement device 56. Thereby, the precision of cooling can be raised.
  • control device 58 determines the refrigerant increase amount and the decrease amount, and controls the refrigerant supply device 54 to increase or decrease the refrigerant supply amount by the determined amount.
  • an operator may determine the refrigerant increase amount and the decrease amount, control the refrigerant supply device 54, and increase or decrease the refrigerant supply amount by the determined amount.
  • the cooling amount may be changed in each of the electrodes 50a and 50b.
  • the temperature of the electrode 50a adjacent to the glass supply tube 43a can be set higher than the temperature of the electrode 50b adjacent to the glass supply tube 43b.
  • the upper limit of the temperature in the electrodes 50a and 50b is made the same, and the lower limit of the electrode 50a is set to the lower limit of the temperature. It can also be set higher than the lower limit of 50b (for example, lower limit of temperature at electrode 50a: 1400 ° C., lower limit of temperature at electrode 50b 1350 ° C.).
  • the shape of the protruding portion of the electrode 50 connected to the power supply device 52 can be arbitrarily changed. Since the protruding portion of the electrode 50 protrudes from the clarification tank 41, the electrode 50 affected by the outside air is cooled, and the gas phase space of the clarification tank 41 near the electrode 50 is also cooled. For this reason, the protrusion part which protrudes from the clarification tank 41 can be made linear, cooling by external air can be reduced, and the cooling of the electrode 50 vicinity can also be suppressed. Moreover, cooling of the vicinity of the electrode 50 can be suppressed by keeping the protrusions warm with a heat insulating material or the like.
  • the glass substrate was manufactured using the glass substrate manufacturing apparatus demonstrated in the above-mentioned embodiment.
  • the temperature of the electrode 50 was controlled to be 1300 ° C. or higher and 1720 ° C. or lower.
  • the platinum foreign material contained in the manufactured glass substrate was confirmed, compared with the conventional method which does not control the temperature of the electrode 50, the quantity of the platinum foreign material contained in the glass substrate decreased, and the yield and quality improved.
  • platinum or platinum alloy means a metal composed of a platinum group element, and includes a platinum group element alloy as well as a metal composed of a single platinum group element.
  • platinum group element refers to six elements of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), and iridium (Ir).
  • the present invention is particularly suitable for the production of a glass substrate using a tin oxide (SnO 2) as a fining agent.
  • the fining agent is generally arsenic (AS 2 O 3 ), but tin oxide (SnO 2 ) is used from the viewpoint of environmental burden in recent years. Since tin oxide has a weaker ability to release bubbles during the defoaming process than arsenite, it is necessary to lower the viscosity of the glass to increase the defoaming effect, and as a result, clarification must be performed at a high temperature. .
  • the present invention is particularly suitable for the production of a glass substrate using tin oxide (SnO 2 ) as a fining agent.
  • this invention is especially suitable for manufacture of the glass substrate whose glass is alkali-free glass and alkali trace amount glass which contains only a trace amount of alkali.
  • Alkali-free glass and glass containing a small amount of alkali have a higher viscosity than glass containing a lot of alkali compared to glass containing a small amount of alkali, so it is necessary to clarify at a higher temperature, and the clarification tank is heated to a higher temperature. There is a need to.
  • the clarification tank is heated to a high temperature, when the temperature is locally lowered in the clarification tank, the problem of the platinum foreign matter described above becomes more remarkable.
  • the present invention is particularly suitable for the production of a glass substrate which is an alkali-free glass or a glass containing a trace amount of alkali containing only a trace amount of alkali.
  • a glass substrate for flat panel displays such as glass substrates for liquid crystal display devices and glass substrates for organic EL, in which alkali-free glass or glass containing only a small amount of alkali is used.
  • the glass substrate for FPD include a glass substrate for liquid crystal display and a glass substrate for organic EL display.
  • the FPD glass substrate has a thickness of 0.1 to 0.7 mm and a size of 300 ⁇ 400 mm to 2850 ⁇ 3050 mm, and the present invention improves the defect of bubbles and platinum foreign matters. Suitable for manufacturing large glass.
  • the present invention is particularly suitable for manufacturing a glass substrate for low-temperature polysilicon (LTPSS).
  • a glass substrate for low-temperature polysilicon (LTPS) is generally used by slimming the glass substrate by etching or the like. When the glass substrate is slimmed by etching or the like, platinum foreign substances contained in the glass substrate appear on the surface, which causes a problem because irregularities are formed on the glass surface. Therefore, the present invention is particularly suitable when manufacturing a glass substrate for low-temperature polysilicon (LTPS).
  • the glass substrate for low-temperature polysilicon (LTPS) is a glass substrate having a high strain point, and examples thereof include a glass substrate having a strain point of 675 ° C. or higher, preferably 680 ° C. or higher, and more preferably 690 ° C. or higher.
  • the present invention is particularly suitable for manufacturing a glass substrate for FPD.
  • higher contrast has been demanded for flat panel displays, and platinum foreign matter, which has not been a problem in the past, has become a problem with higher contrast. Therefore, the present invention is particularly suitable when manufacturing a glass substrate for FPD.
  • various suitable modifications can be made without departing from the spirit of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 ガラス製品の白金異物を低減することが可能なガラス基板の製造方法は、熔解工程と、清澄工程と、成形工程とを含む。清澄工程において用いられる清澄槽は、白金又は白金合金から構成され、清澄槽を通電加熱するためのフランジ状の電極を有し、清澄工程において、通電加熱された清澄槽に、気相空間を有するように液位を調整して熔融ガラスを通過させることにより脱泡を行い、電極の発熱を抑制するために電極を冷却し、電極の冷却は、前記清澄槽の壁の温度が、前記清澄槽の気相空間に生じる白金蒸気が凝縮する温度を超える範囲になるように制御されている。

Description

ガラス基板の製造方法、及びガラス基板製造装置
 本発明は、ガラス原料を溶融してガラス基板を製造する、ガラス基板の製造方法およびガラス基板製造装置に関する。特に、ガラス基板の製造方法における、清澄工程に関する。
 ガラス基板は、一般的に、ガラス原料から溶融ガラスを生成させた後、溶融ガラスをガラス基板へと成形する工程を経て製造される。上記の工程中には、溶融ガラスが内包する微小な気泡を除去する工程(以下、清澄ともいう)が含まれる。清澄は、管状の清澄槽の本体を加熱しながら、この清澄槽本体(以下、単に本体ともいう)に清澄剤を配合させた溶融ガラスを通過させ、清澄剤の酸化還元反応により溶融ガラス中の泡が取り除かれることで行われる。より具体的には、粗熔解した溶融ガラスの温度をさらに上げて清澄剤を機能させ泡を浮上脱泡させた後、温度を下げることにより、脱泡しきれずに残った比較的小さな泡は溶融ガラスに吸収させるようにしている。すなわち、清澄は、泡を浮上脱泡させる処理(以下、脱泡処理または脱泡工程ともいう)および小泡を溶融ガラスへ吸収させる処理(以下、吸収処理または吸収工程ともいう)を含む。清澄剤は従来Asが一般的であったが、近年の環境負荷の観点から、SnO等が用いられるようになってきている。
 高温の溶融ガラスから品位の高いガラス基板を量産するためには、ガラス基板の欠陥の要因となる異物等が、ガラス基板を製造するいずれの装置からも溶融ガラスへ混入しないよう考慮することが望まれる。このため、ガラス基板の製造過程において溶融ガラスに接する部材の内壁は、その部材に接する溶融ガラスの温度、要求されるガラス基板の品質等に応じ、適切な材料により構成する必要がある。たとえば、上述の清澄槽本体を構成する材料は、通常白金または白金合金等の白金族金属が用いられていることが知られている(特許文献1)。白金または白金合金は、高価ではあるが融点が高く、溶融ガラスに対する耐食性にも優れている。
 脱泡工程時に清澄槽本体を加熱する温度は、成形するべきガラス基板の組成によって相違するが、1600~1700℃程度である。
 清澄槽本体を加熱する技術として、例えば、清澄槽本体に1対のフランジ状の電極を設け、この電極対に電圧を印加することにより、清澄槽本体を通電加熱する技術が知られている(特許文献2)。また、フランジ状の電極には、銅やニッケルから構成される水冷管が設けられている。
特表2006-522001号公報 特表2011-513173号公報
 近年、ガラス基板に含まれる白金異物が、問題となっている。
 例えば、液晶ディスプレイ(LCD)、有機ELディスプレイなどのフラットパネルディスプレイなどのフラットパネルディスプレイに使用されるガラス基板(FPD用ガラス基板)に含まれる白金異物は、近年特に厳しく制限されている。また、フラットパネルディスプレイ用に限らず、他の用途でも問題となっている。
 しかしながら、上記特許文献2に記載されているように、フランジ状の電極を水冷管で冷却すると、清澄槽の電極近傍の位置では、局所的に温度が低下する。
 一方、清澄槽本体の内部表面が、白金または白金合金(白金族金属)から構成されている場合、気相空間(酸素を含む雰囲気)に接する部分が揮発する。揮発した白金または白金合金は、清澄槽の電極近傍の局所的に温度が低下した位置で凝縮し、凝縮物となって付着する。この凝縮物の一部は脱泡工程中の溶融ガラス中に落下して混入し、ガラス基板に白金異物として混入する恐れがあった。
 本発明は以上の点を鑑み、ガラス製品の白金異物を低減することが可能なガラス基板の製造方法及びガラス基板製造装置を提供しようとするものである。
 本発明は、以下の態様を有する。
[態様1]
 熔解工程と、清澄工程と、成形工程とを含むガラス基板の製造方法であって、
 前記清澄工程において用いられる清澄槽は、白金又は白金合金から構成され、前記清澄槽を通電加熱するためのフランジ状の電極を有し、
 前記清澄工程において、
 前記通電加熱された清澄槽に、気相空間を有するように液位を調整して前記熔融ガラスを通過させることにより脱泡を行い、
 前記電極の発熱を抑制するために前記電極を冷却し、
 前記電極の冷却は、前記清澄槽の壁の温度が、前記清澄槽の気相空間に生じる白金蒸気が凝縮する温度を超える範囲になるように制御されている、ことを特徴とするガラス基板の製造方法。
[態様2]
 前記清澄工程において、
 前記電極又は前記電極近傍の清澄槽の温度を測定し、
 前記測定した温度に基づいて、前記電極の冷却量を調整する、態様1に記載のガラス基板の製造方法。
[態様3]
 前記清澄工程において、
 前記測定した電極又は電極近傍の清澄槽の温度が、予め決められた温度範囲内か否かを判定し、前記判定した結果、測定した温度が前記予め決められた温度範囲外にあるときに、前記冷却量を調整する、態様2に記載のガラス基板の製造方法。
[態様4]
 前記清澄工程において、清澄剤として酸化錫が用いられる、態様1~3のいずれか1項に記載のガラス基板の製造方法。
[態様5]
 前記電極は、冷媒を通過させるための冷却管を有し、
 前記清澄工程は、
 前記冷却管に通過させる冷媒の量を増減することにより、冷却量を調整する、態様1~4のいずれか1項に記載のガラス基板の製造方法。
[態様6]
 前記冷媒は、気体である、態様5に記載のガラス基板の製造方法。
[態様7]
 熔解槽と、清澄槽と、成形装置とを含むガラス基板製造装置であって、
 前記清澄槽は、白金又は白金合金から構成され、前記清澄槽を通電加熱するためのフランジ状の電極を有し、
 前記電極は、前記電極の発熱を抑制するために冷却され、
 前記電極の冷却は、前記清澄槽の壁の温度が、前記清澄槽の気相空間に生じる白金蒸気が凝縮する温度を超える範囲になるように制御されていることを特徴とするガラス基板製造装置。
 本発明のガラス基板の製造方法及びガラス基板製造装置によれば、ガラス製品の白金異物を低減することができる。
本実施形態のガラス基板の製造方法の簡単な工程を説明するためのフロー図である。 本実施形態のガラス基板製造装置の概略的な配置図である。 本実施形態の清澄槽の構成を示す概略図である。 本実施形態に係る清澄工程において、制御装置が電極の冷却を調整する方法の一例を示すフロー図である。 清澄槽の長手方向の温度分布の一例を示した図である。 電極の温度と時間との関係の一例を示す図である。
 以下、図面を参照しながら、本発明のガラス基板の製造方法の実施の形態について説明する。
 図1は、本実施形態のガラス基板の製造方法の工程を示すフロー図である。図1に示すように、ガラス基板は、主に熔解工程(ST1)、清澄工程(ST2)、均質化工程(ST3)、供給工程(ST4)、成形工程(ST5)、徐冷工程(ST6)、切断工程(ST7)を経て作製される。
 また、図2は、上述の熔解工程(ST1)~切断工程(ST7)を経て作製される本実施形態のガラス基板製造装置の概略図であり、各工程において使用される装置の配置を概略的に示している。
 図2に示すように、ガラス基板製造装置200は、ガラス原料を加熱して溶融ガラスを生成する熔解装置40と、溶融ガラスを清澄する清澄槽41と、溶融ガラスを撹拌して均質化するための撹拌装置100と、ガラス基板に成形する成形装置42とを備えている。また、溶融ガラスを上述の装置間に移送するガラス供給管43a、43b、43cを有する。熔解装置40以降、成形装置42までの各装置間を接続するガラス供給管43a、43b、43cおよび清澄槽41と撹拌装置100は、白金族金属で構成されている。
 熔解装置40は、耐火煉瓦等の耐火物により構成されている。また、熔解装置40には、図示されない燃料と酸素等を混合した燃焼ガスが燃焼して火炎を発するバーナー等の加熱手段が設けられている。
 熔解工程(ST1)では、たとえばSnO等の清澄剤が添加されて熔解装置40内に供給されたガラス原料を、上述の加熱手段で加熱して熔解することで溶融ガラスMGを得る。具体的には、図示されない原料投入装置を用いてガラス原料が溶融ガラスの液面に供給される。ガラス原料は、バーナーの火炎からの輻射熱により、加熱される。ガラス原料は、上述の加熱手段により加熱されて徐々に熔解し、溶融ガラスMG中に溶ける。
 また、上記加熱手段は、例えばモリブデン、白金または酸化スズ等で構成された少なくとも1対の電極であってもよい。この場合、溶融ガラスMGは、上記電極間に電流を流すことにより通電加熱されて、昇温されてもよい。
 熔解装置40に投入されるガラス原料は、製造するべきガラス基板の組成に応じて適宜調製される。一例として、TFT型LCD用基板として用いるガラス基板を製造する場合を挙げると、ガラス基板を構成するガラス組成物を質量%で表示して、
SiO:50~70%、
Al:0~25%、
:1~15%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~30%(ただし、RはMg、Ca、Sr及びBaの合量)、
を含有する無アルカリガラスであることが、好ましい。
 なお、本実施形態では無アルカリガラスとしたが、ガラス基板はアルカリ金属を微量含んだアルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.10%以上0.5%以下、好ましくは0.20%以上0.5%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス基板が含有するものである)含むことが好ましい。勿論、R’ 2Oの合計が0.10%より低くてもよい。
 また、本発明のガラス基板の製造方法を適用する場合は、ガラス組成物が、上記各成分に加えて、質量%で表示して、SnO:0.01~1%(好ましくは0.01~0.5%)、Fe:0~0.2%(好ましくは0.01~0.08%)を含有し、環境負荷を考慮して、As、Sb及びPbOを実質的に含有しないようにガラス原料を調製しても良い。
 次の清澄工程(ST2)は、清澄槽41において行われる。清澄工程では、清澄槽41内の気相空間を有するように溶融ガラスMGの液位を調整して溶融ガラスMGを通過させる。このとき、清澄槽41内の溶融ガラスMGが所定温度(上記組成のガラスの場合は例えば1600℃以上)に昇温されることにより、溶融ガラスMG中に含まれるO、CO2あるいはSOを含んだ泡が、例えばSnO等の清澄剤の還元反応により生じたOを吸収して成長し、溶融ガラスMGの液面に浮上して放出される。その後、ガラス供給管43b等において熔融ガラスMGの温度を低下させることにより、SnO等の清澄剤が還元反応して得られたSnOが酸化反応をすることにより、溶融ガラスMGに残存する泡中のO等のガス成分が溶融ガラスMG中に吸収されて、泡が消滅する。清澄剤による酸化反応および還元反応は、溶融ガラスMGの温度を制御することにより行われる。
 均質化工程(ST3)では、ガラス供給管43bを通って供給された撹拌装置100内の溶融ガラスMGを、後述する攪拌機を用いて撹拌することにより、ガラス成分の均質化を行う。攪拌装置100は、1つの攪拌機を用いて溶融ガラスMGを攪拌するが、2つ以上の攪拌機を用いて溶融ガラスMGを攪拌することもできる。
 供給工程(ST4)では、ガラス供給管43cを通して溶融ガラスMGが成形装置42に供給される。溶融ガラスは、清澄槽41から成形装置に送られる際のガラス供給管43cにおいて、成形に適した温度(上記組成のガラスの場合は例えば1200℃程度)となるように冷却される。
 成形装置42では、成形工程(ST5)および徐冷工程(ST6)が行われる。
 成形工程(ST5)では、溶融ガラスMGをシート状ガラス44に成形し、シート状ガラス44の流れを作る。徐冷工程(ST6)では、成形されて流れるシート状ガラス44が所望の厚さになり、内部歪みが生じないように冷却される。
 切断工程(ST7)では、図示しない切断装置において、成形装置42から供給されたシート状ガラス44を所定の長さに切断することで、板状のガラス基板を得る。切断されたガラス基板はさらに、所定のサイズに切断され、目標サイズのガラス基板が作製される。この後、ガラス基板の端面の研削、研磨およびガラス基板の洗浄が行われ、さらに、泡やキズ、汚れ等の欠点の有無が検査された後、検査合格品のガラス基板が最終製品として梱包される。
[清澄槽41の構成]
 次に、図3を用いて、清澄槽41の構成を説明する。図3は、実施の形態の清澄槽41の構成を示す概略図である。清澄槽41では、清澄槽41の壁の温度が、清澄槽41の気相空間に生じる白金蒸気が凝縮する温度を超える範囲になるように制御されている。
 図3に示すように、清澄槽41は、筒状の形状を有しており、白金又は白金合金から構成されている。清澄槽41の両端の外周面には、電極50a,50bが溶接されている。電極50a,50bは、清澄槽41を通電加熱するために用いられ、電源装置52に接続されている。電極50a,50bの間に電圧が印加されることにより、電極50a,50bの間の清澄槽41に電流が流れて、清澄槽41が通電加熱される。この通電加熱により、清澄槽41は例えば、1650℃~1700℃程度に加熱され、ガラス供給管43aから供給された溶融ガラスMGは、脱泡に適した温度、例えば、1600℃~1700℃程度に加熱される。
 また、電極50a,50bにはそれぞれ、冷媒供給装置54a,54b、温度計測装置56a,56b、制御装置58a,58bが接続されている。電極50a,50bの外周には冷却管502a,502bが設けられている。
 なお、電極50aは電極50bと、冷却管502aは冷却管502bと、冷媒供給装置54aは冷媒供給装置54bと、温度計測装置56aは温度計測装置56bと、制御装置58aは制御装置58bと、それぞれ同じ構成を有するので、以下、電極50a,50bを電極50と総称し、冷媒供給装置54a,54bを冷媒供給装置54と総称し、温度計測装置56a,56bを温度計測装置56と総称し、冷却管502a,502bを冷却管502と総称し、制御装置58a,58bは、制御装置58と総称して説明する。
 電極50は、白金または白金合金から構成されている。なお、本実施例では、電極50が白金または白金合金から構成されている場合を具体例として説明するが、電極50の一部が、パラジウム,銀,銅などの他の金属から構成されていてもよい。例えば、白金または白金合金は高価であるため、電極50の比較的温度が低い場所では、パラジウム,銀,銅などを使用してもよい。電極50は、板状に形成され、清澄槽41の両端の外周面に互いの電極50(50a,50b)がほぼ平行になるように溶接されて設置される。また、電極50には、電源装置52と接続するために、一部が突出した突出部が設けられてフランジ状を成している。この突出部は、清澄槽41から突出しているために、清澄槽41の外気により冷却される。このため、電極50近傍の清澄槽41が冷却される。
 なお、電極50の形状、設置位置、設置方法は、電源装置52から流れた電流が電極50、清澄槽41を流れて、熔融ガラスMGを加熱できればよく、任意である。
 電極50には、温度計測装置56が接続されている。例えば、温度計測装置56は、熱電対から構成される。温度計測装置56はそれぞれ、電極50の温度を計測し、計測した結果を、制御装置58に出力する。温度計測装置56の計測する温度は、電極50の温度の代わりに、電極50近傍の清澄槽の(壁の)温度を計測して、後述する電極50の冷却の制御に用いてもよい。電極50近傍とは、電極50の位置から50cmの範囲内を意味する。
 また、電極50の発熱を抑制するために、電極50の周囲に接触するように冷却管502が設けられている。すなわち、電極50は冷却管502により冷却されて発熱が抑制される。すなわち、電極50が冷却されて電極50の発熱が抑制されるとは、電流によって発した電極50の熱が冷却されて温度が抑制されることを意味する。
 冷却管502は、冷媒供給装置54に接続されている。冷却管502は、管状に構成されており、冷媒供給装置54から供給された冷媒を受け入れる流入口と、供給された冷媒を冷媒供給装置54に対して排出する排出口とを有する。すなわち、冷却管502は、冷媒供給装置54から供給された冷媒を通過させることにより、冷却管502に接触するように設けられている電極50を冷却するように構成されている。
 上記冷媒は、水などの液体であってもよいし、空気などの気体であってもよい。
 本発明では、上記冷媒は、気体であることがより好ましい。冷媒が水などの液体である場合は、冷却能が高いため、清澄槽41の電極50の近傍では局所的に温度が低下する。
 清澄槽において局所的な温度低下が起きると、清澄が十分に行なわれず、泡品質が低下するおそれがあった。また、白金又は白金合金から構成された清澄槽では気相空間を有するので白金又は白金合金が揮発する。揮発した白金又は白金合金(白金揮発物という)は、電極近傍の局所的に温度が低下した位置で凝縮し、凝縮物となって付着する。凝縮物の一部は脱泡工程中の溶融ガラス中に落下して混入し、ガラス基板の品質の低下を招くおそれがあった。したがって、本実施形態では、上記冷媒は、気体であることが好ましい。
 冷却管502は、金属から構成される。冷媒供給装置54から供給される冷媒が水などの液体である場合は、冷却能が高いため、上記金属に、銅やニッケルなどを用いてもよく、使用に耐え得る。しかしながら、冷媒供給装置54から供給される冷媒が気体である場合は、液体と比較して冷却能が低いため、上記金属に、高温の空気中で酸化されない材料を用いることが好ましい。具体的には、白金、ロジウム、銀、パラジウム、金、またはこれらの合金が好ましい。銀は、これらの材質のうち、最も価格が安く、また電気抵抗が小さいので発熱を抑えることができる。したがって、上記金属は銀を含むことが好ましく、90質量%以上含むことがより好ましい。また、例えば、清澄槽に通電する電流が3000アンペアを超えるときは,冷却管材料は電気抵抗率が小さく,電流のバイパスとして機能する材質が望ましく、例えば、銅、銀、白金を用いることができる。また、通電する電流が3000アンペアより小さいときは,冷却管材料の抵抗発熱についての問題は小さいので,ステンレスやニッケル、コバルトなどを用いることもできる。すなわち、冷却管502は、銀、白金、銅、ロジウム、パラジウム、金、鉄、コバルト、ニッケルのいずれかを含むように構成されていてよい。なお、冷却管502に白金より融点が低い銀等の材料を用いる場合、冷却管502の周囲を耐火煉瓦等の耐火物で覆い、冷却管502を保護することもできる。
 冷媒供給装置54は、制御装置58に接続されており、制御装置58の制御に従い、冷却管502に冷媒を供給する。冷媒は、たとえば圧縮空気などを用いることができる。
 制御装置58は、CPU、メモリ等を含むコンピュータから構成されている。
 制御装置58は、上述したように、温度計測装置56が計測した温度の結果を受け入れ、この計測結果に基づいて冷媒供給装置54を制御する。これにより、電極50の冷却量は調整される。例えば、制御装置58は、温度計測装置56が計測した温度の結果が、予め決められた温度範囲外にあるときには、冷媒供給装置54を制御して、冷却量を調整する。例えば冷媒供給量を予め決められた量だけ増減させる。なお、予め決められた温度範囲内にあるときには、冷媒供給装置54が供給する冷媒供給量が変更されないように、冷媒供給装置54を制御する。
 具体的には、制御装置58は、上限値または下限値の少なくとも一方を含む、温度範囲を、予めメモリに記憶する。また、制御装置58は、予め決められた冷媒増加量および減少量を予めメモリに記憶する。
 制御装置58は、温度計測装置56が計測した温度が、上限値を超えているときには、メモリを参照して、冷媒増加量を決定する。また、制御装置58は、冷媒供給装置54を制御して、決定した冷媒増加量だけ冷媒供給量を増加させる。
 一方、下限値を超えているときには、メモリを参照して、冷媒減少量を決定する。また、制御装置58は、冷媒供給装置54を制御して、決定した量だけ冷媒供給量を減少させる。
 例えば、上限値は、電極50が発熱により破断等しない温度である。ここで、電極50が白金で構成されている場合、白金の融点1768℃が上限値である。電極50は、上述したようにパラジウム等で構成することもできるため、上限値は、電極50を構成する材料の融点となる。また、下限値は、清澄槽41の気相空間に生じる白金蒸気が凝縮しない温度である。清澄槽41の気相空間に生じる白金蒸気が凝縮しない温度は、熔融ガラスMGの温度が清澄剤(例えば、酸化錫)の清澄を発現する温度以上であるため、上記下限値は、熔融ガラスMGの温度が酸化錫の清澄を発現する温度でなくてはならない。上述した、上限値は、具体的には、1720℃である。また、上述した下限値は、具体的には、1300℃であり、好ましくは、1400℃ある。
 本発明者は、予め実験した結果、フランジ状の電極50の温度が1300℃以上になるように制御すれば、清澄槽において白金が凝縮(析出)しないことを見出した。また、本発明者は、さらに確実に白金が凝縮(析出)しないようにするためには、フランジ状の電極50の温度が1400℃以上になるように制御すればよいことを見出した。
 したがって、本実施形態では、上述した下限値は、1300℃であり、1400℃であることがより好ましい。
[電極50の冷却調整方法]
 次に、電極50の冷却調整方法を、図4を用いて詳述する。図4は、本実施形態に係る清澄工程ST2において、制御装置58が電極50の冷却を調整する方法の一例を示すフロー図である。
 図4に示すように、ステップ11(ST11)において、制御装置58は、冷媒供給装置54が冷媒の供給を開始した状態で、温度計測装置56が計測した温度(計測温度)を受け入れる。電極50の温度は、冷却管502に接触した位置で温度が一番低く、清澄槽41と接触する位置に向かって徐々に温度が上がる。電極50においては清澄槽41と接触する位置で温度が一番高くなるが、清澄槽41においては電極50と接触する位置、つまり、電極50の近傍で温度が一番低くなる。図5は、清澄槽41の長手方向(流れ方向)の温度分布の一例を示した図である。電極50a、50bの間の白金で構成された清澄槽41に電流を流して清澄槽41を通電加熱すると、一般的に清澄槽41の長手方向中央部の温度T2が最高温度となり、長手方向両端部の電極50a、50b近傍の温度T1が最低温度となる。電極50a、50b近傍における気相空間GP及び熔融ガラスMGの温度が最も低くなるため、この電極50a、50b近傍の気相空間GPにおいて、白金蒸気が凝縮する可能性がある。このため、温度計測装置56は、電極50a、50b近傍で最低となるこの温度T1を計測する。そして、制御装置58は、後述するステップにおいて、温度T1が上限値から下限値の範囲内にあるか否かを判定する。このように、清澄槽41の壁の温度が、気相空間GPに生じる白金蒸気が凝縮する温度を超える範囲になるように、電極50a,50bの冷却が制御されている。
 なお、制御装置58は、冷媒供給装置54に冷媒供給を開始させる際、冷媒供給量は、任意の量であってよい。例えば、制御装置58は、メモリに、初期冷媒供給量を記憶しておき、この初期冷媒供給量となるように冷媒供給装置54を制御してもよい。
 ステップ12(ST12)において、制御装置58は、温度計測装置56から入力された計測温度が上限値を超えているか否かを判定する。温度計測装置56から入力された計測温度が上限値を超えているときには(ST12;Y)、制御装置58は、ST13の処理に進み、それ以外のときには(ST12;N)、ST21の処理に進む。計測温度が上限値を超えている場合(ST12;Y)、電極50及び電極50の近傍が異常に加熱された状態であるため、電極50が破断するおそれがある。このため、制御装置58は、ステップ13(ST13)において、電極50の冷却を行う。一方、計測温度が上限値を超えていない場合(ST12;N)、温度が適正に制御され電極50が破断するおそれがないため、ステップ21(ST21)において、計測温度が下限値を下回っているか否かを判定する。
 ステップ13(ST13)において、制御装置58は、メモリを参照して、増加させる冷媒の量を決定する。また、制御装置58は、冷媒供給装置54を制御して、決定した量だけ冷媒供給量を増加させる。図6は、電極50の温度と時間との関係の一例を示す図である。制御装置58は、温度計測装置56により計測している計測温度が時間t1に上限値を超えたと判定すると(ST12;Y)、同図に示すように、時間t1以降、冷媒供給装置54を制御して冷媒供給量を増加させて、電極50の温度が上限値を下回るように制御する。ここで、制御装置58が、冷媒供給装置54を制御して冷媒供給量を増加させないと、同図に示す点線のように電極50の温度が上昇していき、電極50の破断の原因となる。電極50の温度を低下させる方法は、冷媒供給装置54が供給する単位時間当たりの冷媒供給量を増加させる方法の他、冷媒の供給時間(制御実行時間)を長くする、冷媒の温度を低下させる、また、電源装置52が供給する電流量を低下させる方法であってもよい。
 ステップ21(ST21)において、制御装置58は、温度計測装置56から入力された計測温度が下限値未満か否かを判定する。温度計測装置56から入力された計測温度が下限値未満であるときには(ST21;Y)、制御装置58は、ST22の処理に進み、それ以外のときには(ST21;N)、処理を終了する。
 ステップ22(ST22)において、制御装置58は、メモリを参照して、減少させる冷媒の量を決定する。また、制御装置58は、冷媒供給装置54を制御して、決定した量だけ冷媒供給量を減少させる。制御装置58は、温度計測装置56により計測している計測温度が時間t2に下限値を下回った判定すると(ST21;Y)、図6に示すように、時間t2以降、冷媒供給装置54を制御して冷却量を減少させて、電極50の温度が下限値を上回るように制御する。ここで、制御装置58が、冷媒供給装置54を制御して冷却量を減少させないと、図6に示す点線のように電極50の温度が低下していき、清澄槽41の気相空間に生じる白金蒸気が凝縮し、また、清澄剤(酸化錫)の清澄が発現しなくなる。電極50の温度を上昇させる方法は、冷媒供給装置54が供給する単位時間当たりの冷媒供給量を減少させる方法の他、冷媒の供給時間(制御実行時間)を短くする、冷媒の温度を上昇させる、また、電源装置52が供給する電流量を増加させる方法であってもよい。
 以上の処理を繰り返すことにより、電極50の温度を上限値から下限値の範囲内になるように制御でき、ガラス製品の白金異物を低減することができる。
 次に、本実施形態の作用について説明する。
 清澄工程では、電極50a,50bの間に電圧が印加されることにより、電極50a,50bの間の清澄槽41に電流が流れて、清澄槽41が通電加熱される。加熱された清澄槽41内を溶融ガラスMGが通過することにより、溶融ガラスMGが所定温度(上記組成のガラスの場合は例えば1600℃以上)に昇温されることにより、溶融ガラスMG中に含まれるO、COあるいはSOを含んだ泡が、例えばSnO等の清澄剤の還元反応により生じたOを吸収して成長し、溶融ガラスMGの液面に浮上して放出される。その後、ガラス供給管43b等において熔融ガラスMGの温度を低下させることにより、SnO等の清澄剤が還元反応したSnOが酸化反応をすることにより、溶融ガラスMGに残存する泡中のO等のガス成分が溶融ガラスMG中に吸収されて、泡が消滅する。清澄剤による酸化反応および還元反応は、溶融ガラスMGの温度を制御することにより行われる。
 また、電極50の発熱を抑制するために、電極50の周囲に接触するように冷却管502が設けられている。冷却管502は、冷媒供給装置54に接続されている。すなわち、冷却管502は、冷媒供給装置54から供給された冷媒を通過させることにより、冷却管502に接触して設けられている電極50を冷却する。
 なお,冷却管502は、清澄槽41内の電流密度を均一化する役割も担う。冷却管502を用いない場合、板状の電極50だけでは,電流は清澄槽41へ最短距離で向かう傾向にあり、清澄槽41内部での電流密度が上側に偏る。一方、冷却管502は電気抵抗が小さくなるようにできており、電流を、冷却管502を通して清澄槽41の下側に誘導することで,電流を迂回させ、電流の偏りを低減することができる。
 このとき、清澄槽41の気相空間は、清澄槽41の内面において揮発した白金蒸気を有する。
 本実施形態では、電極50に温度計測装置56が設けられ、制御装置58により、電極50は、所定の温度以上になるように制御されている。所定の温度とは、清澄槽41の気相空間に生じる白金蒸気が凝縮する温度を超える温度である。すなわち、電極50は、清澄槽41の気相空間に生じる白金蒸気が凝縮する温度を超える範囲になるように制御されている。したがって、清澄槽41の気相空間に生じる白金蒸気が凝縮するのを防止し、ガラス中に白金異物が混入することを防止することができる。
 なお、上記実施形態では、電極50a,50bにそれぞれ、冷媒供給装置54a,54b温度計測装置56a,56b、制御装置58a,58bが接続されている例を具体例として説明したが、電極50a,50bのいずれか一方のみに、冷媒供給装置54(54a,54b)、温度計測装置56(56a,56b)、制御装置58(58a,58b)が接続されていてもよい。
 また、上記実施形態では、温度計測装置56は、電極50に設けられていたが、清澄槽41に設けられていてもよい。
 また、上記実施形態では、清澄槽41は、フランジ状の1対の電極50a,50bを有する場合を具体例として説明したが、例えば、50bのみを有していてもよい。この場合、例えば、ガラス供給管43aに電極(図示せず)を設け、清澄槽41に設けられた電極50bと、ガラス供給管43aに設けられた電極との間に電流を流すことにより、清澄槽41を通電加熱してもよい。
 また、上記実施形態では、制御装置58は、予め決められた冷媒増加量および減少量を予めメモリに記憶する。しかしながら、制御装置58は、例えば、温度に応じた冷媒増加量および減少量を予めメモリに記憶してもよい。すなわち、制御装置58は、温度計測装置56から入力された計測温度に応じて、冷媒増加量および減少量を決定してよい。これにより、冷却の精度を高めることができる。
 また、上記実施形態では、制御装置58が、冷媒増加量および減少量を決定し、冷媒供給装置54を制御して、決定した量だけ冷媒供給量を増減させた。しかしながら、制御装置58に替わって、オペレータ(作業者)が、冷媒増加量および減少量を決定し、冷媒供給装置54を制御して、決定した量だけ冷媒供給量を増減させてもよい。
 また、各電極50a,50bにおいて、冷却量を変えてもよい。例えば、清澄を促進させるために、ガラス供給管43aに近接された電極50aの温度を、ガラス供給管43bに近接された電極50bの温度より高くすることもできる。また、清澄槽41の流れ方向において、熔融ガラスMGの清澄を促進させる温度は異なるため、電極50a,50bにおける温度の上限値を同一にし、温度の下限値においては、電極50aの下限値を電極50bの下限値より高く設定(例えば、電極50aでの温度の下限値:1400℃、電極50bでの温度の下限値1350℃)することもできる。
 また、電源装置52と接続される電極50が有する突出部の形状を任意に変更することもできる。電極50の突出部は清澄槽41から突出しているため、外気の影響を受けた電極50が冷却され、電極50近傍の清澄槽41の気相空間も冷却される。このため、清澄槽41から突出する突出部を線状して、外気による冷却を低減し、電極50近傍の冷却を抑制することもできる。また、突出部を保温材等で保温することにより、電極50近傍の冷却を抑制することもできる。
[実施例]
 上述の実施形態において説明したガラス基板製造装置を用いて、ガラス基板を製造した。
 電極50の温度は、1300℃以上、1720℃以下になるように制御した。
 製造したガラス基板に含まれる白金異物を確認したところ、電極50の温度を制御しない従来の方法と比較して、ガラス基板に含まれる白金異物の量が低下し、歩留まりおよび品質が向上した。
 なお、本明細書において、「白金又は白金合金(白金族金属)」は、白金族元素からなる金属を意味し、単一の白金族元素からなる金属のみならず白金族元素の合金を含む用語として使用する。ここで、白金族元素とは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)の6元素を指す。
 また、本発明は、酸化錫(SnO)を清澄剤として使用するガラス基板の製造に特に適している。清澄剤は従来ヒ素(AS)が一般的であったが、近年の環境負荷の観点から、酸化錫(SnO)が使用されている。酸化錫は亜ヒ酸と比較して脱泡工程時に泡を放出する力が弱いため、ガラスの粘性を低くして脱泡効果を上げる必要があり、結果として高い温度で清澄を行う必要がある。したがって、清澄剤として酸化錫(SnO)を使用する場合、ヒ素(亜ヒ酸;AS)を使用する場合と比較して、清澄槽を高い温度に加熱する必要があるが、清澄槽において局所的に温度が低下した場合、温度差がより大きくなるので、上述した白金異物の問題がより顕著となる。したがって本発明は、酸化錫(SnO)を清澄剤として使用するガラス基板の製造に特に適している。
 また、本発明は、ガラスが、無アルカリガラスやアルカリを微量しか含まないアルカリ微量含有ガラスである、ガラス基板の製造に特に適している。無アルカリガラスやアルカリ微量含有ガラスは、アルカリ微量含有ガラスに比べてアルカリを多く含有するガラスに比べて、粘性が高いため、より高い温度で清澄を行う必要があり、清澄槽を高い温度に加熱する必要がある。
 清澄槽を高い温度に加熱すると、清澄槽において局所的に温度が低下した場合、上述した白金異物の問題がより顕著となる。したがって、本発明は、無アルカリガラスやアルカリを微量しか含まないアルカリ微量含有ガラスである、ガラス基板の製造に特に適している。また、無アルカリガラスやアルカリを微量しか含まないアルカリ微量含有ガラスが用いられる、液晶表示装置用ガラス基板や有機EL用ガラス基板などのフラットパネルディスプレイ(FPD)用ガラス基板の製造に特に適している。
 FPD用ガラス基板として、例えば、液晶ディスプレイ用ガラス基板や有機ELディスプレイ用ガラス基板が挙げられる。FPD用ガラス基板は、例えば、厚さが0.1~0.7mmで、サイズが300×400mm~2850×3050mmであり、本発明は、泡や白金異物の欠陥が改善されることから、よりサイズの大きなガラスの製造に適している。
 本発明は、低温ポリシリコン(LTPSS)用ガラス基板を製造する場合に特に適している。低温ポリシリコン(LTPS)用ガラス基板は、一般的にガラス基板をエッチング等によりスリミングして使用する。ガラス基板をエッチング等によりスリミングすると、ガラス基板の内部に含まれる白金異物が表面に表れ、ガラス表面に凹凸を形成するため問題となる。したがって、本発明は、低温ポリシリコン(LTPS)用ガラス基板を製造する場合に特に適している。低温ポリシリコン(LTPS)用ガラス基板は、歪点が高いガラス基板であり、例えば、歪点が675℃以上、好ましくは、680℃以上、更に好ましくは、690℃以上のガラス基板が挙げられる。
 本発明は、FPD用ガラス基板を製造する場合に特に適している。近年、フラットパネルディスプレイでは、より高コントラストが求められており、従来問題となっていなかった白金異物が、高コントラスト化に伴い問題となっている。したがって、本発明は、FPD用ガラス基板を製造する場合に特に適している。
 その他、発明の主旨を逸脱しない範囲で種々好適な他の形態への変更が可能である。
 40 熔解装置
 41 清澄槽
 42 成形装置
 43a、43b、43c ガラス供給管
 52 電源装置
 54a、54b 冷媒供給装置
 56a、56b 温度計測装置
 58a、58b 制御装置
 100 撹拌装置
 200 ガラス基板製造装置
 502a、502b 冷却管

Claims (7)

  1.  熔解工程と、清澄工程と、成形工程とを含むガラス基板の製造方法であって、
     前記清澄工程において用いられる清澄槽は、白金又は白金合金から構成され、前記清澄槽を通電加熱するためのフランジ状の電極を有し、
     前記清澄工程において、
     前記通電加熱された清澄槽に、気相空間を有するように液位を調整して前記熔融ガラスを通過させることにより脱泡を行い、
     前記電極の発熱を抑制するために前記電極を冷却し、
     前記電極の冷却は、前記清澄槽の壁の温度が、前記清澄槽の気相空間に生じる白金蒸気が凝縮する温度を超える範囲になるように制御されている、ことを特徴とするガラス基板の製造方法。
  2.  前記清澄工程において、
     前記電極又は前記電極近傍の清澄槽の温度を測定し、
     前記測定した温度に基づいて、前記電極の冷却量を調整する、請求項1に記載のガラス基板の製造方法。
  3.  前記清澄工程において、
     前記測定した電極又は電極近傍の清澄槽の温度が、予め決められた温度範囲内か否かを判定し、前記判定した結果、測定した温度が前記予め決められた温度範囲外にあるときに、前記冷却量を調整する、請求項2に記載のガラス基板の製造方法。
  4.  前記清澄工程において、清澄剤として酸化錫が用いられる、請求項1~3のいずれか1項に記載のガラス基板の製造方法。
  5.  前記電極は、冷媒を通過させるための冷却管を有し、
     前記清澄工程は、
     前記冷却管に通過させる冷媒の量を増減することにより、冷却量を調整する、請求項1~4のいずれか1項に記載のガラス基板の製造方法。
  6.  前記冷媒は、気体である、請求項5に記載のガラス基板の製造方法。
  7.  熔解槽と、清澄槽と、成形装置とを含むガラス基板製造装置であって、
     前記清澄槽は、白金又は白金合金から構成され、前記清澄槽を通電加熱するためのフランジ状の電極を有し、
     前記電極は、前記電極の発熱を抑制するために冷却され、
     前記電極の冷却は、前記清澄槽の壁の温度が、前記清澄槽の気相空間に生じる白金蒸気が凝縮する温度を超える範囲になるように制御されていることを特徴とするガラス基板製造装置。
PCT/JP2014/052213 2013-02-01 2014-01-31 ガラス基板の製造方法、及びガラス基板製造装置 WO2014119709A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014559764A JP6067755B2 (ja) 2013-02-01 2014-01-31 ガラス基板の製造方法、及びガラス基板製造装置
CN201480006501.9A CN104968617B (zh) 2013-02-01 2014-01-31 玻璃基板的制造方法及玻璃基板制造装置
KR1020157020615A KR101716996B1 (ko) 2013-02-01 2014-01-31 유리 기판의 제조 방법 및 유리 기판 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013018482 2013-02-01
JP2013-018482 2013-02-01

Publications (1)

Publication Number Publication Date
WO2014119709A1 true WO2014119709A1 (ja) 2014-08-07

Family

ID=51262407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052213 WO2014119709A1 (ja) 2013-02-01 2014-01-31 ガラス基板の製造方法、及びガラス基板製造装置

Country Status (5)

Country Link
JP (1) JP6067755B2 (ja)
KR (1) KR101716996B1 (ja)
CN (1) CN104968617B (ja)
TW (1) TWI568697B (ja)
WO (1) WO2014119709A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178714A (ja) * 2016-03-31 2017-10-05 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
CN107651826A (zh) * 2017-11-08 2018-02-02 海南中航特玻科技有限公司 一种浮法锡槽污染气体导流收集净化装置
WO2018079810A1 (ja) * 2016-10-31 2018-05-03 日本電気硝子株式会社 ガラス製造装置、ガラス製造方法、ガラス供給管及び溶融ガラス搬送方法
JP2020203809A (ja) * 2019-06-17 2020-12-24 日本電気硝子株式会社 ガラス移送装置
JP2020203810A (ja) * 2019-06-17 2020-12-24 日本電気硝子株式会社 ガラス移送装置
US11021386B2 (en) 2015-09-09 2021-06-01 Corning Incorporated Glass manufacturing apparatuses and methods for operating the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108290762A (zh) * 2015-10-21 2018-07-17 康宁股份有限公司 用于加热金属容器的设备和方法
CN113423668B (zh) * 2018-12-21 2023-01-31 康宁公司 用来针对低电阻率玻璃允许高电流输入的汇流条设计
KR20230159307A (ko) * 2022-05-12 2023-11-21 주식회사 엘지화학 유체 가열 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502934A (ja) * 2007-11-08 2011-01-27 コーニング インコーポレイテッド ガラスの清澄化方法およびシステム
JP2012504096A (ja) * 2008-09-29 2012-02-16 コーニング インコーポレイテッド ガラス溶融物を均質化する方法および装置
JP2012041264A (ja) * 2010-08-23 2012-03-01 Corning Inc ガラス溶融物を均質化するための方法および装置
JP2012509244A (ja) * 2008-11-18 2012-04-19 コーニング インコーポレイテッド 静電沈殿による白金凝縮物の低減
JP2014028734A (ja) * 2012-06-29 2014-02-13 Avanstrate Inc ガラス基板の製造方法およびガラス基板の製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032412B2 (en) 2003-03-13 2006-04-25 Corning Incorporated Methods of manufacturing glass sheets with reduced blisters
US8269131B2 (en) * 2008-02-28 2012-09-18 Corning Incorporated Nickel-containing flanges for use in direct resistance heating of platinum-containing vessels
KR101305612B1 (ko) * 2010-09-30 2013-09-09 아반스트레이트 가부시키가이샤 유리판 제조 방법
WO2012132368A1 (ja) * 2011-03-30 2012-10-04 AvanStrate株式会社 ガラス板の製造方法及びガラス板製造装置
JP2014037320A (ja) * 2011-03-31 2014-02-27 Avanstrate Inc ガラス板製造方法
TWI462886B (zh) * 2011-03-31 2014-12-01 Avanstrate Inc Manufacture of glass plates
TWI567036B (zh) * 2011-03-31 2017-01-21 Avanstrate Inc Manufacture of glass plates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502934A (ja) * 2007-11-08 2011-01-27 コーニング インコーポレイテッド ガラスの清澄化方法およびシステム
JP2012504096A (ja) * 2008-09-29 2012-02-16 コーニング インコーポレイテッド ガラス溶融物を均質化する方法および装置
JP2012509244A (ja) * 2008-11-18 2012-04-19 コーニング インコーポレイテッド 静電沈殿による白金凝縮物の低減
JP2012041264A (ja) * 2010-08-23 2012-03-01 Corning Inc ガラス溶融物を均質化するための方法および装置
JP2014028734A (ja) * 2012-06-29 2014-02-13 Avanstrate Inc ガラス基板の製造方法およびガラス基板の製造装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11021386B2 (en) 2015-09-09 2021-06-01 Corning Incorporated Glass manufacturing apparatuses and methods for operating the same
JP2017178714A (ja) * 2016-03-31 2017-10-05 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
WO2018079810A1 (ja) * 2016-10-31 2018-05-03 日本電気硝子株式会社 ガラス製造装置、ガラス製造方法、ガラス供給管及び溶融ガラス搬送方法
JPWO2018079810A1 (ja) * 2016-10-31 2019-09-19 日本電気硝子株式会社 ガラス製造装置、ガラス製造方法、ガラス供給管及び溶融ガラス搬送方法
CN107651826A (zh) * 2017-11-08 2018-02-02 海南中航特玻科技有限公司 一种浮法锡槽污染气体导流收集净化装置
CN107651826B (zh) * 2017-11-08 2023-08-15 海南海控特玻科技有限公司 一种浮法锡槽污染气体导流收集净化装置
JP2020203809A (ja) * 2019-06-17 2020-12-24 日本電気硝子株式会社 ガラス移送装置
JP2020203810A (ja) * 2019-06-17 2020-12-24 日本電気硝子株式会社 ガラス移送装置
JP7136015B2 (ja) 2019-06-17 2022-09-13 日本電気硝子株式会社 ガラス移送装置
JP7223329B2 (ja) 2019-06-17 2023-02-16 日本電気硝子株式会社 ガラス移送装置及びガラス物品の製造方法

Also Published As

Publication number Publication date
JP6067755B2 (ja) 2017-01-25
TWI568697B (zh) 2017-02-01
CN104968617A (zh) 2015-10-07
TW201437167A (zh) 2014-10-01
CN104968617B (zh) 2017-07-18
KR20150103193A (ko) 2015-09-09
JPWO2014119709A1 (ja) 2017-01-26
KR101716996B1 (ko) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6067755B2 (ja) ガラス基板の製造方法、及びガラス基板製造装置
JP6247958B2 (ja) ガラス板の製造方法、及び、ガラス板の製造装置
TWI551563B (zh) Method for manufacturing glass substrates
JP5921730B2 (ja) ガラス基板の製造方法及びガラス基板製造装置
KR101627484B1 (ko) 유리 기판의 제조 방법 및 유리 기판의 제조 장치
JP6722096B2 (ja) ガラス基板、及びガラス基板積層体
JP2017178714A (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP6563230B2 (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP5728445B2 (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
JP2014198656A (ja) ガラス板の製造方法、ガラス板の製造装置
JP6585983B2 (ja) ガラス基板の製造方法およびガラス基板の製造装置
JP2018168019A (ja) 熔融ガラスの清澄装置、及びガラス基板の製造方法
JP2018002539A (ja) ガラス基板の製造方法、およびガラス基板製造装置
JP2014069980A (ja) ガラス基板の製造方法、ガラス基板製造装置
JP6433224B2 (ja) ガラス基板の製造方法、およびガラス基板製造装置
JP2017178713A (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP2018002541A (ja) ガラス板の製造方法
JP2014047125A (ja) ガラス基板の製造方法、および、ガラス基板の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559764

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157020615

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746434

Country of ref document: EP

Kind code of ref document: A1