WO2014116072A1 - 효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법 - Google Patents

효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법 Download PDF

Info

Publication number
WO2014116072A1
WO2014116072A1 PCT/KR2014/000758 KR2014000758W WO2014116072A1 WO 2014116072 A1 WO2014116072 A1 WO 2014116072A1 KR 2014000758 W KR2014000758 W KR 2014000758W WO 2014116072 A1 WO2014116072 A1 WO 2014116072A1
Authority
WO
WIPO (PCT)
Prior art keywords
myo
inosi
enzyme
inositol
reaction
Prior art date
Application number
PCT/KR2014/000758
Other languages
English (en)
French (fr)
Inventor
명현군
윤상활
이현서
류재하
Original Assignee
주식회사 디와이내츄럴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디와이내츄럴 filed Critical 주식회사 디와이내츄럴
Publication of WO2014116072A1 publication Critical patent/WO2014116072A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01018Inositol 2-dehydrogenase (1.1.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/99Other intramolecular oxidoreductases (5.3.99)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing D-chiro-inosine from myo-inosine using an enzyme. More specifically .
  • the substrate myo-inositol and the two enzymes inosine deinogenase (inositol dehydrogenase).
  • Inno source it is reacted with "bovine epimerase (inosose isomerase), or combinations of enzymes in the form of a fusion protein, to a method of producing a Ino eu when a D- Carr.
  • D—Cairo-Inoshi (D—chiro—inositol , cis— 1,2,4—trans-3,5,6-cyclohexol) is called myo-ino-in 1 (myo—inosi tol , cis— 1, A stereoisomer of 2, 3, 5—trans 1 4, 6—cyclohexanehexoO is a form of epimerized hydroxyl group 3 (Fig. 1)
  • D-Cairo-inosyl is a phosphoroglyco It is reported to be an important mediator of insulin signaling as a major component of cannes (IPG), and is known to be effective in the treatment of type 2. diabetes.
  • Biosynthesized by epimerization of O-inosine D-Cyro-inosyl is produced mainly by hydrolysis of hydrochloric acid of D-pinitol or kasugamycin (US Pat No. 5827896, US Pat No. 5091596, US Pat No. 5463142, US Pat No. 5714643.
  • raw materials such as pinir and kasugamycin are expensive.
  • the organic synthesis method (US Pat No. 5406005, 0 96/25381) is also known, but the economic efficiency is low because the separation of by-products is not easy.
  • D-Cairo-inosyl is a dehydrogenase (myo).
  • the present inventors have solved the above problems, and as a result of research efforts to develop a method for efficiently producing D-chiropyno inosine from myo-inos, the substrates of myo-inosilo are obtained from inos.
  • the present invention was completed by confirming that two enzymes of dehydrogenase and inosus isomerase, or enzymes in the form of their fusion proteins, can be produced extracellularly to successfully produce D-chiro-inosine.
  • the present invention provides a method for producing acairo-inosyl from myo-inosyl using an enzyme reaction method comprising the following steps: (a) (i) Inosi as dehydrogenase and inososomerase, or inosin as a fusion protein of dehydrogenase and inosus isomerase, (ii) NAD (Nicotinamide Adenine Dinucleotide) as coenzyme, and (iii) as substrate Preparing an enzyme reaction buffer comprising myoininosi; And (b) reacting the enzyme reaction buffer to produce D-chiro-inosine.
  • an enzyme reaction method comprising the following steps: (a) (i) Inosi as dehydrogenase and inososomerase, or inosin as a fusion protein of dehydrogenase and inosus isomerase, (ii) NAD (Nicotinamide Adenine Dinucleotide) as coenzyme, and
  • inositol dehydrogenase or “myo-inositol dehydrogenase” refers to myoininosi as shown in Scheme 1 below. Is an enzyme having the activity of catalysis or reverse reaction thereof to convert 2-keto-myo-inosine into (2-keto-myo-inositol) by NAD + dependent oxidation. In the context of the present specification, the gene name coding for it in relation to "Inositol dehydrogenase" is described as "iolG”.
  • Dehydrogenase myo-inosot + NAD + 2 nuketo-maio-inosit + NADH + H + Inosi is aerobacter aerogenes (Berman T, Magasanik ⁇ (1966)). . J. Biol. Chem. 241 (4): 800-806; LARNER J, JACKSON WT, GRAVES DJ, STAMER JR (1956). Arch. Biochem. Biophys. 60 (2): 352-363) and yeast Cryptococcus mel ibiosum [Vidal-Leiria M, van Uden N (1973). Biochim. Biophys. Acta. 293 (2): 295 '303).
  • Inositol dehydrogenases usable in the present invention are preferably Agrobacterium tumefaciens, Bacillus subtilis (Bad). 1 his subtil is, isolated from Corynebacterium glutamicum (Corynebacterium g kit ami cum), or Pantoea ananatis. More preferably, the inosi dehydrogenase used in the present invention is a dehydrogenase derived from corynebacterium glutamicum. Even more preferably, the inosi dehydrogenase of the present invention has the amino acid sequence of SEQ ID NO: 1.
  • inosose isomerase inosose isomerase
  • inosose isomerase
  • Inosost isomerase that can be used in the present invention is preferably Agrobacterium tumefaciens, Bacillus subtilis, Corynebacterium glutamicum, Corynebacteum glut ami cum, Or isolated from Pantoea ananatis. More preferably, the inosos isomerase of the present invention is an inosos isomerase derived from Pantoea ananatis. Even more preferably, the inosus isomerase of the present invention has the amino acid sequence of SEQ ID NO.
  • An enzyme ie, an inosi
  • an inosi may be used in the form of a fusion of dehydrogenase and inosus isomerase.
  • the use of a fused form of enzyme can increase the efficiency and thermal stability of the enzymatic reaction.
  • the inosine dehydrogenase and inosole isomerase in the fusion enzyme may be linked through a peptide linker.
  • peptide linker refers to a relatively short peptide used to link different proteins. Peptide linkers are described in detail in Toon H. Evers et al., 2006, J. Christopher Anderson et al., 2010, the disclosures of which are disclosed herein. It is incorporated by reference into the specification.
  • linkers that link domains with domains, or enzymes and enzymes are known, and greatly flexible. It can be divided into flexible linker and rigid linker.
  • Flexible linkers are mainly composed of relatively short peptides rich in free-to-rotate amino acids such as glycine and alanine, and when expressed, the two domains or enzymes freely rotate to less influence each protein conformation. do.
  • a solid linker is composed of amino acids to form the alpha ⁇ helix (alpha ⁇ hel x) on the three-dimensional structure, and in the actual expression is made of alpha-helix has a solid structure.
  • Linkers and solid linkers can be used, preferably
  • the peptide linker of the present invention consists of 2 to 24 amino acids, more preferably 4 to 12 amino acids.
  • the "GGSGGGSGGGSG” depth is used as the long linker
  • the "GGSGGGSG” peptide is used as the intermediate linker
  • the "GGSG” peptide is used as the short linker.
  • dehydrogenase and inososomerase are combined with myo-inosine, respectively.
  • inosi dehydrogenase can be bound to the N-terminus of the linker and inosos isomerase can be coupled to the C-terminus, whereas inosos isomerase is coupled to the N-terminus of the linker.
  • Inositol dehydrogenase can be linked to the C-terminus of the linker.
  • the fusion enzyme is in a form in which the O-terminus of inositol dehydrogenase and the N-terminus of inosole isomerase are connected to each other.
  • the initial reaction rate increases as the concentration of inosi dehydrogenase and inosus isomerase, or a fused form of enzyme in the enzyme reaction buffer of the present invention increases. Therefore, enzyme reaction Increasing the concentration of enzymes in the buffer can increase the rate of the production reaction of D-chiroybinosino.
  • the concentration of the inositol dehydrogenase, inosost isomerase, or fusion enzyme thereof in the enzyme reaction buffer is not particularly limited, and those skilled in the art can select a suitable concentration in consideration of production efficiency and manufacturing cost. . According to one embodiment of the present invention, the concentration of the inosine dehydrogenase, inosos isomerase, or fusion enzymes thereof may be selected and used within the range of 100 1 500 / g /, respectively.
  • the concentration of NAD in the enzyme reaction buffer of the present invention is not particularly limited, but may be preferably selected by selecting a suitable concentration within the range of 0.1 1 2.0 ⁇ . According to one specific embodiment of the present invention, the initial reaction rate increases as the concentration of NAD increases to 0.5 niM, but the reaction rate does not increase greatly with the increase of NAD concentration at a concentration of 0.5 mM or more.
  • the concentration of myo-inosyl in the enzyme reaction buffer of the present invention is not particularly limited, but preferably a suitable value can be selected within the range of 5-20% (w / v).
  • the enzyme reaction buffer of the present invention may further include Tris-HCl, MgS0 4) and MnS0 4 . Step (b): reacting the enzyme reaction complete solution to produce D-chiroininositol
  • the degree of reaction of the enzyme reaction in the present invention is not particularly limited, it is possible to select a suitable temperature within the range of 25-65 ° C. And 55 ° C, most preferably 37 - - eu more preferably 30 60 ° C, and more preferably, 35 is 55 ° C.
  • the method of the present invention further includes the step of purifying the D—Cairo—inosyote with high purity by adding an organic solvent to the enzyme reaction reaction complete layer of the enzyme reaction.
  • the present invention provides a method comprising the following step after step (b) further comprises: (c) adding an organic solvent to the reaction reaction Adding inos Generating a precipitate; (d) separating the supernatant from the resulting inosi from the precipitate; And (e) drying the separated supernatant to obtain an inositol powder. Step (c): adding an organic solvent to the enzyme reaction complete solution of the reaction is completed to generate an inosi precipitate
  • the final equilibrium concentration of the product D—Cyro-inosyl is about 14%, so that Myozyno Inos and D-Cyro-Inosyl are about 86:14 in the reaction reaction.
  • the difference in solubility between myo-inositol and D-chiro-inosio in aqueous solution with water is shown in FIG. 17.
  • the method of the present invention is based on the difference in solubility between myo-inosino and D-chiro-inosio in a reaction buffer containing the reactant myoininosi and the product D-chiro-inosino.
  • an organic solvent is first added to the enzyme reaction reaction buffer in which reaction is completed.
  • the addition of the organic solvent induces the precipitation of myofinosinos and D-chiro-inosinos.
  • the precipitation rate of myo-inosino and D-Cyro-inosito is increased by the addition of organic solvent, but the precipitation rate of myo-inos is much higher than that of D-chiro-inosio. (See Figure 18).
  • the amount of D-chiro-inosi is increased by precipitating myo-kinosino than D-chiro-inosi, thereby increasing the concentration of D-chiro-inositol in the solution.
  • the organic solvent that can be used in the present invention is not particularly limited as long as it has a property that can induce precipitation of myo-inosi more than precipitation of D-chiro-inosi.
  • alcohol acetone, ethyl acetate, butyl acetate, 1, 3-butylene glycol or ether 'is preferred.
  • the alcohol is preferably alcohol having 2 to 6 carbon atoms.
  • the organic solvent may be more preferably ethanol, isopropanol, acetone.
  • the amount of the organic solvent added to the reaction reaction enzyme complete reaction is not particularly limited, and is 0.1 to 9 times (v / v) of the enzyme reaction buffer.
  • a suitable amount can be selected and added within.
  • the organic solvent is present in an amount of 0.1-6 times (v / v), more preferably 0.1-4 times (v / v), and even more preferably 0.1-2 times (relative to the enzyme reaction layer).
  • v / v) most preferably in an amount of 0.1-1.5 times (v / v).
  • the precipitates of inosi induced by the addition of the organic solvent include both myo-inositol and D-chiro-inosinos, but the precipitation rate of myo-inosyl is higher. Oh-InnoSeattle contains more. Step (d): separating the supernatant from the resulting inositol precipitate
  • the supernatant is separated from the precipitate of o] nosine produced in step (C).
  • the inositol precipitate is a precipitate of myosininos and D-chiro-inosino, but since the myo-inosino exhibits a greater precipitation rate, the inositinosino-inos than the myo-inosino Poems are included in even greater amounts. Due to the large precipitation of myo-inositol, the concentration of myo-inosyl is lowered in the supernatant, and the concentration (purity) of D-chiro-inosyl is relatively increased.
  • the supernatant separated in step (d) is dried to obtain Inosi powder. Drying of a supernatant liquid can be performed, heating a supernatant liquid, or can be performed in a vacuum state. Inositol dried material obtained by drying the supernatant was composed of Myo-inositol and D-Cairo-Inosi, but D-Cyro compared with the reaction reaction of the enzyme reaction mixture of step (b). -The purity of inosylol is increased.
  • the present invention provides the above step (e) Thereafter, the method further comprises the following steps:
  • step (f) dissolving the inositol powder obtained in step (e) in water to prepare an aqueous solution; (g) adding an organic solvent to the aqueous solution to produce an inosi precipitate; (h) separating the supernatant from the resulting inosyrol precipitate; And (0) drying the separated supernatant to obtain an inositol powder step (f): dissolving the inosi obtained in step (e) in water to prepare an aqueous solution.
  • the powder of Inosi obtained in step (e) was dissolved in water to prepare an aqueous solution in which the inositol was dissolved.
  • the water is preferably distilled water.
  • the inosi powder is dissolved in water at a low concentration of 20 3 ⁇ 4 (w / v) or less, more preferably 18% (w / v) or less, even more preferably 15 3 ⁇ 4 ( w / v) to a concentration of up to.
  • the inositol obtained in step (f) is added to an aqueous solution in which the inositol is dissolved to produce a precipitate of inositol.
  • the organic solvent is the same as described in step (C).
  • the organic solvent is not particularly limited as long as it has a property of inducing the precipitation of myo -inosine more than the precipitation of eucairo-inosine , for example, alcohol, aceron , ethyl acetate, butyl acetate ⁇ 1 3-butylene glycol or ether is preferred.
  • the alcohol is preferably an alcohol having 2 to 6 carbon atoms, more preferably ethane, isopropanol or acetone.
  • the amount of the organic solvent added to the aqueous solution may be added by selecting a suitable amount within the range of 0.1 to 10 times (v / v) relative to the aqueous solution.
  • the organic solvent is 1 5 ⁇ compared to the aqueous solution
  • the inos generated through step (g) is separated from the supernatant from the precipitate. Separation of the supernatant from the precipitate by Inosi is carried out using a filter cake or a centrifugal separation method, preferably using a filtration method. Since Inosi precipitate contains a large amount of Myo-Inosi, the purity of D-Cairo-Inosi is increased in the supernatant. Step (i): drying the separated supernatant to obtain Inosi powder
  • the supernatant separated in step (h) is dried to obtain an inositol powder. Drying of the supernatant may be performed while heating the supernatant, or may be performed in a vacuum. Inosi obtained by drying the supernatant was composed of myo-inos and D-chiro-inosino, but the purity of D-chiro-inos was increased.
  • the present invention provides a method characterized by further comprising the following step after the step (e): (f) ' inosino obtained in step (c) Dissolving the powder in water to form an aqueous solution and producing an inosolole precipitate; (g) 'separating the supernatant from the precipitate created in the Inno when the aqueous solution; And (h) ' drying the supernatant to obtain Inosi powder.
  • Step (f) ' dissolving the inositol powder obtained in step (e) in water to prepare an aqueous solution and producing an inositol precipitate.
  • the powder of Inosi obtained in step (e) was dissolved in water to prepare an aqueous solution in which Inosi was dissolved.
  • the water is preferably distilled water.
  • the inosi powder is dissolved in water at a high concentration of greater than 20% (w / v), more preferably greater than 20 ⁇ 3 ⁇ 4 (w / v) and less than 80% (w / v). Dissolve at a concentration, even more preferably at a concentration of at least 30% (w / v) and at most 70% (w / v).
  • the solubility of myo-inosyl in water is up to about 15%, and the solubility of D-chiro-inosyl is up to about 55%, in the step (e)
  • myo-inosity will dissolve up to 15% concentration and the remaining undissolved myo-inosity is produced as a silver precipitate. Since Ecuiro-Inosi is solubility of up to 55%, all D-Cairo-Inosi in the powder dissolves in this water.
  • Step (g) ' separating the supernatant from the precipitate of the inos produced in the aqueous solution
  • the supernatant is separated from the precipitate of Inosi produced in the above step. Separation of the supernatant from the inositol precipitate is carried out using a filtration or centrifugation method, preferably by a filtration method. Most of the sediment will contain myo-inos, and the supernatant will contain
  • Step (h) ' Step of drying the fresh-base supernatant to obtain Inosi powder.
  • the supernatant separated in step (g) ' is dried to obtain Inosi powder. Drying of the said supernatant can be performed, heating a supernatant, or can be performed in a vacuum. Inosi, obtained by drying the supernatant, was mixed with Myo-Inosir and Akkai-Inosit, but the purity of D-Cairo-Inosi was increased.
  • the present invention provides a composition comprising: (a) a fusion protein of inosi dehydrogenase and inosus isomerase, or inosi dehydrogenase and inosus isomerase; And (b) NAD (Nicotinamide Adenine Dinucleotide) as an active enzyme
  • a composition comprising: (a) a fusion protein of inosi dehydrogenase and inosus isomerase, or inosi dehydrogenase and inosus isomerase; And (b) NAD (Nicotinamide Adenine Dinucleotide) as an active enzyme
  • NAD Nicotinamide Adenine Dinucleotide
  • the composition further comprises (c) myo-inosity as a substrate.
  • the composition further comprises Tris-HCl, MgS0 4l and MnS0 4 .
  • the inosi polyhydrogenase in the composition is an enzyme derived from Corynebacterium glutamicum (C. glut ami cum). More preferably, the inosine dehydrogenase comprises the amino acid sequence of SEQ ID NO: 1.
  • the inosos isomerase in the composition is a pantoea ananatis derived enzyme. More preferably the inosos isomerase comprises the amino acid sequence of SEQ ID NO: 2.
  • the fusion protein is in the form of connecting the inosi to the O-terminus of the dehydrogenase and the N-terminus of the inososomerase.
  • the method of the present invention is carried out by reacting the myo-inosyl substrate as an substrate in the reaction buffer in the presence of dehydrogenase and inosoles isomerase, an enzyme in the form of their fusion protein, D-Cairo. -How to produce an inositol.
  • the present invention comprises the step of purifying with high purity by separating the 1) -Cyro-inositole from Myioss inossi by adding an organic solvent to the complete reaction solution of enzyme reaction reaction.
  • the method of the present invention produces D-Cyro-inosito by reaction in the complete enzymatic reaction solution, and thus can produce D-Cyro-Inosi at low cost and high yield compared to the fermentation method using recombinant cells. have.
  • the method of the present invention provides a method for the preparation of D—Cairobium from the reaction buffer in which myoininosi and D-chiro-inosi are mixed at low cost through simple processes such as addition of organic solvents, supernatant separation and drying. Inosolo to high purity Can be separated.
  • the method of the present invention since the production of D-chiropyranosine in the extracellular enzyme reaction buffer, it is possible to produce acairo-inosine at low cost and high yield compared to the fermentation method using recombinant cells.
  • the high-purity separation of D- chiro-inosio from the reaction mixture of myo-inosino and ekairo-inosino is carried out through simple processes such as the addition of organic solvent, separation of the supernatant and drying. can do.
  • the myo-inosine separated from the D-chiro-inosinolol is reusable as a substrate.
  • Figure 1 shows the structure of the stereoisomers Myo ⁇ Ino-Shittle and Eucairo-InoShittle.
  • FIG. 3 shows HPLC chromatograms for myo-inosyl and echairo-inosio and their stereoisomers or derivatives.
  • Figure 4 is the result of enzyme reaction using myo-inossis to which His-Tag is applied to the N- and C-terminals using dehydrogenase and inosus isomerase.
  • White bars represent myo-inosi and black bars represent D-chiro-inosi.
  • FIG. 5 shows the results of the purification of myo-inosino dehydrogenase (Cgiep) and inosus isomerase (Paioll) applying His-Tag to the C-terminus by SDS-PAGE.
  • Figure 6 shows the results of the production of D-Cyro-Inosio from Myo-Inosio using purified enzymes Myo-Inositol dehydrogenase and Inosos isomerase.
  • As a substrate 59 w / v) myo-inosio was added, indicating the ratio (conversion) of myo-inosirole and produced acairo-inositole.
  • the anti-equilibrium concentration of 50 g / L (5% (w / v)) myo-inosinosine for D-chirophyllinosinos is about 14% of the myo-inosity present, ie 7 g / L
  • Figure 7 shows the production results of D-Cairo-inosino according to the concentration of myoinino.
  • Panel A shows the yield of D-Cairo-Inosino by concentration of Maiopinosino over time
  • panel B shows 1) -Cairopino of concentration of Myo-Inosino over time. Conversion rate.
  • the concentrations of myo-inosyl added were B: 0%, O: 5%, A: 10%, V: 15%, and 20%.
  • Panel A is the result of measuring the conversion rate of D-Cairo-inosyl by NAD concentration over time. NAD concentrations were B: 0 mM, O: 0.1 mM, A: 0.2 mM, V: 0.5 mM,
  • Panel B shows the results of measurement of initial reaction rate according to NAD concentration.
  • Panel A is the result of measuring the conversion rate of D-chiropy Inosyl by enzyme concentration over time.
  • Panel B is the result of measuring the initial reaction velocity depending on the enzyme concentration.
  • Panel 10 is a result of measuring the conversion of the banung yang from Myo-Inoshi to Ekairo-Inoshi according to Banungeun-do.
  • Panel A is the result of measuring the conversion rate of D–Cairo Inino city by time.
  • B 25 ° C, O: 30 ° C, A: 371, V: 42 ° C, ⁇ : 47 ° C, ⁇ ]: 50 ° C ⁇ : 55 ° C, ⁇ : 65 ° C. This is the result of measuring the initial reaction velocity.
  • Panel A is the result of enzyme reaction after exposure to specific silver. ⁇ : 4V, O: 37 ° C, A: 42V, V: 47 ° C, ⁇ : 50 ° C, ⁇ : 55 ° C.
  • Panel B is the result of measuring enzyme deactivation rate according to exposure time. . Subtraction: 4 ° C, O: 37 ° C, ⁇ : 42 ° C, V: 47 ° C, 50, ⁇ 1: 55 ° C.
  • FIG. 12 shows pCOLA 1CPFLLPI, pCOLAD-lCPFMLPI cloned with a fusion protein linking inosi to the N-terminus and C-terminus or to the C-terminus and N-terminus of dehydrogenase and inososomerase, respectively.
  • pCOLAD Recombination plasmid pACYCD—StiolTl-StiolT2 (StiolTl-StiolTl-StiolT2-StiolTl-StiolT2-StiolT2-StiolT2-StiolT2-StiolT2-StiolT2-StiolT2-StiolT2-StiolT2-StiolT2-StiolT2-F2) (refer to Korea Patent Application No. 2012-0 ⁇ 7278) with E. coli BL2KDE3) to produce a recombinant strain, and the strain was cultured in the presence of myo-inosity. .
  • FIG. 13 shows expression (left) and purification results (right) of three fusion protein enzymes applied with His-g at each N-terminus and C-terminus.
  • P ET21b-CPFLLPI O: pET21b— CPFMLPI, ⁇ : pET21b-CPFSLPI, ⁇ : pET15b-CPFLLPI, ⁇ : pET15b-CPFMLPI, ⁇ I: pET15b— CPFSLPI.
  • Panel 15 is a result of measuring the conversion reaction pattern from the myo-inositule to D-Cyro-inosilole according to the reaction temperature of the fusion protein enzyme CPFMLPI.
  • Panel A is the result of measuring the conversion rate of D—Cairo-Inosi with reaction temperature over time. H: 25 ° C, O: 30 ° C, A: 37 ° C, ⁇ : 42 ° C, ⁇ : 47 ° C, ⁇ : 50 ° C, ⁇ : 55t, 65 ° C.
  • Panel B depends on temperature This is the result of measuring the initial reaction rate.
  • 16 shows the results of testing the thermal stability of the fusion enzyme CPFMLPI.
  • Panel A is the result of enzyme reactions after exposure to specific temperatures.
  • Panel B is a result of measuring the deactivation rate of the enzyme according to the exposure time.
  • FIG. 17 shows the solubility of myo-inos and D-chiro-inos in 25 ° C. distilled water.
  • Solubility of myo-inosino
  • O Solubility of D-Cairo-inosino.
  • FIG. 18 shows the effect of the dissolution of Maio-Inoshi and D-Cairo-Inoshi Inosine was precipitated by adding ethanol to the sobanung complete layer solution, and the concentrations of myo-inosine and D-chiro-inosine in the supernatant were measured.
  • Concentration of myo-inoshiro
  • O The concentration of chiro-inosinolol.
  • FIG. 19 shows the precipitation rates of myo-inositol and D-chiropyinosine when ethanol was added to the enzyme reaction buffer containing myo-inosilo and D-chiro-inosio.
  • precipitation rate of myo-inosilole
  • O precipitation rate of Cairo-inoshiro.
  • Fig. 20 shows the inosoid obtained by drying the supernatant obtained by precipitating Inosi by adding ethane to an enzyme reaction buffer in which Myo-Inosio and D—Cyro-Inosolo were dissolved. Shows the result of measuring the purity of D-Cairo-Inosio.
  • Fig. 21 shows the dissolution characteristics of each inosin when the dry powder (combined powders of myo-inosino and D-chiropyinositol) of the supernatant obtained by adding primary ethane was dissolved again in water. Shows. Panel A shows the concentrations of myo-inositile and D-chiro-inosiol of the supernatant of aqueous solution. Panel B shows the solubility of myofininos and aqua-inosinos in the supernatant of aqueous solution. Panel C shows the precipitation rates of myo-inos and D-chiro-inos in the supernatant of the aqueous solution. Panel D shows the purity of D—Cairo-Inosyl in the supernatant of aqueous solution. B: Myo-inosio, O: D-Cairo-inosinolol.
  • Fig. 22 shows the addition of various amounts of ethanol to an aqueous solution containing about 12% of the dry powder of the supernatant obtained by the addition of primary ethanol (a mixed powder of Myo-inosino and D -Cairo-inositol). The precipitation and purification characteristics of the case were measured.
  • Panel A is the result of measuring the concentration of myo-inos and D-chiro-inosino in the supernatant.
  • Panel B is the result of measuring the precipitation rates of myoininosi and D-chiroininosi.
  • Panel C shows the purity of D—chiroininosi in the supernatant.
  • Myo-Ino City
  • O Akkai-Ino City
  • FIG. 23 shows a case in which various organic solvents were added to an enzyme reaction buffer in which myo-inositol and D—chiropyinosinolol were dissolved at a weight ratio of about 13: 2.
  • Panel A is a precipitation characteristic when ethane, isopropane, and acelon are added.
  • the white bars represent the concentration of the myo-inostituts
  • the gray bars represent the D-Cairo-inossi. Indicates the concentration of.
  • Panel B shows the relative precipitation characteristics of isopropane and acetone for ethane. Where the white bars represent D-Cairo-inosotic, and the white bars represent Myo-inosot.
  • Inositol which catalyzes the reactions of Schemes 1 and 3, was used to produce D-chiro-inosyl from myo-inos through the continuous reactions of Schemes 1 through 3 below.
  • pETV 15b Novogen
  • pET-21b plasmid vectors with T7 promoter and His tag. Inserted into (Novogen) to prepare a recombinant plasmid for the expression of the protein.
  • pET-15b is a vector for expressing a His-tag fused protein at the N-terminus
  • pET-21b is a His-tag fused at the C-terminus Plasmid vector for expressing proteins.
  • Inosino dehydrogenase was used as Cgiep (NCg 12957 or GI: 19554252), an iolG homolog of C. glutamicum, and inosos isomerase is Pantoea ananatis. Paioll (PANA_3268, GI: 291618821), ioll of (p. ananatis) was cloned. More specifically, amplification of Cgiep using ETCP-F and ETCP-R primers from genome DNA of Corynebacterium glut ami cum ATCC 13032 (taxid: 196627; GenBank NID: NC) 03450 After cutting with Ndel and BamHI was inserted into the same site of pET-15b to prepare pET15b-CP. The amplified Cgiep gene was also digested with Ndel and Hindi ⁇ and inserted into the same region of pET-21b to prepare pET21b-CP.
  • inosos isomerase For inosos isomerase, amplify Paioll from genome DNA of Pantoea ananatis LMG 20103 (taxid: 706191, GenBank NID: CP001875) using ETPI— F and ETPI ⁇ R primers.
  • PET15b-PI was prepared by cutting Ndel and BamHI into pET-15b digested with the same enzyme, and amplified Paioll was digested with restriction enzymes Ndel and Xhol to insert pET21b-PI at the same site of pET-21b. Produced.
  • the sequences of the above genes, primers, and recombinant plasmids are shown in Table 1. Table 1
  • the recombinant plasmids pET15b-CP, pET2 lb-CP, pET15b-PI, and pET21b-PI constructed in Example 1 were introduced into Escherichia coli BL21 (DE3) star (Invi trogen) to prepare a recombinant strain.
  • the cell disruption supernatant obtained above was added to a nickel packed column equilibrated with a binding buffer, and the mixture was slowly shaken in a cold state for about 1 hour. After shaking, lightly centrifuged to remove the supernatant, and then washed four times with a washing buffer (50 mM NaH 2 P0 4 , 0.5 M NaCl, 20 mM imidazole, H 8.0), and a final 4 niL of elution buffer (50 mM NaH 2 P0). 4 , 0.5 M NaCl, 250 mM imidazole, pH 8.0) was eluted twice.
  • a washing buffer 50 mM NaH 2 P0 4
  • Cgiep a dehydrogenase dehydrogenase
  • the inososomerase Paioll has a molecular weight of 30,417.05, per gram 32.876 pM.
  • Inosine to which N-terminal His-Tag and C-terminal His-Tag were applied, was subjected to an enzymatic reaction in order to confirm the activities of dehydrogenase and inososomerase.
  • Enzyme reaction conditions are as follows.
  • the reaction was carried out in a total of 200 ⁇ volume, and the reaction solution was 50 mM Tris-HCl ( ⁇ . ⁇ ), 1 mM MgS0 4 , 0.1 mM MnS04, 0.5 mM NAD, 5% (w / v) (278 mM) Osaminosino was prepared to be 0.25 mg / mL (6.5 nM) inositol dehydrogenase (Cgiep), 0.25 mg / mL (7.7 nM) inosus isomerase (Paioll). Thus, the concentration of the enzyme complex was about 0.5 mg / iiiL, which was about 14.2 nM.
  • the reaction solution was reacted at 37 ° C.
  • FIG. 5 shows the results of analyzing the inos, which are purified enzymes from E. coli introduced with the pET21b-CP and pET21b ⁇ PI identified above, by SDS-PAGE of the dehydrogenase and the inososomerase.
  • Each protein concentration was 0.86 mg / mL (about 22.8 nM) for Cgiep and 0.64 mg / mL (about 20.32 nM) for Paioll.
  • the reaction of the D-Cyro-Inosilo from the Myo-Synopsis is a reaction involving the physicochemical reaction equilibrium, so that the production of the It depends on the amount of myo-inosinostem, which is a substrate. Therefore, the reaction rate was tested according to the concentration of the substrate, myo-inosi. To this end, the maximum solubility of myo-inositol was investigated under standard reaction conditions, and the maximum solubility was found to be about 20% (w / v) at 37 ° C. Based on this, enzyme reaction was performed by varying the concentration of myo-inosyl from 5% to 20%. The results are shown in FIG.
  • Substrate myo-inosity was added at 10%, and enzyme was added to myo-inosity at a concentration of 250 / ig / mL (14.2 nM as a polymerase) of dehydrogenase and inosus isomerase, respectively. It was.
  • the concentration of coenzyme NAD was added at various concentrations from 0.1 mM to 2 mM to confirm the production rate of D-chiro-inosyl.
  • the reaction results are shown in FIG. 8. Up to a certain level, as the NAD concentration increases, the initial reaction rate rapidly increases, and the concentration of about 0.5 mM In the above, it did not increase significantly.
  • the sugar enzyme complex shows the state of a typical NAD dependent enzyme, and the optimal concentration of NAD is assumed to be 0.5 mM per 10% (555 mM) of substrate concentration.
  • Example 6 Productivity of D-chiro-inoshi according to the concentration of added enzyme Investigation of the productivity of Eucairo-Inoshi according to the concentration of the addition of myophyllosinosyrrole dehydrogenase and inososomerase It was. Substrate myo-inosity was 10% and NAD was added at 1 mM.
  • the mixed enzyme concentration was added in 100 / mL units from 100 / g / mL (about 5.7 nM) to 500 / mL (about 28.4 nM) to confirm the production rate of E. g.
  • the reaction results are shown in FIG. 9. Higher enzyme concentrations resulted in increased reaction rates (Panel A in FIG. 9), which is generally associated with the . If the concentration is sufficient, the reaction is based on the reaction kinetics that the reaction rate is proportional to the concentration of the enzyme (Panel B of FIG. 9).
  • Example 7 Productivity Investigation of D-Cairo-Inoshi
  • Myioininosity was confirmed for the heat stability of dehydrogenase and inososomerase.
  • the enzyme was left for a certain time This was then used to react for a period of time and to measure the productivity and reaction rate of D-Cairo-Inosi.
  • the control group using enzymes not exposed to heat was used as a control, and the enzymes exposed for 2, 6, 12 and 24 hours at 4 ° C, 37 ° C, ATC, 47 ° C, 50 ° C and 55 ° C, respectively.
  • the reaction was performed for about 7 hours, and the results are shown in FIG. 11.
  • the reaction was stable even after exposure to about 42 ° C for 24 hours, and the deactivation rate increased after exposure for more than 12 hours at 47 ° C.
  • Example 9 Preparation of Recombinant Vectors for Expression of Fusion Proteins of Inosyrol Dehydrogenase and Inososomerase
  • a flexible linker consisting of glycine and serine was used to link the two enzymes inosi-dehydrogenase and inosus isomerase.
  • the length of the linker was varied in order to find the least affecting conditions between the enzymes, and for the same reason, a linker connecting the N ⁇ and C-terminus of each of the two enzymes was prepared.
  • a sequence of three flexible linkers of different lengths consisting of glycine and serine was obtained from the Registry of Standard Biological Parts (http://partsregistry.org) (see Table 2).
  • C. glut ami cum ATCC 13032 (taxid: 196627; GenBank NID :) using primers CPFLL-F and CPFLL-R for expression of fusion proteins linked by long linkers.
  • NC_003450 was amplified from the genome DNA of the Cgiep gene, using the PCR product containing the Cgiep and CPFLLPI-R primers P. ananatis LMG 20103 (taxid: 706191, GenBank NID: CP001875)
  • Paioll was amplified from the genome DNA of Cgiep and Paioll to amplify a gene fused with a long linker.
  • the amplified gene is a restriction enzyme BspHI and W
  • PCOLAD-lCPFLLPI was prepared by inserting pCOLADuet-l (Novogen) cut with Sal I and Nc and Sal I.
  • C. glut ami cum ATCC 13032 (tax id: 196627; GenBank NID: NC_00; 3 ⁇ 450) using primers CPFLL-F and CPFML—R for the expression of fusion proteins with intermediate linkers.
  • the Cgiep gene was amplified from the genome DNA of), using the PCR product containing the Cgiep and the CPFLLPI-R primers of P. ananatis LMG 20103 (taxid: 706191, GenBank NID: CP001875). By amplifying Paioll from genome DNA, Cgiep and Paioli amplified a gene fused with a linker with an extended length.
  • the amplified gene was digested with restriction enzymes BspHI and Sail and inserted into pCOLADuet-1, digested with Ncol and Sail, to prepare pCOLAD-lCPFMLPI.
  • C. glut ami cum ATCC 13032 (taxid: 196627; GenBank NID: NCJ) 03450) using primers CPFLL-F and CPFSL-R for the expression of fusion proteins with short linkers
  • Amplified the Cgiep gene from the genome DNA of the genome, and the genome of P. ananatis LMG 20103 (taxid: 706191, GenBank NID: CP001875) using a PCR product containing the Cgiep and a CPFLLPI-R primer.
  • Paioll was amplified from DNA to amplify genes fused with Cgiep and Paioll with short linkers.
  • the amplified gene was digested with restriction enzymes BspHI and Sail and inserted with pCOLADuet-1 digested with Ncol and Sail to prepare pCOLAD-lCPFSLPI.
  • P. ananatis LMG 20103 (taxid: 706191, GenBank NID: CP001875) using primers PIFLL— F and PIFLL-R for expression of long-linked fusion proteins.
  • the Paioll gene was amplified from the genome DNA of C. glutamicum ATCC 13032 (taxid: 196627; GenBank NID: NC 003450) using the PCR product containing the Paioll and PIFLLCP-R primers.
  • Cgiep was amplified from the genome DNAs of Paioll and Cgiep by a long linker.
  • the amplified gene was digested with restriction enzymes Ndel and Bglll and inserted with pCOLADuet-1 digested with the same restriction enzyme to prepare pC0LAD-2PIFLLCP.
  • middle Paioll from genome DNA of P. ananatis LMG 20103 (taxid: 706191, GenBank NID: CP001875) using primers PIFLL-F and PIFML-R for expression of fusion proteins linked by linkers of length Gene was amplified and genome of Corynebacterium glutamicum (C.
  • Paioll gene was amplified from the genome DNA of P. ananatis LMG 20103 (taxid: 706191, GenBank NID: CP001875) using PIFLL-F and PIFSL-R, a PCR product containing Paioll And PIFLLCP-R primers to amplify Cgiep from the genome DNA of Corynebacterium glutamicum (C. glut ami cum) ATCC 13032 (taxid: 196627; GenBank NID: NC_003450) to link Paioll and Cgiep with short linkers. The gene was amplified.
  • the amplified gene was digested with restriction enzymes Ndel and Bglll and inserted with pCOLADuet-1 digested with the same restriction enzyme to prepare pC0LAD-2PIFSLCP.
  • the information of the genes is shown in Table 2 and the primers used are shown in Table 3.
  • Recombinant plasmid prepared in Example 9 was introduced into Escherichia coli to confirm the productivity of E. coli.
  • the myo-inosine derived from Salmonella typhimurium (S. typhimurium) has already been constructed with pCOLAD-1CPFLLPI, pCOLAD-lCPFMLPI, pCOLAD-1CPFSLPI, pC0LAD-2PIFLLCP, pCOLAD-2PIFMLCP, pC0LAD-2PIFSLCP.
  • Recombinant containing With plasmid pACYCD-Stiorn-St) lT2 (F2) (see Korean Patent Application No. 10-2012-0107278) E. coli?
  • the prepared recombinant strain was cultured 5 inL in a glass tube of 25 mm in diameter and 150 mm in height. Incubation conditions were 37 ° C, 250 using a TB (terrific broth) medium containing 15% (w / v) myo-inositol, 50 mg / L chloramphenicol, 50 mg / L kanamycin, 0.5% lactose. Incubated for 24 hours under conditions of rpni.
  • the culture solution was centrifuged to take 1 mL of the culture supernatant, boiled for 10 minutes, centrifuged again, and 100 uL of the supernatant was taken and mixed with water 900.
  • Pretreated culture supernatants were analyzed by HPU Shimadzu LClOAvp), and the analysis conditions were the same as in Example 3.
  • the productivity of the D-chiro-inosity of each fusion protein is shown in FIG. 12. According to the results of FIG.
  • the inosi identified in Example 10 above was the N-terminus of CPF-terminus CPFLLPI, CPFMLPI, CPFSLPI, wherein the C-terminus of the dehydrogenase and the N-terminus of the inosus isomerase were combined and the linker was different in length.
  • a recombinant polamide was constructed by inserting fusion enzyme-coding genes into the polsmid vectors pET15b and pET21b.
  • pET-15b can be applied to His-tag at the N-terminus
  • pET-21b is a polamide vector which can be applied to His ⁇ g at the C'-end.
  • pPF15P-CPFLLPI was prepared by amplifying CPFLLPI using the pCOLAD-lCPFLLPI plasmid using primers ETCP-F1 and ETPI-R1, cutting it with Ndel and BamHI, and inserting the same site of pET-15b. D-. The amplified CPFLLPI was also cut into Ndel and Sail and inserted into the same site of pET-21b to prepare pET21b-CPFLLPI.
  • CPFMLPI was extracted from pCOLA CPFMLPI plasmid using primers ETCP-F1 and ETPI-R1.
  • Ndel and BaniHI were cut and inserted into the same region of pET_15b to prepare pET15b-CPFMLPI.
  • the amplified CPFMLPI was also cut into Ndel and Sail and inserted into the same site of pET-21b to prepare pET2 lb—CPFMLPI.
  • pCOLAD-CPFSLPI plasmid was amplified from primers ETCP-F1 and ETPI-R1 from CPFSLPI, digested with Ndel and BamHI, and inserted into the same region of pET-15b to prepare pET15b—CPFSLPI. .
  • CPFSLPI amplified was also cut into Ndel and Sail and inserted into the same site of pET-21b to prepare pET21b-CPFSLPI.
  • Primers and gene information used to construct the six recombinant plasmids are shown in Table 4 below.
  • Example 12 Expression, Purification, and Activity Measurement of His-tag Applied Fusion Enzyme
  • the six recombinant plasmids constructed in Example 11, pET15b-CPFLLPI, pET-15b-CPFMLPI, pET15b-CPFSLPI, pET21b-CPFLLPI, pET21b-CPFMLPI, pET2 lb—CPFSLPI were introduced into Escherichia coli BL2KDE3) to construct recombinant E. coli, and the expression and purification of the fusion enzyme thereto were carried out in the same manner as in Example 2. The results of expression and purification are shown in FIG. 13.
  • the reaction for measuring the activity of the fusion enzyme was carried out in a total volume of 200 id, and the reaction solution was 50 iiiM Tris-HCl (pH8.0), 1 niM MgS0 4l 0.1 niM MnS04 0.5 mM NAD, 5% (w / v) ( 278 mM) Myo-inosity was prepared to be 0.5 mg / mL (about 7.2 nM) fusion enzyme.
  • the reaction solution was reacted at 37 ° C. for about 15 hours, and the reaction was boiled for 10 minutes to stop reaction. Reaction by centrifugation. Diluted five times with water and analyzed by HPLC, HPLC analysis was as described in Example 3.
  • Example 13 Measurement of in vivo activity of his-tag applied fusion enzyme When His ⁇ tag was applied to the fusion enzyme that was active in Example 10, N—terminal, C-terminal, all of them Since there was no conversion activity into the seattle, an in vivo experiment was performed to confirm the reason.
  • the imidazole was excessively introduced during the purification process, and dialysis was performed to remove imidazole from the purified enzyme in anticipation that the imidazole affects the activity of the enzyme.
  • Dialysis was performed only for pET15b-CPFMLPI, which produced the fastest D—Cairo-Inosi in the results of Example 13 (see FIG. 14). Dialysis was performed by adding the final eluted enzyme solution to the spectra dialysis membrane (Spectra / Por 1 dialysis tubing, 6-8 MWC0) and then removing the substrate and NAD (50 mM Tris—HC1, pH).
  • the enzyme that imidazole was removed through dialysis was used for enzyme reaction and the reaction rate was measured according to the reaction rate.
  • the heat stability of the fusion enzyme CPFMLPI was confirmed. After the enzyme was left at a certain temperature for a certain time, the enzyme was reacted for a certain time, and the productivity and reaction rate of E. coli were measured. Banung group using enzymes not exposed to heat (0 hour Banung group) as a control, respectively, at 4 ° C, 37 ° C, 42 ° C, 47 ° C, 50 ° C, 55 ° C, 65 ° C 2 , 6, 12, 24 hours using the enzyme exposed for about 7 hours reaction, the results are shown in FIG. The reaction was relatively stable even after 24 hours of exposure up to about 55 ° C, and the inactivation rate was maintained below 20%. At 65 ° C, it was rapidly inactivated.
  • the fusion enzyme CPFMLPI appears to be more stable after prolonged exposure to heat of 10 ° C or more than using the enzymes Cgiep and PaioH.
  • CPFMLPI is expected to be very efficient, as it can save half the time and cost than two separate enzymes in expression and purification.
  • the reaction rate of the purified enzyme was based on the weight of the enzyme (500 /) added at 37 ° C and 1 mM NAD, and the enzyme alone was 54.6 mM / hour, and the fusion enzyme was 71.2 mM /.
  • the enzyme alone was 3.7 mM / nM Enzymes / hour
  • the rate was 9.9 mM / nM Enzymes / hour. The enzyme was found to be high.
  • Example 16 Determination of Solubility of Myo-inosyl and D-chiro-inositol The solubility of myo-inosyl and D-chiro-inositol was measured. .
  • myo-inoshiro and echairo—inosolo were dissolved in primary distilled water at a silver phase (about 25 ° C.) to a concentration of 5% (w / v) to 80% (w / v), respectively.
  • the undissolved portions in each solution were separated by centrifugation, and each concentration was analyzed by HPLC, taking the portion of the supernatant in which the inos were completely dissolved.
  • Enzymatic reaction reactions were completed in 50 mM Tris-HCl (pHS.O), 1 mM MgS0 4 , 0.1 mM MnS0 4 ( 0.5 mM NAD 12.9% (w / v) myo-inoshiro, 2.1 (w) / v) D—Cairo-inosoxy, by adding ethanol to the reaction reaction buffer, reaction ratio of reaction buffer: ethane 10: 0, 9: 1 (0.11 times), 8: 2 (0.25) Times), 7: 3 (0.43 times), 6: 4 (e 67 times), 5: 5 (1 time), 4: 6 (1.5 times), The mixture was mixed to 3: 7 (2.33 times), 2: 8 (4 times), 1: 9 (9 times), and then shaken for 1 hour at (about 25 ° C) ⁇ 30 minutes at 3,500 rpiii. After centrifugation, the supernatant was taken and the concentrations of myo-inosyl and D-chiro-inoshiro were analyzed by HPLC.
  • FIG. 18 shows the concentrations of myo-inosyl and D-chiro-inosyl remaining in the supernatant obtained by adding ethane to the reaction reaction solution of the completed reaction reaction.
  • the concentration decreased rapidly according to the amount of ethanol added, and when about 1 multiple of ethanol was added, the myo-inositole precipitated about 99 g / L from the initial 126 g / L concentration. It was shown that about 27 g / L of myo-inosity remained.
  • the results shown in FIG. 18 are shown in FIG. 19 in terms of precipitation rate.
  • the precipitation rate of myo-inosyrol increased sharply with the amount of ethanol added, and when 1-fold ethanol was added, it was relatively similar in all reaction conditions.
  • Example 18 Concentration Drying and Redissolution of Supernatant After Primary Ethanol Treatment As described in Example 17, the precipitate was mixed with an equal amount (1: 1) of ethane in a reaction mixture in which the reaction reaction was completed. The supernatant obtained by removal was heated to 80 ° C., concentrated and dried in vacuo. The dry powder of Inosi obtained after drying (combined powders of Myo-Inosi and D-Cairo-Inosi) was dissolved in distilled water at various concentrations of 15% -70% and myo-ino at each concentration. The dissolution characteristics of Seattle and D-Cairo-Inosi were observed.
  • FIG. 21 The results of analyzing the dissolution characteristics of myoininosotic and eucairoininosi are shown in FIG. 21.
  • Panel A of FIG. 21 shows the concentration of each inosin, that is, the solubility in the supernatant, so that the solubility of myopininosi did not increase further by about 15% or more as shown in Example 16. there was.
  • solubility is about 55%, even when the dry powder was dissolved at a concentration of 70%, all of the D-Cyro-Inosy was dissolved.
  • the isopropanol did not show a significant difference in the precipitation rates of myo-inositol and D-chiro-inositol compared to ethanol, and the acetone had a slightly higher precipitation rate for myo-inosino. Poor loss seems to be low.
  • panel B of FIG. 23 which shows the relative value of the precipitation rate of ethanol. That is, isopropanol has no significant difference between ethanol and myo-inosino and D-chiro-inosino with 1.0 and 0.9 values, respectively, while acetone has a high precipitation rate of about 1.1 with myo-inosino.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 기질인 마이오-이노시톨을 이노시톨 디하이드로게나아제 및 이노소스 이소머라아제, 또는 이들 효소가 융합된 형태의 단백질을 포함하는 효소 반응 완충액내에서 반응시켜 D-카이로-이노시톨을 제조하는 방법에 관한 것이다. 본 발명의 방법에 의하면 세포외 효소 반응 완충액내에서의 D-카이로-이노시톨을 생산하므로 재조합 세포를 이용한 발효 방법과 비교하여 저비용 및 고수율로 D-카이로-이노시톨을 생산할 수 있다. 또한, 유기용매의 첨가, 상층액 분리 및 건조와 같은 간단한 공정을 통해 마이오-이노시톨과 D-카이로-이노시톨이 혼합된 반응 완충액으로부터 D-카이로-이노시톨을 고순도로 분리할 수 있다. 또한, 본 발명에 의하면 D-카이로-이노시톨로부터 분리된 마이오-이노시톨은 기질로서 재사용이 가능한 이점이 있다.

Description

【명세서】
【발명의 명칭】
효소 반웅법을 이용한 마이오-이노시를로부터 D-카이로 -이노시를을 생산하는 방법 .
【기술 분야】
본 발명은 효소를 이용하여 마이오-이노시를로부터 D-카이로- 이노시를을 생산하는 방법에 관한 것이다. 보다 상세하게는. 기질인 마이오 -이노시틀을 2 가지의 효소 이노시를 디하이드로게나아제 (inositol dehydrogenase) . 및 이노소스 이'소머라아제 ( inosose isomerase) , 또는 이들의 융합 단백질 형태의 효소와 반응시켜 D-카아로ᅳ이노시를을 생산하는 방법에 관한 것이다.
【배경 기술】
D—카이로-이노시를 (D—chiro— inositol, cis— 1,2,4— trans-3,5,6- cyclohexol )은 마이오一이노人 1를 (myo—inosi tol, cis— 1,2, 3, 5— trans一 4, 6— cyclohexanehexoO의 입체이성질체 (stereoisomer)로서 3 번 하이드록실 그룹이 에피머화 된 형태이다 (도 1). D-카이로—이노시를은 이노시를 포스포글리칸 (IPG)의 주요 구성성분으로 인술린 신호전달의 중요한 매개체로 보고되어 있으며, 제 2 형 당뇨의 치료에 효과가 있다고 알려져 있다. D-카이로ᅳ이노시틀은 주로 진핵생물에서 발견되며, 마이오- 이노시를의 에피머화에 의해 생합성된다. D—카이로 -이노시를은 주로 피니를 (D— pinitol)이나 카스가마이신 (kasugamycin)의 염산 가수분해에 의해 생산하고 있다 (U.S. Pat No. 5827896 , U.S. Pat No. 5091596, U.S. Pat No. 5463142, U.S. Pat No.5714643). 그러나, 원료인 피니를이나 카스가마이신이 고가이며, 유기합성법 (U.S. Pat No. 5406005, 0 96/25381)도 알려져 있으나, 부산물의 분리가 용이하지 않아 경제성이 낮다. D-카이로 -이노시를은 마이오—이노시를 디하이드로게나아제 (myo-inositol dehydrogenase) 및 이노소스 이소머라아제 (inosose isomerase)를 발현하는 형질전환된 세포를 이용한 발효 방법에 의해 마이오-이노시를로부터 생산될 수 있는 것으로 알려져 있다. 그러나, 상기 형질전환된 세포를 이용한 발효 방법은 생산 수율이 낮으며 발효액으로부터 D-카이로 -이노시를을 정제하는 데 있어서 문제점이 있는 것으로 알려져 왔다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
【발명의 상세한 설명】
ί기술적 과제】
본 발명자들은 상기와 같은 문제점을 해결하고, 마이오- 이노시를로부터 D-카이로ᅳ이노시를을 효율적으로 생산하는 방법을 개발하고자 연구 노력한 결과, 기질인 마이오—이노시롤을 이노시를 디하이드로게나아제 및 이노소스 이소머라아제의 2 가지 효소, 또는 이들의 융합 단백질 형태의 효소와 세포외에서 반응시켜 D-카이로 -이노시를을 성공적으로 생산할 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 효소반웅법을 이용하여 마이오- 이노시를로부터 D-카이로ᅳ이노시를을 생산하는 방법을 제공하는 데 있다. 본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다.
【기술적 해결방법】
본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 효소반웅법을 이용하여 마이오-이노시를로부터 으카이로 -이노시를을 생산하는 방법을 제공한다: (a) (i) 이노시를 디하이드로게나아제 및 이노소스 이소머라아제, 또는 이노시를 디하이드로게나아제와 이노소스 이소머라아제의 융합 단백질, (ii) 조효소로서 NAD (Nicotinamide Adenine Dinucleotide), 및 (iii) 기질로서 마이오ᅳ이노시를을 포함하는 효소 반응 완충액을 준비하는 단계; 및 (b) 상기 효소 반응 완충액을 반응시켜 D- 카이로—이노시를을 생성시키는 단계. 이하에서 본 발명을 각 단계에 따라 상세히 설명한다 . ' 단계 (a): Ci) 이노시를 디하이드로게나아제 및 이노소스 이소머라아제, 또는 이 두 가지 효소의 융합 단백질, (ii) 조효소로서 NADCNicotinamide Adenine Dinucleot ide) , 및 (iii) 기질로서 마이오- 이노시를을 포함하는 효소 반응 완층액을 준비하는 단계
본 명세서에서 용어 "이노시틀 디하이드로게나아제 (inositol dehydrogenase)" 또는 "마이오―이노시를 디하이드로게나아제 (myo-inositol dehydrogenase)" 는 하기 반응식 1에 나타낸 바와 같이 마이오ᅳ이노시를을 NAD+ 의존성 산화작용에 의해 2-케토 -마이오-이노시를 (2-keto-myo- inositol)로 변환시키는 화학반웅 또는 이의 역방향 반웅을 촉매하는 활성을 갖는 효소이다. 본 명세서에서 "이노시틀 디하이드로게나아제" 와 관련하여 이를 코딩하는 유전자 명칭은 "iolG"으로 기재한다.
[반응식 1]
마이오—이노시틀 + NAD+ 2ᅳ케토-마이오—이노시틀 + NADH + H+ 이노시를 디하이드로게나아제는 에어로박터 에어로게네스 (Aerobacter aerogenes) [Berman T, Magasanik Β (1966). J. Biol . Chem. 241 (4): 800- 806; LARNER J, JACKSON WT, GRAVES DJ , STAMER JR (1956). Arch. Biochem. Biophys. 60 (2): 352-363)과 효모 크립토코커스 멜리비오숨 (Cryptococcus mel ibiosum)[Vidal-Leiria M, van Uden N (1973). Biochim. Biophys . Acta. 293 (2): 295ᅳ 303]에서 분리되었다고 보고되어 있다ᅳ 본 발명에서 사용할 수 있는 이노시틀 디하이드로게나아제는 바람직하게는 아그로박테리움 투메파시엔스 (Agrobacterium tumefaciens) , 바실러스 서브틸리스 (Bad 1 his subtil is), 코리네박테리움 글루타미쿰 (Corynebacterium g kit ami cum) , 또는 판토에아 아나나티스 (Pantoea ananatis)로 부터 분리된 것이다. 보다 바람직하게는 본 발명에서 사용되는 이노시를 디하이드로게나아제는 코리네박테리움 글루타미쿰 유래 이노시를 디하이드로게나아제이다. 보다 더 바람직하게는 본 발명의 이노시를 디하이드로게나아제는 서열번호 1의 아미노산 서열을 갖는다.
본 명세서에서 용어 "이노소스 이소머라아제 (inosose isomerase)" 는 하기 반응식 2에 나타낸 바와 같이 2-케토 -마이오- 이노시를을 1-케토 -D-카이로-이노시틀 ( 1-keto-D-chi ro— inosi tol )로 전환하는 이성질체회 반웅 또는 이의 역방향 반웅을 촉매하는 활성을 갖는 효소이다. 본 명세서에서 "이노소스 이소머라아제" 와 관련하여 이를 코딩하는 유전자 명칭은 "ioir로 기재한다.
[반응식 2]
2-케토 -마이오ᅳ이노시를 ᅳ 1-케토— D—카이로—이노시틀
본 발명에서 사용할 수 있는 이노소스 이소머라아제는 바람직하게는 아그로박테리움 투메파시엔스 (Agrobacterium tumefaciens) , 바실러스 서브틸라스 (Bacillus subtilis), 코리네박테리움 클루타미큼 (Corynebacte um glut ami cum) , 또는 판토에아 아나나티스 (Pantoea ananatis)로 부터 분리된 것이다. 보다 바람직하게는 본 발명의 이노소스 이소머라아제는 판토에아 아나나티스 유래 이노소스 이소머라아제이다. 보다 더 바람직하게는 본 발명의 이노소스 이소머라아제는 서열번호 2의 아미노산 서열을 갖는다.
상기 반웅식 2에 의해 생성된 1ᅳ케토―으카이로ᅳ이노시를은 하기 반응식 3에 의해 본 발명에서의 .최종산물인 D—카이로 -이노시를을 생성한다. 하기 반응식 3의 반웅은 앞서 설명된 효소인 "이노시를 디하이드로게나아제" 가 촉매한다.
[반응식 3]
1-케토ᅳ D-카이로-이노시를 + NADH + H+ D—카이로-이노시롤 + NAD+ 본 발명에서는 상기 설명된 두. 효소, 즉 이노시를 디하이드로게나아제와 이노소스 이소머라아제가 융합된 형태의 효소를 사용할 수 있다. 융합된 형태의 효소를 사용하는 경우 효소 반응의 효율과 열안정성을 증대시킬 수 있다.
본 발명에서 상기 융합 효소에서 이노시를 디하이드로게나아제와 이노소스 이소머라아제는 펩타이드 링커를 통해.연결될 수 있다.
본 명세서에서 용어 "펩타이드 링커" 는 서로 다른 단백질을 연결하는데 사용하는 비교적 짧은 펩타이드를 의미한다. 펩타이드 링커에 관한 내용은 문헌 "Toon H. Evers et al . , 2006, J. Christopher Anderson et al., 2010" 에 상세히 개시되어 있으며, 이 문헌에 개시된 내용은 본 명세서에 참조로써 삽입된다.
일반적으로 도메인과 도메인, 또는 효소와 효소를 연결하는 다양한 링커가 알려져 있으며, 크게 유연성. 있는 링커 (flexible linker)와 견고한 링커 (rigid linker)로 나눌 수 있다. 유연성 있는 링커로서는 주로 글리신 (glycine), 알라닌 (alanine) 등 회전이 자유로운 아미노산이 풍부한 비교적 짧은 펩타이드로 구성되어 있으며, 발현되었을 경우 두 도메인 또는 효소는 자유롭게 회전하여 각각의 단백질 입체구조에 영향을 덜 주게 된다. 한편 , 견고한 링커로서는 입체구조 상에서 알파ᅳ헬릭스 (alphaᅳ hel x)를 이루도록 하는 아미노산으로 구성되어 있으며, 실제 발현시 에는 알파- 헬릭스를 이루어 견고한 구조를 갖게 된다.
본 발명의 일 구현예에 의하면, 본 발명에서의
링커와 견고한 링커를 사용할 수 있으며, 바람직하게는
Figure imgf000007_0001
사용한다.
본 발명의 일 구현예에 따르면, 본 발명의 상기 펩타이드 링커는 2개 내지 24개의 아미노산으로 이루어지고, 보다 바람직하게는 4개 내지 12개의 아미노산으로 이루어진다.
본 발명의 하기 구체적인 일 실시예에 의하면, 본 발명에서 긴 링커로서 "GGSGGGSGGGSG" 뎁타이드를, 중간 링커로서 "GGSGGGSG" 펩타이드를, 짧은 링커로서 "GGSG" 펩타이드를 사용한다.
상기 펩타이드 링커의 N-말단과 C—말단에 각각 마이오-이노시를 디하이드로게나아제와 이노소스 이소머라아제를 결합시킨다. 예를 들어, 링커의 N-말단에 이노시를 디하이드로게나아제를 결합시키고 C—말단에 이노소스 이소머라아제를 결합시킬 수 있으며, 반대로 링커의 N-말단에 이노소스 이소머라아제를 결합시키고 링커의 C—말단에 이노시틀 디하이드로게나아제를 결합시킬 수 있다.
본 발명의 일 구현예에 의하면, 상기 융합 효소는 이노시틀 디하이드로게나아제의 O말단과 이노소스 이소머라아제의 N-말단이 서로 연결된 형태이다.
본 발명의 상기 효소 반웅 완충액내에서 이노시를 디하이드로게나아제 및 이노소스 이소머라아제 , 또는 이들의 융합된 형태의 효소의 농도가 증가할수록 초기 반웅속도가 증가된다. 따라서, 효소 반웅 완충액내에서 효소의 농도를 증가시킴으로써 D-카이로ᅳ이노시를의 생성 반응의 속도를 증가시킬 수 있다. 효소 반웅 완충액내에서 상기 이노시틀 디하이드로게나아제, 이노소스 이소머라아제, 또는 이들의 융합 효소의 농도는 특별하게 한정되지 않고, 당업자가 생산 효율 및 제조 비용을 감안하여 적합한 농도를 선택할 수 있다. 본 발명의 일 구현예에 의하면, 상기 이노시를 디하이드로게나아제 , 이노소스 이소머라아제 , 또는 이들의 융합 효소의 농도는 각각 100 一 500 /g/ 의 범위 내에서 선택하여 사용할 수 있다.
본 발명의 상기 효소 반웅 완충액내에서 NAD의 농도는 특별하게 한정되지 않으나, 바람직하게는 0.1 一 2.0 ηιΜ의 범위내에서 적합한 농도를 선택하여 정할 수 있다. 본 발명의 하기 구체적인 일 실시예에 의하면, 0.5 niM 까지는 NAD의 농도가 증가할수록 초기반응속도가 증가하나, 0.5 mM 이상의 농도에서는 NAD 농도 증가에 따라 반응속도가 크게 증가하지 않는다. 본 발명의 상기 효소 반웅 완충액내의 마이오—이노시를의 농도는 특별하게 제한되지 않으나, 바람직하게는 5 — 20 %(w/v)의 범위내에서 적합한 값을 선택할 수 있다.
본 발명의 상기 효소 반웅 완충액은 Tris-HCl , MgS04) 및 MnS04를 더 포함할 수 있다. 단계 (b): 상기 효소 반응 완층액을 반웅시켜 D-카이로ᅳ이노시틀올 생성시키는 단계
본 발명에서 효소 반웅의 반웅은도는 특별하게 제한되지 않으나, 25 - 65°C의 범위내에서 적합한 온도를 선택할 수 있다. 보다 바람직하게는 30 ᅳ 60 °C, 보다 더 바람직하게는 35 - 55°C이고, 가장 바람직하게는 37 - 55°C이다.
본 발명의 방법은 효소 반응이 완료된 효소 반웅 완층액에 유기용매를 첨가하여 D—카이로—이노시틀을 고순도로 정제하는 단계를 더욱 포함한다.
본 발명의 바람직한 구현예에 따르면, 본 발명은 상기 단계 (b) 이후에 다음의 단계를 더 포함하는 것을 특징으로 하는 방법을 제공한다: (c) 상기 반웅이 완료된 효소 반웅 완층액에 유기용매를 첨가하여 이노시를 침전물을 생성시키는 단계; (d) 상기 생성된 이노시를 침전물로부터 상층액을 분리하는 단계; 및 (e) 상기 분리한 상층액을 건조시켜 이노시틀 분말을 얻는 단계. 단계 (c): 상기 반응이 완료된 효소 반응 완층액에 유기용매를 첨가하여 이노시를 침전물을 생성시키는 단계
상기 효소 반응에서 생성물인 D—카이로 -이노시를의 최종 평형 농도는 약 14%이므로, 반웅이 완료된 효소 반웅 완충액내에서 마이오ᅳ이노시를과 D-카이로 -이노시를은 약 86 :14의 비율로 존재한다. 물을 용매로 한 수용액내에서 마이오 -이노시틀과 D—카이로 -이노시를의 용해도 차이는 도 17에 나타나 있다. 본 발명의 방법은 반응물인 마이오ᅳ이노시를과 생성물인 D-카이로—이노시를이 포함된 반웅 완료된 완충액내에서 마이오- 이노시를과 D-카이로 -이노시를의 용해도 차이에 의해 D—카이로ᅳ이노시를의 순도를 높여 정제한다. 이를 위해, 본 발명의 방법에서, 먼저 반웅이 완료된 효소 반웅 완충액에 유기용매를 첨가한다. 상기 유기용매의 첨가에 의해 마이오ᅳ이노시를과 D-카이로—이노시를의 침전이 유도된다. 한편, 유기용매 첨가에 의해 마이오ᅳ이노시를과 D-카이로 -이노시틀의 침전율이 모두 증가되지만, D—카이로—이노시를에 비해 마이오 -이노시를의 침전율이 훨씬 크게 증가한다 (도 18 참조). 따라서, 반응이 완료된 효소 반응 완층액에 유기용매를 첨가하여 D-카이로-이노시를 보다 마이오ᅳ이노시를을 더 많은 양으로 침전시켜 용액중의 D-카이로 -이노시틀의 농도를 증대시킬 수 있다.
본 발명에서 사용할 수 있는 유기용매는 D—카이로 -이노시를의 침전 보다 마이오 -이노시를의 침전을 더욱 크게 유도할 수 있는 특성을 갖는 것이면 특별하게 한정되지 않는다. 예를 들어, 알코올, 아세톤, 에틸아세테이트, 부틸아세테이트, 1, 3—부틸렌글리콜 또는 에테르가' 바람직하다. 상기 알코올은 탄소수 2-6개의 알코올이 바람.직하다. 상기 유기용매는 더욱 바람직하게는 에탄올, 이소프로판올, 아세톤을 사용할 수 있다.
상기 반웅이 완료된 효소 반웅 완충액에 첨가하는 유기용매의 양은 특별히 한정되지 않고, 효소 반응 완충액 대비 0.1 一 9배 (v/v)의 범위 내에서 적합한 양을 선택하여 첨가할 수 있다. 바람직하게는 상기 유기용매는 효소 반웅 완층액 대비 0.1 - 6배 (v/v)의 양, 보다 바람직하게는 0.1 - 4배 (v/v)의 양, 보다 더 바람직하게는 0.1 - 2배 (v/v)양이고, 가장 바람직하게는 0.1 ― 1.5배 (v/v)양으로 첨가한다. 본 발명에서 유기용매의 첨가에 의해 유도되는 이노시를 침전물에는 마이오 -이노시틀과 D—카이로ᅳ이노시를이 모두 포함되어 있으나, 마이오- 이노시를의 침전율이 더 높으므로, 마이오 -이노시틀이 더 많이 포함되어 있다. 단계 (d): 상기 생성된 이노시틀 침전물로부터 상층액을 분리하는 단계
상기 단계 (C)를 통해 생성된 o]노시를 침전물로부터 상층액을 분리한다. 상기 이노시틀 침전물은 마이오ᅳ이노시를 및 D-카이로- 이노시를의 침전물이지만, 마이오 -이노시를이 더 큰 침전율을 나타내므로, D-카이로-이노시를 보다는 마이오 -이노시를이 더욱 많은 양으로 포함되어 있다. 마이오 -이노시톨의 다량 침전으로 인해 상층액 중에는 마이오- 이노시를의 농도가 낮아지게 되며, D-카이로 -이노시를의 농도 (순도)는 상대적으로 증가하게 된다. 이노시를 침전물로부터 상층액의 분리는 여과 또는 원심분리 방법을 사용하며, 바람직하게는 여과 방법을 사용하여 행한다 . 단계 (e): 상기 분리한 상층액을 건조시켜 이노시틀 분말을 얻는 단계
상기 단계 (d)에서 분리한 상층액을 건조시켜 이노시를 분말을 얻는다. 상층액의 건조는 상층액을 가열하면서 행할 수 있으며, 또는 진공상태에서 행할 수 있다. 상층액을 건조시켜 얻은 이노시틀 건조물에는 마이오—이노시틀과 D—카이로 -이노시를이 흔합되어 있으나, 상기 단계 (b)의 반웅이 완료된 효소 반웅 완층액에서와 비교하여 D-카이로 -이노시롤의 순도가 증가되어 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명은 상기 단계 (e) 이후에 다음의 단계를 더 포함하는 것을 특징으로 하는 방법을 제공한다:
(f) 상기 단계 (e)에서 얻은 이노시틀 분말을 물에 용해시켜 수용액을 제조하는 단계; (g) 상기 수용액에 유기용매를 첨가하여 이노시를 침전물을 생성시키는 단계; (h) 상기 생성된 이노시롤 침전물로부터 상층액을 분리하는 단계; 및 (0 상기 분리한 상층액을 건조시켜 이노시틀 분말을 얻는 단계. 단계 (f): 상기 단계 (e)에서 얻은 이노시를 분말을 물에 용해시켜 수용액을 제조하는 단계
상기 단계 (e)에서 얻은 이노시를의 분말을 물에 용해시켜 이노시틀이 용해된 수용액을 제조한다. 상기 물은 바람직하게는 증류수이다. 바람직하게는, 상기 이노시를 분말은 물에 20 ¾(w/v) 이하의 저농도로 용해시키고, 보다 .바람직하게는 18%(w/v) 이하의 농도, 보다 더 바람직하게는 15 ¾(w/v) 이하의 농도로 용해시킨다. 단계 (g): 상기 수용액에 유기용매를 첨가하여 이노시를 침전물을 생성시키는 단계
상기 단계 (f)에서 얻은 이노시를이 용해된 수용액에 유기용매를 첨가하여 이노시틀의 침전물을 생성시킨다. 상기 유기용매는 상기 단계 (C)에서 설명된 내용과 동일.하다. 유기용매는 으카이로 -이노시를의 침전 보다 마이오 -이노시를의 침전을 더욱 크게 유도할 수 있는 특성을 갖는 것이면 특별하게 한정되지 않으며 , 예컨대 알코을 , 아세론, 에틸아세테이트, 부틸아세테이트 1, 3-부틸렌글리콜 또는 에테르가 바람직하다. 상기 알코을은 탄소수 2 - 6개의 알코올이 바람직하며, 더욱 바람직하게는 에탄을, 이소프로판올, 아세톤을 사용할 수 있다. 상기 수용액에 첨가되는 유기용매의 양은 수용액 대비 0.1 - 10배 (v/v)의 범위 내에서 적합한 양을 선택하여 첨가할 수 있다. 바람직하게는 유기용매는 수용액 대비 1 5
9배 (v/v)의 양으로 첨가하며, 가장 바람직하게는 9배 (v/v)의 양으로 첨가한다. 상기 이노시를 침전물은 마이오ᅳ이노시를 및 D-카이로- 이노시를의 침전물이지만, 마이오 -이노시를이 더 큰 침전율을 나타내므로, 으카이로-이노시를 보다는 마이오—이노시를이 더욱 많은 양으로 포함되어 있다. 단계 (h): 상기 생성된 이노시를 침전물로부터 상층액을 분리하는 단계
상기 단계 (g)를 통해 생성된 이노시를 침전물로부터 상층액을 분리한다. 이노시를 침전물로부터 상층액의 분리는 여괴ᅳ 또는 원심분리 방법을 사용하며, 바람직하게는 여과방법을 사용하여 행한다. 이노시를 침전물에는 마이오 -이노시를이 다량 포함되어 있으므로 상충액에는 D- 카이로 -이노시를의 순도가 증가되어 있다. 단계 (i): 상기 분리한 상층액을 건조시켜 이노시를 분말을 /얻는 단계
상기 단계 (h)에서 분리한 상충액을 건조시켜 이노시틀 분말을 얻는다. 상기 상층액의 건조는 상층액을 가열하면서 행할 수 있으며, 또는 진공상태에서 행할 수 있다. 상층액을 건조시켜 얻은 이노시를 건조물에는 마이오 -이노시를과 D-카이로ᅳ이노시를이 흔합되어 있으나, D-카이로- 이노시를의 순도가 증가되어 있다. 본 발명의 다른 바람직한 구현예에 따르면, 본 발명은 상기 단계 (e) 이후에 다음의 단계를 더 포함하는 것을 특징으로 하는 방법을 제공한다: (f)' 상기 단계 (c)에서 얻은 이노시를 분말을 물에 용해시켜 수용액을 제조하고 이노시롤 침전물을 생성시키는 단계; (g)' 상기 수용액에서 생성된 이노시를 침전물로부터 상층액을 분리하는 단계; 및 (h)' 상기 상층액을 건조시켜 이노시를 분말을 얻는 단계. 단계 (f)' : 상기 단계 (e)에서 얻은 이노시틀 분말을 물에 용해시켜 수용액을 제조하고 이노시틀 침전물을 생성시키는 단계
상기 단계 (e)에서 얻은 이노시를의 분말을 물에 용해시켜 이노시를이 용해된 수용액을 제조한다. 상기 물은 바람직하게는 증류수이다. 바람직하게는 상기 이노시를 분말은 물에 20%(w/v) 초과의 고농도로 용해시키고, 보다 바람직하게는 20<¾(w/v) 초과 80%(w/v) 이하의 농도로 용해시키며, 보다 더 바람직하게는 30%(w/v) 이상 70%(w/v) 이하의 농도로 용해시킨다. 하기 본 발명의 구체적인 일 실시예에 의하면 물에 대한 마이오 -이노시를의 용해도는 최대 약 15%이며, D-카이로- 이노시를의 용해도는 최대 약 55%이므로, 상기 단계 (e)에서 얻은 이노시를 분말을 물에 70%의 고농도로 용해시키는 경우 마이오 -이노시를은 최대 15% 농도로 용해될 것이며, 나머지 용해되지 않은 마이오 -이노시를은 침전물로 생성된다. 으카이로—이노시를은 최대 55%의 용해도이므로 분말에 존재하는 모든 D—카이로ᅳ이노시를이 물에 용해된다. 단계 (g)' : 상기 수용액에서 생성된 이노시를 침전물로부터 상층액을 분리하는 단계
상기 단계 (으 에서 생성된 이노시를의 침전물로부터 상층액을 분리한다. 이노시틀 침전물로부터 상충액의 분리는 여과 또는 원심분리 방법을 사용하며, 바람직하게는 여과방법을 사용하여 행한다. 이노시를 침전물에는 대부분이 마이오 -이노시를이 포함되어 있을 것이며, 상층액에는
D-카이로 -이노시틀의 순도가 증가되어 있다. 단계 (h)' : 싱-기 상층액을 건조시켜 이노시를 분말을 얻는 단계. 상기 단계 (g)' 에서 분리한 상층액을 건조시켜 이노시를 분말을 얻는다. 상기 상층액의 건조는 상충액을 가열하면서 행할 수 있으며, 또는 진공상태에서 행할 수 있다. 상충액을 건조시켜 얻은 이노시를 건조물에는 마이오 -이노시를과 으카이로—이노시틀이 흔합되어 있으나, D-카이로- 이노시를의 순도가 증가되어 있다. 하기 구체적인 일 실시예에 의하면, 상기 단계 (g)' 에서 이노시를 분말을 물에 약 70%(w/v)의 고농도로 용해시킨 경우 건조된 분말에서의 으카이로 -이노시를의 순도는 약 73%가 될 것이다. 본 발명의 다른 양태에 따르면, 본 발명은 (a) 이노시를 디하이드로게나아제 및 이노소스 이소머라아제, 또는 이노시를 디하이드로게나아제와 이노소스 이소머라아제와의 융합 단백질; 및 (b) 조효소로서 NAD (Nicotinamide Adenine Dinucleot ide)를 유효성분으로 포함하는 마이오—이노시 를로부터 D—카이로 -이노시를을 생산하기 위한 용도의 효소 반응 조성물을 제공한다.
본 발명의 일 구현예에 의하면, 상기 조성물은 (c) 기질로서 마이오- 이노시를을 더 포함한다. ' 본 발명의 다른 구현예에 의하면, 상기 조성물은 Tris-HCl, MgS04l 및 MnS04를 더 포함한다.
본 발명의 또 다른 구현예에 의하면, 상기 조성물에서 상기 이노시를 다하이드로게나아제는 코리네박테리움 글루타미쿰 (C. glut ami cum) 유래 효소이다. 보다 바람직하게는 상기 이노시를 디하이드로게나아제는 서열번호 1의 아미노산 서열을 포함한다.
본 발명의 또 다론 구현예에 의하면, 상기 조성물에서 상기 이노소스 이소머라아제는 판토에아 아나나티스 (P. ananatis) 유래 효소이다. 보다 바람직하게는 이노소스 이소머라아제는 서열번호 2의 아미노산 서열을 포함한다.
본 발명의 또 다른 구현예에 의하면, 상기 융합 단백질은 이노시를 디하이드로게나아제의 O말단과 이노소스 이소머라아제의 N-말단을 연결한 형태이다.
본 발명의 특징 및 이점을 요약하면 다음과 같다.
( i ) 본 발명의 방법은 기질인 마이오—이노시를을 이노시를 디하이드로게나아제 및 이노소스 이소머라아제, 이들의 융합 단백질 형태의 효소의 존재하에 반응 완충액내에서 반웅시켜 D—카이로 -이노시틀을 생산하는 방법에.관한 것이디-.
( ii ) 본 발명은 반응이 완료된 효소 반웅 완층액에 유기용매를 첨가하여 마이오ᅳ이노시를로부터 1)-카이로—이노시틀을 분리하여 고순도로 정제하는 단계를 포함한다.
(iii) 본 발명의 방법은 효소 반응 완층액내에서 반응에 의해 D- 카이로—이노시틀을 생산하므로 재조합 세포를 이용한 발효 방법과 비교하여 저비용이며 고수율로 D-카이로 -이노시를을 생산할 수 있다.
(iv) 본 발명의 방법은 유기융매의 첨가, 상층액 분리 및 건조와 같은 간단한 공정을 통해 저비용으로 마이오ᅳ이노시를과 D-카이로- 이노시를이 흔합된 반응 완충액으로부터 D—카이로ᅳ이노시롤을 고순도로 분리할 수 있다.
( V ) 본 발명의 방법에 의하면 D-카이로-이노시를로부터 분리된 마이오 -이노시를은 기질로서 재사용이 가능하다. 【유리한 효과】
본 발명의 방법에 의하면 세포외 효소 반응 완충액내에서의 D- 카이로ᅳ이노시롤을 생산하므로 재조합 세포를 이용한 발효 방법과 비교하여 저비용 및 고수율로 으카이로 -이노시를을 생산할 수 있다. 또한, 유기용매의 첨가, 상충액 분리 및 건조와 같은 간단한 공정을 통해 마이오- 이노시를과 으카이로 -이노시를이 흔합된 반웅 완층액으로부터 D-카이로- 이노시를을 고순도로분리할 수 있다. 또한, 본 발명에 의하면 D-카이로- 이노시롤로부터 분리된 마이오 -이노시를은 기질로서 재사용이 가능한 이점이 있다. 【도면의 간단한 설명】
도 1은 입체이성질체인 마이오ᅳ이노시틀과 으카이로 -이노시틀의 구조 를 보여준다.
도 2는 마이오ᅳ이노시를 디하이드로게나아제 또는 이노소스 이소머라 아제 유전자를 함유한 재조합 플라스미드인 pET15b-CP (N-말단 Hisᅳ Tag), PET15b-PI (N-말단 His-Tag), pET2 lb-CP (C-말단 His-Tag), pET21b-PI (C- 말단 Hisᅳ Tag)가 도입된 대장균주의 단백질 발현 양상을 확인한 SDS— PAGE 결과이다.
도 3은 마이오 -이노시를과 으카이로-이노시를 및 그 입체 이성질체 또는 유도체에 관한 HPLC 크로마토그램을 보여준다.
도 4는 N-말단과 C-말단에 His-Tag을 적용한 마이오-이노시를 디하이 드로게나아제와 이노소스 이소머라아제를 이용한 효소반웅의 결과이다. 흰 색막대는 마이오 -이노시를을 나타내며, 검은색 막대는 D—카이로 -이노시를을 나타낸다.
도 5는 C-말단에 His-Tag을 적용한 마이오—이노시를 디하이드로게나 아제 (Cgiep)와 이노소스 이소머라아제 (Paioll)를 SDS— PAGE로 정제한 결과이 다. 도 6은 정제된 효소 마이오—이노시틀 디하이드로게나아제 및 이노소 스 이소머라아제를 이용하여 마이오-이노시를로부터 D-카이로 -이노시를을 생산한 결과를 보여준다. 기질로서 59 w/v) 마이오 -이노시를을 첨가하였 으며, 마이오 -이노시롤과 생산된 으카이로 -이노시틀의 비율 (전환율)을 나타 내었다. 50 g/L (5%(w/v)) 마이오—이노시를에 대한 D—카이로ᅳ이노시를의 반웅평형 농도는 존재하는 마이오 -이노시를의 약 14% 수준, 즉, 7 g/L 이 다.
도 7은 마이오ᅳ이노시를 농도에 따른 D-카이로-이노시를 생산 결과이 다. 패널 A는 시간에 따른 마이오ᅳ이노시를의 농도별 D—카이로—이노시를의 생산량이며, 패널 B는 시간에 따른 마이오 -이노시를의 농도별 1)-카이로ᅳ이 노시를의 전환율이다. 첨가한 마이오 -이노시를의 농도는 B: 0%, O: 5%, A: 10% , V: 15% , 20% 이다.
도 8은 조효소인 NAD 농도에 따른 D—카이로ᅳ이노시를의 생산 결과이 다. 패널 A는 시간에 따른 NAD 농도별 D-카이로 -이노시를의 전환율 측정 결과이다. NAD의 농도는 B: 0 mM, O: 0.1 mM, A: 0.2 mM, V: 0.5 mM,
♦ : 0.7 mM, <]: 1 mM, 1.5 mM, ir. 2 mM 이다. 패널 B는 NAD 농도에 따른 초기반응속도의 측정 결과이디-.
도 9는 효소 농도에 따른 D—카이로—이노시롤 생산 결과이다. 패널 A 는 시간에 따른 효소 농도별 D-카이로ᅳ이노시를의 전환율을 측정한 결과이 다. 효소의 농도, 膽: 0 mg/L, O: 0.1 mg/L, A: 0.2 mg/L , ▽: 0.3 mg/L,
♦ : 0.4 mg/L, 0: 0.5 mg/L. 패널 B는 효소 농도에 따른 초기 반웅속도의 측정 결과이다.
도 10은 반웅은도에 따른 마이오-이노시를로부터 으카이로-이노시를 로의 전환 반웅양상을 측정한 결과이다. 패널 A는 시간에 따른 반웅은도별 D—카이로ᅳ이노시를의 전환율을 측정한 결과이다. B: 25°C, O: 30 °C, A: 371, V: 42 °C, ♦: 47°C, <]: 50 °C ► : 55 °C , ύ: 65 °C. 패널 B는 온도 에 따른 초기 반웅속도를 측정한 결과이다.
도 11은 효소의 열안정성을 시험한 결과이다. 패널 A는 특정 은도에 노출한 후의 효소 반웅 결과이다. ■: 4V, O: 37°C, A: 42 V, V: 47 °C, ♦: 50 °C, < : 55°C. 패널 B는 노출시간에 따른 효소의 실활율을 측정한 결 과이다. 빼: 4°C, O: 37 °C, ▲: 42 °C, V: 47 °C , 50 , <1: 55 °C . 도 12는 이노시를 디하이드로게나아제와 이노소스 이소머라아제의 각 각 N-말단과 C-말단 또는 C-말단과 N-말단에 연결시킨 융합 단백질이 클로 닝된 pCOLA으 1CPFLLPI, pCOLAD-lCPFMLPI , pCOLAD— 1CPFSLPI , pCOLAD- 2PIFLLCP, pC0LAD-2PIFMLGP, pC0LAD-2PIFSLCP를 이미 구축한 살모넬라 티피 무리엄 (S. typhi murium) 유래 마이오-이노시틀 트랜스포터를 함유하는 재조 합 플라스미드 pACYCD— StiolTl-StiolT2(F2) (한국특허출원 제 1으 2012- 0ΐσ7278호 참조)와 함께 대장균 ( coli) BL2KDE3)에 형질전환 하여 재조 합 균주를 제작하고, 이 균주를 마이오 -이노시를의 존재하에서 배양한 결과 이다. 배양 시간에 균체농도와 D-카이로 -이노시틀의 생산량을 측정하였다. 도 13은 각각의 N-말단과 C-말단에 His- g을 적용한 3종의 융합 단 백질 효소에 대한 발현 (좌측) 및 정제결과 (우측)를 보여준다.
도 14는. 각각의 N—말단과 C-말단에 His— tag을 적용한 3 종의 융합효 소 유전자를 포함하는 재조합 플라스미드 백터를 마이오-이노시를 트랜스포 터를 포함하는 백터 pACYCD— Stiom-StiolT2(F2)와 함께 대장균 BL21(D£3) 도입하여 D-카이로ᅳ이노시롤의 생산성을 측정한 결과이다. PET21b- CPFLLPI , O: pET21b— CPFMLPI , ▲: pET21b-CPFSLPI , ▽: pET15b-CPFLLPI , ♦ : pET15b-CPFMLPI , <I: pET15b— CPFSLPI .
도 15는 융합 단백질 효소 CPFMLPI의 반웅온도에 따른 마이오-이노시 틀로부터 D-카이로—이노시롤로의 전환 반응양상을 측정한 결과이다. 패널 A는 시간에 따른 반응온도별 D—카이로-이노시를의 전환율을 측정한 결과이 다. H: 25°C, O: 30°C, A: 37°C, ▽: 42 °C , ♦: 47°C , <: 50 °C, ► : 55t, 65 °C. 패널 B는 온도에 따른 초기 반응속도를 측정한 결과이다. 도 16은 융합효소 CPFMLPI의 열안정성을 시험한 결과이다. 패널 A는 특정 온도에 노출한 후의 효소 반웅 결과이다. 4°C, O: 37 °C, A: 42°C, V: 471 , ♦: 50 °C, <1: 55°C , ►: 65 °C . 패널 B는 노출시간에 따른 효소의 실활율을 측정한 결과이다. B: 4°C, O: 37 , A: 421, ▽: 47 :♦: 50 °C, <1: 55 °C , ►: 65°C .
도 17은 25°C 증류수에서 마이오 -이노시를과 D-카이로 -이노시를의 용 해도를 보여준다. ■: 마이오 -이노시를의 용해도, O: D-카이로 -이노시를의 용해도.
도 18은 마이오—이노시를 및 D—카이로—이노시를이 용해되어 있는 효 소반웅 완층액에 에탄올을 첨가하여 이노시를을 침전시킨 후 상층액내 마이 오-이노시를 및 D-카이로 -이노시를의 농도를 측정한 결과이다. ■: 마이오- 이노시를의 농도, O: 카이로ᅳ이노시롤의 농도.
도 19는 마이오—이노시롤 및 D—카이로—이노시를이 용해되어 있는 효 소 반응 완충액에 에탄올을 첨가한 경우 마이오-이노시틀 및 D-카이로ᅳ이노 시를의 침전율을 나타낸다. 顧: 마이오 -이노시롤의 침전율, O: 카이로-이 노시를의 침전율.
도 20은 마이오-이노시를 및 D—카이로 -이노시롤이 용해되어 있는 효 소반응완충액에 에탄을을 첨가하여 이노시를을 침전시킨 후 얻은 상층액을 건조하여 얻은 이노시를 분말 중의 D-카이로 -이노시를의 순도를 측정한 결 과를 보여준다.
도 21은 1차 에탄을을 첨가하여 얻은 상충액의 건조 분말 (마이오-이 노시를과 D-카이로ᅳ이노시틀의 흔합 분말)을 물에 다시 용해한 경우의 각 이노시를의 용해 특성을 보여준다. 패널 A는 수용액의 상층액증의 마이오- 이노시틀 및 D-카이로 -이노시를의 농도를 보여준다. 패널 B는 수용액의 상 층액중의 마이오ᅳ이노시를 및 으카이로 -이노시를의 용해도를 보여준다. 패 널 C는 수용액의 상충액중의 마이오—이노시를 및 D—카이로 -이노시를의 침전 율을 보여준다. 패널 D는 수용액의 상층액 중의 D—카이로 -이노시를의 순도 를 보여준다. 翻: 마이오 -이노시를, O: D-카이로ᅳ이노시롤.
도 22는 1차 에탄올을 첨가하여 얻은 상층액의 건조 분말 (마이오-이 노시를과 D-카이로 -이노시틀의 흔합 분말)을 약 12% 함유하는 수용액에 다 양한 양의 에탄올을 첨가한 경우의 침전 및 정제 특성을 측정한 결과이다. 패널 A는 상층액 중의 마이오—이노시를 및 D-카이로 -이노시를의 농도를 측 정한 결과이다. 패널 B는 마이오ᅳ이노시를 및 D-카이로ᅳ이노시를의 침전율 을 측정한 결과이다 패널 C는 상층액내의 D—카이로ᅳ이노시를의 순도를 나 타낸 결과이다. ■: 마이오 -이노시틀, O: 으카이로 -이노시를ᅳ
도 23은 마이오-이노시틀 및 D—카이로ᅳ이노시롤이 약 13 :2의 중량비 율로 용해된 효소반웅 완충용액에 다양한 유기용매를 첨가한 경우에 마이오
-이노시를 및 으카이로 -이노시를의 침전 특성을 측정한 결과이다. 패널 A 는 에탄을, 이소프로판을 및 아세론을 첨가한 경우의 침전특성이다. 여기에 서 흰색 막대는 마이오 -이노시틀의 농도를, 회색 막대는 D-카이로-이노시를 의 농도를 나타낸다. 패널 B는 에탄을에 대한 이소프로판을 및 아세톤의 상대적인 침전 특성을 보여준다. 여기에서 흰색 막대는 D-카이로—이노시틀 이고, 희색 막대는 마이오 -이노시틀을 나타낸다. 【발명의 실시를 위한 형태】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되자 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예 실시예 1: 이노시를 디하이드로게나아제와 이노소스 이소머라아제 유전자의 클로닝
하기 반응식 1 내지 반응식 3의 연속적 반웅을 통해 마이오- 이노시를로부터 D-카이로 -이노시를을 생산하기 위해, 반응식 1 및 반웅식 3의 반응을 촉매하는 이노시를 디하이드로게나아제 ( inositol dehydrogenase) 유전자 iolG를 코리네박테리움 글루타미쿰 (Corynebacter ium' glutamicum)으로부터, 반웅식 2를 촉매하는 이노소스 이소머라아제 ( inosose isomerase) 유전자 ioll를 판토에아 아나나티스 (Pantoea ananatis)로부터 증폭하였다.
[반응식 1]
마이오-이노시를 + NAD+ 2-케토ᅳ마이오-이노시를 + NADH + H+
[반응식 2]
2ᅳ케토—마이오―이노시를 1—케토—으카이로-이노시틀
[반웅식 3]
1ᅳ케토—D—카이로—이노시틀 + NADH + H+ 으카이로―이노시를 + NAD+ 증폭된 유전자를 T7 프로모터와 His— Tag을 갖는 플라스미드 백터인 pETᅳ 15b(Novogen)와 pET-21b(Novogen)에 삽입하여 해당 단백질 발현을 위한 재조합 플라스미드를 제작하였다. pET— 15b는 N-말단에 His-tag이 융합된 단백질로 발현시키기 위한 백터이며 , pET-21b는 C-말단에 His— tag이 융합된 단백질을 발현시키기 위한 플라스미드 백터이다. 이노시를 디하이드로게나아제는 코리네박테리움 글루타미쿰 (C. glutamicum)의 iolG 상동유전자인 Cgiep (NCg 12957 또는 GI: 19554252)를 이용하였으며, 이노소스 이소머라아제는 판토에아 아나나티스 (p. ananatis)의 ioll인 Paioll (PANA_3268 , GI: 291618821)를 클로닝하였다. 보다 상세히 설명하면, 코리네박테리움 글루타미큼 (Corynebacterium glut ami cum) ATCC 13032 (taxid: 196627; GenBank NID:NC )03450)의 지놈 DNA로부터 ETCP-F와 ETCP-R 프라이머를 이용하여 Cgiep를 증폭한 후 Ndel과 BamHI으로 절단하여 pET-15b의 동일부위로 삽입하여 pET15b-CP를 제작하였다. 상기 증폭한 Cgiep 유전자는 또한 Ndel과 Hindi Π로 절단하여 pET-21b의 동일부위로 삽입하여 pET21b-CP를 제작하였다.
이노소스 이소머라아제의 경우 판토에아 아나나티스 (Pant oea ananatis) LMG 20103 (taxid: 706191, GenBank NID: CP001875)의 지놈 DNA로부터 ETPI— F와 ETPIᅳ R 프라이머를 이용하여 Paioll를 증폭한 후 Ndel과 BamHI으로 절단하여 동일 효소로 절단한 pET-15b에 삽입하여 pET15b-PI를 제작하였고, 또한 증폭한 Paioll를 제한효소 Ndel과 Xhol으로 절단하여 pET-21b의 동일 부위에 삽입하여 pET21b-PI를 제작하였다. 이상의 유전자, 프라이머, 재조합 플라스미드의 서열은 표 1에 나타내었다. 【표 1】
Figure imgf000020_0001
실시예 2: 이노시를 디하이드로게나아제와 이노소스 이소머라아제 효소의 발현 확인 및 정제
실시예 1에서 구축한 재조합 플라스미드 pET15b-CP, pET2 lb-CP, pET15b-PI , pET21b-PI는 대장균 BL21(DE3)star ( Invi trogen)에 도입하여 재조합 균주를 제조하였다. 각각의 재조합 균주는 100 mg/L 농도의 암피실린을 함유한 LB 배지에 접종하고 37°C에서 0D = 3까지 종배양하였다. 이를 100 mg/L 농도의 암피실린을 함유한 LB 배지 50 mL이 들어있는 300 mL의 홈이 파인 (baffled) 삼각폴라스크에 초기 0D 0.1로 접종하고 37°C에서 0D 0.6까지 배양한 후 1 iiiM IPTG를 첨가하여 37°C에서 약 6시간 동안 배양하였다. 배양한 재조합 균주의 단백질 발현을 확인하기 위하여 SDS- PAGE를 수행하였으며, 그 결과는 도 2에 나타내었다. 마이오—이노시를 디하이드로게나아제 및 이노소스 이소머라아제에 각각 N-말단 His— Tag과 C- 말단 His-Tag을 적용한 pET15b—CP, pET2 lb-CP, pET15b-PI , pET21bᅳ PI 플라스미드에 대하여 모두 발현이 정상적으로 이루어지는 것을 확인하였다. 단백질 정제는 니켈이 층진된 레진을 사용하여 당업계에게 공지된 방법을 통해 행하였다. 보다 상세히 설명하면, 배양액 50 mL을 원심분리하여 균체를 얻은 후 8 mL의 바인딩 버퍼 (50 mM NaH2P04, 0.5 M NaCl , pH 8.0)에 재현탁하였다. 재현탁액에 10 nig의 리소자임을 첨가하고 얼음에서 30분 방치한 후 초음파 파쇄기 (10초 파쇄, 10초 넁각으로 3회) 파쇄하였다. 파쇄한 현탁액은 즉시 액체 질소에 넣어 급속 냉각 시킨 후 37 °C 항은 수조에서 즉시 해동하였다. 이상의 파쇄ᅳ냉각-해동을 3회 반복하여 점도가 높은 균체 파쇄액을 얻었으며, 이를 18게이지 주사기에 약 5ᅳ 10회 통과시켜 점도를 낮추었다. 균체 파쇄액을 원심분리한 후 상층액을 니켈 층진 칼럼에 적용하였다. 바인딩 버퍼로 평형시킨 니켈 충진 칼럼에 상기에서 얻은 균체 파쇄 상층액을 넣고 약 1 시간 동안 냉장 상태에서 천천히 진탕하였다. 진탕 후 가볍게 원심분리하여 상층액을 제거 후 세척버퍼 (50 mM NaH2P04 , 0.5 M NaCl , 20 mM imidazole, H 8.0)로 4회 세척하였고, 최종 4 niL의 용출버퍼 (50 mM NaH2P04, 0.5 M NaCl , 250 mM imidazole, pH 8.0)를 이용하여 2회 용출하였다. 효소 마이오ᅳ이노시를 디하이드로게나아제인 Cgiep는 분자량 36,222.73이며, 1 당 27.607 pM이며, 이노소스 이소머라아제인 Paioll는 분자량 30 ,417.05이며, 1 /g 당 32.876 pM이다. 실시예 3: 정제된 효소의 반웅 측정 및 재조합 플라스미드의 선별
N-말단 His-Tag과 C—말단 His-Tag을 각각 적용한 이노시를 디하이드로게나아제 및 이노소스 이소머라아제의 활성을 확인하기 위하여 효소 반응을 실시하였다. 효소반웅 조건은 다음과 같다. 반응은 총 200 ≠, 부피로 수행하였으며, 반응액은 50 mM Tris-HCl (ρΗδ.Ο), 1 mM MgS04, 0.1 mM MnS04, 0.5 mM NAD, 5%(w/v) (278 mM) 마이오ᅳ이노시를, 0.25 mg/mL (6.5 nM) 이노시틀 디하이드로게나아제 (Cgiep), 0.25 mg/mL (7.7 nM) 이노소스 이소머라아제 (Paioll)가 되도록 제조하였다. 따라서 효소 흔합물의 농도는 약 0.5 mg/iiiL이며 이는 약 14.2 nM 이었다. 반웅액을 37°C에서 약 15 시간 반응시켰으며, 반응 종료 후 10분간 끓여서 반웅을 정지시켰다. 반웅 정지된 반웅액을 원심분리하여 : 물로 5배 희석한 뒤 HPLC로 분석하였다. 전처리한 반웅액을 HPU Shimadzu LClOAvp)에 적용하여 분석하였으며 , 분석조건은 Kromasil 5NH2 칼럼 (4.6 麵 X 250 讓) , 이동상 75% 아세토니트릴, 칼럼 온도 40°C, RI 검출기를 이용하였다. 마이오-이노시를 및 D-카이로ᅳ이노시를을 포함하여 이들의 각각의 이성질체에 대한 HPLC 크로마토그램은 도 3에 나타내었다. 반웅 결과 반응액내에서 측정된 마이오ᅳ이노시롤과 D-카아로 -이노시를의 양은 도 4에 나타내었다. Nᅳ말단 His-Tag을 적용한 경우 약 5%의 D-카이로ᅳ이노시를이 생산되었고, C-말단 His— Tag을 적용한 경우 약 9%의 으카이로 -이노시를이 생산되어 Cᅳ말단에 Hisᅳ Tag을 적용한 경우가 효소 전환율이 우수하였다. 따라서, C-말단에 His-Tag을 적용한 pET21b— CP 및 pET21bᅳ PI를 이용하여 이후 효소반웅을 진행하였다.
상기에서 확인한 pET21b-CP 및 pET21bᅳ PI를 도입한 대장균으로부터 정제된 효소인 이노시를 디하이드로게나아제 및 이노소스 이소머라아제를 SDS-PAGE 행하여 분석한 결과는 도 5에 나타내었다. 각각의 단백질 농도는 Cgiep의 경우 0.86 mg/mL (약 22.8 nM) 이었으며, Paioll의 경우 0.64 mg/mL (약 20.32 nM) 이었다.
상기 방법으로 정제한 두 효소를 이용하여 약 24 시간 동안 반웅하면서 시간별로 반웅 결과를 확인하였다. 반웅 조건은 상기와 같으며, 반옹시킨 W
결과는 도 6에 나타내었다. 기질인 마이오 -이노시를은 반응 시작 후 급격히 D-카이로 -이노시를로 전환되었으며, 약 5 시간 후 점차 반웅속도가 낮아지기 시작하면서 약 10 시간에 반응평형농도인 약 14%에 도달하였다. 이후에도 반웅 산물인 D-카이로 -이노시를의 농도는 크게 증가하지 않았다. 실시예 4: 기질인 마이오 -이노시를의 농도에 따른 D-카이로- 이노시를의 생산성
실시예 3에서 설명되었듯이, 본 발명에서 마이오ᅳ이노시틀로부터 D- 카이로-이노시를로의 반웅은 물리 화학적 반응평형이 관여하는 반응이므로, D-카이로ᅳ이노시틀의 생산량은 전적으로 기질인 마이오ᅳ이노시틀의 양에 의존하게 된다. 따라서 기질인 마이오 -이노시를의 농도에 따른 반웅 속도를 시험하였다. 이를 위하여 표준 반웅조건에서 마이오 -이노시톨의 최대 용해도를 조사하였으며, 37°C에서 최대 약 20%(w/v)인 것으로 나타났다. 이를 토대로 5%에서 20%까지 마이오 -이노시를의 농도를 달리하여 효소반웅을 수행하였다. 그 결과는 도 7에 나타내었다. 기질인 마이오—이노시를의 농도가 증가하여도 반웅속도는 감소하지 않는 것을 확인하였으나 (도 7의 패널 A), 기질 농도가 높으면 반웅 평형에 도달하는 시간이 그만큼 지연되는 것으로 나타났다. 마이오—이노시를의 농도가 5%일 경우 약 10 시간에 반응 평형에 도달한 반면, 20% 마이오- 이노시를을 첨가하였을 경우 약 반웅 평형 도달에는 24 시간이 소요되는 것으로 나타났다. 실시예 5: 조효소 NAD의 농도에 따른 D-카이로ᅳ이노시를 생산성 마이오-이노시틀 디하이드로게나아제의 반응에 필요한 조효소인 NAD의 농도에 따른 D—카이로 -이노시를의 생산성을 조사하였다. 기질인 마이오 -이노시를은 10%로 첨가하였고, 효소는 마이오-이노시를 디하이드로게나아제와 이노소스 이소머라아제를 각각 250 /ig/mL 농도 (흔합효소로서 14.2 nM)로 첨가하였다. 조효소인 NAD의 농도는 0.1 mM에서 2 mM 까지 다양한 농도로 첨가하여 D-카이로 -이노시를의 생산속도를 확인하였다. 반웅결과는 도 8에 나타내었다. 일정 수준까지는 NAD 농도가 증가할수록 초기반응속도가 급격히 증가하다가, 약 0.5 mM의 농도 이상에서는 크게 증가하지 않았다. 도 8의 패널 B에 의해 당 효소 흔합체는 전형적인 NAD 의존형 효소의 상태를 보여주는 것이며, NAD의 최적 농도는 기질 농도인 10% (555 mM) 당 0.5 mM 일 것으로 사료된다. 실시예 6: 첨가한 효소의 농도에 따른 D-카이로-이노시를 생산성 마이오ᅳ이노시롤 디하이드로게나아제 및 이노소스 이소머라아제의 첨가 농도에 따른 으카이로—이노시를의 생산성을 조사하였다. 기질인 마이오 -이노시를은 10%로 하였고, NAD는 1 mM로 첨가하였다. 흔합 효소 농도는 100 /g/mL (약 5.7 nM)에서 500 /mL (약 28.4 nM)까지 100 /mL 단위로 첨가하여 효소 농도에 따른 으카이로―이노시를 생산속도를 확인하였다. 반응결과는 도 9에 나타내었다. 효소의 농도가 높을수록 반웅 속도가 증가하는 것으로 나타났으며 (도 9의 패널 A), 이는 일반적으로 기질의. 농도가 충분할 경우 반웅 속도는 효소의 농도에 비례한다는 반웅 속도론에 준하는 결과이다 (도 9의 패널 B). 실시예 7: 반응온도에 따른 D-카이로-이노시를 생산성 조사
효소 반웅온도에 따른 으카이로 이노시를 생산성을 조사하였다. 효소는 각각 250 /g/mL, 조효소는 1 mM로 투여하였으며, 기질인 마이오- 이노시를은 10%로 하였다. 반웅온도 25°C, 30 °C , 37 °C , 42°C , 47 °C , 50°C , 55 °C, 65°C에서 반웅하면서 D—카이로—이노시를의 생산성을 확인하였다. 결과는 도 10에 나타내었다. 55°C까지는 반웅 온도가 높아질수록 반웅 속도가 증가하였으며, 65°C에서는 반응 속도가 대폭 감소함을 알 수 있었다. 이는 전형적인 효소와 반응온도간의 상태방정식인 아레니우스 방정식을 따르면서 최적 반웅 온도가 약 5( C임을 나타낸다. 일반적인 효소의 최적 반응 은도가 약 37°C임을 감안한다면 비교적 열에 안정한 효소 혼합체임을 알 수 있었다. 실시예 8: 마이오-이노시를 디하이드로게나아제 및 이노소스 이소머라아제의 열안정성
마이오ᅳ이노시를 디하이드로게나아제 및 이노소스 이소머라아제의 열에 대한 안정성을 확인하였다. 효소를 특정 은도에서 일정시간 방치한 후 이를 이용하여 일정시간 반웅하고 D-카이로—이노시를의 생산성 및 반응 속도를 측정하였다. 열에 노출하지 않은 효소를 이용한 반응군을 대조구로 하고, 각각 4°C, 37 °C, ATC, 47 °C, 50°C, 55°C에서 2, 6, 12, 24 시간 동안 노출한 효소를 이용하여 약 7시간 반웅하였으며, 결과는 도 11에 나타내었다. 약 42°C까지는 24시간 노출하여도 안정한 반응을 하는 것으로 나타났으며, 47°C에서는 12시간 이상 노출할 경우 실활율이 증가하는 것으로 나타났다. 또한 그 이상의 온도에서는 단시간 열에 노출한 경우에도 그 실활율이 급격히 증가하는 것으로 나타났다. 실시예 7에서 보았듯이 본 발명의 효소 흔합체는 일반적인 효소에 비해 열에 대해 비교적 안정한 것으로 보인다. 실시예 9: 이노시롤 디하이드로게나아제와 이노소스 이소머라아제의 융합 단백질의 발현을 위한 재조합 백터의 제조
본 실시예에서는 글리신과 세린으로 구성되어 있는 유연성 있는 링커를 사용하여 두 효소 이노시를-디하이드로게나아제와 이노소스 이소머라아제를 연결하였다. 각 효소 서로 간에 가장 영향을 덜 주는 조건을 찾기 위하여 링커의 길이를 달리하였으며, 역시 같은 이유로 두 효소 각각의 Nᅳ말단과 C-말단을 연결하는 링커를 제작하였다. 링커의 경우 바이오부품등록센터 (Registry of Standard Biological Parts; http://partsregistry.org)로부터 글리신과 세린으로 이루어진 각각 다른길이의 유연성있는 링커 3종의 서열을 참고 하였다 (표 2 참조).
우선, Cgiep의 C-말단과 Paioll의 N-말단을 각각 다른 길이의 링커로 연결한 융합 단백질 발현용 재조합 플라스미드 3종을 제작하였다.
상세히 설명하면 긴 길이의 링커로 연결한 융합 단백질 발현을 위하여 프라이머 CPFLL-F와 CPFLL-R를 이용하여 코리네박테리움 글루타미쿰 (C. glut ami cum) ATCC 13032 (taxid: 196627; GenBank NID: NC_003450)의 지놈 DNA로부터 Cgiep 유전자를 증폭하였고, 이 Cgiep를 포함하는 PCR 산물과 CPFLLPI-R 프라이머를 이용하여 판토에아 아나나티스 (P. ananatis) LMG 20103 (taxid: 706191, GenBank NID: CP001875)의 지놈 DNA로부터 Paioll를 증폭하여 Cgiep와 Paioll가 긴 링커로 융합된 유전자를 증폭하였다. 증폭된 유전자는 제한효소 BspHI과 W
Sal I으로 절단하고 Nc이과 Sal I으로 절단한 pCOLADuet-l(Novogen)으로 삽입하여 pCOLAD-lCPFLLPI를 제작 하였다.
중간 길이의 링커를 가진 융합단백질 발현을 위하여 프라이머 CPFLL- F와 CPFML— R을 이용하여 코리네박테리움 글루타미쿰 (C. glut ami cum) ATCC 13032 (tax id: 196627; GenBank NID:NC_00;¾50)의 지놈 DNA로부터 Cgiep 유전자를 증폭하였고, 이 Cgiep를 포함하는 PCR 산물과 CPFLLPI-R 프라이머를 이용하여 판토에아 아나나티스 (P. ananatis) LMG 20103 (taxid: 706191, GenBank NID:CP001875)의 지놈 DNA로부터 Paioll를 증폭하여 Cgiep와 Paioli가 증간길이의 링커로 융합된 유전자를 증폭하였다. 증폭된 유전자는 제한효소 BspHI과 Sail으로 절단하고 Ncol과 Sail으로 절단한 pCOLADuet— 1로 삽입하여 pCOLAD-lCPFMLPI를 제작하였다.
짧은 길이의 링커를 가진 융합단백질 발현을 위하여 프라이머 CPFLL- F와 CPFSL-R을 이용하여 코리네박테리움 글루타미쿰 (C. glut ami cum) ATCC 13032 (taxid: 196627; GenBank NID: NCJ)03450)의 지놈 DNA로부터 Cgiep 유전자를 증폭하였고, 이 Cgiep를 포함하는 PCR 산물과 CPFLLPI-R 프라이머를 이용하여 판토에아 아나나티스 (P. ananatis) LMG 20103 (taxid: 706191, GenBank NID: CP001875)의 지놈 DNA로부터 Paioll를 증폭하여 Cgiep와 Paioll가 짧은 링커로 융합된 유전자를 증폭하였다. 증폭된 유전자는 제한효소 BspHI과 Sail으로 절단하고 Ncol과 Sail으로 절단한 pCOLADuet-1로 삽입하여 pCOLAD-lCPFSLPI를 제작하였다.
또한, Paioll의 O말단과 Cgiep의 N-말단을 각각 다른 길이의 링커로 연결한 융합 단백질 발현용 재조합 플라스미드 3종을 제작하였다.
상세히 설명하면, 긴 길이의 링커로 연결한 융합 단백질 발현을 위하여 프라이머 PIFLL— F와 PIFLL-R을 이용하여 판토에아 아나나티스 (P. ananatis) LMG 20103 (taxid: 706191, GenBank NID: CP001875)의 지놈 DNA 로부터 Paioll 유전자를 증폭하였고, 이 Paioll를 포함하는 PCR 산물과 PIFLLCP-R 프라이머를 이용하여 코리네박테리움 글루타미쿰 (C. glutamicum) ATCC 13032 (taxid: 196627; GenBank NID: NC 003450)의 지놈 DNA로부터 Cgiep를 증폭하여 Paioll와 Cgiep가 긴 링커로 연결된 유전자를 증폭하였다. 증폭된 유전자는 제한효소 Ndel과 Bglll로 절단하고 동일한 제한효소로 절단한 pCOLADuet-1로 삽입하여 pC0LAD-2PIFLLCP를 제작하였다. 중간 길이의 링커로 연결한 융합 단백질 발현을 위하여 프라이머 PIFLL-F와 PIFML-R을 이용하여 판토에아 아나나티스 (P. ananatis) LMG 20103 (taxid: 706191, GenBank NID: CP001875)의 지놈 DNA 로부터 Paioll 유전자를 증폭하였고, 이 Paioll를 포함하는 PCR 산물과 PIFLLCP-R 프라이머를 이용하여 코리네박테리움 글루타미쿰 (C. glut ami cum) ATCC 13032 (taxid: 196627; GenBank NID:NCJ)03450)의 지놈 DNA로부터 Cgiep를 증폭하여 Paioll와 Cgiep가 중간길이의 링커로 연결된 유전자를 증폭하였다. 증폭된 유전자는 제한효소 Ndel과 Bglll로 절단하고 동일한 제한효소로 절단한 pCOLADuet-1로 삽입하여 pCOLAD— 2PIF LCP를 제작하였다.
짧은 길이의 링커로 연결한 융합 단백질 발현을 위하여 프라이머
PIFLL-F와 PIFSL-R을 이용하여 판토에아 아나나티스 (P. ananatis) LMG 20103 (taxid: 706191, GenBank NID: CP001875)의 지놈 DNA로부터 Paioll 유전자를 증폭하였고, 이 Paioll를 포함하는 PCR 산물과 PIFLLCP—R 프라이머를 이용하여 코리네박테리움 글루타미쿰 (C. glut ami cum) ATCC 13032 (taxid: 196627; GenBank NID: NC_003450)의 지놈 DNA 로부터 Cgiep를 증폭하여 Paioll와 Cgiep가 짧은 링커로 연결된 유전자를 증폭하였다. 증폭된 유전자는 제한효소 Ndel과 Bglll로 절단하고 동일한 제한효소로 절단한 pCOLADuet— 1로 삽입하여 pC0LAD-2PIFSLCP를 제작하였다. 상기 유전자들의 정보는 표 2에 나타내었고, 사용된 프라이머는 표 3에 나타내었다ᅳ
【표 2】
Figure imgf000028_0001
【표 3】
Figure imgf000028_0002
실시예 10: 이노시를 디하이드로게나아제와 이노소스 이소머라아제의 융합 단백질의 발현을 통한 마이오-이노시를로부터 D-카이로 -이노시를의 생산
상기 실시예 9에서 제작한 재조합 플라스미드를 대장균에 도입하여 으카이로—이노시를의 생산성올 확인하였다. 상세히 설명하면, pCOLAD- 1CPFLLPI , pCOLAD-lCPFMLPI , pCOLAD— 1CPFSLPI , pC0LAD-2PIFLLCP, pCOLAD- 2PIFMLCP, pC0LAD-2PIFSLCP를 이미 구축한 살모넬라 티피무리엄 (S. typhimurium) 유래 마이오-이노시를 트랜스포터를 함유하는 재조합 플라스미드 pACYCD-Stiorn-St )lT2(F2) (한국특허출원 게 10-2012-0107278호 참조)와 함께 대장균 ?. coli) BL2 DE3)에 형질전환 하여 재조합 균주를 제작하였다. 제작한 재조합 균주는 직경 25 mm, 높이 150 麵의 유리시험관에서 5 inL 배양하였다. 배양조건은 15%(w/v) 마이오—이노시틀, 50 mg/L 클로람페니콜, 50 mg/L 카나마이신, 0.5% 락토오스를 함유한 TB(terrific broth)배지를 이용하여, 37°C, 250 rpni의 조건에서 24 시간 동안 배양하였다. 마이오—이노시롤 및 D—카이로-이노시를 분석을 위하여 배양액을 원심분리하여 배양 상층액 1 mL을 취하고 10분간 끓인 후 다시 원심분리 하여 상층액 100 uL를 취하여 물 900 와 섞었다. 전처리한 배양 상충액은 HPU Shimadzu LClOAvp)로 분석하였으며, 분석조건은 실시예 3에서와 같다. 각 융합 단백질의 D—카이로-이노시를 생산성을 조사한 결과는 도 12에 나타내었다. 도 12의 결과에 의하면, Cgiep의 C—말단과 Paioll의 N-말단을 연결하였을 경우가 Pioll의 C-말단과 Cgiep의 N—말단을 연결하였을 경우보다 D-카이로—이노시롤의 생산성이 우수한 것을 알 수 있었다. 실시예 11: 이노시롤 디하이드로게나아제와 아논소스 이소머라아제의 융합효소의 His-tag 정제를 위한 재조합 플라스미드의 구축
상기의 실시예 10에서 확인된 이노시를 디하이드로게나아제의 C一 말단과 이노소스 이소머라아제의 N—말단이 결합되고 링커의 길이가 다른 3종의 유전자인 CPFLLPI, CPFMLPI , CPFSLPI의 N-말단과 C-말단에 각각 His- tag을 적용하기 위하여 폴라스미드 백터 pET15b와 pET21b에 융합효소를 코딩하는 유전자를 삽입하여 재조합 폴라스미드를 구축하였다. pET-15b는 N-말단에 His— tag을 적용할 수 있으며, pET— 21b는 Cᅳ말단에 Hisᅳ g을 적용할 수 있는 폴라스미드 백터이다. 상세히 설명하면, 프라이머 ETCP- F1과 ETPI— R1를 이용하여 pCOLAD-lCPFLLPI 플라스미드를 주형으로 하여 CPFLLPI를 증폭한 후, Ndel과 BamHI으로 절단하여 pET-15b의 동일부위로 삽입하여 pET15b-CPFLLPI를 제작하였디-. 이상에 증폭한 CPFLLPI는 또한 Ndel과 Sail으로 절단하여 pET— 21b의 동일부위로 삽입하여 pET21b- CPFLLPI를 제작하였다. 또한, 유전자 CPFMLPI를 위하여 pCOLA으 CPFMLPI 플라스미드로부터 프라이머 ETCP-F1과 ETPI-R1을 이용하여 CPFMLPI를 증폭한 후 Ndel과 BaniHI으로 절단하여 pETᅳ 15b의 동일부위로 삽입하여 pET15b— CPFMLPI를 제작하였다. 증폭한 CPFMLPI는 또한 Ndel과 Sail으로 절단하여 pET-21b의 동일부위로 삽입하여 pET2 lb— CPFMLPI를 제작하였다. 또한, 유전자 CPFSLPI를 위하여, pCOLAD-CPFSLPI 플라스미드를로부터 프라이머 ETCP-F1과 ETPI-R1을 이용하여 CPFSLPI를 증폭한 후 Ndel과 BamHI으로 절단하여 pET— 15b의 동일부위로 삽입하여 pET15b— CPFSLPI를 제작하였다. 증폭한 CPFSLPI는 또한 Ndel과 Sail으로 절단하여 pET-21b의 동일부위로 삽입하여 pET21b-CPFSLPI를 제작하였다-. 상기. 6종의 재조합 플라스미드를 제작하는 데 사용된 프라이머와 유전자 정보는 아래 표 4에 나타내었다.
【표 4】
Figure imgf000030_0001
실시예 12: His-tag을 적용한 융합효소의 발현, 정제 및 활성측정 융합효소의 발현을 위하여 실시예 11에서 구축한 6종의 재조합 플라스미드인 pET15b-CPFLLPI, pET-15b-CPFMLPI , pET15b-CPFSLPI , pET21b- CPFLLPI , pET21b-CPFMLPI , pET2 lb— CPFSLPI를 대장균 BL2KDE3)에 도입하여 재조합 대장균을 구축하였으며, 이에 대한 융합효소의 발현 및 정제는 실시예 2와 동일한 방법으로 수행하였다. 발현 및 정제의 결과는 도 13에 나타내었다. 융합효소의 활성측정을 위한 반응은 총 200 id 부피로 수행하였으며 , 반웅액은 50 iiiM Tris-HCl (pH8.0), 1 niM MgS04l 0.1 niM MnS04 0.5 mM NAD, 5%(w/v) (278 mM) 마이오 -이노시를, 0.5 mg/mL (약 7.2 nM)의 융합효소가 되도록 제조하였다. 반응액을 37°C에서 약 15 시간 반응시켰으며, 반웅 종료 후 10분간 끓여서 반웅을 정지시켰다. 반웅 정지된 반웅액올 원심분리하여. 물로 5배 희석한 뒤 HPLC로 분석하였으며, HPLC 분석방법은 실시예 3에서 설명한 바와 같다. 정제된 융합 단백질 효소를 이용하여 반웅시킨 결과 마이오 -이노시틀이 D—카이로ᅳ이노시톨로 거의 전환되지 않았다. 실시예 13: His-tag을 적용한 융합효소의 인 비보 (in vivo) 활성측정 상기 실시예 10에서 활성을 나타내었던 융합효소에 Hisᅳ tag을 적용한 경우 N—말단, C-말단 모두 으카이로—이노시틀로의 전환 활성이 없었으므로, 그 이유를 확인하기 위하여 인 비보 (in vivo) 실험을 수행하였다. 즉, 제조한 6 종의 재조합 플라스미드 pET15b-CPFLLPI, pET15b~CPFMLPI , pET15b-CPFSLPI , PET21b-CPFLLPI , pET21b— CPFMLPI, pET21b-CPFSLPI를 마이오-이노시를 트랜스포터를 갖는 재조합 폴라스미드 pCOLADᅳ StiolTl- StiolT^FS) (한국특허출원 제 10-2012— 0107278호 참조)와 함께 대장균 BL2KDE3)에 도입하여 재조합 균주를 구축하고 실시예 10에서와 동일한 방법으로 배양 및 분석하여 그 결과를 도 14에 나타내었다. 융합 효소를 정제하여 반응시켰을 때와는 달리 6종의 재조합 플라스미드를 균체에 도입하여 시험한 결과 모든 실험구에서 D—카이로 -이노시를이 정상적으로 생산되는 것을 확인 할 수 있었으며, 특히 pET15b-CPFMLPI이 경우 가장 빠르게 생산되는 것을 확인할 수 있었다. 따라서, 실시예 12에서 정제한 Hisᅳ tag 융합효소를 인 비트로 반웅에 사용하였을 시 D-카이로 -이노시를이 생산되지 않은 것은 His-tag을 적용한 것으로 인한 결과가 아니며, 정제과정 증에 발생한 원인에 의한 것으로 판단하였다. 실시예 14: 투석에 의해 이미다졸을 제거한 CPFMLPI 융합 효소의 반웅온도에 따른 반웅 양상 측정
본 발명에서 정제 과정 중에 이미다졸이 과량으로 들어가게 되어, 이미다졸이 효소의 활성에 영향을 미치는 것으로 예상하고 정제된 효소로부터 이미다졸을 제거하기 위하여 투석을 실시하였다. 투석은 실시예 13의 결과에서 가장 빠르게 D—카이로 -이노시를을 생산한 pET15b- CPFMLPI에 대하여만 실시하였다 (도 14 참조). 투석은 스펙트럼사의 투석막 (Spectra/Por 1 dialysis tubing, 6-8 MWC0)에 최종 용출한 효소 용액을 넣은 후 기질과 NAD를 제외한 효소반웅 완층액 (50 mM Tris— HC1, pH = 8.0, 1 mM MgS04 , 0.1 mM MnS04)에 침지하여 교반하고, 효소반웅 완충액을 6-8시간마다 교체하면서 약 24-48 시간 동안 실시하였다. 투석을 통해 이미다졸을 제거한 효소를 효소 반웅에 이용하였으며, 반웅은도에 따른 반웅 속도를 측정하였다. 융합 효소는 0.5 mg/mL , 조효소는 1 mM로 투여하였으며, 기질인 마이오 -이노시틀은 109 &로 하였다. 반응은도 25°C 30 °C, 37 °C, 42 °C, 47 °C , 50 °C , 55 °C , 65°C에서 반웅하면서 D—카이로- 이노시를의 생산성을 확인하였다ᅳ 결과는 도 15에 나타내었다. 융합하지 않은 단일 효소 Cgipe와 Paioll를 함께 사용했을 경우와 마찬가지로 55°C까지는 반웅 온도가 높아질수록 반웅 속도가 증가하였으며, 65°C에서는 반웅 속도가 대폭 감소함을 알 수 있었다 (도 15의 패널 A). 이는 전형적인 효소와 반응온도간의 상태방정식인 아레니우스 방정식을 따르면서 최적 반웅 온도가 약 50°C - 55°C임을 나타낸다 (도 15의 패널 B). 단일 효소 Cgipe 및 Paioll를 함께 사용했을 경우와 비슷한 반웅속도를 보였으며, 동일 온도에서 약간 더 열에 안정한 것으로 나타났으나 큰 차이는 보이지 않았다. 결과적으로 링커를 이용하여 융합할 경우 각각의 효소를 사용하는 것과 유사한 반웅 속도를 보였으므로, 효소반웅법에서는 융합 효소를 이용하는 것이 효율적일 것으로 판단하였다. 실시예 15: 융합효소 CPFMLPI의 열안정성 조사
융합효소 CPFMLPI의 열에 대한 안정성을 확인하였다. 효소를 특정 온도에서 일정시간 방치한 후 이를 이용하여 일정시간 반응하고 으카이로- 이노시를의 생산성 및 반응 속도를 측정하였다. 열에 노출하지 않은 효소를 이용한 반웅군 (0시간 반웅군)을 대조구로 하고, 각각 4°C, 37°C, 42 °C, 47°C , 50 °C, 55 °C , 65°C에서 2, 6, 12, 24 시간 동안 노출한 효소를 이용하여 약 7시간 반웅하였으며, 결과는 도 16에 나타내었다. 약 55°C까지는 24 시간 노출하여도 비교적 안정한 반응을 하며 실활율이 20% 이하로 유지되는 것으로 나타났으며, 65°C에서는 노출 후 급격히 실활되는 것으로 나타났다. 이로서 융합효소 CPFMLPI는 기존 효소 Cgiep와 PaioH를 함께 사용하는 것보다 10°C 이상의 열에 장시간 노출해도 안정한 것으로 보인다. 즉, 이는 효소를 각각 사용할 때 보다 융합했을 경우 효소 안정성이 증가되었다는 의미이며, 이를 실제 생산시에 적용할 경우 정제된 효소의 이용효율을 높일 수 있을 것으로 예상된다. 또한 융합효소
CPFMLPI는 발현 및 정제 과정에서 기존 두 가지 효소를 따로 사용할 때 보다 시간과 비용을 절반으로 줄일 수 있으므로, 매우 효율적일 것으로 기대된다.
상기 실시예 들에서 정제된 효소의 반응 속도는 37°C, 1 mM NAD의 조건에서 첨가한 효소의 중량 (500 / )을 기준으로 하였을 경우 단독 효소는 54.6 mM/시간, 융합 효소는 71.2 mM/시간의 속도를 나타냈으며 효소의 몰 농도를 기준으로 할 경우, 단독 효소는 3.7 mM/nM Enzymes/시간 이며, 융합효소를 사용하였을 경우 9.9 mM/nM Enzymes/시간으로 나타나, 단위 시간당 반응속도는 융합효소가 높은 것으로 나타났다. 실시예 16: 마이오 -이노시를과 D-카이로ᅳ이노시톨의 용해도 측정 마이오-이노시를 (myo— inositol)과 D-카이로-이노시틀 (D-chiro- inositol)의 용해도를 측정하였다. 먼저 마이오 -이노시롤과 으카이로— 이노시롤을 상은 (약 25°C)에서 1차 증류수에 각각 5%(w/v) 내지 80%(w/v)의 농도가 되도록 용해시켰다. 각 용액에서 용해되지 않고 침전된 부분을 원심분리를 통하여 분리하고 이노시를이 완전히 용해된 상충액 부분을 취하여 각각의 농도를 HPLC로 분석하였다. 분석조건은 HPLC(S imadzu LC.lO/Wp)를 이용하여 , romasi 1 5NH2 칼럼 (4.6 薩 X 250 隱), 이동상 75% 아세토니트릴, 칼럼 온도 40°C , RI 검출기를 이용하였다. 그 결과는 도 17에 나타내었다. 마이오 -이노시를의 용해도는 25°C에서 약 15%(w/v)로 나타났으며, D-카이로 -이노시를의 경우 약 559¾(w/v) 전후로 나타나, 마이오 -이노시를과 D-카이로ᅳ이노시틀의 용해도 차이가 매우 큰 것으로 확인하였다. 실시예 17: 마이오 -이노시롤의 분리를 위한 1차 에탄을 처리
효소 반웅이 완료된 효소 반웅 완층액에는 50 mM Tris-HCl (pHS.O), 1 mM MgS04, 0.1 mM MnS04( 0.5 mM NAD 12.9%(w/v) 마이오 -이노시롤, 2.1 (w/v) D—카이로 -이노시를이 포함되어 있다. 상기 효소 반웅 완충액에 에탄올을 가하여, 반웅 완충액 : 에탄을의 비율이 각각 10:0, 9: 1(0.11배), 8:2(0.25배), 7:3(0.43배), 6:4(으 67배), 5:5(1배), 4:6(1.5배), 3:7(2.33배), 2:8(4배), 1:9(9배)로 되도록 하여 완전히 흔합한 후 실은 (약 25°C)에서 1시간 동안 진탕하였다ᅳ 이를 3,500 rpiii에서 30분간 원심분리한 후 상층액을 취하여 HPLC로 마이오 -이노시를과 D—카이로 -이노시롤의 농도를 분석하였다.
농도 분석 결과는 도 18, 도 19, 및 도 20에 나타내었다. 도 18은 반응이 완료된 효소 반웅 완층액에 에탄을 첨가한 후 생성된 침전물을 제거하여 얻은 상층액내에 남아있는 마이오 -이노시를과 D—카이로- 이노시를의 농도를 나타낸 것이다. 마이오 -이노시를의 경우, 에탄올 첨가량에 따라 농도가 빠르게 감소하여, 약 1 배수의 에탄올을 첨가한 경우 마이오 -이노시틀은 초기 126 g/L 농도로부터 약 99 g/L이 침전되어 약 27 g/L의 마이오 -이노시를이 남아 있는 것으로 나타났다. 이에 비해, D- 카이로 -이노시를의 감소량은 매우 낮아서 약 1 배수의 에탄을을 첨가하면 초기 17 g/L의 농도에서 15 g/L으로 감소되어 약 2 g/L만이 침전되는 것으로 나타났다.
상기 도 18에 나타난 결과를 침전율로 환산하여 도 19에 나타내었다. 마이오—이노시롤의 침전율은 에탄올 첨가량에 따라 급격히 증가하였으며, 1 배수의 에탄올을 첨가하였을 때 모든 반응액 조건에서 비교적 유사하게 70-
80%의 침전율을 보였고, 약 2.5 배 이상의 에탄을 첨가 조건에서는 대부분의 마이오—이노시를이 침전되는 것을 확인하였다. 이에 반하여 D- 카이로 -이노시를의 침전율은 약 1 배의 쎄탄을을 첨가할 때까지는 약 15% 이하의 침전율을 보였으며 , 2배 이상의 에탄올을 첨가한 경우 침전율이 비교적 크게 증가하였다.
상기 도 18 및 도 19에 나타난 실험 결과를 토대로 D—카이로- 이노시를의 순도를 계산하여 도 20에 나타내었다. D—카이로ᅳ이노시를의 순도는 1 배수의 에탄을을 첨가하였을 경우 약 35 ― 40% 정도로 나타났으며, 그 이상의 양의 에탄올을 첨가하면 순도가 증가하지만, D- 카이로 -이노시를의 손실율이 커지는 것으로 나타났다.
이상의 결과를 종합하면, 약 1 배수의 에탄을을 첨가할 경우 약
80%의 마이오 -이노시를이 침전되고, 이때 으카이로 -이노시를의 침전율, 즉 손실율은 15% 이하로 나타났으며, 초기 14% 정도이었던 D-카이로ᅳ 이노시를의 순도를 약 30-40%로 증가시킬 수 있었다. 한편, 에탄을 첨가량이 1 배수를 초과할 경우 D-카이로ᅳ이노시를의 침전율 (손실율)이 급격히 증가므로, 약 1 배수의 에탄을을 첨가하는 경우 D-카이로- 이노시를의 손실율을 최소로 하면서 마이오 -이노시를을 침전시켜 분리 및 제거할 수 있는 것으로 확인되었다. 실시예 18: 1차 에탄올 처리 후 상층액의 농축 건조 및 재용해 상기 실시예 17에서 설명된 방법과 같이, 효소 반웅이 완료된 반웅 완충액에 동량 (1:1)의 에탄을을 흔합한 후 침전물을 제거하여 얻은 상충액을 80°C로 가열하고 진공 상태에서 농축 및 건조하였다. 건조 후 얻은 이노시를의 건조 분말 (마이오 -이노시를과 D-카이로 -이노시를의 흔합 분말)을 15% - 70%의 다양한 농도로 증류수에 용해시켜 각 농도에서의 마이오 -이노시틀과 D-카이로 -이노시를의 용해 특성을 관찰하였다.
마이오ᅳ이노시틀과 으카이로ᅳ이노시를의 용해특성을 분석한 결과는 도 21에 나타내었다. 도 21의 패널 A는 상층액에서 각 이노시를의 농도, 즉 용해도를 나타낸 것으로 마이오ᅳ이노시를 용해도는 상기 실시예 16에서 나타난 바와 같이 약 15% 이상으로는 더 증가하지 않는 것을 확인할 수 있었다. 한편, D-카이로 -이노시를의 경우 용해도가 약 55% 이므로 건조분말을 70% 농도로 용해시킨 경우에서도 모든 D-카이로 -이노시를이 용해된 것을 확인할 수 있었다. 마이오ᅳ이노시를과 D—카이로 -이노시를의 용해특성을 용해도와 침전율로 표시한 결과는 각각 도 21의 패널 B와 패널 C에 나타내었다. 마이오—이노시를은 약 20% 용액부터 용해도가 감소하기 시작하여 용액의 농도가 증가할수록 계속적으로 감소하였고, 침전율은 용액의 농도가 증가함에 따라 증가하였다. D-카이로 -이노시를의 경우 용해도는 용액의 농도가 70%인 경우에 이르기까지 100%을 유지하였으며, 이에 따라 침전율도 0%로서 전혀 침전되지 않는 것으로 나타났다.
결론적으로 최대 70% 용액을 제조하는 경우 마이오—이노시를은 15%만이 용해되었고, D-카이로 -이노시를은 모두 용해되었으므로, 으 카이로 -이노시를와 경우 순도는 약 73% 정도인 것으로 나타났다 (도 21의 패널 D). 실시예 19: 저농도의 마이오 -이노시를과 D-카이로 -이노시를의 혼합 건조물 용액에 2차 에탄올을 처리한 경우의 정제 특성
상기 실시예 Γ7에서 설명된 방법과 같이, 반웅이 완료된 효소 반응 완층액에 동량 (1:1)의 에탄올을 흔합한 후 침전물을 제거하여 얻은 상층액을 80°C로 가열하고 진공 상태에서 농축 및 건조하였다. 마이오- 이노시틀 및 D—카이로 -이노시를의 흔합 건조물을 저농도인 15% 이하 농도의 용액으로 제조하여 여기에 에탄을을 첨가하는 실험을 수행하였다. 1차 에탄을 처리 후 상층액의 건조분말이 완전히 녹는 양의 물을 첨가하여 용해시켰으며, 이때 총 이노시를 함량으로 약 11.5%가 되었고, 각각의 농도는 마이오-이노시톨 75 g/L 및 D-카이로-이노시틀 40 g/L 이었다. 이 혼합용액에 에탄올을 최대 19배까지 첨가하면서 침전 및 분리 양상을 확인하였다. 그 결과는 도 22에 나타내었다. 도 22의 패널 A는 에탄을 첨가 후 상층액의 농도를 나타낸 것이며, 마이오ᅳ이노시를의 경우 약 1 배수의 에탄을을 첨가할 때까지 큰 변화가 없었으나, 1.5 배의 에탄올이 첨가되면 절반 이상의 마이오 -이노시를이 침전되는 것으로 나타났다. 이에 반하여 D-카이로 -이노시를은 1.5 배수의 에탄을에서 약간 침전되는 것으로 나타났으며 , 이후에도 침전량이 크게 증가되지는 않았다. 도 22의 패널 B는 침전율을 나타낸 것이며, 마이오ᅳ이노시를의 경우 약 9배의 에탄올을 첨가할 경우 90% 이상 침전되었으며, 이때 으카이로—이노시를의 침전율은 약 20%인 것으로 나타났다. 따라서 약 9 배 양의 에탄을을 첨가하면 대부분의 마이오 -이노시롤을 제거하면서 D-카이로-이노시를 손실율을 20% 이하로 줄일 수 있고, D—카이로 -이노시를의 순도를 90% 이상으로 정제 가능하였다 (도 22 패널 C 참조). 실시예 20: 에탄올 이외의 유기용매에 의한 마이오 -이노시를과 D- 카이로 -이노시롤의 선택적 침전
상기 실시예 16 내지 실시예 19의 실험결과로부터 효소 반응 완층액에 함유된 마이오 -이노시를과 으카이로—이노시틀은 이돌의 큰 용해도 차이에 의해 에탄올을 이용한 분리가 가능함을 확인하였다. 2개의 탄소를 갖는 에탄올 이외의 다른 유기용매에 의해서도 이러한 분리가 가능한지 확인하기 위해 탄소수 3개의 알코올인 이소프로판올과 케론인 아세론을 이용하여 분리를 시도하였다. 마이오—이노시를과 D-카이로 -이노시를의 흔합용액 제조 시, 마이오-이노시를 및 D-카이로ᅳ이노시틀의 비율은 일반적인 반응평형 도달 농도인 약 13:2로 하였으며 , M9 최소배지 조건 (효소 반웅 완충액 조건)으로 전체 농도가 약 15%가 되도록 제조하였다. 제조한 이노시롤이 첨가된 효소반웅 완충액에 동일부피의 에탄을, 이소프로판을, 아세톤을 첨가하여 실온에서 1시간 동안 진탕한 후 원심분리하고, 그 상층액을 HPLC로 분석하였다, 결과는 도 23에 나타내었다. 도 23의 패널 A는 실제 상층액에 존재하는 이노시를의 농도를 나타낸 것이다, 마이오ᅳ이노시를의 경우 에탄을과 이소프로판을에서는 큰 차이가 없었으나, 아세톤에서는 유의성 있게 감소하는 것으로 나타났다. 으카이로ᅳ이노시틀의 경우 역시 에탄올과 이소프로판을이 비슷한 반면 아세톤의 경우에는 유기용매를 처리하지 않았던 농도와 같게 나타나 전혀 침전되지 않은 것으로 나타났디-. 즉, 이소프로판올은 에탄올과 비교할 때 마이오—이노시틀과 D-카이로 -이노시를의 침전율은 큰 차이가 없었고, 아세톤은 마이오 -이노시를에 대한 침전율이 약간 더 높고, 으카이로- 이노시를의 손실율이 적은 것으로 보인다. 이는 에탄올의 침전율에 대한 상대값을 나타낸 도 23의 패널 B에서 쉽게 볼 수 있다. 즉, 이소프로판올은 에탄을에 대하여 마이오 -이노시를과 D-카이로 -이노시를이 각각 1.0과 0.9 값으로 큰 차이가 없으며, 아세톤은 마이오 -이노시를의 침전율이 약 1.1로 높으며 , D-카이로—이노시를에 대해서는 약 0.1로 수준이 낮은 것으로 나타났다. 따라서 에탄을 이외의 유기용매가 에탄올과 같이 마이오 -이노시틀과 으카이로 -이노시를의 분리에 사용할 수 있는 것을 확인하였으며, 아세톤의 경우 에탄올에 비해 그 분리 특성이 유리하다는 사실을 확인하였다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 ᅳ아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 힐- 것이다.

Claims

【청구의 범위】
【청구항 11
다음의 단계를 포함하는 효소반웅법을 이용하여 마이오- 이노시를로부터 D-카이로 -이노시를을 생산하는 방법:
(a) (i) 이노시롤 디하이드로게나아제 및 이노소스 이소머라아제, 또는 이노시를 디하이드로게나아제와 이노소스 이소머라아제의 융합 단백질, ( ϋ ) 조효소로서 NAD (Nicotinamide Adenine Dinucleot ide) , 및 (iii) 기질로서 마이오 -이노시를을 포함하는 효소 반웅 완층액을 준비하는 단계; (b) 상기 효소 반응 완충액을 반웅시켜 D-카이로 -이노시를을 생성시키는 단계.
【청구항 2】
제 1 항에 있어서, 상기 효소 반응 완층액내의 이노시를 디하이드로게나아제, 이노소스 이소머라아제, 또는 이노시틀 디하이드로게나아제와 이노소스 이소머라아제의 융합 단백질의 농도는 100 ― 500 !Jg/ηιί 인 것을 특징으로 하는 방법 .
【청구항 3]
제 1 항에 있어서, 상기 효소 반응 완충액내의 NAD의 농도는 0.1 - 2 mM 인 것을 특징으로 하는 방법 .
【청구항 4】
제 1 항에 있어서, 상기 효소 반웅 완층액내의 마이오—이노시를의 농도는 5 - 20 %(w/v)인 것을 특징으로 하는 방법.
【청구항 5]
제 1 항에 있어서, 상기 단계 (b)에서의 효소 반웅 온도는 25 ᅳ 65X:인 것을 특징으로 하는 방법 .
【청구항 6】 제 1 항에 있어서, 상기 단계 (a)의 효소반웅 완층액은 Tris-HCl MgS04 , 및 )4를 더욱.포함하는 것을 특징으로 하는 방법 .
【청구항 7】
제 1 항에 있어서, 상기 이노시를 디하이드로게나아제는 코리네박테리움 글루타미쿰 (C. glut ami cum) 유래 효소인 것을 특징으로 하는 방법ᅳ
【청구항 8】
제 1 항에 있어서, 상기 이노소스 이소머라아제는 판토에아 아나나티스 (P. anana is) 유래 효소인 것을 특징으로 하는 방법.
【청구항 9】
제 1 항에 있어서, 상기 융합 단백질은 이노시를 디하이드로게나아제의 C-말단과 이노소스 이소머라아제의 N-말단이 연결된 형태인 것을 특징으로 하는 방법 .
【청구항 10】
제 1 항에 있어서, 상기 단계 (b) 이후에 다음의 단계를 더 포함하는 것을 특징으로 하는 방법 :
(c) 상기 반응이 완료된 효소반웅 완충액에 유기용매를 첨가하여 이노시를 침전물을 생성시키는 단계;
(d) 상기 생성된 이노시를 침전물로부터 상층액을 분리하는 단계; 및
(e) 상기 분리한 상층액을 건조시켜 이노시를 분말을 얻는 단계.
【청구항 11]
제 10 항에 있어서, 상기 단계 (e) 이후에 다음의 단계를 더 포함하는 것을 특징으로 하는 방법:
(f) 상기 단계 (e)에서 얻은 이노시를 분말을 물에 용해시켜 수용액을 제조하는 단계;
(g) 상기 수용액에 유기용매를 첨가하여 이노시를 침전물을 생성시키는 단계;
(h) 상기 생성된 이노시를 침전물로부터 상층액을 분리하는 단계; 및
(i) 상기 분리한 상층액을 건조시켜 이노시를 분말을 얻는 단계.
【청구항 12】
제 10 항에 있어서, 상기 단계 (f)에서, 이노시를 분말을 20%(w/v) 이하의 농도로 물에 용해시키는 것을 특징으로 하는 방법.
【청구항 13]
제 10 항 또는 제 11 항에 있어서, 상기 단계 (c) 또는 (g)에서의 유기용매는 알코을, 아세톤, 에틸아세테이트, 부틸아세테이트, 1, 3- 부틸렌글리콜 또는 에테르인 것을 특징으로 하는 방법 .
【청구항 14】
제 10 항에 있어서, 상기 단계 (c)에서 유기용매의 첨가량은 효소 반웅 완충액 대비 0.1 ― 9배 (v/v)인 것을 특징으로 하는 방법.
【청구항 15】
제 11 항에 있어서, 상기 단계 (g)에서 유기용매의 첨가량은 수용액 대비 1 ᅳ 10배 (v/v)인 것을 특징으로 하는 방법.
【청구항 16]
제 10 항에 있어서, 상기 단계 (e) 이후에 다음의 단계를 더 포함하는 것을 특징으로 하는 방법:
(f)' 상기 단계 (e)에서 얻은 이노시를 분말을 물에 용해시켜 수용액을 제조하고 이노시틀 침전물을 생성시키는 단계 ;
(g) ' 상기 수용액에서 생성된 이노시를 침전물로부터 상층액을 분리하는 단계; 및
(h) ' 상기 상충액을 건조시켜 이노시를 분말을 얻는 단계.
【청구항 17】 제 16 항에 있어서, 상기 단계 (f)' 에서, 이노시를을 20%(w/v) 초과 - 70 (w/v) 이하의 농도로 물에 용해시키는 것을 특징으로 하는 방법 .
【청구항 18】
(a) 이노시틀 디하이드로게나아제 및 이노소스 이소머라아제, 또는 이노시를 디하이드로게나아제와 이노소스 이소머라아제의 융합 단백질; 및
(b) 조효소로서 NAD (Nicotinamide Adenine Dinucleot ide)를 유효성분으로 포함하는 마이오ᅳ이노시를로부터 으카이로 -이노시를을 생산하기 위한 용도의 효소 반응 조성물.
【청구항 191
제 18 항에 있어서, 상기 조성물은 (c) 기질로서 마이오 -이노시틀을 더 포함하는 것을 특징으로 하는 조성물.
【청구항 20】
제 18 항에 있어서, 상기 조성물은 Tris-HCl, MgS04ᅳ 및 MnS04를 더 포함하는 것을 특징으로 하는 조성물.
【청구항 21]
제 18 항에 있어서, 상기 이노시틀 디하이드로게나아제는 코리네박테리움 글루타미쿰 (C. glut ami cum) 유래 효소인 것을 특징으로 하는 조성물. .
【청구항 22】
제 18 항에 있어서, 상기 이노소스 이소머라아제는 판토에아 아나나티스 (P. ananatis) 유래 효소인 것을 특징으로 하는 조성물.
【청구항 23]
제 18 항에 있어서, 상기 융합 단백질은 이노시를 디하이드로게나아제의 C 말단과 이노소스 이소머라아제의 N-말단을 연결한 형태인 것을 특징으로 하는 조성물.
PCT/KR2014/000758 2013-01-28 2014-01-27 효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법 WO2014116072A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130009431A KR101971931B1 (ko) 2013-01-28 2013-01-28 효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법
KR10-2013-0009431 2013-01-28

Publications (1)

Publication Number Publication Date
WO2014116072A1 true WO2014116072A1 (ko) 2014-07-31

Family

ID=51227807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000758 WO2014116072A1 (ko) 2013-01-28 2014-01-27 효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법

Country Status (2)

Country Link
KR (1) KR101971931B1 (ko)
WO (1) WO2014116072A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957101A (zh) * 2020-07-21 2022-01-21 山东福洋生物科技股份有限公司 一种重组大肠杆菌发酵生产肌醇的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091596A (en) * 1990-12-20 1992-02-25 Univ. Of Va. Alumni Patents Foundation Method for producing chiro-inositol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055715A1 (fr) * 2001-01-15 2002-07-18 Hokko Chemical Industry Co., Ltd. Adn codant pour une d-myo-inositol 1-épimérase
JP4344572B2 (ja) * 2003-09-19 2009-10-14 北興化学工業株式会社 D−キロ−イノシトールの製造方法
JP2006141216A (ja) * 2004-11-16 2006-06-08 Kobe Univ D−キロ−イノシトールの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091596A (en) * 1990-12-20 1992-02-25 Univ. Of Va. Alumni Patents Foundation Method for producing chiro-inositol

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KRINGS, EVA ET AL.: "Characterization of myo-mositol utilization by Coryne bacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation", JOURNAL OF BACTERIOLOGY, vol. 188, no. 23, 2006, pages 8054 - 8061 *
YOSHIDA, KEN-ICHI ET AL.: "Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome''.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 72, no. 2, 2006, pages 1310 - 1315, XP008147399, DOI: doi:10.1128/AEM.72.2.1310-1315.2006 *
YOSHIDA, KEN-ICHI ET AL.: "myo-inositol catabolism in Bacillus subtilis", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 16, 2008, pages 10415 - 10424 *
YOSHIDA, KEN-ICHI ET AL.: "Organization and transcription of the myo-inositol operon, iol. of Bacillus subtilis", JOURNAL OF BACTERIOLOGY, vol. 179, no. 14, 1997, pages 4591 - 4598 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957101A (zh) * 2020-07-21 2022-01-21 山东福洋生物科技股份有限公司 一种重组大肠杆菌发酵生产肌醇的方法

Also Published As

Publication number Publication date
KR101971931B1 (ko) 2019-04-25
KR20140096632A (ko) 2014-08-06

Similar Documents

Publication Publication Date Title
JP7331691B2 (ja) 3-ヒドロキシアジピン酸、α-ヒドロムコン酸および/またはアジピン酸を生産するための遺伝子改変微生物および当該化学品の製造方法
JP6097691B2 (ja) 新規フコシルトランスフェラーゼおよびそれらの適用
JP5236233B2 (ja) (−)−アンブロキサンの製造方法
JP2012500641A (ja) 2−ヒドロキシイソブチレートの酵素による生産
JP5224572B2 (ja) デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
WO2007142210A1 (ja) 光学活性アルコールの製造方法
KR101754060B1 (ko) 사이코스의 제조 방법
KR101807507B1 (ko) D-사이코스 3-에피머화 효소 및 염을 포함하는 d-사이코스 제조용 조성물 및 이를 이용한 d-사이코스의 제조 방법
KR20140040509A (ko) 미생물을 이용한 d-카이로 이노시톨의 생산 방법
JP7387194B2 (ja) イソオイゲノールからのバニリンの生合成
CN115261365B (zh) 色氨酸合成酶突变体及其应用
EP2948546B1 (en) A method of production of rare disaccharides
Wang et al. Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei
WO2019100676A1 (zh) 一种酶改质甜菊糖的制备方法和制备用酶及应用
WO2014116072A1 (ko) 효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법
WO2000055329A1 (fr) Sorbitol deshydrogenase, gene codant pour celle-ci et leur utilisation
WO1999013059A1 (en) β-FRUCTOFURANOSIDASE AND GENE THEREOF
CN116855467A (zh) 一种化学-酶偶联方法用于合成麦角硫因
WO2001014567A1 (fr) Processus de production de coenzymes q¿10?
KR102017776B1 (ko) 휴면 세포 전환법을 이용한 d-카이로 이노시톨의 생산 방법
WO2021230222A1 (ja) 遺伝子改変微生物および有機酸の製造方法
CN108251406B (zh) L-鼠李树胶糖-1-磷酸醛缩酶及其在催化合成稀有糖d-阿洛酮糖中的应用
CN114990097B (zh) L-天冬氨酸-α-脱羧酶突变体及其应用
US20240052389A1 (en) Allulose epimerase variant with excellent thermal stability, preparation method therefor, and preparation method for allulose using same
CN112867793B (zh) 新型果糖-c4-差向异构酶及使用其制备塔格糖的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743733

Country of ref document: EP

Kind code of ref document: A1