WO2014115829A1 - 半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法 - Google Patents

半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法 Download PDF

Info

Publication number
WO2014115829A1
WO2014115829A1 PCT/JP2014/051470 JP2014051470W WO2014115829A1 WO 2014115829 A1 WO2014115829 A1 WO 2014115829A1 JP 2014051470 W JP2014051470 W JP 2014051470W WO 2014115829 A1 WO2014115829 A1 WO 2014115829A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
value
contamination
evaluation
wafer
Prior art date
Application number
PCT/JP2014/051470
Other languages
English (en)
French (fr)
Inventor
松本 圭
和隆 江里口
三次 伯知
剛志 久保田
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201480005010.2A priority Critical patent/CN104937705B/zh
Priority to US14/647,963 priority patent/US9842779B2/en
Priority to KR1020157012986A priority patent/KR101606111B1/ko
Priority to EP14743430.2A priority patent/EP2950337B1/en
Publication of WO2014115829A1 publication Critical patent/WO2014115829A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to a method for evaluating metal contamination of a semiconductor wafer, and more particularly to a method for evaluating metal contamination of a semiconductor wafer capable of evaluating the presence or absence of local metal contamination. Furthermore, the present invention relates to a method for manufacturing a semiconductor wafer that provides a product wafer subjected to quality control based on an evaluation result obtained by the above method.
  • Metal contamination of semiconductor wafers adversely affects product device characteristics.
  • processes that cause metal contamination include various heat treatments such as oxidation, diffusion, and epitaxial growth during the wafer manufacturing process.
  • heat treatments such as oxidation, diffusion, and epitaxial growth during the wafer manufacturing process.
  • heavy metals such as Fe and Ni enter the silicon wafer by heat treatment, they create deep levels in the band gap and work as carrier capture centers and recombination centers, causing pn junction leakage and lifetime reduction in the device. It becomes. Therefore, in order to provide a high-quality semiconductor wafer with less metal contamination, a method for highly reliable evaluation of metal contamination of the semiconductor wafer after heat treatment is required.
  • Japanese Patent Application Laid-Open No. 2009-302337 includes the production of semiconductor wafers using a monitor wafer for monitoring contamination of a heat treatment process. It has been proposed to manage the heat treatment process in the process.
  • Metal contamination caused by the heat treatment process is caused by metal impurities mixed in from the heat treatment atmosphere, and contamination sources (for example, particles containing metal components, heat treatment boats, susceptors, three-point support pins, etc. before or during the heat treatment process)
  • contamination sources for example, particles containing metal components, heat treatment boats, susceptors, three-point support pins, etc. before or during the heat treatment process
  • the metal impurities adhering to the semiconductor wafer due to contact with the wafer holder and various metal jigs diffuse into the vicinity of the contact portion in the heat treatment process.
  • the latter metal contamination occurs locally near the contact portion.
  • Japanese Patent Laid-Open No. 2009-302337 the presence or absence of metal contamination from the heat treatment atmosphere is determined based on the magnitude of the measured value of the lifetime. However, in this method, it is difficult to evaluate the latter local metal contamination. is there.
  • One embodiment of the present invention provides a means for evaluating the presence or absence of local metal contamination in a semiconductor wafer after heat treatment.
  • a method for evaluating metal contamination of a semiconductor wafer As a method for evaluating metal contamination of a semiconductor wafer, a method using a diffusion length measurement is known in addition to a method using a lifetime measurement described in Japanese Patent Application Laid-Open No. 2009-302337. Therefore, in the semiconductor wafer to be evaluated, the presence or absence of local contamination is determined based on the measured values of the lifetime and diffusion length in the region where local contamination is expected to occur (hereinafter referred to as “predicted contamination region”). It is possible to do. However, in recent years, some of the wafers used as semiconductor substrates include oxygen precipitates (BMD; Bulk Micro Defect) and minute growth cores in order to enhance the intrinsic gettering function. Many defects are present in high density.
  • BMD oxygen precipitates
  • minute growth cores in order to enhance the intrinsic gettering function. Many defects are present in high density.
  • Metal contamination of the semiconductor wafer reduces the measured value of lifetime and diffusion length, but the above-mentioned BMD and minute defects also decrease the measured value of lifetime and diffusion length. Therefore, regardless of the density and size of the BMD and minute defects in the semiconductor wafer, focusing on the measured values of the lifetime and diffusion length in the predicted contamination area, the measured values may be due to factors other than metal contamination. There is a possibility that a small size is erroneously determined as having local metal contamination. This is not only the analysis method in which the measured value decreases as the amount of metal contamination increases as described above, but the analysis value increases as the amount of metal contamination increases as in the metal contamination concentration analysis calculated from the diffusion length. The same applies to the analysis method.
  • mapping of semiconductor wafer lifetime and diffusion length is measured, and the resulting map is visually observed to determine the presence or absence of local metal contamination based on whether or not there is a low lifetime region or diffusion length reduction region. It is also possible to do. However, this method cannot quantitatively evaluate.
  • the present inventors have found a means for determining the presence or absence of local metal contamination by detecting the presence of local and extreme abnormal values in a plurality of analysis values. The headline and the present invention were completed.
  • One embodiment of the present invention provides: A method for evaluating metal contamination of a heat-treated semiconductor wafer, The analysis value used for the evaluation becomes smaller as the amount of contamination by the metal element to be evaluated becomes smaller as the amount of contamination by the metal element to be evaluated becomes larger, or the analysis value used for evaluation as the amount of contamination by the metal element to be evaluated becomes larger.
  • analysis method 2 To obtain an analysis value by analyzing by analysis method 2 in which Estimating the number P of analysis points where the contamination metal element to be evaluated attached to the semiconductor wafer due to contact with a contamination source among the plurality of analysis points is expected to diffuse by the heat treatment; Including
  • the analysis values are obtained by the analysis method 1, when the analysis values of all analysis locations are arranged in ascending order, the analysis value Vp at the P location counted from the minimum value is a normal value defined by the probability distribution function.
  • the analysis value Vp at the P location counted from the maximum value is a normal value defined by the probability distribution function. If the value is equal to or higher than the upper limit value, it is determined that there is local contamination by the metal element to be evaluated, and if the value is less than the upper limit value, it is determined that there is no local contamination by the metal element to be evaluated. , About.
  • the probability distribution function is a normal distribution
  • the lower limit value of the normal value defined by the probability distribution function when the analysis value is obtained by the analysis method 1 is Avg. -Y * ⁇ [In the above, Avg. Is the average of the analysis values of all the analysis points, ⁇ is the standard deviation, and Y is a number in the range of 2 to 3. ]
  • the upper limit value of the normal value defined by the probability distribution function when the analysis value is obtained by the analysis method 2 is: Avg. + Y * ⁇ [In the above, Avg. Is the average of the analysis values of all the analysis points, ⁇ is the standard deviation, and Y is a number in the range of 2 to 3. ] It is.
  • the analysis method used to determine the analysis value is a ⁇ -PCD method or an SPV method.
  • a further aspect of the invention provides: Preparing a wafer lot including a plurality of semiconductor wafers by a manufacturing process including heat treatment; Extracting at least one semiconductor wafer from the wafer lot as an evaluation wafer; Evaluating the extracted evaluation wafer by the above-described metal contamination evaluation method; and Shipping as a product wafer a semiconductor wafer contained in the same lot as the evaluation wafer determined as having no local metal contamination by the evaluation; A method of manufacturing a semiconductor wafer including About.
  • the present invention it is possible to evaluate the presence or absence of local contamination of a semiconductor wafer after heat treatment that occurs due to contact with a contamination source before or during the heat treatment process. Furthermore, by performing quality control based on the evaluation result, it is possible to ship a high-quality semiconductor wafer free from local metal contamination or having low local metal contamination as a product wafer.
  • FIG. 1A shows a lifetime map of wafers belonging to a group with a high contamination level measured in Example 1
  • FIG. 1B shows a lifetime map of wafers belonging to a group with a low contamination level. It is explanatory drawing of an example of how to obtain
  • One aspect of the present invention is a method for evaluating metal contamination of a heat-treated semiconductor wafer,
  • the analysis value used for the evaluation becomes smaller as the amount of contamination by the metal element to be evaluated becomes smaller as the amount of contamination by the metal element to be evaluated becomes larger, or the analysis value used for evaluation as the amount of contamination by the metal element to be evaluated becomes larger.
  • analysis method 2 To obtain an analysis value by analyzing by analysis method 2 in which Estimating the number P of analysis points where the contamination metal element to be evaluated attached to the semiconductor wafer due to contact with a contamination source among the plurality of analysis points is expected to diffuse by the heat treatment; Including
  • the analysis values are obtained by the analysis method 1, when the analysis values of all analysis locations are arranged in ascending order, the analysis value Vp at the P location counted from the minimum value is a normal value defined by the probability distribution function.
  • the analysis value Vp at the P location counted from the maximum value is a normal value defined by the probability distribution function. If the value is not less than the upper limit value, it is determined that there is local contamination by the metal element to be evaluated, and if the value is less than the upper limit value, it is determined that there is no local contamination by the metal element to be evaluated.
  • the evaluation value of the semiconductor wafer to be evaluated is reduced by the analysis method 1 or the evaluation target metal element as the amount of contamination by the evaluation target metal element increases.
  • the analysis value is obtained by analysis method 2 in which the analysis value used for evaluation increases as the amount of contamination increases.
  • the analysis value obtained by the analysis method 1 includes a recombination lifetime measured by a microwave photoconductive decay method ( ⁇ -PCD method) (also simply referred to as a lifetime), a surface photo-voltage method (Surface Photo-Voltage; SPV). For example, minority carrier diffusion length (simply referred to as diffusion length) required by the above method.
  • examples of the analysis value obtained by the analysis method 2 include metal impurity concentration (for example, Fe concentration) calculated from the diffusion length measured by the SPV method. Since these analysis values include the influence of factors other than metal contamination, as described above, in the method of evaluating the presence or absence of metal contamination based only on the analysis values obtained by analysis, the presence or absence of local contamination It is difficult to evaluate with high reliability. Therefore, in the present invention, the presence or absence of local metal contamination is determined depending on whether or not a plurality of analysis values include local and extreme abnormal values. According to this, since the influence of BMD, micro defects, etc. contained in the semiconductor wafer can be reduced or eliminated, the presence or absence of local metal contamination can be accurately evaluated. Details will be described below.
  • an analysis value is obtained by the analysis method 1 or the analysis method 2 at a plurality of locations on the surface of the semiconductor wafer to be evaluated.
  • analysis methods using various apparatuses capable of performing in-plane multipoint measurement and evaluating the in-plane distribution of metal contamination can be used. Specific examples thereof include the ⁇ -PCD method and the SPV method as described above. Measurement and analysis can be performed by a known method using a commercially available apparatus. In the method for evaluating metal contamination according to the present invention, the following steps are performed in order to determine whether the obtained analysis value includes a local and extreme abnormal value.
  • the number P of analysis points where the evaluation target contaminated metal element adhering to the semiconductor wafer due to contact with the contamination source is expected to diffuse by the heat treatment among the plurality of analysis points where the above analysis has been performed is estimated.
  • This P can be estimated based on the diffusion length during the heat treatment of the analysis value to be evaluated.
  • the extent to which various metals diffuse by heat treatment is known in the literature. For example, the heat treatment at 1000 ° C. for 90 minutes has a Ni diffusion length of 7.6 mm and an Fe diffusion length of about 4 mm. From this diffusion length and wafer size, the size of the analysis site, and the contact position of the contamination source, it is possible to predict to which part of the analysis site the diffusion of the metal will occur.
  • a specific example of the estimation method is shown in the examples described later.
  • the analysis value Vp at the P location counting from the minimum value is normal defined by the probability distribution function. If the value is less than or equal to the lower limit of the value, it is determined that there is local contamination by the metal element to be evaluated, and if the value exceeds the lower limit, it is determined that there is no local contamination by the metal element to be evaluated.
  • local and extreme abnormal values can be detected by evaluating the analysis value based on the normal value defined by the probability distribution function in this way, thereby evaluating the presence or absence of local metal contamination. can do.
  • the analysis value Vp at the P location counting from the maximum value is normal defined by the probability distribution function. If the value is greater than or equal to the upper limit value, it is determined that there is local contamination by the metal element to be evaluated, and if it is less than the upper limit value, it is determined that there is no local contamination by the metal element to be evaluated. As described above, when the analysis method 2 is used, the analysis value is evaluated based on the normal value defined by the probability distribution function as in the case of using the analysis method 1. Thus, according to the metal contamination evaluation method according to one embodiment of the present invention, it is possible to evaluate the presence or absence of local metal contamination in the semiconductor wafer after the heat treatment.
  • the probability distribution function a normal distribution, a Weibull distribution, or the like can be used.
  • the lower limit value of the normal value which is a threshold value when the analysis method 1 is used
  • the upper limit value of the normal value which is a threshold value when the analysis method 2 is used
  • is the standard deviation
  • Y is a number in the range of 2 to 3.
  • the analysis value is obtained by the analysis method 1, if the analysis value Vp at the P point corresponding to the cumulative frequency of 2% is equal to or less than “Ave-3 ⁇ ”, if it belongs to the same normal distribution group, “Avg The probability f (3) to take the value of “ ⁇ 3 ⁇ ” should be only 0.15%, but there are too many analysis points where the analysis value is too small, exceeding 0.15% and at least 2% It will exist. That is, there is an analysis value that does not belong to the original normal distribution. When the heat treatment time is long or the temperature is high, or when the contact area with the metal jig is large, the assumed area of local contamination becomes large.
  • the threshold for determining the presence or absence of metal contamination after heat treatment can be obtained based on the cumulative frequency X% by the above method.
  • a Weibull distribution (Weibull plot) can also be used as the probability distribution function.
  • the semiconductor wafer evaluated by the metal contamination evaluation method according to one embodiment of the present invention described above can be a silicon wafer obtained by slicing a silicon single crystal ingot to a predetermined thickness.
  • Examples of the heat treatment include various heat treatments such as a process of diffusing a dopant, epitaxial growth, and H 2 annealing.
  • Examples of the metal species to be evaluated include various metals that can adversely affect device characteristics such as Fe, Ni, and Cu.
  • repair and replacement of facilities for reducing metal contamination are performed thereafter. It is possible to prevent the occurrence of local metal contamination in the semiconductor wafer manufactured in the same manufacturing line.
  • the metal contamination evaluation method according to one embodiment of the present invention can be used for process control.
  • the metal contamination evaluation method according to one embodiment of the present invention is also suitable for stably supplying a high-quality product wafer free from local metal contamination.
  • a further aspect of the present invention is to prepare a wafer lot including a plurality of semiconductor wafers by a manufacturing process including heat treatment, to extract at least one semiconductor wafer from the wafer lot as an evaluation wafer, and to extract The evaluation wafer is evaluated by the metal contamination evaluation method described in the present invention, and the semiconductor wafer contained in the same lot as the evaluation wafer determined as having no local metal contamination by the evaluation is a product wafer. And a method for manufacturing a semiconductor wafer.
  • the metal contamination evaluation method it is possible to accurately evaluate the presence or absence of local metal contamination after heat treatment of a semiconductor wafer such as a silicon wafer. Therefore, by shipping such a semiconductor wafer in the same lot as the semiconductor wafer determined to be free of local metal contamination after heat treatment as a product wafer by this evaluation method, a high-quality product wafer free of local metal contamination can be obtained. Can be provided with high reliability.
  • the number of wafers contained in one lot and the number of wafers to be extracted may be set as appropriate.
  • Example 1 Lifetime measurement
  • 200 mm ⁇ silicon wafers (hereinafter referred to as No. 1 to No. 4) were prepared. In order to enhance the gettering function, these wafers have minute BMDs built therein, and the BMD densities are different from each other, although they are within the defined quality standards.
  • These wafers were heat-treated at 1000 ° C. for 90 minutes in an oxygen atmosphere. At that time, the wafers are divided into two groups, and one group is placed on a processing boat having a high contamination level and put into a heat treatment furnace, so that the local area spreads from the contact point with the heat treatment boat in the vicinity of the outer periphery of the wafer. A low lifetime region was formed.
  • the other group performed the heat treatment using a heat treatment boat having a low contamination level.
  • Each wafer after the heat treatment was subjected to lifetime measurement by the ⁇ -PCD method at 500 points in the plane with an outer peripheral exclusion width of 10 mm and an 8 mm pitch.
  • No. 1 belonging to a group with a low contamination level is shown in FIG.
  • a lifetime map of the wafer No. 3 is shown in FIG. From the comparison of both lifetime maps, local metal contamination (decrease in lifetime) can be confirmed in the vicinity of the contact point (three points) with the processing boat in the wafer belonging to the group having a high contamination level.
  • FIG. 2 shows a schematic diagram of one vicinity of a contact portion between the processing boat and the silicon wafer in FIG.
  • the metal to be evaluated is Ni or Fe
  • the diffusion length of Ni is 7.6 mm
  • the diffusion length of Fe is 4 mm in the heat treatment at 1000 ° C. for 90 minutes from the values known in the literature.
  • the size of the measurement location (8 mm ⁇ 8 mm square) and the diffusion length of Ni and Fe, when the contaminating metal element diffuses by heat treatment in 3 measurement locations located in the vicinity of 1 location in contact with the processing boat. Can be expected.
  • 3 ⁇ 3 9 points is estimated as the number P of analysis points where the contaminated metal element to be evaluated is expected to diffuse by the heat treatment.
  • the contact point with the processing boat as the contamination source is located outside the lifetime measurement region, but the contact point between the contamination source such as the heat treatment boat, the susceptor, and the three-point support pin and the wafer is the lifetime. If it is inside the measurement area, add the total number of measurement points in contact with the contamination source and the total number of measurement points where metal elements are expected to diffuse from the measurement point in contact with the contamination source. Can be a number P.
  • the number P can be estimated by predicting the measurement location where the metal contamination is caused on the assumption that the metal element diffuses in a disk shape from the location where the metal fine particles adhere.
  • the lifetime values measured at 500 locations are arranged in ascending order from small value to large value, and there is local metal contamination after heat treatment when the ninth lifetime value is below the calculated threshold value. When the threshold value was exceeded, it was determined that there was no local metal contamination.
  • Table 1 shows the determination results together with the result of visually observing the lifetime map and determining the presence or absence of local metal contamination based on the presence or absence of the low lifetime region.
  • the lifetime difference between wafers is large even within the same group. This is because the inherent BMD is a dominant factor in the lifetime reduction, and the difference in BMD density between wafers is large.
  • the presence or absence of local metal contamination is determined, for example. No. 3 in the high contamination level group with a lifetime average value 429.4 ⁇ s of 3 as a threshold value (lower limit) without local contamination. 2 is judged as having no local contamination. Conversely, no. No. 2 in the low contamination level group, when the lifetime average value 491.4 ⁇ s of No. 2 is a threshold value (lower limit value). 3 is determined to have local contamination.
  • the first embodiment described above is an application example of the analysis method 1.
  • Example 2 an application example of the analysis method 2 will be described.
  • Example 2 Measurement of Fe Contamination by SPV Method Two 200 mm ⁇ silicon wafers (hereinafter referred to as Sample 1 and Sample 2) were prepared. These wafers were subjected to high-temperature short-time heat treatment at 1150 ° C. for 10 minutes. Thereafter, the amount of Fe contamination at 177 measurement points of each wafer was determined from the diffusion length by the SPV method.
  • FIG. 3 shows the results of Fe concentration map measurement by SPV for the sample 1 and sample 2 wafers. When the map in FIG. 3 is viewed, it is determined that the sample 1 has local Fe contamination.
  • threshold value normal value upper limit value defined by probability distribution function
  • Y 3 ⁇ It is preferable to do. This is because, even if the probability of being Avg + 3 ⁇ or more belonging to the same normal distribution is only 1.5 / 1000, even if one of the measurement points is Avg + 3 ⁇ or more, another measurement is performed. Because it cannot be said that it belongs to the same group as the point, it can be regarded as abnormal. Assuming that there are a plurality of measurement points having a measurement value of Avg + 3 ⁇ or more, a number of Fe-containing dusts are attached.
  • the maximum value of the measurement value is “Ave + 3 ⁇ ” or more. It is possible to determine whether there is no measurement point indicating a local and abnormal measurement value, that is, whether there is no local contamination. On the other hand, if “Avg. + 2 ⁇ ” is adopted as the upper limit value “Avg. + Y * ⁇ ” of the normal value defined by the probability distribution function, even if it is a measurement point included in the same group of the normal distribution Since the probability of Avg + 2 ⁇ or higher is 2.5 / 100, there are 4 and 5 points in the measurement of 177 points.
  • the present invention is useful in the field of manufacturing semiconductor substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本発明の一態様は、熱処理を施された半導体ウェーハの金属汚染評価方法であって、前記半導体ウェーハ表面の複数の分析箇所を、評価対象の金属元素による汚染量が多いほど評価に用いる分析値が小さくなる分析方法1または評価対象の金属元素による汚染量が多いほど評価に用いる分析値が大きくなる分析方法2により分析し分析値を求めることを含み、確率分布関数により規定される正常値に基づき分析値を評価することにより、評価対象の金属元素による局所的汚染の有無を判定する金属汚染評価方法に関する。

Description

半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法 関連出願の相互参照
 本出願は、2013年1月24日出願の日本特願2013-011446号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 本発明は、半導体ウェーハの金属汚染評価方法に関するものであり、詳しくは、局所的な金属汚染の有無の評価が可能な半導体ウェーハの金属汚染評価方法に関するものである。
 更に本発明は、前記方法による評価結果に基づく品質管理がなされた製品ウェーハを提供する半導体ウェーハの製造方法にも関するものである。
 半導体ウェーハの金属汚染は、製品のデバイス特性に悪影響を及ぼす。金属汚染の原因となる工程としては、ウェーハ製造工程中の酸化、拡散、エピタキシャル成長等の各種熱処理が挙げられる。例えば、熱処理によりFeやNiなどの重金属がシリコンウェーハ中に入ると、バンドギャップ中に深い準位を作ってキャリア捕獲中心や再結合中心として働き、デバイス中のpn接合リークやライフタイム低下の原因となる。したがって、金属汚染の少ない高品質な半導体ウェーハを提供するために、熱処理後の半導体ウェーハの金属汚染を高い信頼性をもって評価する方法が求められている。
 この点に関連し、特開2009-302337号公報、その全記載は、ここに特に開示として援用される、には、熱処理プロセスの汚染をモニターするためのモニターウェーハを用いて、半導体ウェーハの製造工程における熱処理プロセスを工程管理することが提案されている。
 熱処理プロセスに起因する金属汚染は、熱処理雰囲気から混入した金属不純物によるものと、熱処理プロセス前や熱処理プロセス中に汚染源(例えば、金属成分を含むパーティクルや、熱処理ボート、サセプター、3点支持ピンなどのウェーハ保持具、各種金属製治具)との接触により半導体ウェーハに付着した金属不純物が熱処理プロセスにおいて接触部分近傍に拡散することによるものに大別される。後者の金属汚染は、接触部分近傍に局所的に発生する。
 特開2009-302337号公報では、熱処理雰囲気からの金属汚染の有無をライフタイムの測定値の大小により判定しているが、この方法では、後者の局所的金属汚染の評価を行うことは困難である。
 本発明の一態様は、熱処理後の半導体ウェーハにおける局所的金属汚染の有無を評価するための手段を提供する。
 半導体ウェーハの金属汚染を評価するための手法としては、特開2009-302337号公報に記載されているライフタイム測定による方法に加えて、拡散長測定による方法も知られている。そこで、評価対象の半導体ウェーハにおいて、局所汚染が発生していると予想される領域(以下、「汚染予想領域」という)におけるライフタイムや拡散長の測定値の大小によって、局所汚染の有無を判定することが考えられる。
 しかし、近年、半導体基板として使用されているウェーハの中には、イントリンシック・ゲッタリングの機能を強化するために、内部に酸素析出物(BMD;Bulk Micro Defect)やその成長核となる微小な欠陥が高密度に存在しているものが少なくない。半導体ウェーハの金属汚染はライフタイムや拡散長の測定値を小さくするが、上記のBMDや微小な欠陥も、ライフタイムや拡散長の測定値を小さくする。したがって、半導体ウェーハ内のBMDや微小な欠陥の密度や大きさにかかわらず、汚染予想領域におけるライフタイムや拡散長の測定値の大小だけに着目しては、金属汚染以外の要因で測定値が小さくなっているものを、局所的金属汚染ありと誤って判定してしまうおそれがある。この点は、上記のように金属汚染量が多いほど測定値が小さくなる分析方法のみならず、拡散長から算出される金属汚染濃度分析のように、金属汚染量が多いほど分析値が大きくなる分析方法についても当てはまることである。即ち、金属汚染以外の要因の影響を含む分析値を用いては、評価対象の半導体ウェーハにおける局所的な金属汚染の有無を、高い信頼性をもって評価することは困難である。
 一方、半導体ウェーハのライフタイムや拡散長のマッピング測定を行い、得られたマップを目視によって観察し、低ライフタイム領域や拡散長低下領域があるか否かにより局所的な金属汚染の有無を判定することも考えられる。しかしこの方法では、評価を定量的に行うことはできない。
 これに対し本発明者らは鋭意検討を重ねた結果、複数の分析値の中に局所的かつ極端な異常値が存在することを検出することで局所的な金属汚染の有無を判定する手段を見出し、本発明を完成させた。
 本発明の一態様は、
 熱処理を施された半導体ウェーハの金属汚染評価方法であって、
 前記半導体ウェーハ表面の複数の分析箇所を、評価対象の金属元素による汚染量が多いほど評価に用いる分析値が小さくなる分析方法1または評価対象の金属元素による汚染量が多いほど評価に用いる分析値が大きくなる分析方法2により分析し分析値を求めること、および、
 前記複数の分析箇所の中で、汚染源との接触により前記半導体ウェーハに付着した評価対象の汚染金属元素が前記熱処理により拡散することが予想される分析箇所の数Pを見積もること、
を含み、
 前記分析値を分析方法1により求めた場合には、全分析箇所の分析値を昇順に並べた際、最小値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の下限値以下の値であれば評価対象の金属元素による局所汚染ありと判定し、上記下限値を超える値であれば評価対象の金属元素による局所汚染なしと判定し、
前記分析値を分析方法2により求めた場合には、全分析箇所の分析値を昇順に並べた際、最大値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の上限値以上の値であれば評価対象の金属元素による局所汚染ありと判定し、上記上限値に満たない値であれば評価対象の金属元素による局所汚染なしと判定する、前記金属汚染評価方法、
 に関する。
 一態様では、前記確率分布関数は正規分布であり、
 前記分析値を分析方法1により求めた場合の確率分布関数により規定される正常値の下限値は、
Avg.-Y*σ
[上記において、Avg.は全分析箇所の分析値の平均値であり、σはその標準偏差であり、Yは2~3の範囲の数である。]
であり、
 前記分析値を分析方法2により求めた場合の確率分布関数により規定される正常値の上限値は、
Avg.+Y*σ
[上記において、Avg.は全分析箇所の分析値の平均値であり、σはその標準偏差であり、Yは2~3の範囲の数である。]
である。
 一態様では、全分析箇所の数をPallとしたときに、
X=(P/Pall)*100
により算出される累積頻度X%に基づき、Yの値を決定する。
 一態様では、前記分析値を求めるために用いる分析方法は、μ-PCD法またはSPV法である。
 本発明の更なる態様は、
 熱処理を含む製造工程により複数の半導体ウェーハを含むウェーハロットを準備すること、
 前記ウェーハロットの中から少なくとも1つの半導体ウェーハを評価用ウェーハとして抽出すること、
 抽出した評価用ウェーハを上述の金属汚染評価方法により評価すること、および、
 前記評価により局所的金属汚染なしと判定された評価用ウェーハと同一ロット内に含まれていた半導体ウェーハを製品ウェーハとして出荷すること、
を含む半導体ウェーハの製造方法、
に関する。
 本発明によれば、熱処理プロセス前や熱処理プロセス中の汚染源との接触に起因して発生する熱処理後の半導体ウェーハの局所汚染の有無を評価することができる。更に、評価結果に基づき品質管理を行うことで、局所的金属汚染のない、または局所的金属汚染の少ない高品質な半導体ウェーハを製品ウェーハとして出荷することが可能となる。
実施例1において測定した汚染レベルの高いグループに属するウェーハのライフタイムマップを図1(a)に、汚染レベルの低いグループに属するウェーハのライフタイムマップを図1(b)に示す。 後述する数Pの求め方の一例の説明図である。 実施例2においてSPV法により測定した2枚のウェーハのFe汚染濃度マップを示す。
 本発明の一態様は、熱処理を施された半導体ウェーハの金属汚染評価方法であって、
 前記半導体ウェーハ表面の複数の分析箇所を、評価対象の金属元素による汚染量が多いほど評価に用いる分析値が小さくなる分析方法1または評価対象の金属元素による汚染量が多いほど評価に用いる分析値が大きくなる分析方法2により分析し分析値を求めること、および、
 前記複数の分析箇所の中で、汚染源との接触により前記半導体ウェーハに付着した評価対象の汚染金属元素が前記熱処理により拡散することが予想される分析箇所の数Pを見積もること、
を含み、
 前記分析値を分析方法1により求めた場合には、全分析箇所の分析値を昇順に並べた際、最小値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の下限値以下の値であれば評価対象の金属元素による局所汚染ありと判定し、上記下限値を超える値であれば評価対象の金属元素による局所汚染なしと判定し、
 前記分析値を分析方法2により求めた場合には、全分析箇所の分析値を昇順に並べた際、最大値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の上限値以上の値であれば評価対象の金属元素による局所汚染ありと判定し、上記上限値に満たない値であれば評価対象の金属元素による局所汚染なしと判定する。
 本発明の一態様にかかる金属汚染の評価方法では、評価対象の半導体ウェーハを、評価対象の金属元素による汚染量が多いほど評価に用いる分析値が小さくなる分析方法1または評価対象の金属元素による汚染量が多いほど評価に用いる分析値が大きくなる分析方法2により分析し分析値を求める。
 分析方法1により求められる分析値としては、マイクロ波光導電減衰法(μ-PCD法)により測定される再結合ライフタイム(単にライフタイムとも記載する。)、表面光電圧法(Surface Photo-Voltage;SPV法)により求められる少数キャリア拡散長(単に拡散長とも記載する)等を挙げることができる。
 一方、分析方法2により求められる分析値としては、SPV法により測定された拡散長から算出される金属不純物濃度(例えばFe濃度)等を挙げることができる。
 これら分析値は、金属汚染以外の要因による影響も含んでいるため、先に説明したように、分析により得られた分析値のみによって金属汚染の有無を評価する方法では、局所的な汚染の有無を高い信頼性をもって評価することは困難である。そこで本発明では、複数の分析値の中に局所的かつ極端な異常値が含まれているか否かにより、局所的な金属汚染の有無を判定する。これによれば、半導体ウェーハに含まれるBMDや微小欠陥等の影響を低減ないし排除することができるため、局所的な金属汚染の有無を精度よく評価することができる。以下、その詳細を説明する。
 評価を行うために、第一には、評価対象の半導体ウェーハにおいて、その表面の複数の箇所において、分析方法1または分析方法2によって分析値を求める。分析手法としては、面内多点測定を行い金属汚染の面内分布を評価可能な各種装置による分析方法を用いることができる。その具体例としては、上記の通り、μ-PCD法、SPV法を挙げることができる。測定・分析は、市販の装置を用いて公知の方法で行うことができる。そして本発明の金属汚染の評価方法では、得られた分析値の中に、局所的かつ極端な異常値が含まれているかを判定するために、以下の工程を行う。
 まずは、上記分析を行った複数の分析箇所の中で、汚染源との接触により半導体ウェーハに付着した評価対象の汚染金属元素が、熱処理により拡散することが予想される分析箇所の数Pを見積もる。このPは、評価対象分析値の熱処理時の拡散長に基づき見積もることができる。各種金属について、熱処理によりどの程度拡散するかは文献公知の値であり、例えば1000℃90分の熱処理で、Niの拡散長は7.6mm、Feの拡散長は約4mmである。この拡散長とウェーハサイズ、分析箇所のサイズ、および汚染源の接触位置等から、分析箇所のどの部分にまで金属の拡散が及ぶかを予想することができる。見積もり方法の具体例を、後述の実施例に示す。
 次いで、分析値を分析方法1により求めた場合には、全分析箇所の分析値を昇順に並べた際、最小値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の下限値以下の値であれば評価対象の金属元素による局所汚染ありと判定し、上記下限値を超える値であれば評価対象の金属元素による局所汚染なしと判定する。本発明ではこのように、確率分布関数により規定される正常値に基づき分析値を評価することで局所的かつ極端な異常値を検出することができ、これにより局所的な金属汚染の有無を評価することができる。
 一方、分析値を分析方法2により求めた場合には、全分析箇所の分析値を昇順に並べた際、最大値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の上限値以上の値であれば評価対象の金属元素による局所汚染ありと判定し、上記上限値に満たない値であれば評価対象の金属元素による局所汚染なしと判定する。このように、分析方法2を用いる場合にも分析方法1を用いる場合と同様に、確率分布関数により規定される正常値に基づき分析値を評価する。
 こうして本発明の一態様にかかる金属汚染評価方法によれば、熱処理後の半導体ウェーハにおける局所的な金属汚染の有無を評価することが可能となる。
 上記確率分布関数としては、正規分布、ワイブル分布等を用いることができる。確率分布関数として正規分布を採用する場合には、分析方法1を用いる場合の閾値である正常値の下限値は、「Avg.-Y*σ」として算出することができる。一方、分析方法2を用いる場合の閾値である正常値の上限値は、「Avg.+Y*σ」として算出することができる。ここで、Avg.は全分析箇所の分析値の平均値であり、σはその標準偏差であり、Yは2~3の範囲の数である。
 例えば、全分析箇所の数をPallとすると、先に見積もった評価対象の汚染金属元素が熱処理により拡散することが予想される分析箇所の数PとPallから累積頻度X(%)を、
X=(P/Pall)*100
と求めると、上記Yは、累積頻度Xに基づき、例えば、以下のように決定することができる。
 公知の通り、正規分布に従う同一の集団の中で、「Avg-(Y*σ)」以下の値となる確率をf(Y)%とすると、Y=2の場合はf(Y)=f(2)=2.5、Y=3の場合はf(Y)=f(3)=0.15となる。
 例えば、分析値を分析方法1により求めた場合、累積頻度X%に相当するP箇所目の分析値Vpが「Avg-Y*σ」以下であって、かつX>f(Y)ならば、大多数の分析箇所の分析値が、構成する正規分布の集団には属さない、異常に分析値の小さい小集団、すなわち局所汚染を受けた箇所(分析箇所)の小集団が存在していたことになるため、上記組み合わせを満たすX、Yの組み合わせとなるように、Xの値からYを決定することができる。
 他方、分析値を分析方法1により求めた場合、累積頻度2%に相当するP箇所目の分析値Vpが「Ave-3σ」以下だったとすると、同一の正規分布集団に属するならば、「Avg-3σ」の値をとる確率f(3)は0.15%に過ぎないはずであるにもかかわらず、分析値が小さすぎる分析箇所が多すぎ、0.15%を超えて少なくとも2%は存在していることになる。即ち、もとの正規分布には属さない分析値が存在していたことになる。熱処理時間が長かったり温度が高い場合や、金属製治具との接触面積が大きい場合は、想定される局所汚染の面積が大きくなる。想定される局所汚染の面積がウェーハ表面の分析領域全体に占める割合が3%や4%に及ぶ場合は、X(=3~4)がf(2)=2.5を超えているため、Y=3ではなくY=2、Ave-2σを、閾値として用いることができる。
 これに対し、同一の正規分布集団において「Ave-2σ」以下の値となる確率は2.5%であるため、累積頻度2%に相当するP箇所目の分析値が「Ave-2σ」以下であったとしても、確率論の観点から、このようなことは同一の正規分布の集団の中においても起こり得ることであるため局所汚染があったとはいえない。したがって、累積頻度がX%である場合に、Y=2に基づき閾値を設定することは適切ではない。
 本発明の一態様では、例えば上記手法により、累積頻度X%に基づき、熱処理後の金属汚染の有無を判定するための閾値を求めることができる。
 上記では、確率分布関数として正規分布を採用する例を示したが、本発明の一態様にかかる金属汚染の評価方法では、確率分布関数としてワイブル分布(ワイブルプロット)を用いることもできる。ワイブル分布による場合には、ワイブル係数m=1(偶発故障)を閾値とすることができる。例えば分析方法1により分析値を求めた場合には、m≦1(初期故障および偶発故障)の領域を、局所的な金属汚染ありと判定することができる。
 以上説明した本発明の一態様にかかる金属汚染評価方法により評価される半導体ウェーハは、シリコン単結晶のインゴットを所定の厚みにスライシングして得られたシリコンウェーハ等であることができる。熱処理としては、ドーパントを拡散させるプロセス、エピタキシャル成長、H2アニール等の各種熱処理を挙げることができる。評価対象の金属種としては、Fe、Ni、Cu等のデバイス特性に悪影響を及ぼし得る各種金属を挙げることができる。
 例えば、本発明の一態様にかかる金属汚染評価方法により局所的金属汚染ありと判定された半導体ウェーハの製造ラインにおいて、金属汚染を低減するための設備の補修や交換等を行うことで、その後に同製造ラインで製造される半導体ウェーハにおける局所的な金属汚染の発生を防ぐことができる。このように本発明の一態様にかかる金属汚染評価方法は、工程管理のために用いることができる。また、局所的な金属汚染のない高品質な製品ウェーハを安定供給するためにも、本発明の一態様にかかる金属汚染評価方法は好適である。
 即ち、本発明の更なる態様は、熱処理を含む製造工程により複数の半導体ウェーハを含むウェーハロットを準備すること、前記ウェーハロットの中から少なくとも1つの半導体ウェーハを評価用ウェーハとして抽出すること、抽出した評価用ウェーハを本発明の記載の金属汚染評価方法により評価すること、および、前記評価により局所的金属汚染なしと判定された評価用ウェーハと同一ロット内に含まれていた半導体ウェーハを製品ウェーハとして出荷すること、を含むことを特徴とする半導体ウェーハの製造方法に関する。
 前述のように、本発明の一態様にかかる金属汚染評価方法によれば、シリコンウェーハ等の半導体ウェーハの熱処理後の局所的金属汚染の有無を精度よく評価することができる。よって、かかる評価方法により、熱処理後の局所的金属汚染なしと判定された半導体ウェーハと同一ロット内の半導体ウェーハを製品ウェーハとして出荷することにより、局所的な金属汚染のない高品質な製品ウェーハを、高い信頼性をもって提供することができる。ここで、1ロットに含まれるウェーハ数および抽出するウェーハ数は適宜設定すればよい。
 以下、本発明を実施例に基づき説明する。ただし本発明は、実施例に示す態様に限定されるものではない。
[実施例1]
1.ライフタイム測定
 200mmφシリコンウェーハを4枚(以下において、No.1~No.4と表記する)、準備した。ゲッタリング機能を強化するために、これらウェーハには微小なBMDが作りこまれており、定められた品質規格の範囲内ではあるが、BMD密度が互いに異なっている。
 これらのウェーハを酸素雰囲気で1000℃、90分熱処理した。その際、ウェーハを二つのグループにわけ、一方のグループは汚染レベルの高い処理ボートに載せて熱処理炉に投入することによって、ウェーハ外周近傍に、熱処理ボートとの接触箇所を起点として広がる局所的な低ライフタイム領域を形成した。他方のグループは、汚染レベルが低い熱処理ボートを使って熱処理を行った。
 熱処理後の各ウェーハに対し、外周除外幅10mm、8mmピッチで面内500箇所でμ-PCD法によるライフタイム測定を行った。汚染レベルの高いグループに属するNo.1のウェーハのライフタイムマップを図1(a)に、汚染レベルの低いグループに属するNo.3のウェーハのライフタイムマップを図1(b)に示す。両ライフタイムマップの対比から、汚染レベルの高いグループに属するウェーハにおいて、処理ボートとの接触箇所(3箇所)の近傍で局所的な金属汚染(ライフタイムの低下)が確認できる。
2.数Pの見積もり
 上記1.における処理ボートとシリコンウェーハとの接触箇所の1つの近傍の模式図を、図2に示す。評価対象金属をNi、Feとすると、文献公知の値から、1000℃、90分の熱処理におけるNiの拡散長は7.6mm、Feの拡散長は4mmである。ウェーハサイズ、測定箇所のサイズ(8mm×8mm角)および上記Ni、Feの拡散長から、処理ボートとの接触箇所1箇所の近傍に位置する測定箇所3箇所に、熱処理により汚染金属元素が拡散すると予想することができる。ウェーハと処理ボートとの接触箇所は3箇所であるため、3×3=9箇所が、評価対象の汚染金属元素が熱処理により拡散することが予想される分析箇所の数Pと見積もられる。
 なお本実施例では、汚染源である処理ボートとの接触箇所がライフタイム測定領域の外側に位置していたが、熱処理ボートやサセプター、3点支持ピンなどの汚染源とウェーハとの接触箇所がライフタイム測定領域の内側にまで入っている場合は、汚染源と接触している測定箇所の総数と、汚染源と接触している測定箇所から金属元素が拡散すると予想される測定箇所の総数を足し合わせたものを、数Pとすることができる。
 また、種々の設備の構造材であるステンレス合金等の微粒子が熱処理プロセス前や熱処理プロセス中にウェーハ表面に付着することで、熱処理後に局所的な金属汚染が発生することがある。この場合には、金属微粒子が付着した箇所から円板状に金属元素が拡散すると想定して金属汚染が及ぶ測定箇所を予想することで、数Pを見積もることができる。
3.閾値(確率分布関数により規定される正常値の下限値)の算出
 上記2.において、総数500箇所の測定箇所においてP=9と見積もられたため、累積頻度X%は、約2%と算出される。ここで、前記YをY=3とすると、f(Y)=0.15であり、「X>f(Y)」の関係を満たし、Y=2とすると、f(Y)=2.5であり、「X>f(Y)」の関係を満たさないため、Y=3とする。
 No.1~No.4の各ウェーハ表面の500箇所で測定したライフタイム値の平均値および標準偏差を求め、「Avg.-Y*σ」においてY=3として評価のための閾値を算出した。
 No.1~No.4の各ウェーハについて、500箇所で測定したライフタイム値を、小さい値→大きい値となるよう昇順に並べ9番目のライフタイム値が、算出した閾値以下の場合に熱処理後の局所的金属汚染あり、閾値を超える場合に局所的金属汚染なしと判定した。ライフタイムマップを目視で観察し低ライフタイム領域の有無により局所的金属汚染の有無を判定した結果と併せて、判定結果を表1に示す。
 表1に示すように、同じグループ内であっても、ウェーハ間のライフタイムの差が大きい。これは、内在するBMDがライフタイム低下の支配的な要因となっており、しかもウェーハ間でのBMD密度の違いが大きいことによる。
 このようなウェーハ群(ボート汚染あり+ボート汚染なし)に対して、面内平均値を指標として局所的金属汚染の有無を判定すると、例えば、No.3のライフタイム平均値429.4μsを局所汚染なしの閾値(下限値)として、高汚染レベルグループのNo.2のウェーハを局所汚染なしと判定してしまう。逆に、No.2のライフタイム平均値491.4μsを閾値(下限値)とすると、低汚染レベルグループのNo.3のウェーハが局所汚染ありと判定されてしまう。
 これに対し表1に示す結果から、本発明によれば、ウェーハのBMD密度の違いによる影響を受けずに、熱処理後の局所的金属汚染の有無を判定できることが確認できる。
 また、判定の閾値を具体的なライフタイム測定値で規定しようとすると、「微弱・微量」な「異常」は見逃す恐れがあるのに対し、本発明では、「ウェーハ面内全体から見て、異常・異質と見なせる分析値があったか」によって局所的な金属汚染の有無を判定するので、微弱・微量な「異常」、すなわち局所汚染を見逃すことなく評価することができる。
 以上説明した実施例1は、分析方法1の適用例である。次に実施例2として、分析方法2の適用例を示す。
[実施例2]
1.SPV法によるFe汚染量測定
 200mmφシリコンウェーハを2枚(以下において、試料1、試料2と表記する。)、準備した。
 これらのウェーハに、1150℃10分の高温短時間熱処理を施した。その後、各ウェーハの177点の測定箇所におけるFe汚染量をSPV法による拡散長から求めた。
 なお図3は、試料1、試料2のウェーハについてSPVによりFe濃度マップ測定を行った結果である。図3のマップを目視すると、試料1に局所的なFe汚染があると判定される。
2.数Pの見積もり
 Feを含有する微小なダストが熱処理前にウェーハに付着し、熱処理中にそのダストを起点としてFeが横方向に拡散して広がる場合を想定すると、その広がりは、1150℃10分でのFeの実効拡散長である約1mmを半径とする円状になる。
 一方、上記1.におけるSPVによる測定は13mmピッチで行ったため、一つの測定箇所のサイズは13mm×13mmとなる。従って、上記のFe汚染の広がりは1つの測定箇所の中に収まる確率が高い。したがって、本実施例では、評価対象の汚染金属元素Feが熱処理により拡散することが予想される分析箇所の数Pは、P=1と見積もられる。
3.閾値(確率分布関数により規定される正常値の上限値)の算出
 上記1.での13mmピッチの測定においては測定箇所が合計177箇所であった。仮に閾値を、「Avg.+Y*σ」においてY=2として算出した場合、同一の正規分布の集団に属する、局所汚染を受けていない測定箇所であっても、全体の2.5%、実数にして4箇所または5箇所の測定点における分析値が、「Avg.+2σ」の閾値以上の値となるため、上記の測定点1箇所においてのみ起こっていると見積もられる局所的な異常を検出するには不適当である。そこで、全分析箇所の分析値を昇順に並べた際、最大値から数えてP番目の分析値Vp(本実施例では上記2.にて見積もった通りP=1であるため分析値の最大値)が、面内平均値+3σ、即ち「Avg.+Y*σ」においてY=3として算出した上限値以上の値であるか否かを判定基準にすべきである。
 図3に示すように、試料1では、Fe濃度の最大値を示した測定箇所の分析値が面内平均値+3σ(Avg.+3σ)以上の値になっており、Feを含有する微小なダストを起点とする局所汚染があったと判定される。この判定結果は、図3に示すマップの目視による判定結果と合致している。
 一方、試料2においては、Fe濃度の最大値を示した測定箇所の分析値が閾値である面内平均値+3σ(Avg.+3σ)を下回っているため、局所的なFe汚染は無かったものと判定される。この判定結果も、図3に示すマップの目視による判定結果と合致している。
 例えば、実施例2のようにFeを含むダストによるFe汚染が高温短時間でごく狭い領域に拡散する場合など、ウェーハ上のごく一部で発生する金属汚染を検出するには、Y=3σとすることが好ましい。これは、同一の正規分布に属していてAvg+3σ以上となる確率は1.5/1000しかないにも関わらず、全測定点中で1点でも測定値がAvg+3σ以上であるならば、他の測定点と同じ集団に属するとは言えないため、異常と見なすことができるからである。仮に測定値がAvg+3σ以上の測定点が複数点あったとすると、いくつものFeを含むダストが付着していたことになるが、そのような場合も、測定値の最大値が「Ave+3σ」以上であるか否かという判定基準により、局所的かつ異常な測定値を示す測定点が一つもなかったか、即ち局所的汚染がなかったか、を判定することができる。
 これに対し、仮に確率分布関数により規定される正常値の上限値「Avg.+Y*σ」として「Avg.+2σ」を採用した場合、正規分布の同一の集団に含まれる測定点であっても、Avg+2σ以上となる確率は2.5/100であるため、177点の測定においては4、5点は存在することになる。したがって、全分析箇所の分析値を昇順に並べた際、最大値から数えてP番目の分析値VpがAvg+2σ以上であっても、それは異常にFeが高いとは言えないことになる。
 これに対し、Fe汚染が比較的広範囲に及び得る場合には、異常値を示す測定点が複数存在し得るため、Y=2を採用することが好適である。
 以上説明したように、分析方法2において判定基準である上限値として、確率分布関数により規定される正常値の上限値「Avg.+Y*σ」を採用する場合、Yは汚染が広がり得る範囲および測定パターンに基づき決定することが好ましい。
 本発明は、半導体基板の製造分野に有用である。

Claims (5)

  1. 熱処理を施された半導体ウェーハの金属汚染評価方法であって、
    前記半導体ウェーハ表面の複数の分析箇所を、評価対象の金属元素による汚染量が多いほど評価に用いる分析値が小さくなる分析方法1または評価対象の金属元素による汚染量が多いほど評価に用いる分析値が大きくなる分析方法2により分析し分析値を求めること、および、
    前記複数の分析箇所の中で、汚染源との接触により前記半導体ウェーハに付着した評価対象の汚染金属元素が前記熱処理により拡散することが予想される分析箇所の数Pを見積もること、
    を含み、
    前記分析値を分析方法1により求めた場合には、全分析箇所の分析値を昇順に並べた際、最小値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の下限値以下の値であれば評価対象の金属元素による局所汚染ありと判定し、上記下限値を超える値であれば評価対象の金属元素による局所汚染なしと判定し、
    前記分析値を分析方法2により求めた場合には、全分析箇所の分析値を昇順に並べた際、最大値から数えてP箇所目の分析値Vpが、確率分布関数により規定される正常値の上限値以上の値であれば評価対象の金属元素による局所汚染ありと判定し、上記上限値に満たない値であれば評価対象の金属元素による局所汚染なしと判定する、前記金属汚染評価方法。
  2. 前記確率分布関数は正規分布であり、
    前記分析値を分析方法1により求めた場合の確率分布関数により規定される正常値の下限値は、
    Avg.-Y*σ
    [上記において、Avg.は全分析箇所の分析値の平均値であり、σはその標準偏差であり、Yは2~3の範囲の数である。]
    であり、
    前記分析値を分析方法2により求めた場合の確率分布関数により規定される正常値の上限値は、
    Avg.+Y*σ
    [上記において、Avg.は全分析箇所の分析値の平均値であり、σはその標準偏差であり、Yは2~3の範囲の数である。]
    である、請求項1に記載の金属汚染評価方法。
  3. 全分析箇所の数をPallとしたときに、
    X=(P/Pall)*100
    により算出される累積頻度X%に基づき、Yの値を決定する、請求項2に記載の金属汚染評価方法。
  4. 前記分析値を求めるために用いる分析方法は、μ-PCD法またはSPV法である、請求項1~3のいずれか1項に記載の金属汚染評価方法。
  5. 熱処理を含む製造工程により複数の半導体ウェーハを含むウェーハロットを準備すること、
    前記ウェーハロットの中から少なくとも1つの半導体ウェーハを評価用ウェーハとして抽出すること、
    抽出した評価用ウェーハを請求項1~4のいずれか1項に記載の金属汚染評価方法により評価すること、および、
    前記評価により局所的金属汚染なしと判定された評価用ウェーハと同一ロット内に含まれていた半導体ウェーハを製品ウェーハとして出荷すること、
    を含む半導体ウェーハの製造方法。
PCT/JP2014/051470 2013-01-24 2014-01-24 半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法 WO2014115829A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480005010.2A CN104937705B (zh) 2013-01-24 2014-01-24 半导体晶片的金属污染评价方法和半导体晶片的制造方法
US14/647,963 US9842779B2 (en) 2013-01-24 2014-01-24 Method of evaluating metal contamination in semiconductor wafer and method of manufacturing semiconductor wafer
KR1020157012986A KR101606111B1 (ko) 2013-01-24 2014-01-24 반도체 웨이퍼의 금속 오염 평가 방법 및 반도체 웨이퍼의 제조 방법
EP14743430.2A EP2950337B1 (en) 2013-01-24 2014-01-24 Method of evaluating metal contamination in a semiconductor wafer and method of manufacturing a semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-011446 2013-01-24
JP2013011446A JP6102277B2 (ja) 2013-01-24 2013-01-24 半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2014115829A1 true WO2014115829A1 (ja) 2014-07-31

Family

ID=51227618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051470 WO2014115829A1 (ja) 2013-01-24 2014-01-24 半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法

Country Status (7)

Country Link
US (1) US9842779B2 (ja)
EP (1) EP2950337B1 (ja)
JP (1) JP6102277B2 (ja)
KR (1) KR101606111B1 (ja)
CN (1) CN104937705B (ja)
TW (1) TWI528483B (ja)
WO (1) WO2014115829A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696729B2 (ja) * 2015-03-18 2020-05-20 株式会社Sumco 半導体基板の評価方法及び半導体基板の製造方法
CN106251044B (zh) * 2016-07-21 2021-09-10 中国科学院数学与系统科学研究院 多批次成败型试验下产品贮存期评估的Buehler方法
CN106524954A (zh) * 2016-12-21 2017-03-22 南通沃特光电科技有限公司 一种转子叠片的平整度检测方法
CN106524953A (zh) * 2017-01-04 2017-03-22 南通沃特光电科技有限公司 一种定子叠片的平整度检测方法
JP6711327B2 (ja) * 2017-07-18 2020-06-17 株式会社Sumco シリコンウェーハ製造工程の評価方法およびシリコンウェーハの製造方法
JP6947137B2 (ja) * 2018-08-17 2021-10-13 信越半導体株式会社 ウェーハの金属汚染の評価方法およびウェーハの製造工程の管理方法
CN112397409A (zh) * 2020-11-24 2021-02-23 安测半导体技术(江苏)有限公司 一种芯片晶圆测试数据分析方法及系统
CN113782465B (zh) * 2021-11-11 2022-02-18 西安奕斯伟材料科技有限公司 用于检测晶圆表面金属的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302337A (ja) 2008-06-13 2009-12-24 Shin Etsu Handotai Co Ltd 汚染検出用モニターウェーハ、汚染検出方法及びエピタキシャルウェーハの製造方法
JP2010177241A (ja) * 2009-01-27 2010-08-12 Shin Etsu Handotai Co Ltd ライフタイムの評価方法
JP2010177238A (ja) * 2009-01-27 2010-08-12 Shin Etsu Handotai Co Ltd エピタキシャルウエーハの製造方法及び半導体装置の製造方法
JP2011238656A (ja) * 2010-05-06 2011-11-24 Shin Etsu Handotai Co Ltd 金属汚染評価用シリコンウエーハ及び金属汚染評価用シリコンウエーハの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048683B2 (ja) 1975-07-25 1985-10-29 株式会社日立製作所 物体表面状態検査方法とその検査装置
DE10048809A1 (de) * 2000-09-29 2002-04-18 Itemic Ag Verfahren zur Bestimmung des größten Lagefehlers von Strukturelementen eines Wafers
US6861701B2 (en) 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
JP2005019445A (ja) 2003-06-23 2005-01-20 Fujitsu Ltd シリコンウエハの評価方法および半導体装置の製造方法
FR2954583B1 (fr) * 2009-12-18 2017-11-24 Alcatel Lucent Procede et dispositif de pilotage de fabrication de semi conducteurs par mesure de contamination
JP5817236B2 (ja) 2011-06-17 2015-11-18 株式会社Sumco 半導体試料中の金属汚染評価方法および半導体基板の製造方法
JP5304856B2 (ja) 2011-08-18 2013-10-02 セイコーエプソン株式会社 放電灯の駆動装置および駆動方法、光源装置、プロジェクタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302337A (ja) 2008-06-13 2009-12-24 Shin Etsu Handotai Co Ltd 汚染検出用モニターウェーハ、汚染検出方法及びエピタキシャルウェーハの製造方法
JP2010177241A (ja) * 2009-01-27 2010-08-12 Shin Etsu Handotai Co Ltd ライフタイムの評価方法
JP2010177238A (ja) * 2009-01-27 2010-08-12 Shin Etsu Handotai Co Ltd エピタキシャルウエーハの製造方法及び半導体装置の製造方法
JP2011238656A (ja) * 2010-05-06 2011-11-24 Shin Etsu Handotai Co Ltd 金属汚染評価用シリコンウエーハ及び金属汚染評価用シリコンウエーハの製造方法

Also Published As

Publication number Publication date
KR20150067766A (ko) 2015-06-18
CN104937705A (zh) 2015-09-23
US20150318222A1 (en) 2015-11-05
US9842779B2 (en) 2017-12-12
EP2950337A4 (en) 2016-09-07
EP2950337A1 (en) 2015-12-02
KR101606111B1 (ko) 2016-03-24
JP2014143325A (ja) 2014-08-07
CN104937705B (zh) 2017-05-03
TWI528483B (zh) 2016-04-01
EP2950337B1 (en) 2018-07-04
TW201430983A (zh) 2014-08-01
JP6102277B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6102277B2 (ja) 半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法
US7901132B2 (en) Method of identifying crystal defect region in monocrystalline silicon using metal contamination and heat treatment
US7517706B2 (en) Method for evaluating quality of semiconductor substrate and method for manufacturing semiconductor substrate
JPWO2007142024A1 (ja) 単結晶シリコンウェーハのcop評価方法
KR20170122279A (ko) 반도체 기판의 평가 방법 및 반도체 기판의 제조 방법
US7074271B2 (en) Method of identifying defect distribution in silicon single crystal ingot
KR101302588B1 (ko) 웨이퍼의 처리 방법
JP2019089676A (ja) シリコン単結晶の評価方法およびシリコンウェーハの製造方法
JP2013197364A (ja) 金属汚染検出方法及びそれを用いたシリコンエピタキシャルウェーハの製造方法
KR20230053212A (ko) 웨이퍼의 결함 영역의 평가 방법
JP3874255B2 (ja) シリコンウェーハ中のbmdサイズの評価方法
JPH07297246A (ja) シリコン半導体の金属汚染モニタ方法
CN113782465B (zh) 用于检测晶圆表面金属的方法
JP6731161B2 (ja) シリコン単結晶の欠陥領域特定方法
KR100901823B1 (ko) 실리콘 웨이퍼 결함 분석 방법
JP2017028007A (ja) シリコンウェーハのゲッタリング能力評価方法
JP2019054132A (ja) 半導体ウェーハの評価方法
CN115791818A (zh) 硅片缺陷的检测方法
JP2009266835A (ja) シリコン単結晶の金属汚染評価方法
KR102294183B1 (ko) 실리콘 웨이퍼
JP2005303094A (ja) シリコンウェーハのゲッタリング効率を評価する方法
JP2017152544A (ja) 単結晶ウェーハの評価方法
KR20050059910A (ko) 실리콘 웨이퍼의 결함을 검출하는 방법
KR101312545B1 (ko) 표준 웨이퍼 및 그의 생산 방법
TW202331875A (zh) 用於監測半導體製程塊體金屬的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157012986

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647963

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014743430

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE