WO2014114018A1 - 一种薄膜晶体管结构、液晶显示装置和一种制造方法 - Google Patents

一种薄膜晶体管结构、液晶显示装置和一种制造方法 Download PDF

Info

Publication number
WO2014114018A1
WO2014114018A1 PCT/CN2013/071914 CN2013071914W WO2014114018A1 WO 2014114018 A1 WO2014114018 A1 WO 2014114018A1 CN 2013071914 W CN2013071914 W CN 2013071914W WO 2014114018 A1 WO2014114018 A1 WO 2014114018A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
layer
area
film transistor
thin film
Prior art date
Application number
PCT/CN2013/071914
Other languages
English (en)
French (fr)
Inventor
曾志远
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/824,341 priority Critical patent/US8912542B2/en
Publication of WO2014114018A1 publication Critical patent/WO2014114018A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78636Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with supplementary region or layer for improving the flatness of the device

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a thin film transistor structure, a liquid crystal display device, and a method of fabricating the same.
  • TFTs thin film transistors
  • a gate, a source, and a drain of a TFT are sequentially formed on a glass substrate, and an active layer is connected between the source and the drain.
  • the material of the active layer is made of amorphous silicon.
  • IGZO Indium Gallium Zinc Oxide
  • IGZO can reduce the size of TFTs, integrate the external circuit of the single unit into the panel, make the mobile device thinner and lighter, and reduce the power consumption to two-thirds before; IGZO can also Increasing the aperture ratio of the liquid crystal panel pixels is easier to achieve high definition, and the electron mobility is 20 to 30 times faster, which can greatly reduce the response time of the liquid crystal screen.
  • the characteristic efficiency of the TFT using IGZO is not ideal.
  • the intermediate current rises slowly with the voltage, and more than 10 volts is required to obtain a current value greater than ⁇ - 6 .
  • the voltage value of 10 volts is defined as Ion (the current value when the TFT is turned on), the negative 5 volt is Ioff (the current value when the TFT is turned off), and the Ion/Ioff is greater than 10 6 is considered to be applicable to the TFT device.
  • the Ion/Ioff in 2 is less than 10 3 , making the TFT characteristics of the existing IGZO not efficient.
  • the technical problem to be solved by the present invention is to provide a thin film transistor structure, a liquid crystal display device and a manufacturing method which can improve the efficiency of TFT characteristics of IGZO.
  • a thin film transistor structure includes a first metal layer, an insulating layer is disposed on the first metal layer, a surface of the insulating layer is covered with a second metal layer, and the second metal layer is positive in the first metal layer Above
  • the corresponding area is provided with a notch
  • the insulating layer is provided with a groove in the corresponding area of the notch, and the surface of the second metal layer, the notch and the groove is covered with an active layer of indium gallium oxide material.
  • the groove is consistent with the shape of the notch. This is a specific active layer structure, and the shape of the groove is consistent with the notch.
  • the source metal layer and the drain metal layer can be used as a cover to directly etch the groove from the notch, without Additional masking is done to reduce manufacturing costs.
  • the second metal layer is bounded by a notch, one end of the notch forms a source metal layer of the thin film transistor, and the other end of the notch forms a drain metal layer of the thin film transistor;
  • the active layer includes a contact with the source metal layer a first region, a second region in contact with the drain metal layer, a third region disposed on the surface of the recess, a sidewall of the notch disposed on one side of the source metal layer, and connecting the first region and the third region a fourth zone; the other side wall of the gap, the fifth zone connecting the second zone and the third zone.
  • the depth of the groove is 0.1% to 60% of the maximum thickness of the insulating layer.
  • the depth of the groove is the distance between the upper surface of the insulating layer and the bottom of the groove. This is a range of values for the groove depth. As long as it exceeds 0.1%, most of the impure surface materials in the insulating layer can be removed, and at the same time, sufficient insulating layer is left to achieve superior TFT characteristics.
  • the depth of the groove is 0.2% to 50% of the maximum thickness of the insulating layer of the region. This is the preferred range of values for the groove depth. Within this range, it is basically ensured that the surface material of the insulating layer is completely removed, and at the same time, sufficient insulating layer is left to achieve superior TFT characteristics.
  • the alignment layer can initially position the direction of the liquid crystal molecules.
  • the surface of the alignment layer is covered with a transparent electrode.
  • the transparent electrode is electrically connected to the second metal layer at one end of the notch for controlling the deflection angle of the liquid crystal molecules.
  • the groove is in conformity with the shape of the notch; the second metal layer is bounded by a notch, one end of the notch forms a source metal layer of the thin film transistor, and the other end of the notch forms a drain metal layer of the thin film transistor;
  • the active layer includes a first region in contact with the source metal layer; a second region in contact with the drain metal layer; a third region laid on the surface of the recess; and a gap on one side of the source metal layer Side wall, a fourth region connecting the first zone and the third zone; laying on the other side wall of the notch, the fifth zone connecting the second zone and the third zone; the depth of the groove is the maximum thickness of the insulating layer 0.1% ⁇ 60%; the second metal layer and the surface of the active layer are covered with an alignment layer; the alignment layer is covered with a transparent electrode on the surface of the drain metal layer.
  • a liquid crystal display device comprising the thin film transistor structure of the present invention.
  • a method of fabricating a thin film transistor comprising the steps of:
  • A forming a first metal layer, an insulating layer, and a second metal layer on the substrate in sequence;
  • the active metal layer of the indium gallium oxide material is covered on the surface of the source metal layer, the drain metal layer, the notch and the groove.
  • the TFT process of the existing IGZO is to lay a second metal layer on the insulating layer by sputtering or the like, and then etch the notch at a corresponding position above the first metal layer by chemical etching, and the second metal is The layer is divided into two, forming a source metal layer and a drain metal layer of the TFT; when the second metal layer is laid on the insulating layer, the material of the insulating layer is bombarded, so that the material of the insulating layer is impure, and the active layer is laid.
  • the surface layer of the insulating layer whose material is impure is in contact with the active layer, which directly affects the conductive characteristics of the active layer, resulting in poor characteristic efficiency of the TFT.
  • the etching is further performed at the notch, the groove is etched on the surface of the insulating layer, thereby removing the surface material of the insulating layer which is not pure, thereby improving the purity of the entire insulating layer material, thereby improving the characteristics of the TFT. effectiveness.
  • FIG. 1 is a schematic structural view of a thin film transistor using an indium gallium oxide material in the prior art
  • FIG. 2 is a schematic diagram of a characteristic curve of a thin film transistor using an indium gallium oxide material in the prior art
  • FIG. 3 is a schematic structural view of a thin film transistor according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing a characteristic curve of a thin film transistor according to an embodiment of the present invention
  • Figure 5 is a schematic illustration of a method of an embodiment of the present invention.
  • a liquid crystal display device comprising a thin film transistor structure.
  • the thin film transistor structure includes a first metal layer, the first metal layer is provided with an insulating layer, the surface of the insulating layer is covered with a second metal layer, and the second metal layer is corresponding to a region directly above the first metal layer A gap is formed, the insulating layer is provided with a groove in the corresponding region of the notch, and the surface of the second metal layer, the notch and the groove is covered with an active layer of indium gallium oxide material.
  • the existing TFT process of IGZO is to split the second metal layer into two on the active layer of the IGZO material to form the source metal layer and the drain metal layer of the TFT;
  • the layer is laid on the active layer, it is combined with the IGZO of the active layer surface layer, so that the material of the active layer is impure, resulting in poor performance of the TFT.
  • the invention etches the groove on the surface of the active layer by further etching at the notch, thereby removing the surface material with impure material in the active layer, thereby improving the purity of the entire active layer material, thereby improving the purity.
  • the characteristic efficiency of the TFT is to split the second metal layer into two on the active layer of the IGZO material to form the source metal layer and the drain metal layer of the TFT;
  • the thin film transistor structure of this embodiment includes a first metal layer 20 overlying a transparent substrate 10 (such as glass), and the first metal layer 20 is provided with an insulating layer 30, the insulating layer.
  • the surface of the notch is provided with a second metal layer 40, and the second metal layer 40 is provided with a notch in a corresponding area directly above the first metal layer 20, and the insulating layer 30 is provided with a recess 31 in the corresponding area of the notch.
  • the surface of the second metal layer 40, the notch and the recess 31 is covered with an active layer 50 of indium gallium oxide material.
  • the groove 31 is in conformity with the shape of the notch; the second metal layer 40 is bounded by a notch, one end of the notch forms a source metal layer 41 of the thin film transistor, and the other end of the notch forms a drain metal layer 42 of the thin film transistor;
  • the active layer 50 includes a first region 51 in contact with the source metal layer 41, a second region 52 in contact with the drain metal layer 42, and a third region 53 laid on the surface of the recess 31; a sidewall of the side of the source metal layer 41, a fourth region 54 connecting the first region 51 and the third region 53;
  • the depth of the groove 31 is 0.1% to 60% of the maximum thickness of the insulating layer 30; more preferably, the concave
  • the depth of the groove 31 is 0.2% to 50% of the maximum thickness of the area insulating layer 30; the depth of the groove 31 is the distance between the upper surface of the insulating
  • the surface of the second metal layer 40 and the active layer 50 is covered with an alignment layer 60; the alignment layer 60 is covered with a transparent electrode 70 on the surface of the drain metal layer 42.
  • the alignment layer 60 can initially position the direction of the liquid crystal molecules, and the transparent electrode 70 is electrically connected to the second metal layer 40 at one end of the notch for controlling the deflection angle of the liquid crystal molecules.
  • the shape of the recess 31 is consistent with the notch.
  • the source metal layer 41 and the drain metal layer 42 can be used as a cover to directly etch the recess 31 from the notch, without requiring an additional mask. , reducing manufacturing costs.
  • the substrate 10 of the present invention may be made of glass or other transparent material; the etching method may employ existing mature techniques such as chemical etching and physical etching.
  • FIG. 4 is a schematic view showing the characteristic curve of the TFT after removing the surface material of the insulating layer in the insulating layer by using the present invention.
  • the gate voltage of the TFT is from 0 volt to 10 volts, the current rapidly rises with the voltage, and the slope is steep. In the shorter voltage range, the TFT can obtain a larger current value for driving the liquid crystal display screen. Therefore, after the technical solution of the present invention is implemented, the characteristic efficiency of the TFT is significantly improved.
  • the present invention also discloses a method for fabricating a thin film transistor, comprising the steps of:
  • the active metal layer of the indium gallium oxide material is covered on the surface of the source metal layer, the drain metal layer, the notch and the groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种薄膜晶体管结构,包括第一金属层(20),第一金属层(20)上设有绝缘层(30),绝缘层(30)表面覆盖有第二金属层(40),第二金属层(40)在第一金属层(20)正上方对应区域设有缺口,绝缘层(30)在缺口对应区域设有凹槽(31),第二金属层(40)、缺口和凹槽(31)表面覆盖有氧化铟镓锌材质的有源层(50)。

Description

一种薄膜晶体管结构、 液晶显示装置和一种制造方法
【技术领域】
本发明涉及液晶显示领域, 更具体的说, 涉及一种薄膜晶体管结构、 液晶 显示装置和一种制造方法。
【背景技术】
现有的液晶面板多采用薄膜晶体管 (TFT )来控制液晶分子的偏转。 传统 TFT制作工艺是在玻璃基板上依次形成 TFT的闸极、 源极和漏极, 源极和漏极 之间通过有源层连接, 通常有源层的材质选用非晶质硅材质。 随着技术的发展, 研究人员开始用氧化铟镓辞( Indium Gallium Zinc Oxide , 筒称 IGZO )作为有 源层材料, 用于替代 N+/a-Si (如图 1所示)。 IGZO与非晶质硅材料相比, IGZO 能够缩小 TFT尺寸, 将筒单的外部电路整合至面板之中, 使移动装置更轻薄, 耗电量也降至之前的三分之二; IGZO还可提高液晶面板画素的开口率, 较易实 现高精细化, 电子迁移率快 20到 30倍, 可以大大降低液晶屏幕的响应时间。
但在实际使用过程中, 采用 IGZO的 TFT的特性效率并不理想。 如图 2所 示, 中间电流随电压緩慢上升, 需超过 10伏特才可得到大于 ΙΟχΙΟ-6的电流值。 通常定义电压值 10伏特为 Ion(TFT导通时的电流值), 负 5伏特为 Ioff (TFT关 闭时的电流值), Ion/Ioff 大于 106 才认定为可以应用在 TFT器件中, 而图 2中 的 Ion/Ioff 小于 103, 使得现有的 IGZO的 TFT特性效率并不高。
【发明内容】
本发明所要解决的技术问题是提供一种可以提升 IGZO的 TFT特性效率的 一种薄膜晶体管结构、 液晶显示装置和一种制造方法。
本发明的目的是通过以下技术方案来实现的:
一种薄膜晶体管结构, 包括第一金属层, 所述第一金属层上设有绝缘层, 所述绝缘层表面覆盖有第二金属层, 所述第二金属层在所述第一金属层正上方 对应区域设有缺口, 所述绝缘层在所述缺口对应区域设有凹槽, 所述第二金属 层、 缺口和凹槽表面覆盖有氧化铟镓辞材质的有源层。
进一步的, 所述凹槽与所述缺口的形状一致。 此为一种具体的有源层结构, 凹槽的形状就跟缺口保持一致, 在制造过程中就能以源极金属层和漏极金属层 为掩体, 直接从缺口处蚀刻出凹槽, 无须额外制作光罩, 降低了制造成本。
进一步的, 所述第二金属层以缺口为界, 缺口一端形成薄膜晶体管的源极 金属层, 缺口另一端形成薄膜晶体管的漏极金属层; 所述有源层包括与源极金 属层接触的第一区、 与漏极金属层接触的第二区、 铺设在所述凹槽表面的第三 区, 铺设在所述源极金属层一侧缺口的侧壁、 连接第一区和第三区的第四区; 铺设在所述缺口的另一侧壁、 连接第二区和第三区的第五区。 此为一种具体的 第二金属层和有源层结构。
进一步的, 所述凹槽的深度为所述绝缘层最大厚度的 0.1% ~ 60%。 所述凹 槽的深度为绝缘层上表面和凹槽底部之间的距离。 此为一种凹槽深度的取值范 围。 只要超出 0.1%, 即可去除绝缘层中大部分材质不纯的表面物质, 同时又留 有足够的绝缘层, 达到较优的 TFT特性。
进一步的, 所述凹槽的深度为所述区绝缘层最大厚度的 0.2% ~ 50%。 此为 凹槽深度优选的取值范围。 在此范围内, 可以基本保证可以完全去除绝缘层中 材质不纯的表面物质, 同时又留有足够的绝缘层, 达到较优的 TFT特性。
进一步的, 所述第二金属层及有源层表面覆盖有配向层。 配向层可以对液 晶分子的方向进行初始定位。
进一步的, 所述配向层表面覆盖有透明电极。 透明电极跟缺口一端的第二 金属层电连接, 用于控制液晶分子的偏转角度。
进一步的, 所述凹槽与所述缺口的形状一致; 所述第二金属层以缺口为界, 缺口一端形成薄膜晶体管的源极金属层, 缺口另一端形成薄膜晶体管的漏极金 属层; 所述有源层包括与源极金属层接触的第一区; 与漏极金属层接触的第二 区; 铺设在所述凹槽表面的第三区; 铺设在所述源极金属层一侧缺口的侧壁、 连接第一区和第三区的第四区; 铺设在所述缺口的另一侧壁、 连接第二区和第 三区的第五区; 所述凹槽的深度为所述绝缘层最大厚度的 0.1% ~ 60%; 所述第 二金属层及有源层表面覆盖有配向层; 所述配向层在漏极金属层表面覆盖有透 明电极。
一种液晶显示装置, 包括本发明所述的一种薄膜晶体管结构。
一种薄膜晶体管的制作方法, 包括步骤:
A、 在基板上依次形成第一金属层、 绝缘层、 第二金属层;
B、 在第二金属层表面蚀刻出缺口, 以缺口为界, 缺口一端形成薄膜晶体管 的源极金属层, 缺口另一端形成薄膜晶体管的漏极金属层;
C、 以源极金属层和漏极金属层为掩体, 在绝缘层表面蚀刻出凹槽;
D、 在所述源极金属层、 漏极金属层、 缺口和凹槽表面覆盖氧化铟镓辞材质 的有源层。
发明人研究发现, 现有 IGZO的 TFT制程是在绝缘层上面通过溅渡等方式 铺设第二金属层, 然后再通过化学蚀刻的方式在第一金属层上方对应位置蚀刻 出缺口, 将第二金属层一分为二, 形成 TFT的源极金属层和漏极金属层; 在第 二金属层铺设到绝缘层的时候, 绝缘层材质受到轰击, 使得绝缘层材质不纯, 在铺设有源层的时候, 绝缘层材质不纯的表层跟有源层接触, 直接影响到有源 层的导电特性, 造成 TFT的特性效率不佳。 本发明由于在缺口处进行进一步的 蚀刻, 在绝缘层的表面蚀刻出凹槽, 这样就去除了绝缘层中材质不纯的表面物 质, 提高了整个绝缘层材质的纯度, 从而提高了 TFT的特性效率。
【附图说明】
图 1是现有技术采用氧化铟镓辞材质的薄膜晶体管结构示意图;
图 2是现有技术采用氧化铟镓辞材质的薄膜晶体管的特性曲线示意图; 图 3是本发明实施例薄膜晶体管的结构示意图;
图 4是本发明实施例薄膜晶体管的特性曲线示意图; 图 5是本发明实施例方法示意图。
【具体实施方式】
一种液晶显示装置, 包括一种薄膜晶体管结构。 薄膜晶体管结构包括第一 金属层, 所述第一金属层上设有绝缘层, 所述绝缘层表面覆盖有第二金属层, 所述第二金属层在所述第一金属层正上方对应区域设有缺口, 所述绝缘层在所 述缺口对应区域设有凹槽, 所述第二金属层、 缺口和凹槽表面覆盖有氧化铟镓 辞材质的有源层。
经研究发现, 现有 IGZO的 TFT制程是在 IGZO材质的有源层上面通过溅 缺口, 将第二金属层一分为二, 形成 TFT的源极金属层和漏极金属层; 在第二 金属层铺设到有源层的时候,跟有源层表层的 IGZO结合,使得有源层的材质不 纯, 造成 TFT的特性效率不佳。 本发明由于在缺口处进行进一步的蚀刻, 在有 源层的表面蚀刻出凹槽, 这样就去除了有源层中材质不纯的表面物质, 提高了 整个有源层材质的纯度, 从而提高了 TFT的特性效率。
下面结合附图和较佳的实施例对本发明作进一步说明。
如图 3所示, 本实施例的薄膜晶体管结构包括覆盖在透明的基板 10 (如玻 璃)上的第一金属层 20, 所述第一金属层 20上设有绝缘层 30, 所述绝缘层 30 表面覆盖有第二金属层 40, 所述第二金属层 40在所述第一金属层 20正上方对 应区域设有缺口, 所述绝缘层 30在所述缺口对应区域设有凹槽 31 , 所述第二金 属层 40、 缺口和凹槽 31表面覆盖有氧化铟镓辞材质的有源层 50。
所述凹槽 31与所述缺口的形状一致; 所述第二金属层 40以缺口为界, 缺 口一端形成薄膜晶体管的源极金属层 41 , 缺口另一端形成薄膜晶体管的漏极金 属层 42; 所述有源层 50包括与源极金属层 41接触的第一区 51、 与漏极金属层 42接触的第二区 52、 铺设在所述凹槽 31表面的第三区 53; 铺设在所述源极金 属层 41一侧缺口的侧壁、连接第一区 51和第三区 53的第四区 54; 铺设在所述 缺口的另一侧壁、 连接第二区 52和第三区 53的第五区 55; 所述凹槽 31的深度 为所述绝缘层 30最大厚度的 0.1% ~ 60%; 更优选的, 凹槽 31的深度为所述区 绝缘层 30最大厚度的 0.2% ~ 50%;所述凹槽 31的深度为绝缘层 30上表面和凹 槽 31底部之间的距离。
所述第二金属层 40及有源层 50表面覆盖有配向层 60;所述配向层 60在漏 极金属层 42表面覆盖有透明电极 70。 配向层 60可以对液晶分子的方向进行初 始定位, 透明电极 70跟缺口一端的第二金属层 40电连接, 用于控制液晶分子 的偏转角度。
本实施例凹槽 31的形状就跟缺口保持一致, 在制造过程中就能以源极金属 层 41和漏极金属层 42为掩体, 直接从缺口处蚀刻出凹槽 31 , 无须额外制作光 罩, 降低了制造成本。 本发明的基板 10可以采用玻璃或其他透明材料; 蚀刻方 式可以采用化学蚀刻和物理蚀刻等现有的成熟技术。
图 4所示为采用本发明的去除了绝缘层中材质不纯的表面物质后的 TFT的 特性曲线示意图, TFT的闸极电压从 0伏特到 10伏特的时候, 电流随电压快速 上升, 斜率陡峭, 在较短的电压范围内 TFT就可得到较大的电流值, 用以驱动 液晶显示屏幕, 因此实施了本发明技术方案以后, TFT的特性效率有了明显的 提升。
如图 5所示, 本发明还公开了一种薄膜晶体管的制作方法, 包括步骤:
A、 在玻璃等透明的基板上依次形成第一金属层、 绝缘层、 第二金属层;
B、 在第二金属层表面蚀刻出缺口, 以缺口为界, 缺口一端形成薄膜晶体管 的源极金属层, 缺口另一端形成薄膜晶体管的漏极金属层;
C、 以源极金属层和漏极金属层为掩体, 在绝缘层表面蚀刻出凹槽;
D、 在所述源极金属层、 漏极金属层、 缺口和凹槽表面覆盖氧化铟镓辞材质 的有源层。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1、一种薄膜晶体管结构, 包括第一金属层, 所述第一金属层上设有绝缘层, 所述绝缘层表面覆盖有第二金属层, 所述第二金属层在所述第一金属层正上方 对应区域设有缺口, 所述绝缘层在所述缺口对应区域设有凹槽, 所述第二金属 层、 缺口和凹槽表面覆盖有氧化铟镓辞材质的有源层。
2、 如权利要求 1所述的一种薄膜晶体管结构, 其中, 所述第二金属层及有 源层表面覆盖有配向层。
3、 如权利要求 2所述的一种薄膜晶体管结构, 其中, 所述配向层表面覆盖 有透明电极。
4、 如权利要求 1所述的一种薄膜晶体管结构, 其中, 所述凹槽与所述缺口 的形状一致。
5、 如权利要求 4所述的一种薄膜晶体管结构, 其中, 所述第二金属层以缺 口为界, 缺口一端形成薄膜晶体管的源极金属层, 缺口另一端形成薄膜晶体管 的漏极金属层; 所述有源层包括与源极金属层接触的第一区; 与漏极金属层接 触的第二区; 铺设在所述凹槽表面的第三区; 铺设在所述源极金属层一侧缺口 的侧壁、 连接第一区和第三区的第四区; 铺设在所述缺口的另一侧壁、 连接第 二区和第三区的第五区。
6、 如权利要求 5所述的一种薄膜晶体管结构, 其中, 所述第二金属层及有 源层表面覆盖有配向层。
7、 权利要求 6所述的一种薄膜晶体管结构, 其中, 所述配向层表面覆盖有 透明电极。
8、 如权利要求 4所述的一种薄膜晶体管结构, 其中, 所述凹槽的深度为所 述绝缘层最大厚度的 0.1% ~ 60%。
9、 如权利要求 8所述的一种薄膜晶体管结构, 其中, 所述凹槽的深度为所 述区绝缘层最大厚度的 0.2% ~ 50%。
10、 如权利要求 1 所述的一种薄膜晶体管结构, 其中, 所述凹槽与所述缺 口的形状一致; 所述第二金属层以缺口为界, 缺口一端形成薄膜晶体管的源极 金属层, 缺口另一端形成薄膜晶体管的漏极金属层; 所述有源层包括与源极金 属层接触的第一区、 与漏极金属层接触的第二区、 铺设在所述凹槽表面的第三 区; 铺设在所述源极金属层一侧缺口的侧壁、 连接第一区和第三区的第四区; 铺设在所述缺口的另一侧壁、 连接第二区和第三区的第五区; 所述凹槽的深度 为所述绝缘层最大厚度的 0.1% ~ 60%; 所述第二金属层及有源层表面覆盖有配 向层; 所述配向层在漏极金属层表面覆盖有透明电极。
11、 一种液晶显示装置, 包括一种薄膜晶体管结构; 所述薄膜晶体管结构 包括第一金属层, 所述第一金属层上设有绝缘层, 所述绝缘层表面覆盖有第二 金属层, 所述第二金属层在所述第一金属层正上方对应区域设有缺口, 所述绝 缘层在所述缺口对应区域设有凹槽, 所述第二金属层、 缺口和凹槽表面覆盖有 氧化铟镓辞材质的有源层。
12、 如权利要求 11所述的一种液晶显示装置, 其中, 所述凹槽与所述缺口 的形状一致。
13、 如权利要求 12所述的一种液晶显示装置, 其中, 所述第二金属层以缺 口为界, 缺口一端形成薄膜晶体管的源极金属层, 缺口另一端形成薄膜晶体管 的漏极金属层; 所述有源层包括与源极金属层接触的第一区; 与漏极金属层接 触的第二区; 铺设在所述凹槽表面的第三区; 铺设在所述源极金属层一侧缺口 的侧壁、 连接第一区和第三区的第四区; 铺设在所述缺口的另一侧壁、 连接第 二区和第三区的第五区。
14、 如权利要求 12所述的一种液晶显示装置, 其中, 所述第二金属层及有 源层表面覆盖有配向层。
15、 权利要求 14所述的一种液晶显示装置, 其中, 所述配向层表面覆盖有 透明电极。
16、 如权利要求 12所述的一种液晶显示装置, 其中, 所述凹槽的深度为所 述绝缘层最大厚度的 0.1% ~ 60%。
17、 如权利要求 16所述的一种液晶显示装置, 其中, 所述凹槽的深度为所 述区绝缘层最大厚度的 0.2% ~ 50%。
18、 如权利要求 11所述的一种液晶显示装置, 其中, 所述凹槽与所述缺口 的形状一致; 所述第二金属层以缺口为界, 缺口一端形成薄膜晶体管的源极金 属层, 缺口另一端形成薄膜晶体管的漏极金属层; 所述有源层包括与源极金属 层接触的第一区; 与漏极金属层接触的第二区; 铺设在所述凹槽表面的第三区; 铺设在所述源极金属层一侧缺口的侧壁、 连接第一区和第三区的第四区; 铺设 在所述缺口的另一侧壁、 连接第二区和第三区的第五区; 所述凹槽的深度为所 述绝缘层最大厚度的 0.1% ~ 60%;所述第二金属层及有源层表面覆盖有配向层; 所述配向层在漏极金属层表面覆盖有透明电极。
19、 一种薄膜晶体管的制作方法, 包括步骤:
A、 在基板上依次形成第一金属层、 绝缘层、 第二金属层;
B、 在第二金属层表面蚀刻出缺口, 以缺口为界, 缺口一端形成薄膜晶体管 的源极金属层, 缺口另一端形成薄膜晶体管的漏极金属层;
C、 以源极金属层和漏极金属层为掩体, 在绝缘层表面蚀刻出凹槽;
D、 在所述源极金属层、 漏极金属层、 缺口和凹槽表面覆盖氧化铟镓辞材质 的有源层。
PCT/CN2013/071914 2013-01-23 2013-02-27 一种薄膜晶体管结构、液晶显示装置和一种制造方法 WO2014114018A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/824,341 US8912542B2 (en) 2013-01-23 2013-02-27 TFT structure and LCD device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310024370.4 2013-01-23
CN201310024370.4A CN103107202B (zh) 2013-01-23 2013-01-23 一种薄膜晶体管结构、液晶显示装置和一种制造方法

Publications (1)

Publication Number Publication Date
WO2014114018A1 true WO2014114018A1 (zh) 2014-07-31

Family

ID=48314921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071914 WO2014114018A1 (zh) 2013-01-23 2013-02-27 一种薄膜晶体管结构、液晶显示装置和一种制造方法

Country Status (2)

Country Link
CN (1) CN103107202B (zh)
WO (1) WO2014114018A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638017B (zh) * 2015-02-04 2017-10-13 京东方科技集团股份有限公司 薄膜晶体管、像素结构及其制作方法、阵列基板、显示装置
CN104934444B (zh) * 2015-05-11 2018-01-02 深圳市华星光电技术有限公司 共平面型氧化物半导体tft基板结构及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049340A (ja) * 2007-08-23 2009-03-05 Epson Imaging Devices Corp 電気光学装置及びその製造方法
CN101540341A (zh) * 2008-03-18 2009-09-23 株式会社半导体能源研究所 薄膜晶体管
CN101901787A (zh) * 2009-05-27 2010-12-01 乐金显示有限公司 氧化物薄膜晶体管及其制造方法
WO2011151990A1 (ja) * 2010-06-01 2011-12-08 シャープ株式会社 薄膜トランジスタ及びその製造方法
CN102655095A (zh) * 2011-06-01 2012-09-05 京东方科技集团股份有限公司 薄膜晶体管及阵列基板的制造方法
CN102723310A (zh) * 2012-07-02 2012-10-10 深圳市华星光电技术有限公司 一种阵列基板的制作方法、阵列基板和液晶显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411528B2 (ja) * 2008-03-18 2014-02-12 株式会社半導体エネルギー研究所 薄膜トランジスタ及び表示装置
TWI447983B (zh) * 2011-05-24 2014-08-01 Au Optronics Corp 半導體結構以及有機電致發光元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049340A (ja) * 2007-08-23 2009-03-05 Epson Imaging Devices Corp 電気光学装置及びその製造方法
CN101540341A (zh) * 2008-03-18 2009-09-23 株式会社半导体能源研究所 薄膜晶体管
CN101901787A (zh) * 2009-05-27 2010-12-01 乐金显示有限公司 氧化物薄膜晶体管及其制造方法
WO2011151990A1 (ja) * 2010-06-01 2011-12-08 シャープ株式会社 薄膜トランジスタ及びその製造方法
CN102655095A (zh) * 2011-06-01 2012-09-05 京东方科技集团股份有限公司 薄膜晶体管及阵列基板的制造方法
CN102723310A (zh) * 2012-07-02 2012-10-10 深圳市华星光电技术有限公司 一种阵列基板的制作方法、阵列基板和液晶显示装置

Also Published As

Publication number Publication date
CN103107202B (zh) 2016-04-27
CN103107202A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
CN103928470B (zh) 一种氧化物半导体tft阵列基板及其制造方法
WO2016033837A1 (zh) Tft背板结构及其制作方法
WO2016033840A1 (zh) Tft背板结构及其制作方法
WO2016165187A1 (zh) 双栅极氧化物半导体tft基板的制作方法及其结构
US10121883B2 (en) Manufacturing method of top gate thin-film transistor
WO2014114019A1 (zh) 一种薄膜晶体管结构、液晶显示装置、及薄膜晶体管的制造方法
TWI478344B (zh) 電晶體與其製造方法
WO2013127337A1 (zh) 氧化物半导体薄膜晶体管及其制造方法与显示装置
US9705008B2 (en) Manufacturing method and structure of oxide semiconductor TFT substrate
US20140183541A1 (en) Thin film transistor, manufacturing method thereof, array substrate and display device
TWI590423B (zh) 顯示裝置
TW201705299A (zh) 薄膜電晶體的製造方法
US10629746B2 (en) Array substrate and manufacturing method thereof
CN110137182A (zh) 一种阵列基板及其制造方法和显示面板
CN206619596U (zh) 阵列基板和显示面板
CN108122759B (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
WO2014114018A1 (zh) 一种薄膜晶体管结构、液晶显示装置和一种制造方法
CN108054172B (zh) 阵列基板及其制作方法和显示装置
TWI409957B (zh) 含氧半導體薄膜電晶體之製作方法及顯示裝置之製作方法
US8912542B2 (en) TFT structure and LCD device
US9793411B2 (en) Manufacturing method and structure of oxide semiconductor TFT substrate
CN203859117U (zh) 氧化物半导体晶体管
WO2022120746A1 (zh) 阵列基板及其制作方法和显示面板
CN109904173A (zh) 一种显示面板、显示面板的制造方法和显示装置
TWI401750B (zh) 薄膜電晶體及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13824341

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872593

Country of ref document: EP

Kind code of ref document: A1