WO2014115549A1 - 高強度ラインパイプ用熱延鋼板 - Google Patents

高強度ラインパイプ用熱延鋼板 Download PDF

Info

Publication number
WO2014115549A1
WO2014115549A1 PCT/JP2014/000320 JP2014000320W WO2014115549A1 WO 2014115549 A1 WO2014115549 A1 WO 2014115549A1 JP 2014000320 W JP2014000320 W JP 2014000320W WO 2014115549 A1 WO2014115549 A1 WO 2014115549A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hardness
steel
segregation part
hot
Prior art date
Application number
PCT/JP2014/000320
Other languages
English (en)
French (fr)
Inventor
聡太 後藤
俊介 豊田
岡部 能知
雪彦 岡崎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP14743980.6A priority Critical patent/EP2927339B1/en
Priority to US14/763,403 priority patent/US20150368736A1/en
Priority to JP2014558503A priority patent/JP5884202B2/ja
Priority to KR1020157017737A priority patent/KR101718267B1/ko
Priority to CN201480005063.4A priority patent/CN104937125B/zh
Publication of WO2014115549A1 publication Critical patent/WO2014115549A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention has hydrogen-induced cracking resistance (hereinafter referred to as HIC resistance) and transports energy resources such as crude oil and natural gas having an API (American Petroleum Institute) standard X52 or higher strength.
  • HIC resistance hydrogen-induced cracking resistance
  • the present invention relates to a hot-rolled steel sheet suitable for use as an electric-welded steel pipe material for a line pipe and a manufacturing method thereof.
  • UOE steel pipes that can produce large-diameter and thick-walled steel pipes have been mainly used as line pipes from the viewpoint of transportation efficiency. Recently, however, UOE steel pipes have been replaced with higher productivity and less expensive coils. High-strength, electric-resistance, welded-steel-pipe, which is made of hot-rolled steel strip (hot-rolled steel strip), is becoming popular. In addition to cost, ERW steel pipes have the advantage that wall thickness deviation and roundness are superior to UOE steel pipes. On the other hand, the pipe production ⁇ method of cold-rolled steel pipes is cold ⁇ roll forming, and the plastic strain applied when manufacturing steel pipes is much higher than that of UOE steel pipes. There is a feature that is large.
  • sour resistance such as HIC resistance and sulfate stress corrosion cracking resistance (SSC). Is required.
  • SSC stress corrosion cracking resistance
  • HIC hydrogen ions generated by the corrosion reaction become hydrogen atoms on the steel surface and penetrate into the steel and accumulate around inclusions such as MnS, coarse carbides such as NbC, and hard second phase. In this way, an internal pressure is generated, and a crack is finally generated in the steel material.
  • inclusions such as MnS, coarse carbides such as NbC, and hard second phase.
  • an internal pressure is generated, and a crack is finally generated in the steel material.
  • plastic strain is applied to the steel material, a large number of dislocations are introduced around the inclusions, carbides, and hard second phase, which facilitates the accumulation of hydrogen atoms. Be encouraged.
  • Patent Document 1 the total content of elements that combine with each of S, O (oxygen) and N to form inclusions is controlled to 0.01% or less, or the maximum diameter of inclusions is controlled to 5 ⁇ m or less.
  • Patent Document 2 discloses a method of reducing the HIC area ratio (area ratio of HIC) by reducing the size of TiN that is the starting point of HIC. Specifically, the addition amount of Al and Ca is adjusted, and the weight ratio of CaO / Al 2 O 3 is set to 1.2 to 1.5, so that the Al—Ca sulfide in the molten steel is refined. Al—Ti—Ca composite inclusions generated as nuclei are 30 ⁇ m or less.
  • board thickness direction shall be 0.06% or less, and Ti concentration shall be 0.025% or less.
  • Disclosed is a method for making it difficult to produce Nb and Ti carbonitrides serving as HIC starting points.
  • Patent Document 4 a high-strength line excellent in HIC resistance by using Cr and Mo, which increases HIC resistance by reducing the amount of Mn added to steel and reduces central segregation, and is relatively difficult to segregate center.
  • a method of manufacturing a pipe is disclosed.
  • JP 2006-63351 A Japanese Patent No. 4363403 (International Publication WO2005 / 075694) JP 2011-63840 A Japanese Patent No. 2647302 (JP-A-5-271766)
  • the present invention has been made in view of the above-described problems.
  • An object of the present invention is to provide an ERW steel pipe for a high-strength line pipe excellent in HIC resistance as follows.
  • the present invention was obtained by conducting numerous experiments on the relationship between the hardness of the center segregation part and the steel composition, structure, HIC results, and manufacturing conditions. It was invented based on knowledge.
  • FIG. 1 shows the relationship between the hardness ratio between the center segregation part and the non-segregation part (Vickers hardness of the center segregation part / Vickers hardness of the non-segregation part) and the crack length ratio (CLR). According to this, it was found that when the hardness ratio is 1.20 or less, the CLR is 15% or less.
  • FIG. 2 shows the relationship between the hardness ratio of the central segregation part and the non-segregation part and the SP value.
  • the SP value must be 1.90 or less in order to make the hardness ratio of the center segregation part and the non-segregation part less than 1.20.
  • the present invention has been made by further studying the above knowledge, and the gist of the present invention is as follows.
  • Component composition is mass%, C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.60 to 1.10%, P: 0.008% S: 0.0010% or less, Nb: 0.010 to 0.060%, Ti: 0.001 to 0.020%, Mo: 0.05% or less, Cr: 0.05 to 0.50% Al: 0.01 to 0.08%, Ca: 0.0005 to 0.0050%, O: 0.005% or less, Cu: 0.50% or less, Ni: 0.50%
  • V containing at least one selected from 0.10% or less, consisting of the balance Fe and inevitable impurities, satisfying the following formula (1), the metal structure is bainitic ferrite, Excellent HIC resistance characterized by the ratio of the hardness of the center segregation part to the hardness of the non-segregation part being less than 1.20 Hot-rolled steel sheet for high strength line pipe.
  • SP 1.90
  • required from SP Mn + Mo + 11.3 * C + 0.29 * (Cu + Ni) + 0.60 * Cr + 0.88 * V
  • formula means the mass% of each element.
  • EC [Ca] eff / (1.25 ⁇ S)
  • [Ca] eff is obtained from Ca ⁇ (0.18 + 130 ⁇ Ca) ⁇ O.
  • element symbols Ca, S, and O in the formula mean mass% of each element.
  • a steel slab having the composition described in [1] or [2] is heated to a temperature of 1100 ° C. to 1300 ° C., followed by rough rolling, and a cumulative rolling reduction (cumulative rolling reduction at 930 ° C. or lower). After finishing rolling so that the ratio) is 20% or more, accelerated cooling is performed from 380 to 600 ° C. at an average cooling rate of 5 to 100 ° C./s at the center of the sheet thickness, and then winding on the coil
  • the HIC resistance after forming an ERW steel pipe to which a large plastic strain is imparted at the time of molding is improved, which corresponds to a NACE solution. Therefore, it is possible to manufacture a hot-rolled steel sheet for an ERW steel pipe line pipe that can be used without any problem even in a severe environment.
  • the hot-rolled steel sheet produced according to the present invention can also be used for a spiral steel pipe line pipe.
  • CLR crack length ratio
  • C 0.02 to 0.06% C is an element that greatly contributes to increasing the strength of steel, and when 0.02% or more is included, the effect is exhibited. However, if it exceeds 0.06%, the formation of a second phase such as a pearlite structure is easy. Therefore, the HIC resistance deteriorates. For this reason, the C content is in the range of 0.02 to 0.06%. Preferably, it is 0.03 to 0.05% of range.
  • Si 0.05 to 0.25%
  • Si is an element added to reduce the scale-off quantity at the time of solid solution strengthening and hot rolling, and when it is contained in an amount of 0.05% or more, its effect is exhibited. If the percentage exceeds 50%, the red scale grows excessively, resulting in cooling ununiformity during hot rolling, and the appearance and uniformity of the material deteriorate. For this reason, the Si amount is in the range of 0.05 to 0.25%. More preferably, it is 0.10 to 0.25%.
  • Si forms an MnSi-based oxide during ERW welding and deteriorates the toughness of the ERW weld, so that the Mn / Si ratio should be 4.0 or more and 12 or less. Is preferred.
  • Mn 0.60 to 1.10%
  • Mn is an element that contributes to strength and toughness through refinement of the steel structure, and exhibits its effect when contained in an amount of 0.60% or more.
  • the increase in the Mn content promotes the formation of a fine martensite structure in the central segregation part, and further promotes the generation of MnS as a starting point of HIC, so the content needs to be suppressed to 1.10% or less. .
  • the amount of Mn is made into the range of 0.60 to 1.10%. Preferably, it is 0.75 to 1.05% of range.
  • P 0.008% or less
  • P is an unavoidable impurity element, which significantly increases the hardness of the central segregation part and deteriorates the HIC resistance. Therefore, the content is preferably as low as possible, but up to 0.008% Permissible. Furthermore, in order to make P very low, it is accompanied by a cost increase due to a long refining time, so 0.002% or more is preferable.
  • S 0.0010% or less S is an element inevitably contained in steel as in P, and since MnS is produced in steel, its content is preferably as low as possible, but up to 0.0010% Is acceptable. More preferably, it is 0.0006% or less.
  • Nb 0.010 to 0.060%
  • Nb is an element that precipitates finely as Nb carbonitride in the coiling process during the production of hot-rolled steel sheets and contributes to improving the strength of the steel.
  • it is an element that suppresses the growth of austenite grains during electric resistance welding and contributes to the improvement of weld toughness. The effect is exhibited when the content is 0.010% or more.
  • the Nb amount is set to a range of 0.010 to 0.060%. Preferably it is 0.030 to 0.060% of range.
  • Ti 0.001 to 0.020%
  • Ti is an element added to fix and detoxify N as TiN, which significantly deteriorates the toughness of steel. The effect is exhibited when the content exceeds 0.001%.
  • the Ti amount is set to a range of 0.001 to 0.020%. Preferably it is 0.005 to 0.015% of range.
  • Mo 0.05% or less Mo is an element that enhances hardenability and works extremely effectively to improve the toughness and strength of steel. However, it concentrates in the central segregation part and forms a martensite structure. Worsen. For this reason, the Mo content is preferably as low as possible, but 0.05% is acceptable. More preferably, it is 0.01% or less.
  • Cr 0.05 to 0.50% Cr is an element that effectively improves hardenability and improves the toughness and strength of steel. It is effective when added in an amount of 0.05% or more. Cr oxide is formed and the weld toughness is significantly deteriorated. In order to suppress this, the Cr content is in the range of 0.05 to 0.50%. Preferably it is 0.05 to 0.30% of range.
  • Al 0.01 to 0.08% Al is added as a deoxidizing agent, but if it is less than 0.01%, deoxidation is not sufficient. On the other hand, if it exceeds 0.08%, the amount of coarse Al-based oxide remaining in the steel increases, and HIC resistance And worsen toughness. Therefore, the Al content is set in the range of 0.01 to 0.08%. Preferably it is 0.01 to 0.05% of range.
  • Ca 0.0005 to 0.0050%
  • Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, and exerts its effect when contained in an amount of 0.0005% or more.
  • the Ca content is in the range of 0.0005 to 0.0050%. Preferably it is 0.0010 to 0.0030% of range.
  • one or more of Cu, Ni, and V can be further contained in the following ranges.
  • Cu 0.50% or less
  • Cu is an element that contributes to improving the toughness and strength of steel through improved hardenability, and is less concentrated in the central segregation part than Mn and Mo having the same effect. Since steel can be strengthened without deteriorating HIC resistance, it is added according to the strength grade. The effect is exhibited when the content is 0.05% or more. However, when the content exceeds 0.50%, the effect is saturated, and the content exceeding this causes an extra cost increase. Therefore, the Cu content is 0.50% or less. Preferably, it is 0.40% or less.
  • Ni 0.50% or less
  • Ni is an element that contributes to improving the toughness and strength of steel through improved hardenability. Compared with Mn and Mo having the same effect, Ni is concentrated in the central segregation part. Therefore, the steel can be strengthened without deteriorating the HIC resistance, so it is added depending on the strength grade. The effect is exhibited when the content is 0.05% or more, but when the content exceeds 0.50%, the effect is saturated, and the content exceeding this causes an extra cost increase. Therefore, the Ni content is 0.50% or less. Preferably, it is 0.40% or less.
  • V 0.10% or less
  • V is an element that contributes to improving the strength of steel with a content of 0.005% or more through solute strengthening and precipitation strengthening, but exceeds 0.10% And the hardness of the center segregation part becomes high and the HIC resistance is deteriorated. Therefore, the V amount is 0.10% or less. Preferably, it is 0.080% or less.
  • the SP value obtained from the content of each alloy element satisfies the following formula (1).
  • SP SP ⁇ 1.90 (1)
  • required from SP Mn + Mo + 11.3 * C + 0.29 * (Cu + Ni) + 0.60 * Cr + 0.88 * V,
  • formula means the mass% of each element. The element not added is set to 0.
  • the SP value is an equation devised so that the hardness of the center segregation part of the hot rolled steel sheet as the material of the ERW steel pipe can be estimated from the content of each alloy element.
  • the concentration of the element in the central segregation part becomes remarkable, and the ratio of the hardness of the central segregation part to the hardness of the non-segregation part does not satisfy less than 1.20.
  • the lower the SP value the smaller the ratio between the hardness of the central segregation part and the hardness of the non-segregation part.
  • the SP value The upper limit needs to be 1.75.
  • EC 1.2-4.0
  • the EC value shown below satisfies the following formula (2) in order to more efficiently detoxify sulfide inclusions by adding Ca.
  • EC [Ca] eff / (1.25 ⁇ S).
  • [Ca] eff is obtained from Ca ⁇ (0.18 + 130 ⁇ Ca) ⁇ O, and the element symbols Ca, S, and O in the formula mean mass% of each element.
  • the EC value is a value indicating whether or not the amount of Ca added to control the morphology of sulfide inclusions is sufficiently added to form CaS.
  • Ca is MnS that is in an insufficiency and serves as a starting point for HIC is generated.
  • the EC value exceeds 4.0, a large amount of Ca-based oxide is generated, the cleanliness of the steel is lowered, and the HIC resistance is deteriorated. Therefore, the EC value is preferably in the range of 1.2 to 4.0. More preferably, it is in the range of 1.4 to 0.36.
  • the balance other than the above-described elements is composed of Fe and inevitable impurities.
  • the content of other trace elements is not limited as long as the effects of the present invention are not hindered.
  • the metal structure needs to be a bainitic ferrite structure.
  • the presence of heterogeneous structural phases such as ferrite, fine martensite, pearlite, and retained austenite in the bainitic ferrite structure causes a decrease in yield strength, toughness, and HIC resistance. The smaller the percentage of the organization, the better.
  • the area fraction other than the bainitic ferrite structure is extremely low, the influence is so small that it can be ignored.
  • bainitic ferrite structure ferrite, fine martensite, pearlite, retained austenite, etc.
  • ferrite fine martensite, pearlite, retained austenite, etc.
  • the metal structure described above can be obtained by manufacturing the steel having the above-described composition by the method described below.
  • the steel composition in which the ratio of the hardness of the center segregation part to the hardness of the non-segregation part is less than 1.20 is examined, and the ratio of the hardness of the center segregation part and the hardness of the non-segregation part is calculated as shown in FIG.
  • the steel composition having a value of less than 1.20 has an SP value of 1.90 or less.
  • the hardness of the center segregation part was determined by corroding the specimen for texture observation with 2% nital for 30 seconds or more to reveal the center segregation line, and then on the center segregation line and the center segregation as shown in FIG. Each of the locations separated by 200 ⁇ m from the line was measured at 15 points, and the respective arithmetic averages were obtained to obtain the hardness of the central segregation part and the non-segregation part.
  • Slab heating temperature is 1100 ° C. or higher and 1300 ° C. or lower. If it is less than 1100 degreeC, it is inadequate to make the carbide
  • the cumulative reduction ratio of 930 ° C. or less is 20% or more. If the cumulative cumulative rolling reduction is less than 20%, the site for forming the bainitic ferrite structure is insufficient, and the toughness deteriorates due to the coarse structure. However, when the cumulative rolling reduction exceeds 80%, not only the effect is saturated, but also a great load is applied to the rolling mill. Therefore, the upper limit of the cumulative rolling reduction is preferably 80% or less.
  • the average cooling rate at the center of the plate thickness is 5 to 100 ° C / s. At a cooling rate of less than 5 ° C./s, even if hardenability improving elements such as Cu, Ni and Cr are added, the area fraction of the ferrite and / or pearlite structure becomes 3% or more, and therefore 5 ° C./s or more. The cold speed of is required. On the other hand, when it exceeds 100 ° C./s, the area fraction of the martensite structure becomes 3% or more.
  • the cooling rate at the center of the plate thickness is measured with a run-out cooling-capacity (heat-transfer-coefficient) and a radiation thermometer on the run-out. The heat transfer calculation (heat-transfer calculation) was performed using the surface temperature of the steel sheet, and the temperature history at the center of the plate thickness (temperature history) was calculated.
  • the cooling stop temperature range is 380 ° C to 600 ° C. If the temperature exceeds 600 ° C., the area fraction of the ferrite and pearlite structures becomes 3% or more, and the strength decreases due to coarsening of precipitation strengthening particles such as Nb carbonitride. On the other hand, when the temperature is lower than 380 ° C., the deformation resistance of the steel sheet is increased, and it becomes difficult to wind up in a coil shape, and precipitation strengthening particles such as Nb carbonitride do not precipitate, so that the strength is increased. descend.
  • a steel material having the composition shown in Table 1 was hot-rolled under the hot rolling conditions and cooling conditions shown in Table 2 and wound into a coil shape to obtain a hot-rolled steel sheet having a thickness shown in Table 2.
  • Steel types G to K are comparative steels with individual components, SP values, etc. removed.
  • Specimens were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, Charpy impact test, hardness measurement and HIC test to evaluate tensile properties, toughness and HIC resistance.
  • Sample specimens for structure observation were collected from the obtained hot-rolled steel sheet, the cross section in the rolling direction was polished and corroded, and the thickness was measured with an optical microscope (400 magnification) and a scanning electron microscope (1000 magnification). Five or more fields of view were photographed at the central position, and the type of structure and the presence or absence of a steel structure (ferrite, fine martensite, pearlite, retained austenite, etc.) other than the bainitic ferrite structure were observed.
  • the tensile test is performed at room temperature in accordance with the provisions of API-5L so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction from the obtained hot-rolled steel sheet, and yielding is performed. Stress YS (deformation stress at a nominal strain of 0.5%) and tensile strength TS were determined.
  • V-notch specimens were taken from the center of the thickness of the obtained hot-rolled steel sheet so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and conformed to the provisions of JIS Z 2242
  • the Charpy impact test was conducted in the range of -140 ° C to 0 ° C, the absorbed energy and the brittle fracture rate were measured, and the brittle fracture rate was 50%.
  • the temperature (fracture transition temperature (fracture transition temperature)) was obtained.
  • the test piece in each temperature was made into three, and the arithmetic mean of the obtained absorbed energy and the brittle fracture surface ratio was calculated
  • the hardness of the center segregation part was measured at 15 points each on the segregation line and 200 ⁇ m away from the segregation line after the structure observation specimen was corroded with 2% nital for 30 seconds or longer to reveal the segregation line. Then, the arithmetic average was obtained, and the hardness of the segregation part and the non-segregation part was obtained (FIG. 3). The hardness was measured using a Vickers hardness meter with a test force of 0.3 kgf. The hardness ratio was calculated by dividing the segregation part hardness by the non-segregation part hardness.
  • HIC test piece having a thickness of 20 mm width and 100 mm length was collected from the obtained hot-rolled steel sheet so that the longitudinal direction is the rolling direction of the steel sheet, and conformed to the provisions of NACE TM 0284, The HIC resistance was evaluated with the solution A. Note that the number of test pieces was 10, and 10% of compressive strain was applied in the width direction in advance in order to reflect the influence of plastic strain at the time of forming the ERW steel pipe. As a result, it was judged that the coil having CLR ⁇ 15% in all the test pieces had good HIC resistance ( ⁇ ). The coil having CLR> 15% in any test piece was judged to have poor HIC resistance (x).
  • the comparative example which is out of the scope of the present invention is a hot-rolled steel sheet for high-strength ERW steel pipes with excellent HIC resistance, as desired toughness is not obtained or HIC resistance is reduced. The desired characteristics cannot be secured.

Abstract

 耐HIC性に優れた高強度ラインパイプ用電縫鋼管を提供する。 成分組成が、質量%で、C:0.02~0.06%、Si:0.05~0.25%、Mn:0.60~1.10%、P:0.008%以下、S:0.0010%以下、Nb:0.010~0.060%、Ti:0.001~0.020%、Mo:0.05%以下、Cr:0.05~0.50%、Al:0.01~0.08%、Ca:0.0005~0.0050%、O:0.005%以下を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、V:0.10%以下の中から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなり、下記式(1)を満たし、金属組織がベイニティックフェライトであって、中心偏析部の硬度と非偏析部の硬度との比が1.20未満であることを特徴とする高強度ラインパイプ用熱延鋼板。 SP≦1.90 ・・・・・(1) なお、SPは、SP=Mn+Mo+11.3×C+0.29×(Cu+Ni)+0.60×Cr+0.88×V から求められ、式中の元素記号は各元素の質量%を意味する。

Description

高強度ラインパイプ用熱延鋼板
 本発明は耐水素誘起割れ性(hydrogen induced cracking resistance)(以下耐HIC性と呼ぶ)を有し、API(American Petroleum Institute)規格 X52以上の強度を有する、原油、天然ガスといったエネルギー資源を輸送するためのラインパイプ用電縫鋼管素材として用いるのに好適な熱延鋼板およびその製造方法に関する。
 従来、ラインパイプには、輸送効率の観点から、大径で厚肉な鋼管が製造可能なUOE鋼管が主として使用されてきたが、最近では、UOE鋼管に代わり生産性が高く、より安価なコイル形状の熱延鋼板(熱延鋼帯)を素材とした高強度電縫鋼管(high strength electric resistance welded steel pipe)の普及が進んでいる。コスト面以外にも、電縫鋼管は肉厚偏差や真円度がUOE鋼管に比べて優れるといった利点がある。一方で、電縫鋼管の造管方法(pipe production method)は冷間ロール成形(cold roll forming)であり、鋼管を製造する際に付与される塑性ひずみ(plastic strain)がUOE鋼管と比べて格段に大きいという特徴がある。
 近年の原油および天然ガス開発は、エネルギー需要の増加と採掘技術の進歩により油田およびガス田の極地化や、高深度化が進んでいる。こういった場所で用いられるラインパイプには強度、靭性および溶接性に加えて、耐HIC性や耐硫化物応力腐食割れ(sulfate stress corrosion cracking resistance)(SSC)といったいわゆる耐サワー特性(sour resistance)が求められる。敷設された後に応力が負荷されないラインパイプでは、特に耐HIC性が重要となる。
 HICは腐食反応により生成した水素イオンが鋼表面で水素原子となり鋼中に侵入して、MnSなどの介在物、NbCなどの粗大な炭化物や硬質第二相(second hard phase)のまわりに集積することで内圧を生じさせ、最終的に鋼材に割れを発生させるものである。また、鋼材に塑性ひずみが付与された場合、前記介在物、炭化物および硬質第二相周辺には多数の転位(dislocation)が導入されることによって、より水素原子が集積しやすくなるため、HICが助長される。
 上記したHICの問題を解決するために、従来から種々の解決策が提案されている。
 特許文献1では、S、O(酸素)およびNのそれぞれと結合して介在物を形成する元素の含有量の合計を0.01%以下として、あるいは介在物の最大径を5μm以下に制御して、HICの起点となる介在物を無害化し、さらに中心偏析部(center segregation part)の硬度をHv330以下とすることで耐HICを向上させる方法が開示されている。
 特許文献2では、HICの起点となるTiNの大きさを小さくすることでHIC面積率(area ratio of HIC)を小さくする方法が開示されている。具体的にはAlとCaの添加量を調整し、CaO/Alの重量比を1.2~1.5とすることで溶鋼中のAl-Ca系硫化物を微細化し、それを核として生成するAl-Ti-Ca系複合介在物を30μm以下とする。
 また特許文献3では、板厚方向の中央部から板厚方向へ向けて板厚の5%の距離にある領域におけるNb濃度を0.06%以下とすると共にTi濃度を0.025%以下に抑えることで、HIC起点となるNbおよびTiの炭窒化物を生成し難くする方法が開示されている。
 特許文献4では、鋼に添加するMn量を低減し中心偏析を軽減することで耐HIC性を高め、比較的中心偏析し難いCrおよびMoを活用することで耐HIC性に優れた高強度ラインパイプを製造する方法が開示されている。
特開2006-63351号公報 特許第4363403号公報(国際公開WO2005/075694号公報) 特開2011-63840号公報 特許第2647302号公報(特開平5-271766号公報)
 しかしながら、特許文献1に記載の技術では、中心偏析部の硬度が依然として高く、起点となる介在物を無害化できたとしても、成形時に大きな塑性が付与される電縫管では十分な耐HIC性を担保できないという問題がある。
 また、特許文献2及び特許文献3に記載された技術では、中心偏析部の硬度を制御する具体的対策が採られておらず、起点となる介在物を無害化できたとしても依然として電縫管では大きなHICが発生するという問題がある。
 さらに、特許文献4に記載された技術では、CrやMoの過剰添加により、マルテンサイト等の硬質第二相の生成を助長し、中心偏析部の硬度が高くなるので、成形時に大きな塑性が付与される電縫管では、さらなる中心偏析部の硬度の軽減が必要になるという問題がある。
 本発明は、上記した課題を鑑みてなされたもので、電縫管ラインパイプに好適な、例えば10%の塑性ひずみを受けた後のHICが割れ長さ率(以下CLRと呼ぶ)=15%以下となる耐HIC性に優れた高強度ラインパイプ用電縫鋼管を提供することを目的とする。
 ここで耐HIC性に優れるとは、NACE溶液(NACE TM-0284 solutionA :5%NaCl+0.5%CHOOH、1気圧飽和HS、pH=3.0~4.0)中に96hr浸漬した後の割れ長さ率(CLR)が15%以下であることをいう。
 本発明は、中心偏析部の硬度を低減し、かつ所望の強度を得るために、中心偏析部の硬度と鋼組成、組織構成とHIC成績および製造条件の関係について数多くの実験を行なって得た知見をもとに発明されたものである。
 まず始めに、製品のHIC成績と中心偏析部の硬度との関係を調査した。その結果、中心偏析部のビッカース硬度をHV230以下とすれば、割れ長さ率(CLR)≦15%が達成できることがわかった。このこと自体、すなわち耐HIC性向上のためには、中心偏析部の硬度を制御することは、特許文献1にも記載がある通り、従来から知られていたことである。
 ところが、さらに製品のデータ収集を進めたところ、中心偏析部の最高硬度をHv230以下に抑えた場合でも、CLR>15%となる場合があることが分かり、この原因を材質均質性の観点から調べた。図1に中心偏析部と非偏析部との硬度比(中心偏析部のビッカース硬度/非偏析部のビッカース硬度)と割れ長さ率(CLR)との関係を示す。これによると硬度比が1.20以下になるとCLRが15%以下となることが判った。
 これは、板厚方向の硬度分布が均一でない場合、大きな塑性ひずみを受けると中心偏析の硬度が高い箇所とそうでない箇所の間にひずみが集中し、そこが水素原子のトラップサイト(trap site)となるためであると考えられる。
 次に中心偏析部と非偏析部との硬度比1.20未満を達成するための鋼の組成について検討し、炭素当量式(CEQ=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15)に、独自の計算機シミュレーション(computation simulation)により算出した各成分の連鋳スラブでの偏析係数(segregation coefficient)を織り込んだSP値(=Mn+Mo+11.3C+0.29×(Cu+Ni)+0.60Cr+0.88V)を算出した。図2に中心偏析部と非偏析部との硬度比とSP値との関係を示す。この結果、中心偏析部と非偏析部との硬度比を1.20未満とするにはSP値を1.90以下とする必要があることが判った。
 本発明は、上記の知見に更に検討を加えてなされたもので、本発明の要旨は、以下の通りである。
 [1]成分組成が、質量%で、C:0.02~0.06%、Si:0.05~0.25%、Mn:0.60~1.10%、P:0.008%以下、S:0.0010%以下、Nb:0.010~0.060%、Ti:0.001~0.020%、Mo:0.05%以下、Cr:0.05~0.50%、Al:0.01~0.08%、Ca:0.0005~0.0050%、O:0.005%以下を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、V:0.10%以下の中から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなり、下記式(1)を満たし、金属組織がベイニティックフェライトでであって、中心偏析部の硬度と非偏析部の硬度との比が1.20未満であることを特徴とする耐HIC性に優れた高強度ラインパイプ用熱延鋼板。
   SP≦1.90  ・・・・・(1)
 なお、SPは、SP=Mn+Mo+11.3×C+0.29×(Cu+Ni)+0.60×Cr+0.88×V から求められ、式中の元素記号は各元素の質量%を意味する。
 [2]前記成分組成に加えてさらに、下記式(2)を満たすことを特徴とする前記[1]に記載の耐HIC性に優れた高強度ラインパイプ用熱延鋼板。
   1.2≦EC≦4.0  ・・・・・(2)
 ここで、ECは、EC=[Ca]eff/(1.25×S)  と表わされ、[Ca]effはCa-(0.18+130×Ca)×Oから求められる。なお、式中の元素記号Ca、S、Oは各元素の質量%を意味する。
 [3]前記成分組成に加えてさらに、中心偏析部の硬度と非偏析部の硬度との比が1.20未満であることを特徴とする前記[1]または[2]に記載の耐HIC性に優れた高強度ラインパイプ用熱延鋼板。
 [4]前記[1]または[2]に記載の成分組成を有する鋼のスラブを、1100℃~1300oCの温度に加熱し、粗圧延に引き続き、930℃以下での累積圧下率(cumulative rolling reduction ratio)が20%以上となるように仕上圧延を行った後、板厚中心で5~100℃/sの平均冷却速度で380~600℃まで加速冷却(accelerated cooling)を行い、その後コイルに巻取ることを特徴とする耐HIC性に優れた高強度ラインパイプ用熱延鋼板の製造方法。
 本発明によれば、鋼組成最適化によって中心偏析部の硬度を厳密に制御することによって、成形時に大きな塑性ひずみが付与される電縫鋼管成形後における耐HIC性を向上させ、NACE溶液に相当する過酷環境下においても問題なく使用できる電縫鋼管ラインパイプ用熱延鋼板を製造することができる。また本発明により製造される熱延鋼板はスパイラル鋼管ラインパイプ(spiral steel pipe for linepipe)にも使用できる。
中心偏析部の硬度/非偏析部の硬度と割れ長さ率(CLR)との関係を示す図である。 SP値と中心偏析部の硬度/非偏析部の硬度の関係を示す図である。 中心偏析部の硬度と非偏析部の硬度の測定位置を示す図である。
 以下に本発明の各構成要件の限定理由について説明する。
 1.成分組成について
 はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
 C:0.02~0.06%
 Cは鋼の高強度化に大きく寄与する元素であり、0.02%以上の含有でその効果を発揮するが、0.06%を超える含有はパーライト組織のような第二相の生成を容易にするため、耐HIC性が悪化する。このためC量は0.02~0.06%の範囲とする。好ましくは、0.03~0.05%の範囲である。
 Si:0.05~0.25%
 Siは、固溶強化と熱間圧延時のスケールオフ量(scale-off quantity)を小さくするために添加する元素であり、0.05%以上の含有でその効果を発揮するが、0.25%を超えると赤スケール(red scale)が過剰に成長し、熱間圧延時の冷却むら(cooling ununiformity)を生じ、外観や材質の均一性(uniformity)が悪化する。このため、Si量は0.05~0.25%の範囲とする。より好ましくは、0.10~0.25%である。加えて、Siは電縫溶接時にMnSi系の酸化物を形成し、電縫溶接部の靭性(toughness)を悪化させるので、Mn/Si比が4.0以上12以下となるように含有することが好ましい。
 Mn:0.60~1.10%
 Mnは鋼組織の微細化を通じて強度、靭性に寄与する元素であり、0.60%以上の含有でその効果を発揮する。一方でMn含有量の増加は中心偏析部での微細マルテンサイト組織形成を助長し、さらにHICの起点となるMnSの生成を助長するため、その含有量は1.10%以下に抑える必要がある。このため、Mn量は0.60~1.10%の範囲とする。好ましくは、0.75~1.05%の範囲である。
 P:0.008%以下
 Pは不可避的不純物元素であり、中心偏析部の硬度を著しく上昇させ、耐HIC性を悪化させるため、その含有量はできるだけ低いほうが好ましいが、0.008%までは許容される。さらに、Pを極めて低くするためには精錬時間(refining time)の長時間化によるコスト上昇を伴うため、0.002%以上とすることが好ましい。
 S:0.0010%以下
 Sは、Pと同様に鋼中に不可避的に含まれる元素であり、鋼中ではMnSを生成するため、その含有量はできるだけ低いほうが好ましいが、0.0010%までは許容される。より好ましくは、0.0006%以下である。
 Nb:0.010~0.060%
 Nbは、熱延鋼板製造時の巻取工程(coiling process)においてNb炭窒化物として微細に析出し、鋼の強度向上に寄与する元素である。また電縫溶接時にオーステナイト粒の成長を抑制し、溶接部靭性の向上に寄与する元素である。0.010%以上の含有でその効果を発揮する。一方、0.060%を超えるとHICの起点となる粗大なNb炭窒化物が生成しやすくなる。そのため、Nb量は0.010~0.060%の範囲とする。好ましくは0.030~0.060%の範囲である。
 Ti:0.001~0.020%
 Tiは、鋼の靭性を著しく悪化させるNをTiNとして固定し無害化するために添加する元素である。0.001%を超える含有でその効果を発揮する。一方で、0.020%を超えるとFeのへき開面に沿って析出するTi炭窒化物の量が増加し、鋼の靭性を悪化させる。そのため、Ti量は0.001~0.020%の範囲とする。好ましくは0.005~0.015%の範囲である。
 Mo:0.05%以下
 Moは焼入性を高め、鋼の靭性および強度向上に極めて有効に作用する元素であるが、中心偏析部へ濃化し、マルテンサイト組織を形成するため、耐HIC性を悪化させる。そのため、Moの含有量はできるだけ低いほうが好ましいが、0.05%までは許容される。
より好ましくは、0.01%以下である。
 Cr:0.05~0.50%
 Crは焼入性を高め、鋼の靭性、強度向上に有効に作用する元素で、0.05%以上の添加で効果を発揮するが、0.50%を超えて添加すると、電縫溶接時にCr酸化物を形成し溶接部靭性を著しく悪化させる。これを抑制するために、Cr量は0.05~0.50%の範囲とする。好ましくは0.05~0.30%の範囲である。
 Al:0.01~0.08%
 Alは脱酸剤として添加するが、0.01%未満では脱酸が十分でなく、一方、0.08%を超えると鋼中に残存する粗大なAl系酸化物量が増加し、耐HIC性と靭性を悪化させる。そのため、Al量は0.01~0.08%の範囲とする。好ましくは0.01~0.05%の範囲である。
 Ca:0.0005~0.0050%
 Caは硫化物系介在物の形態制御による耐HIC性向上に有効な元素であり、0.0005%以上の含有でその効果を発揮する。一方で、0.0050%を超えると、効果が飽和するだけでなく、Caの酸化物を多く形成し、耐HIC性を悪化させる。そのため、Ca量は0.0005~0.0050%の範囲とする。好ましくは0.0010~0.0030%の範囲である。
 O:0.005%以下
 酸素は各種酸化物を作り、熱間加工性、耐食性、靭性、耐HIC性を低下させるので、できるだけ低減することが望ましいが、0.005%までなら許容できる。より好ましくは、0.0035%以下である。
 本発明では、さらにCu、Ni、Vのうちから1種以上を以下の範囲で含有させることができる。
 Cu:0.50%以下
 Cuは焼入性向上を通じて鋼の靭性および強度向上に寄与する元素であり、同様の効果を有するMnやMoと比較して中心偏析部への濃化が少ないため、耐HIC性を悪化させずに鋼を強化することができるので、強度グレードに応じて添加する。0.05%以上の含有でその効果を発揮するが、0.50%を超えるとその効果は飽和し、これ以上の含有は余計なコスト上昇を招く。そのため、Cu量は0.50%以下とする。好ましくは、0.40%以下である。
 Ni:0.50%以下
 Niは、Cuと同様に焼入性向上を通じて鋼の靭性および強度向上に寄与する元素であり、同様の効果を有するMnやMoと比較して中心偏析部への濃化が少ないため、耐HIC性を悪化させずに鋼を強化することができるので、強度グレードに応じて添加する。0.05%以上の含有でその効果を発揮するが、0.50%を超えて含有するとその効果は飽和し、これ以上の含有は余計なコスト上昇を招く。そのため、Ni量は0.50%以下とする。好ましくは、0.40%以下である。
 V:0.10%以下
 Vは固溶強化(solute strengthening)および析出強化(precipitation strengthening)を通じて0.005%以上の含有で鋼の強度向上に寄与する元素であるが、0.10%を超えると中心偏析部の硬度が高くなり、耐HIC性を悪化させる。そのため、V量は0.10%以下とする。好ましくは、0.080%以下である。
 SP:1.90以下
 本発明においては、各合金元素の含有量から求められるSP値が下記式(1)を満たすものとする。
   SP≦1.90  ・・・・・(1)
 なお、SPは、SP=Mn+Mo+11.3×C+0.29×(Cu+Ni)+0.60×Cr+0.88×V から求められ、式中の元素記号は各元素の質量%を意味する。なお添加しない元素については0とする。
 SP値は電縫鋼管の素材となる熱延鋼板の中心偏析部の硬度を、各合金元素の含有量から推定できるように考案された式であり、SP値が1.90を超えると、各元素の中心偏析部への濃化が著しくなり、中心偏析部の硬度と非偏析部の硬度との比が1.20未満を満足しなくなる。またSP値が低いほど、中心偏析部の硬度と非偏析部の硬度との比も小さくなるので、例えばCLR:5%以下といったように、さらに高い耐HIC性が求められる場合は、SP値の上限を1.75とする必要がある。
 EC:1.2~4.0
 本発明においては、さらに、Ca添加による硫化物系介在物の無害化をより効率的に行なうために、下記に示されるEC値が、下記式(2)を満たすようにすることが望ましい。
    1.2≦EC≦4.0  ・・・・・(2)
 ここで、ECは、EC=[Ca]eff/(1.25×S)  と表わされる。なお、
[Ca]effはCa-(0.18+130×Ca)×Oから求められ、式中の元素記号Ca、S、Oは各元素の質量%を意味する。
 EC値は、硫化物系介在物の形態制御のために添加したCa量が、CaSを形成するのに十分添加されているかを示す値であり、EC値が1.2未満であるとCaが不足状態にあり、HICの起点となるMnSが生成する。一方で、EC値が4.0を超えるとCa系酸化物が多く生成し、鋼の清浄度が低下し耐HIC性が悪化する。そのためEC値を1.2~4.0の範囲とするのが好ましい。より好ましくは、1.4~0.36の範囲である。
 なお、上記した元素以外の残部はFeおよび不可避的不純物からなる。ただし、本発明の作用効果を妨げない限り、他の微量元素の含有は制限されない。
 2.金属組織について
 次に、本発明鋼の金属組織について説明する。
 強度がAPI X52(YS:380MPa超)以上の高強度化と、ラインパイプに使用する上で最低限必要な靭性(シャルピー試験での延性脆性遷移温度が-60℃以下)を両立するために、金属組織はベイニティックフェライト組織とする必要がある。ベイニティックフェライト組織中に、フェライトや微細マルテンサイト、パーライトおよび残留オーステナイトなどの異種組織相が存在すると、降伏強度の低下や靭性の悪化、耐HIC性の悪化を招くため、ベイニティックフェライト組織以外の組織分率は少なければ少ないほど良い。ただし、ベイニティックフェライト組織以外の面積分率が極めて低い場合には、その影響は無視できるほど小さいので、ある程度の量までは許容できる。具体的には、ベイニティックフェライト組織以外の鋼組織(フェライト、微細マルテンサイト、パーライト、残留オーステナイトなど)の合計が3%未満であれば、それはベイニティックフェライト単相組織と見做して良く、本発明に含まれる。
 以上述べた金属組織は、上述した組成の鋼を用いて、以下に述べる方法で製造することにより得ることができる。
 3.中心偏析部の硬度について
 電縫管ラインパイプのHIC試験結果と鋼板の中心偏析部の硬度との関係を調査した結果、中心偏析部のビッカース硬度をHv230以下としても、CLR≦15%を達成できない場合があることを知見した。この原因を材質の均質性の観点から調べたところ、図1に示すように、中心偏析部の硬度と非偏析部の硬度の比(中心偏析部のビッカース硬度/非偏析部のビッカース硬度)を1.20未満とすることで、CLRが15%以下となる。そして、中心偏析部の硬度と非偏析部の硬度の比を1.20未満とする鋼の組成を検討し、図2に示すように、中心偏析部の硬度と非偏析部の硬度の比を1.20未満とする鋼の組成はSP値で1.90以下である。
 なお、中心偏析部の硬度は、組織観察用試験片に、2%ナイタールで30秒以上の腐食を施し、中心偏析線を現出させた後、図3に示すように中心偏析線上と中心偏析線から200μm離した場所をそれぞれ15点測定しそれぞれの算術平均を求め、中心偏析部および非偏析部の硬度とした。
 4.製造条件について
 次に上記鋼組織を達成するための製造条件について説明する。
 スラブ加熱温度は1100℃以上1300oC以下とする。1100℃未満では、連鋳工程で鋼中に生成した炭化物を完全に固溶させるのに不十分であり、必要な強度が得られない。一方、1300℃を超える加熱では、オーステナイト粒が著しく粗大化するために靭性が悪化する。なお、この温度は加熱炉の炉内温度であり、スラブ中心(center of slab)までこの温度に加熱されるものとする。
 仕上圧延工程では、930℃以下の累積圧下率が20%以上となる条件で仕上圧延を施す必要がある。累計累積圧下率が20%未満であるとベイニティックフェライト組織の生成サイトが不足し、粗大組織となるため靭性が悪化する。しかし累積圧下率が80%を超えると、その効果が飽和するばかりか、圧延機に多大な負荷をかけることになるため、累積圧下率の上限は80%以下とすることが好ましい。
 板厚中心の平均冷却速度は5~100℃/sとする。5℃/s未満の冷却速度では、Cu、NiおよびCrといった焼入性向上元素を添加したとしても、フェライトおよび/またはパーライト組織の面積分率が3%以上となるため、5℃/s以上の冷速速度が必要となる。一方で、100℃/sを超える場合はマルテンサイト組織の面分率が3%以上となる。板厚中心の冷却速度は、事前に調査したランナウト(run-out)の冷却能力(cooling capacity)(熱伝達率(heat-transfer coefficient))とランナウト上で放射温度計(radiation thermometer)により測定された鋼板の表面温度を用いて伝熱計算(heat-transfer calculation)を行い、板厚中心の温度履歴(temperature history)を求めることで算出した。
 冷却停止の温度範囲は380℃以上600℃以下とする。600℃を超えるとフェライトおよびパーライト組織の面積分率が3%以上となり、さらにNb炭窒化物といった析出強化粒子の粗大化により強度が低下する。一方で、380℃を下回る場合は、鋼板の変形抵抗(deformation resistance)が増加し、コイル状に巻き取ることが困難となるばかりか、Nb炭窒化物といった析出強化粒子が析出しないため,強度が低下する。
 表1に示す組成の鋼素材に、表2に示す熱間圧延条件および冷却条件で熱間圧延を行ないコイル状に巻取り、表2に示す板厚の熱延鋼板とした。なお、鋼種G~Kは個別成分、SP値等が外れた比較鋼である。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 得られた熱延鋼板から、試験片を採取し、組織観察、引張試験、シャルピー衝撃試験、硬度測定およびHIC試験を実施し、引張特性、靭性および耐HIC性を評価した。
 得られた熱延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨、腐食し、光学顕微鏡(倍率400倍)と走査電子顕微鏡(electron scanning microscope)(倍率1000倍)で、板厚中心位置で5視野以上撮影し、組織の種類、ベイニティックフェライト組織以外の鋼組織(フェライト、微細マルテンサイト、パーライトおよび残留オーステナイト等)の有無を観察した。
 引張試験は、得られた熱延鋼板から、圧延方向に直交する方向(C方向)が長手方向となるように、API-5Lの規定に準拠して、室温にて引張試験を実施し、降伏応力YS(公称ひずみ0.5%での変形応力)と引張強さTSを求めた。
 シャルピー衝撃試験は、得られた熱延鋼板の板厚中央部から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠して-140℃~0℃の範囲でシャルピー衝撃試験(Charpy impact test)を実施し、吸収エネルギー(absorbed energy)と脆性破面率(percent brittle fracture)を測定し、脆性破面率が50%となる温度(破面遷移温度(fracture transition temperature))を求めた。なお,各温度での試験片は3本とし、得られた吸収エネルギーと脆性破面率の算術平均を求めた。
 中心偏析部の硬度は、組織観察用試験片に、2%ナイタールで30秒以上の腐食を施し、偏析線を現出させた後、偏析線上と偏析線から200μm離した場所をそれぞれ15点測定し、それぞれ算術平均を求め、偏析部および非偏析部の硬度とした(図3)。なお、硬度測定にはビッカース硬さ計を用い、試験力0.3kgfで行なった。硬度比は偏析部硬度を非偏析部硬度で除して算出した。
 HIC試験は、得られた熱延鋼板から、長手方向が鋼板の圧延方向となるように鋼板板厚×20mm幅×100mm長さのHIC試験片を採取し、NACE TM 0284の規定に準拠し、A溶液にて耐HIC性を評価した。なお、試験片本数は10本とし、電縫鋼管成形時の塑性ひずみの影響を反映すべく、予め幅方向に10%の圧縮歪を付与した。この結果、全ての試験片においてCLR≦15%となったコイルを耐HIC性が良好(○)であると判断した。いずれかの試験片でCLR>15%となったコイルは耐HIC性が不良(×)であると判断した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 本発明例はいずれも、YS≧380MPaの高強度とvTrs=-60℃以下とラインパイプに使用するに最低限の靭性を有し、硬度比1.20未満であり、耐HIC性が良好な鋼板となっている。一方、本発明の範囲を外れる比較例は、所望の靭性を得られていないか、耐HIC性が低下しているかして、耐HIC性に優れた高強度電縫鋼管用の熱延鋼板として、所望の特性を確保できていない。

Claims (1)

  1.  成分組成が、質量%で、C:0.02~0.06%、Si:0.05~0.25%、Mn:0.60~1.10%、P:0.008%以下、S:0.0010%以下、Nb:0.010~0.060%、Ti:0.001~0.020%、Mo:0.05%以下、Cr:0.05~0.50%、Al:0.01~0.08%、Ca:0.0005~0.0050%、O:0.005%以下を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、V:0.10%以下の中から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなり、下記式(1)を満たし、金属組織がベイニティックフェライトであって、中心偏析部の硬度と非偏析部の硬度との比が1.20未満であることを特徴とする高強度ラインパイプ用熱延鋼板。
       SP≦1.90  ・・・・・(1)
     なお、SPは、SP=Mn+Mo+11.3×C+0.29×(Cu+Ni)+0.60×Cr+0.88×V から求められ、式中の元素記号は各元素の質量%を意味する。
PCT/JP2014/000320 2013-01-24 2014-01-23 高強度ラインパイプ用熱延鋼板 WO2014115549A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14743980.6A EP2927339B1 (en) 2013-01-24 2014-01-23 Hot-rolled steel plate for high-strength line pipe
US14/763,403 US20150368736A1 (en) 2013-01-24 2014-01-23 Hot-rolled steel sheet for high strength linepipe
JP2014558503A JP5884202B2 (ja) 2013-01-24 2014-01-23 高強度ラインパイプ用熱延鋼板
KR1020157017737A KR101718267B1 (ko) 2013-01-24 2014-01-23 고강도 라인 파이프용 열연 강판
CN201480005063.4A CN104937125B (zh) 2013-01-24 2014-01-23 高强度管线钢管用热轧钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-010976 2013-01-24
JP2013010976 2013-01-24

Publications (1)

Publication Number Publication Date
WO2014115549A1 true WO2014115549A1 (ja) 2014-07-31

Family

ID=51227341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000320 WO2014115549A1 (ja) 2013-01-24 2014-01-23 高強度ラインパイプ用熱延鋼板

Country Status (6)

Country Link
US (1) US20150368736A1 (ja)
EP (1) EP2927339B1 (ja)
JP (1) JP5884202B2 (ja)
KR (1) KR101718267B1 (ja)
CN (1) CN104937125B (ja)
WO (1) WO2014115549A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404383A (zh) * 2014-11-28 2015-03-11 钢铁研究总院 一种超低碳抗硫化氢腐蚀x80管线钢及制备方法
KR20220088214A (ko) * 2020-12-18 2022-06-27 주식회사 포스코 황화물 응력부식 균열 저항성이 우수한 고강도 강재 및 이의 제조방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132833B (zh) * 2015-10-10 2017-12-08 武汉钢铁有限公司 一种经济型高强度海底管线钢及生产方法
JP6844691B2 (ja) * 2017-03-30 2021-03-17 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
CN107974613B (zh) * 2017-11-23 2019-12-27 武汉钢铁有限公司 抗硫化物应力腐蚀开裂的x80级管线钢的生产方法
CN111270137A (zh) * 2020-02-17 2020-06-12 本钢板材股份有限公司 一种抗酸腐蚀管线钢x52ms热轧卷板及其制备方法
CN113406291A (zh) * 2021-06-29 2021-09-17 西安热工研究院有限公司 一种风电塔用结构钢板的质量验证方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (ja) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd 耐食性の優れた高強度鋼材及びその製造方法
JP2647302B2 (ja) 1992-03-30 1997-08-27 新日本製鐵株式会社 耐水素誘起割れ性の優れた高強度鋼板の製造方法
JP2006063351A (ja) 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた高強度鋼板および製造方法、並びにラインパイプ用鋼管
JP4363403B2 (ja) 2004-02-04 2009-11-11 住友金属工業株式会社 耐hic性に優れたラインパイプ用鋼材及びその鋼材を用いて製造されるラインパイプ
JP2010084170A (ja) * 2008-09-30 2010-04-15 Jfe Steel Corp バウシンガー効果による降伏応力低下が小さい高靱性ラインパイプ用厚鋼板およびその製造方法。
WO2010087512A1 (ja) * 2009-01-30 2010-08-05 Jfeスチール株式会社 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
JP2011063840A (ja) 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd 耐hic特性に優れた鋼板およびuoe鋼管
JP2012167328A (ja) * 2011-02-15 2012-09-06 Jfe Steel Corp 圧潰強度に優れた高靱性uoe鋼管及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726176B2 (ja) * 1991-02-28 1995-03-22 株式会社神戸製鋼所 鉄骨ボックス柱の大入熱溶接角継手部においてhaz割れの発生しにくい鋼板
US5545269A (en) * 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
JP3613395B2 (ja) * 2002-03-28 2005-01-26 日本高周波鋼業株式会社 熱間工具鋼
JP3869747B2 (ja) * 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
RU2008115626A (ru) * 2005-10-24 2009-12-10 Эксксонмобил Апстрим Рисерч Компани (Us) Высокопрочная двухфазная сталь с низким коэффициентом текучести, высокой ударной прочностью и высокой свариваемостью
JP5609223B2 (ja) * 2010-04-09 2014-10-22 Jfeスチール株式会社 温間加工性に優れた高強度鋼板およびその製造方法
JP2011224584A (ja) * 2010-04-16 2011-11-10 Jfe Steel Corp 熱延鋼板の製造方法及び溶融亜鉛めっき鋼板の製造方法
JP5776377B2 (ja) * 2011-06-30 2015-09-09 Jfeスチール株式会社 耐サワー性に優れたラインパイプ用溶接鋼管向け高強度熱延鋼板およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647302B2 (ja) 1992-03-30 1997-08-27 新日本製鐵株式会社 耐水素誘起割れ性の優れた高強度鋼板の製造方法
JPH07216500A (ja) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd 耐食性の優れた高強度鋼材及びその製造方法
JP4363403B2 (ja) 2004-02-04 2009-11-11 住友金属工業株式会社 耐hic性に優れたラインパイプ用鋼材及びその鋼材を用いて製造されるラインパイプ
JP2006063351A (ja) 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた高強度鋼板および製造方法、並びにラインパイプ用鋼管
JP2010084170A (ja) * 2008-09-30 2010-04-15 Jfe Steel Corp バウシンガー効果による降伏応力低下が小さい高靱性ラインパイプ用厚鋼板およびその製造方法。
WO2010087512A1 (ja) * 2009-01-30 2010-08-05 Jfeスチール株式会社 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
JP2011063840A (ja) 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd 耐hic特性に優れた鋼板およびuoe鋼管
JP2012167328A (ja) * 2011-02-15 2012-09-06 Jfe Steel Corp 圧潰強度に優れた高靱性uoe鋼管及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927339A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404383A (zh) * 2014-11-28 2015-03-11 钢铁研究总院 一种超低碳抗硫化氢腐蚀x80管线钢及制备方法
KR20220088214A (ko) * 2020-12-18 2022-06-27 주식회사 포스코 황화물 응력부식 균열 저항성이 우수한 고강도 강재 및 이의 제조방법
KR102498135B1 (ko) * 2020-12-18 2023-02-08 주식회사 포스코 황화물 응력부식 균열 저항성이 우수한 고강도 강재 및 이의 제조방법

Also Published As

Publication number Publication date
US20150368736A1 (en) 2015-12-24
EP2927339B1 (en) 2016-11-02
CN104937125A (zh) 2015-09-23
KR20150087424A (ko) 2015-07-29
EP2927339A4 (en) 2015-12-16
JPWO2014115549A1 (ja) 2017-01-26
JP5884202B2 (ja) 2016-03-15
CN104937125B (zh) 2018-01-09
KR101718267B1 (ko) 2017-03-20
EP2927339A1 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5884201B2 (ja) 引張強さ540MPa以上の高強度ラインパイプ用熱延鋼板
JP5776377B2 (ja) 耐サワー性に優れたラインパイプ用溶接鋼管向け高強度熱延鋼板およびその製造方法
JP4305216B2 (ja) 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP5884202B2 (ja) 高強度ラインパイプ用熱延鋼板
JP5151008B2 (ja) 耐hic性および溶接部靱性優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP5574059B2 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP5679114B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5418251B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板の製造方法
KR20110110278A (ko) 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법
JP2008101242A (ja) 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法
JP5499731B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
WO2016157863A1 (ja) 高強度・高靭性鋼板およびその製造方法
WO2014175122A1 (ja) H形鋼及びその製造方法
JP4802450B2 (ja) 耐hic性に優れた厚手熱延鋼板とその製造方法
JP6179604B2 (ja) 電気抵抗溶接鋼管用鋼帯および電気抵抗溶接鋼管ならびに電気抵抗溶接鋼管用鋼帯の製造方法
JP2005060840A (ja) 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
CN108411197A (zh) 一种Φ1422mm超大口径螺旋埋弧焊管用厚规格X80热轧卷及其制造方法
JP5991174B2 (ja) 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
JP5521484B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
JP3896915B2 (ja) 耐hic特性に優れた高強度鋼板及びその製造方法
JP2005206938A (ja) 構造用Fe−Cr系鋼板とその製造方法
JP2012193446A (ja) 高延性超高強度溶接鋼管用鋼板および鋼管ならびにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558503

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157017737

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014743980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014743980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14763403

Country of ref document: US