WO2014112627A1 - 組換え細胞、並びに、1,4-ブタンジオールの生産方法 - Google Patents
組換え細胞、並びに、1,4-ブタンジオールの生産方法 Download PDFInfo
- Publication number
- WO2014112627A1 WO2014112627A1 PCT/JP2014/050998 JP2014050998W WO2014112627A1 WO 2014112627 A1 WO2014112627 A1 WO 2014112627A1 JP 2014050998 W JP2014050998 W JP 2014050998W WO 2014112627 A1 WO2014112627 A1 WO 2014112627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- dehydrogenase
- methanol
- formaldehyde
- butanediol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01244—Methanol dehydrogenase (1.1.1.244)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/02—Aldehyde-lyases (4.1.2)
- C12Y401/02043—3-Hexulose-6-phosphate synthase (4.1.2.43)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03027—Isoprene synthase (4.2.3.27)
Definitions
- the present invention relates to a recombinant cell capable of producing 1,4-butanediol from methanol or the like, and a method for producing 1,4-butanediol using the recombinant cell.
- 1,4-Butanediol is an organic compound that can be an important raw material for butadiene as a monomer of synthetic rubber, and is particularly important in the tire industry.
- development and commercialization of technology for converting from the production process of basic chemical products that depend on petroleum to the production process from renewable resources such as plant resources has been steadily progressing.
- 1,4-butanediol for example, a production technique using recombinant Escherichia coli using sugar as a raw material is known (Patent Document 1).
- 1,4-butanediol can be biosynthesized using, for example, succinate or ⁇ -ketoglutarate as a starting material.
- succinic acid is succinyl CoA (Succinyl CoA), succinic semialdehyde, 4-hydroxybutyrate, 4-hydroxybutyryl CoA (4-Hydroxybutyryl CoA).
- succinyl CoA succinyl CoA
- succinic semialdehyde 4-hydroxybutyrate
- 4-hydroxybutyryl CoA (4-Hydroxybutyryl CoA).
- 4-hydroxybutyraldehyde (4-Hydroxybutyraldehyde), it is converted to 1,4-butanediol.
- the enzymes that catalyze each reaction are (a) succinyl-CoA synthetase, (b) CoA-dependent succinate semialdehyde dehydrogenase, (e) 4 -Hydroxybutyrate-dehydrogenase (4-hydroxybutyrate-dehydrogenase), (f) 4-hydroxybutyryl-CoA-transferase, (g) 4-hydroxybutyryl-CoA reductase And (h) alcohol dehydrogenase (FIG. 1). All organisms have (a) succinyl-CoA synthase.
- succinic acid is converted to 1,4-butanediol via succinic semialdehyde, 4-hydroxybutyric acid, 4-hydroxybutyric acid CoA, and 4-hydroxybutyraldehyde.
- the enzyme that catalyzes the reaction for converting succinic acid to succinic semialdehyde is (c) succinate semialdehyde dehydrogenase (FIG. 1).
- ⁇ -ketoglutaric acid passes through succinic semialdehyde, 4-hydroxybutyric acid, 4-hydroxybutyric acid CoA, and 4-hydroxybutyraldehyde to 1,4-butane. Converted to diol.
- the enzyme that catalyzes the reaction for converting ⁇ -ketoglutarate to succinic semialdehyde is (d) 2-oxoglutarate decarboxylase (FIG. 1).
- methanol is inexpensively produced from natural gas and synthesis gas, which is a mixed gas of carbon monoxide, carbon dioxide, and hydrogen obtained by incineration of waste such as biomass and municipal waste. Is done. Natural gas is abundant in fossil resources, and the amount of generated CO 2 is relatively small. Therefore, natural gas is attracting attention as a next-generation energy source, and the transition from conventional oil to natural gas is progressing. Methanol is easy to handle and store, such as being soluble in water, and is also suitable as a carbon source for microbial culture.
- Methylotroph is a carbon compound that does not have a C—C bond in the molecule, for example, methane, methanol, methylamine, dimethylamine, trimethylamine, etc., as the sole carbon source and energy source, assimilating C1 compounds It is a generic name for microorganisms. Microorganisms called methanotroph, methane oxidizing bacteria, methanol-assimilating bacteria, methanol-assimilating yeast, methanol-assimilating microorganisms, etc. all belong to methylotrophs. Many bacterial methylotrophs can assimilate methane, and these are often called methanotrophs.
- Methylotroph uses the reaction of converting formaldehyde to organic matter having a C—C bond after converting methanol to formaldehyde as the central metabolism.
- serine pathway ribulose monophosphate pathway (RuMP pathway)
- XuMP pathway xylulose monophosphate pathway
- Methylotrophs classified as bacteria possess a serine cycle or RuMP pathway.
- methylotrophic bacteria are classified into obligate methylotrophs and facultative methylotrophs that can use other carbon compounds because of differences in methanol requirements.
- an object of the present invention is to provide a series of techniques for producing 1,4-butanediol from methanol or the like.
- a host cell that is a methylotroph is provided with a succinic semialdehyde dehydrogenase, a succinyl CoA synthase, a CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxy Introduced gene encoding at least one enzyme selected from the group consisting of butyrate dehydrogenase, 4-hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase
- the gene is expressed in the host cell and can produce 1,4-butanediol from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. Is a recombinant cell.
- 1,4-butanediol can be biosynthesized from succinic acid.
- the recombinant cell of the present invention comprises a group of enzymes acting in the biosynthetic pathway from succinic acid to 1,4-butanediol, that is, succinic semialdehyde dehydrogenase, succinyl CoA synthase, CoA-dependent succinic semi At least one selected from the group consisting of aldehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase
- a gene encoding one enzyme is introduced into a host cell that is a methylotroph, and the gene is expressed in the host cell.
- 1,4-butanediol can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- the above-mentioned C1 is obtained via succinic acid.
- 1,4-butanediol can be produced from the compound.
- a host cell that is a methylotroph is allowed to have 2-oxoglutarate decarboxylase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyrate CoA transferase, 4-hydroxyl
- a gene encoding at least one enzyme selected from the group consisting of butyrate-CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase is introduced, and the gene is expressed in the host cell;
- 1,4-butanediol can also be biosynthesized from ⁇ -ketoglutaric acid.
- the recombinant cell of the present invention has a group of enzymes acting in the biosynthetic pathway from ⁇ -ketoglutarate to 1,4-butanediol, that is, 2-oxoglutarate decarboxylase, 4-hydroxybutyrate dehydrogenase, 4 -A gene encoding at least one enzyme selected from the group consisting of hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase is a methylotrophic host cell.
- 1,4-butanediol can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- the methylotrophic inherent “function of converting methanol and / or formic acid into formaldehyde” and “formaldehyde immobilization ability” are based on ⁇ -ketoglutarate via the ⁇ -ketoglutarate. 1,4-butanediol can be produced from the obtained C1 compound.
- the formaldehyde immobilization pathway has at least one C1 carbon assimilation pathway selected from the group consisting of serine pathway, ribulose monophosphate pathway, and xylose monophosphate pathway.
- a gene encoding 3-hexulose 6-phosphate synthase and a gene encoding 6-phospho-3-hexoisomerase are further introduced, and the gene is expressed in the host cell.
- the host cell is a methanol-assimilating yeast, and a gene encoding an enzyme that converts methanol into formaldehyde by a dehydrogenation reaction is further introduced, and the gene is expressed in the host cell.
- yeast is highly resistant to alcohol. Therefore, in this aspect, methanol-assimilating yeast is used as a host to increase the resistance of recombinant cells to 1,4-butanediol. Further, in yeast, alcohol oxidase is generally responsible for the conversion reaction from methanol to formaldehyde. For this reason, oxygen is required for the conversion reaction, and specifically, it is necessary to aerate vigorously during the culture. Therefore, in this aspect, a gene encoding “enzyme that converts methanol into formaldehyde by dehydrogenation” is introduced so that the conversion reaction from methanol to formaldehyde can be performed without relying on oxygen.
- a host cell is provided with a gene that imparts a function of converting methanol and / or formic acid into formaldehyde, a gene that imparts formaldehyde immobilization ability, Aldehyde dehydrogenase, succinyl CoA synthase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde
- a “gene that imparts a function of converting methanol and / or formic acid into formaldehyde” and a “gene that imparts formaldehyde immobilization ability” are introduced into a host cell.
- Enzymes that act in the biosynthetic pathway leading to 4-butanediol namely succinic semialdehyde dehydrogenase, succinyl CoA synthase, CoA-dependent succinic semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, 4 -A gene encoding at least one enzyme selected from the group consisting of hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase has been introduced.
- 1,4-butanediol can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. That is, the recombinant cell of the present invention has the same characteristics as a methylotroph because a “gene that imparts a function of converting methanol and / or formic acid to formaldehyde” and a “gene that imparts formaldehyde immobilization ability” have been introduced. Have.
- 1,4- Butanediol can be produced.
- a gene that gives a host cell a function of converting methanol and / or formic acid into formaldehyde a gene that gives formaldehyde immobilization ability, 2-oxoglutar, At least one selected from the group consisting of acid decarboxylase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase From at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. Recombinant capable of producing 1,4-butanediol It is a cell.
- a “gene that imparts a function of converting methanol and / or formic acid into formaldehyde” and a “gene that imparts formaldehyde immobilization ability” are introduced into a host cell, and further from ⁇ -ketoglutarate.
- a gene encoding at least one enzyme selected from the group consisting of 4-hydroxybutyraldehyde dehydrogenase and alcohol dehydrogenase has been introduced. Then, 1,4-butanediol can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- the recombinant cell of the present invention has the same characteristics as a methylotroph because a “gene that imparts a function of converting methanol and / or formic acid to formaldehyde” and a “gene that imparts formaldehyde immobilization ability” have been introduced. Have. Then, based on the “function of converting methanol and / or formic acid into formaldehyde” and “formaldehyde immobilization ability” imparted by these foreign genes, the ⁇ -ketoglutaric acid is used as a 1, 4-Butanediol can be produced.
- the gene imparting formaldehyde immobilization ability is a gene encoding 3-hexulose 6-phosphate synthase and a gene encoding 6-phospho-3-hexoisomerase.
- Such a configuration provides formaldehyde immobilization ability by the ribulose monophosphate pathway.
- the formaldehyde immobilization pathway has at least one C1 carbon assimilation pathway selected from the group consisting of a serine pathway, a ribulose monophosphate pathway, and a xylulose monophosphate pathway.
- Another aspect of the present invention for solving the same problem is to provide a host cell having a ribulose monophosphate pathway with a gene that functions to convert methanol and / or formic acid into formaldehyde, and succinic semialdehyde dehydrogenase.
- a host cell having a ribulose monophosphate pathway has a gene that gives a function of converting methanol and / or formic acid to formaldehyde, and 2-oxoglutarate decarboxylase.
- Encoding at least one enzyme selected from the group consisting of 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase From the at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- a gene encoding 3-hexulose 6-phosphate synthase and a gene encoding 6-phospho-3-hexoisomerase are further introduced, and the gene is expressed in the host cell.
- the gene imparting the function of converting methanol to formaldehyde is a gene encoding methanol dehydrogenase or alcohol oxidase
- the gene imparting the function of converting formic acid to formaldehyde is a gene encoding formaldehyde dehydrogenase.
- Both methanol dehydrogenase and alcohol dehydrogenase have the action of converting methanol into formaldehyde.
- Formaldehyde dehydrogenase has a function of converting formic acid into formaldehyde.
- These enzymes are all methane metabolizing enzymes in methylotrophs belonging to bacteria.
- methylotrophs belonging to yeast do not have methane oxidation activity, but have an action of converting methanol into formaldehyde by the action of alcohol oxidase.
- Yeast also has an enzymatic activity to convert formic acid into formaldehyde.
- a gene imparting a function of converting methane to methanol is further introduced, and the gene is expressed in the host cell.
- the gene imparting the function of converting methane to methanol is a gene encoding methane monooxygenase.
- Methane monooxygenase has an action of converting methane to methanol. Methane monooxygenase is also one of the methane metabolizing enzymes in methylotrophs.
- the introduced gene is integrated into the genome of the host cell.
- the introduced gene is more stably retained in the recombinant cell.
- the introduced gene is incorporated into the plasmid.
- it has resistance to at least 400 mM 1,4-butanediol.
- 1,4-butanediol can be produced in a larger amount.
- it has a resistance to at least 2% (v / v) methanol.
- 1,4-butanediol can be produced in a larger amount.
- the above recombinant cell is cultured using at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide as a carbon source,
- 1,4-butanediol is produced by allowing a recombinant cell to produce 1,4-butanediol.
- the present invention relates to a method for producing 1,4-butanediol.
- the above recombinant cells are cultured using at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide as a carbon source.
- 4-butanediol is produced.
- 1,4-butanediol can be produced from methanol or the like.
- the recombinant cell is contacted with at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide, and the recombinant cell is contacted with the aforementioned recombinant cell.
- 1,4-butanediol is produced from C1 compound.
- the above-described recombinant cell is contacted with at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide, and 1,4-butanediol is obtained from the C1 compound.
- C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide
- 1,4-butanediol is obtained from the C1 compound.
- 1,4-butanediol can be produced from methanol or the like.
- 1,4-butanediol can be produced from methane, methanol, methylamine, formic acid, formaldehyde, or formamide.
- 1,4-butanediol of the present invention is the same, and 1,4-butanediol can be produced from methane, methanol, methylamine, formic acid, formaldehyde, or formamide.
- FIG. 3 is an explanatory diagram showing a metabolic pathway from succinic acid or ⁇ -ketoglutaric acid to 1,4-butanediol. It is explanatory drawing showing the carbon assimilation metabolic pathway through formaldehyde.
- the term “gene” can be replaced by the term “nucleic acid” or “DNA”.
- the recombinant cell of the present invention can be transferred from a succinic acid or ⁇ -ketoglutaric acid to a host cell having “a function of converting methanol and / or formic acid into formaldehyde” and “formaldehyde immobilization ability”.
- a gene encoding an enzyme group that acts in the biosynthetic pathway leading to butanediol has been introduced.
- the host cells employed in the present invention include both host cells that are methylotrophs and a wide range of host cells including non-methylotrophs.
- a methylotroph is a carbon compound that does not have a C—C bond in the molecule, such as methane, methanol, methylamine, dimethylamine, trimethylamine, etc., as a sole carbon source and energy source. It refers to a chemical microorganism.
- methylotrophs inherently have a carbon assimilation metabolic pathway through formaldehyde, specifically, a function (route) for converting methanol and / or formic acid to formaldehyde and a formaldehyde immobilization ability (formaldehyde immobilization pathway). I have it.
- the formaldehyde immobilization pathway includes the serine pathway, ribulose monophosphate pathway (RuMP pathway), and xylulose monophosphate pathway (XuMP pathway) shown in FIG.
- methylotrophs possess a serine pathway, a RuMP pathway, or a XuMP pathway as a carbon assimilation metabolic pathway via formaldehyde.
- route (FIG. 2) is demonstrated.
- An important reaction for formaldehyde fixation by the serine pathway is a serine production reaction from glycine and 5,10-methylene-tetrahydrofolate by serine hydroxymethyltransferase.
- 5,10-methylene-tetrahydrofolic acid is formed by the combination of formaldehyde and tetrahydrofolic acid.
- one molecule of acetyl CoA is directly generated from one molecule of formaldehyde.
- Ru5P ribulose 5-phosphate
- HPS 3-hexulose-6-phosphate synthase
- PHI 6-phospho-3-hexuloisomerase
- F6P and the like produced by this pathway are also used for glycolysis, and then produce acetyl CoA, glyceraldehyde triphosphate (G3P), and pyruvic acid.
- G3P glyceraldehyde triphosphate
- F6P it is converted into two molecules of G3P per molecule, and then two molecules of acetyl CoA are generated via two molecules of pyruvic acid.
- DHA dihydroxyacetone
- G3P glyceraldehyde triphosphate
- Xu5P xylulose pentaphosphate
- Xu5P xylulose pentaphosphate
- G3P produced by this pathway is also used for glycolysis and converted to pyruvic acid and acetyl CoA.
- Dihydroxyacetone can also be subjected to glycolysis by phosphorylation and converted to G3P, pyruvate, and acetyl CoA.
- the recombinant cell of the present invention is capable of producing 1,4-butanediol from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- methanol can be converted to formaldehyde.
- methane in addition to methanol dehydrogenase or alcohol oxidase, methane can be converted to methanol, and subsequently methanol can be converted to formaldehyde.
- formic acid can be converted to formaldehyde.
- methylotrophs methylotrophic bacteria classified as bacteria have methane monooxygenase and methanol dehydrogenase, so that formaldehyde can be synthesized from methane or methanol.
- methylotrophs methylotrophic yeasts classified as yeast have alcohol oxidase, so that formaldehyde can be synthesized from methanol.
- methylotroph has formaldehyde dehydrogenase and can convert formic acid into formaldehyde.
- the methanol dehydrogenase includes pyrroloquinoline quinone (PQQ) -dependent methanol dehydrogenase found in methylotrophs of gram-negative bacteria, NAD (P) -dependent methanol dehydrogenase and alcohol dehydrogenase found in methylotrophs of gram-positive bacteria, gram-positive DMNA (N, N′-dimethyl-4-nitrosoaniline) -dependent methanol oxidoreductase (Park H. et al., Microbiology 2010, 156, 463-471), which is found in bacterial methylotrophs, is included.
- the conversion of methanol to formaldehyde in yeast is usually catalyzed by alcohol oxidase, which is oxygen dependent.
- methylamine can be converted to formaldehyde.
- These enzymes are known to be possessed by some methylotrophs and bacteria belonging to the genus Arthrobacter (Anthony C., The Biochemistry of Methylotroph, 1982, Academic Press Inc.).
- An enzyme that converts formamide to formaldehyde has been found in some microorganisms (Anthony C., The Biochemistry of Methylotroph, 1982, Academic Press Inc.).
- 1,4-butanediol can be produced via formaldehyde.
- the type of methylotroph used as a host cell is not particularly limited, and for example, those classified into bacteria and yeasts can be employed.
- methylotrophic bacteria examples include, for example, Methylacidphilum, Methylosinus, Methylocystis, Methylobacterium, Methylocella, Methylococcus, Methylomonas, Methylobacter, Methylobacillus, Methylophilus, Methylotenera, Methylovorus, Genus, Methyloversatilis, Mycobacterium, Arthrobacter, Bacillus, Beggiatoa, Burkholderia, Granulibacter, Hyphomicrobium, Pseudomonas, Achromobactor, Paracoccus, Crenothrix, Clonothrix, Rhodohobacter, Rhodobacter Examples include bacteria belonging to the genus Thiomicrospira, Verrucomicrobia, and the like.
- Examples of methylotrophic yeasts include yeasts belonging to the genera Pichia, Candida, Saccharomyces, Hansenula, Torulopsis, Kloeckera, and the like.
- Examples of Pichia yeast include P. ⁇ haplophila, P. pastoris, P. trehalophila, P. lindnerii, and the like.
- Examples of Candida yeast include C. parapsilosis, C. methanolica, C. boidinii, C. alcomigas, and the like.
- Examples of Saccharomyces yeasts include Saccharomyces metha-nonfoams.
- Examples of Hansenula yeast include H. Hwickerhamii, H. capsulata, H. glucozyma, H.
- Torulopsis yeast examples include T. ⁇ methanolovescens, T. glabrata, T. nemodendra, T. pinus, T. methanofloat, T. enokii, T. menthanophiles, T. methanosorbosa, T. methanodomercqii, and the like.
- the host cell When the host cell is a non-methylotroph, it does not necessarily have a pathway for converting methanol or the like to formaldehyde, so it is necessary to provide at least a “function for converting methanol and / or formic acid to formaldehyde”. . Furthermore, it is preferable to provide “a function of converting methane to methanol”. These functions can be imparted by introducing a gene encoding the above-described enzyme into a host cell.
- a gene imparting a function of converting methanol into formaldehyde a gene encoding methanol dehydrogenase (for example, EC1.1.1.244, EC1.1.2.7) or a gene encoding alcohol oxidase (for example, EC1.13.13) can be used.
- a gene encoding formaldehyde dehydrogenase (for example, EC1.2.1.46) can be used as a gene that imparts a function of converting formic acid into formaldehyde.
- a gene encoding methane monooxygenase can be used as a gene imparting the function of converting methane to methanol.
- a plasmid that imparts methanol assimilation is known.
- the assimilation ability of Bacillus methanolicus depends on a plasmid encoding an enzyme group involved in methanol metabolism (Brautaset T. et al., J. Bacteriology 2004, 186 (5), 1229-1238).
- By introducing such a plasmid into a related non-methylotroph it is possible to confer methanol assimilation ability.
- By modifying such a plasmid it is possible to impart methanol-assimilating properties to various non-methylotrophs.
- non-methylotrophs are treated in the same way as methylotrophs by providing them with the function of converting methanol and / or formic acid into formaldehyde, and further by providing the ability to immobilize formaldehyde.
- the formaldehyde-immobilizing ability can be imparted, for example, by introducing a gene encoding an enzyme that acts in the serine pathway, RuMP pathway, or XuMP pathway described above into a non-methylotroph.
- the host cell is methanol-assimilating yeast
- a gene encoding an enzyme that converts methanol into formaldehyde by dehydrogenation is further introduced, and the gene is expressed in the host cell.
- a target recombinant cell can be obtained by using a Pichia genus yeast having methanol assimilation property as a host cell and further introducing a methanol dehydrogenase gene. According to this embodiment, it is possible to obtain a recombinant cell capable of producing 1,4-butanediol, which has high alcohol resistance and can convert methanol into formaldehyde without depending on oxygen.
- the provision of the RuMP pathway is, for example, the above-described 3-hexulose 6-phosphate synthase (HPS; eg EC4.1.2.43) gene and 6-phospho-3-hexoisomerase (PHI; eg EC5.3.1.27).
- HPS 3-hexulose 6-phosphate synthase
- PHI 6-phospho-3-hexoisomerase
- This can be realized by introducing a gene. That is, ribulose 5-phosphate (Ru5P) and fructose 6-phosphate (F6P), which are substrates or products of formaldehyde immobilization reaction by HPS / PHI, are all biological organisms as metabolic intermediates of the pentose phosphate pathway and the calvin cycle. Exists universally. Therefore, by introducing HPS / PHI, it is possible to impart formaldehyde immobilization ability to all organisms including Escherichia coli, Bacillus subtilis, yeast and the like.
- the HPS gene and the PHI gene may be introduced into a host cell originally having a RuMP pathway.
- a RuMP pathway For example, an alcohol dehydrogenase such as methanol dehydrogenase (for example, EC1.1.1.244, EC1.1.2.7), 3-hexulose, or the like, which originally has a RuMP pathway or a pathway similar to this, such as Bacillus subtilis.
- an alcohol dehydrogenase such as methanol dehydrogenase (for example, EC1.1.1.244, EC1.1.2.7), 3-hexulose, or the like, which originally has a RuMP pathway or a pathway similar to this, such as Bacillus subtilis.
- the above-mentioned serine hydroxymethyltransferase (for example, EC2.1.2.1) gene can be used.
- serine hydroxymethyltransferase eg EC2.1.2. 1
- an enzyme group acting in a biosynthetic pathway from succinic acid or ⁇ -ketoglutarate to 1,4-butanediol (hereinafter collectively referred to as “1,4-butanediol biosynthesis-related enzymes (groups)”. ) ", Which is sometimes called”) "has been introduced.
- the enzymes shown in (a) to (i) of FIG. 1 correspond to 1,4-butanediol biosynthesis-related enzymes.
- the enzymes acting in the biosynthetic pathway from succinic acid to 1,4-butanediol include (c) succinic semialdehyde dehydrogenase, (a) succinyl CoA synthase, and (b) CoA dependent Type succinic semialdehyde dehydrogenase, (e) 4-hydroxybutyrate dehydrogenase, (f) 4-hydroxybutyrate CoA transferase, (g) 4-hydroxybutyrate CoA reductase, (i) 4-hydroxybutyraldehyde A gene encoding at least one enzyme selected from the group consisting of dehydrogenase and (h) alcohol dehydrogenase has been introduced into a host cell. For example, one or more enzymes may be selected from these enzyme groups and a gene encoding the enzyme may be introduced into the host cell.
- (d) 2-oxoglutarate decarboxylase and (e) 4-hydroxybutyrate dehydrogenase are enzymes acting in the biosynthetic pathway from ⁇ -ketoglutarate to 1,4-butanediol. At least selected from the group consisting of an enzyme, (f) 4-hydroxybutyrate CoA transferase, (g) 4-hydroxybutyrate CoA reductase, (i) 4-hydroxybutyraldehyde dehydrogenase, and (h) alcohol dehydrogenase
- a gene encoding one enzyme has been introduced into the host cell.
- one or more enzymes may be selected from these enzyme groups and a gene encoding the enzyme may be introduced into the host cell.
- enzymes (1,4-butanediol biosynthesis-related enzymes) are not particularly limited as long as they can exhibit the enzyme activity in recombinant cells.
- the enzyme related to 1,4-butanediol biosynthesis and its gene include those disclosed in Patent Document 1 above. For example, the following enzymes are mentioned.
- an enzyme gene that is more excellent in substrate specificity, molecular activity, and stability, that is, having a higher Kcat / Km value or the like may be introduced.
- the enzyme gene includes a gene encoding a modified enzyme originally possessed by the host cell. Optimization of codons of the transgene and avoidance of low frequency can be performed in each host microorganism with reference to “CodonCoUsage Database” (http://www.kazusa.or.jp/codon/).
- C Succinate semialdehyde dehydrogenase (for example, EC 1.2.1.16, EC 1.2.1.24) Examples of genes (both indicated by UniProtKB No.): P76149 (E. coli); P25526 (E. coli); P94428 (Bacillus subtilis); Q55585 (Synechocystis sp.); P38067 (Saccharomyces cerevisiae), etc.
- Succinyl CoA synthetase Succinyl CoA synthetase, Succinyl CoA ligase: for example, EC 6.2.1.4, EC 6.2.1.5, etc.
- genes both expressed as UniProtKB / Swiss-Prot No.: P0AGE9 (E. coli); P0A836 (E. coli); P53598 (Saccharomyces cerevisiae); P53312 (Saccharomyces cerevisiae); P09143 (Thermus thermophilus); O82662 (Arabidopsis thaliana) etc.
- This enzyme activity is possessed by all living organisms, but it is also effective to introduce it as a foreign gene if necessary.
- CoA-dependent succinate semialdehyde dehydrogenase for example, EC 1.2.1.79
- genes both indicated by UniProtKB / Swiss-Prot No.: P38947 (Clostridium kluyveri); A4YGN0 (Metallosphaera sedula), etc.
- E 4-hydroxybutyrate dehydrogenase (eg EC 1.1.1.61)
- genes both expressed as UniProtKB / Swiss-Prot No.: D8GUP1 (Clostridium ljungdahlii); C9YNR6 (Clostridium difficile); Q97IR6 (Clostridium acetobutylicum); Q8XYI7 (Ralstonia solanacearum); Q7phyromis
- Alcohol dehydrogenase for example, EC 1.1.1.1, EC 1.1.1.2, etc.
- genes both expressed as UniProtKB / Swiss-Prot No.: P0A4X1 (Mycobacterium bovis); P00331 (Saccharomycess cerevisiae); P00330 (Saccharomycess cerevisiae); Q9HIM3 (Thermoplasma acidophilum); B9WPR7 (Arthrobacter P4.Arthrobacter) Drosophila melanogaster) etc.
- adhE corresponds to both (g) and (h).
- Examples of adhE include D8GU53 (Clostridium ljungdahlii), D8GU52 (Clostridium ljungdahlii), Q9ANR5 (Clostridium acetobutylicum), P0A9Q7 (E. coli), F7TVB7 (Brevibacillus laterosporus)- display).
- (I) 4-hydroxybutyraldehyde dehydrogenase This enzyme is an enzyme that can reversibly catalyze the conversion of 4-hydroxybutyric acid to 4-hydroxybutyraldehyde.
- aldehyde dehydrogenase eg EC 1.2.1.3, EC 1.2.1.4, EC 1.2.1.5, etc.
- aldehyde dehydrogenase genes exhibiting 4-hydroxybutyraldehyde dehydrogenase activity both indicated by UniProtKB / Swiss-Prot No.
- E4R8S4 Pseudomonas putida
- P23883 E.
- (D) 2-oxoglutarate decarboxylase (eg EC 4.1.1.71)
- genes (both expressed as UniProtKB / Swiss-Prot No.): A0R2B1 (Mycobacterium smegmatics); I0WZ48 (Rhodococcus imtechensis); G2EJR8 (Corynebacterium glutamicum); J1S9U2 (Streptomyces auratus); J7LQH4 (Arthrobacter sp.
- the type (number) of genes of “1,4-butanediol biosynthesis-related enzyme” to be introduced is selected from the group consisting of “methane, methanol, methylamine, formic acid, formaldehyde, and formamide”. As long as it is possible to produce 1,4-butanediol from at least one C1 compound, at least one is sufficient. However, when the activity of each enzyme is enhanced by introducing two or more genes, it is expected that the productivity of 1,4-butanediol will increase. Basically, for the 1,4-butanediol biosynthesis-related enzyme that is not possessed by the host cell, a gene encoding the enzyme is introduced from the outside. In addition, when the host cell has a low molecular activity, it is preferable to introduce a gene encoding an enzyme having a higher molecular activity.
- the 1,4-butanediol biosynthesis-related enzyme may be a naturally-occurring enzyme or a modified enzyme of each enzyme.
- it may be an amino acid substitution mutant of each enzyme or a polypeptide that is a partial fragment of each enzyme and has the same enzyme activity.
- genes may be further introduced in addition to the gene encoding 1,4-butanediol biosynthesis-related enzyme.
- the gene to be introduced include the above-mentioned methanol dehydrogenase gene, alcohol dehydrogenase gene, methane monooxidase gene, HPS / PHI gene, serine hydroxymethyltransferase gene, 5,10-methylenetetrahydrofolate synthase gene, and serine hydroxymethyltransferase Genes, etc.
- a method for introducing a gene into a host cell is not particularly limited, and may be appropriately selected depending on the type of the host cell.
- a vector that can be introduced into a host cell and can express an integrated gene can be used.
- the vector when the host cell is a prokaryotic organism such as a bacterium, the vector contains a promoter at a position where it can replicate autonomously in the host cell or can be integrated into a chromosome, and the inserted gene can be transcribed.
- the vector contains a promoter at a position where it can replicate autonomously in the host cell or can be integrated into a chromosome, and the inserted gene can be transcribed.
- the homologous recombination method preferably targets a gene present in multiple copies on the genome, such as inverted-repeat sequence.
- methods for introducing multiple copies into the genome include a method for loading in a transposon. Examples of gene introduction methods using a plasmid into methylotrophic bacteria include pAYC32p (Chistoserdov AY., Et al., Plasmid 1986, 16, 161-167), pRP301 (Lane M., et al. Arch. Microbiol.
- the gene introduction method in methylotrophic yeast is established mainly by Pichia pastoris, and vectors such as pPIC3.5K, pPIC6, pGAPZ, pFLD (Invitrogen) are commercially available.
- Bacillus subtilis includes pMTLBS72 (Nquyen HD. Et al., Plasmid 2005, 54 (3), 241-248), pHT01 (Funakoshi), pHT43 (Funakoshi).
- Bacillus megaterium includes p3STOP1623hp (Funakoshi), pSP YocH hp (Funakoshi), and Bacillus brevis includes pNI DNA (Takara Bio).
- each gene when a plurality of types of genes are introduced into a host cell using a vector, each gene may be incorporated into one vector or may be incorporated into separate vectors. Further, when a plurality of genes are incorporated into one vector, each gene may be expressed under a common promoter or may be expressed under different promoters.
- introducing a plurality of types of genes when the host cell is a methylotroph, in addition to the “gene encoding 1,4-butanediol biosynthesis-related enzyme”, an embodiment in which an HPS / PHI gene is introduced. It is done.
- regions related to transcription control, replication regions, etc. such as promoters and terminators, can be modified according to the purpose.
- a modification method it may be changed to another natural gene sequence in each host cell or its related species, or may be changed to an artificial gene sequence.
- the foreign gene may be incorporated into the genome of the host cell or may be incorporated into a plasmid.
- the recombinant cells are resistant to at least 400 mM 1,4-butanediol. In another preferred embodiment, the recombinant cell has a resistance to at least 2% (v / v) methanol. With this configuration, high production of 1,4-butanediol becomes possible.
- a recombinant cell having such characteristics can be obtained, for example, by subjecting a host cell to appropriate mutation treatment, selecting a host cell having the desired characteristics, and using the host cell.
- the present invention includes the following (i) to (iv).
- a host cell that is a methylotroph a host cell into which a gene that imparts a function of converting methanol and / or formic acid into formaldehyde and a gene that imparts formaldehyde immobilization ability, or a ribulose monophosphate pathway
- succinic semialdehyde dehydrogenase succinyl CoA synthase
- CoA-dependent succinic semialdehyde dehydrogenase 2-oxoglutar
- One enzyme The gene to be loaded
- a host cell that is a methylotroph, succinic semialdehyde dehydrogenase, succinyl CoA synthase, CoA-dependent succinic semialdehyde dehydrogenase, 2-oxoglutarate decarboxylase, 4-hydroxybutyrate dehydrogenase,
- a gene encoding at least one enzyme selected from the group consisting of 4-hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and alcohol dehydrogenase is introduced, The gene is expressed in the host cell, A recombinant cell capable of producing 1,4-butanediol from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- a gene that provides a host cell with a function of converting methanol and / or formic acid into formaldehyde a gene that imparts formaldehyde immobilization ability, succinic semialdehyde dehydrogenase, succinyl-CoA synthase, CoA-dependent type Succinic semialdehyde dehydrogenase, 2-oxoglutarate decarboxylase, 4-hydroxybutyrate dehydrogenase, 4-hydroxybutyrate CoA transferase, 4-hydroxybutyrate CoA reductase, 4-hydroxybutyraldehyde dehydrogenase, and A gene encoding at least one enzyme selected from the group consisting of alcohol dehydrogenase is introduced, The gene is expressed in the host cell, A recombinant cell capable of producing 1,4-butanediol from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid,
- a gene encoding at least one enzyme selected from the group is introduced, The gene is expressed in the host cell, A recombinant cell capable of producing 1,4-butanediol from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and
- the above-described recombinant cell is treated with at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- C1 compounds used as a carbon source only one may be used and it may be used in combination of 2 or more.
- a synthetic medium containing C1 compound as the only carbon source, but a small amount of natural medium such as yeast extract, corn steep liquor, meat extract and vitamins are added to this. This also promotes the growth of bacteria.
- substances other than C1 compounds such as carbohydrates and lipids may be used as a carbon source in the cell growth stage, and if the carbon source is changed to the above C1 compound in the 1,4-butanediol production stage. Good.
- the microorganism can be cultured under aerobic, microaerobic or anaerobic conditions depending on the purpose. Any of batch culture, fed-batch culture, and continuous culture may be used.
- methanol when used as the carbon source, it is usually used at a concentration of 1.0% (v / v) for bacteria and at a concentration of 3.0% (v / v) or less for yeast.
- the resistance to when it is improved, it can be cultured at higher concentrations.
- At least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide is added to the above-described recombinant cell.
- 1,4-butanediol can be produced by contacting the aforementioned C1 compound with a recombinant cell.
- the aforementioned C1 compound can be continuously supplied to immobilized recombinant cells to continuously produce 1,4-butanediol.
- about these C1 compounds only one may be used and it may be used in combination of 2 or more.
- the produced 1,4-butanediol is accumulated inside the cell or released outside the cell.
- purified 1,4-butanediol can be obtained by recovering 1,4-butanediol released outside the cell and isolating and purifying it by distillation or the like.
- 1,4-butanediol (1,4-BDO) synthase gene into methylotrophs with XuMP pathway and production of 1,4-BDO from methanol using recombinants
- the methanol-assimilating yeast PichiaMPpastolis ⁇ GS115 strain (Invitrogen) was used as a methylotroph having the XuMP pathway.
- SEQ ID NO: 1 is a 1,4-BDO biosynthesis-related enzyme gene cluster.
- the gene cluster consists of sucD ⁇ ⁇ (SEQ ID NO: 2: CoA-dependent succinic semialdehyde dehydrogenase), 4HBd (SEQ ID NO: 4: 4-hydroxybutyrate dehydrogenase), abfT (SEQ ID NO: 4: 4-hydroxybutyrate CoA transfer).
- Enzyme and adhE2 (SEQ ID NO: 5: aldehyde / alcohol dehydrogenase 2).
- the artificially synthesized gene of SEQ ID NO: 1 was cloned into the SmaI / NotI cleavage site of pT7 blue-2 vector (Novagen).
- the plasmid was prepared in large quantities and then cut with SmaI and NotI to recover the inserted gene.
- the recovered gene fragment was introduced into the SnaBI / NotI cleavage site of pPIC3.5K (Invitrogen) to construct a vector pPBDO into which a 1,4-BDO synthetic gene was introduced.
- This vector is under the control of alcohol oxidase I (AOXI) promoter and AOXI terminator, sucD (SEQ ID NO: 2: CoA-dependent succinic semialdehyde dehydrogenase), 4HBd (SEQ ID NO: 3: 4-hydroxybutyrate dehydrogenase) Enzymes), abfT (SEQ ID NO: 4: 4-hydroxybutyrate CoA transferase), and adhE2 (SEQ ID NO: 5: aldehyde / alcohol dehydrogenase 2) are expressed.
- AOXI alcohol oxidase I
- sucD SEQ ID NO: 2: CoA-dependent succinic semialdehyde dehydrogenase
- 4HBd SEQ ID NO: 3: 4-hydroxybutyrate dehydrogenase
- abfT SEQ ID NO: 4: 4-hydroxybutyrate CoA transferase
- adhE2 SEQ ID NO: 5: aldehyde / alcohol dehydrogenase
- the GS115BDO strain and the GS11535K strain were respectively added to 20 mL of a synthetic A medium (18 g of H 3 PO 4 , 14.28 g of K 2 SO 4 , 3.9 g of KOH, 3.9 g of CaSO 4 .2H 2 O using methanol as the sole carbon source).
- 1,4-BDO was not detected in the GS11535K strain, but 1,4-BDO was significantly detected in the GS115BDO strain.
- the production concentration of 1,4-BDO was 13 mM. From the above, it was found that this example enables 1,4-BDO production by a eukaryotic microorganism (yeast) via the XuMP pathway, which is one of the methanol assimilation pathways.
- Bacillus subtilis was used as a non-methylotroph.
- SEQ ID NO: 6 which is a 1,4-BDO biosynthesis-related enzyme gene cluster
- the gene cluster consists of mdh (SEQ ID NO: 7: methanol dehydrogenase), HPS (SEQ ID NO: 8: 3-hexulose-6-phosphate synthase), PHI (SEQ ID NO: 9: 3-hexulose-6-phosphate isomerization).
- the artificially synthesized gene of SEQ ID NO: 6 was cloned into the SmaI / XbaI cleavage site of pUC119.
- the plasmid was prepared in large quantities and then cut with SmaI and XbaI to recover the inserted gene.
- the collected gene was introduced into the XbaI / SmaI cleavage site of Bacillus subtilis expression vector pHT01 (MoBiTec) to prepare pHTBDO.
- pHTBDO is mdh (SEQ ID NO: 7: methanol dehydrogenase), HPS (SEQ ID NO: 8: 3-hexulose-6-phosphate synthase), PHI (SEQ ID NO: 9: 3-hexulose-6-phosphate isomerase).
- SucD ⁇ ⁇ (SEQ ID NO: 2: CoA-dependent succinic semialdehyde dehydrogenase), 4HBd ⁇ ⁇ (SEQ ID NO: 4: 4-hydroxybutyrate dehydrogenase), abfT ⁇ ⁇ (SEQ ID NO: 4: 4-hydroxybutyrate CoA transferase), and Each gene of adhE2 (SEQ ID NO: 5: aldehyde / alcohol dehydrogenase 2) is expressed.
- an expression vector pHTMDH (-) was constructed by removing MDH from the above seven enzyme groups encoded by pHTBDO. Furthermore, an expression vector pHTBDO ( ⁇ ) was prepared by removing SucD, 4HBd, abfT, and adhE2, which are enzyme genes related to 1,4-BDO biosynthesis, from the above seven enzyme groups encoded by pHTBDO.
- Each expression vector was introduced into Bacillus subtilis according to the MoBiTec manual “Bacillus subtilis Expression Vectors” to prepare a recombinant (recombinant cell). Thereby, a BSBDO strain holding the expression vector pHTBDO, a BSMDH ( ⁇ ) strain holding the expression vector pHTMDH ( ⁇ ), and a BSBDO ( ⁇ ) strain holding the expression vector pHTBDO ( ⁇ ) were prepared.
- methanol assimilation induction medium methanol 10 mL, ammonium phosphate 3 g, potassium chloride 1 g, magnesium sulfate heptahydrate 0.1 g, yeast extract 0.5 g, 0.01 mM IPTG, and black
- the solution was aerobically cultured at 37 ° C. until the OD600 of the culture became 1.5. After completion of the culture, the culture supernatant was obtained by centrifugation and analyzed by LC / MS.
- 1,4-BDO was significantly detected in the BSBDO strain, and its concentration was 9 mM (6 mM per OD600).
- 1,4-BDO was not detected in the BSBDO ( ⁇ ) strain.
- the BSMDH ( ⁇ ) strain without MDH hardly grew. From the above, by introducing the MDH gene, HPS gene, and PHI gene into Bacillus subtilis, which is a non-methylotroph, it is possible to grow efficiently in a medium that uses methanol as the main carbon source, and 1,4- It was found that 1,4-BDO was efficiently produced by introducing the BDO biosynthesis-related enzyme gene cluster (SEQ ID NO: 6).
- Methylobacterium extorquens (ATCC 55366) was used as a methylotroph having a serine pathway.
- SEQ ID NO: 10 An artificial synthetic gene (6922 bp) of SEQ ID NO: 10, which is a 1,4-BDO biosynthesis-related enzyme gene cluster, was constructed.
- the gene cluster consists of SucD (SEQ ID NO: 2: CoA-dependent succinic semialdehyde dehydrogenase), 4HBd (SEQ ID NO: 4: 4-hydroxybutyrate dehydrogenase), abfT (SEQ ID NO: 4: 4-hydroxybutyrate CoA transfer).
- Enzyme and adhE2 (SEQ ID NO: 5: aldehyde / alcohol dehydrogenase 2).
- the artificial synthetic gene of SEQ ID NO: 10 was cloned into the HindIII / XbaI cleavage site of pUC119.
- the plasmid was prepared in large quantities and then cut with HindIII and XbaI to recover the inserted gene.
- the recovered gene was introduced into the HindIII / XbaI site of the broad-area vector pCM80 (Marx CJ. Et al., Microbiology 2001, 147, 2065-2075) to prepare pC80BDO.
- This vector comprises SucDuc (SEQ ID NO: 2: CoA-dependent succinic semialdehyde dehydrogenase), 4HBd (SEQ ID NO: 4: 4-hydroxybutyrate dehydrogenase), abfT (SEQ ID NO: 4: 4-hydroxybutyrate CoA transferase). ) And adhE2 (SEQ ID NO: 5: aldehyde / alcohol dehydrogenase 2) are expressed.
- UUA (Leu) was converted to UUG (Leu) and AUA (Ile) was converted to AUC (Ile).
- the expression vector pC80BDO was introduced into M. extorquens by electroporation to obtain a ME-BDO strain.
- the expression vector pCM80 was introduced into M. extorquens by electroporation to obtain the ME-CM80 strain.
- the ME-BDO strain or ME-CM80 strain was synthesized from a synthetic B medium containing methanol as a sole carbon source (18 g of H 3 PO 4 , 14.28 g of K 2 SO 4 , 3.9 g of KOH, CaSO 4 .2H 2 O per liter).
- 1,4-BDO was detected in the ME-BDO strain, and its concentration was 11 mM (6.2 mM per OD600). On the other hand, 1,4-BDO was not detected in the ME-CM80 strain. From the above, it is possible to efficiently produce 1,4-BDO from methanol by introducing a 1,4-BDO biosynthesis-related enzyme gene cluster (SEQ ID NO: 10) into a methylotroph having a serine pathway. It was shown that there is.
- SEQ ID NO: 10 1,4-BDO biosynthesis-related enzyme gene cluster
- Methylophilus methylotrophus (ATCC 53528) was used as a methylotroph having a RuMP pathway.
- the pC80BDO prepared in Example 3 was introduced into M. methylotrophus by electroporation to obtain the MM-BDO strain.
- pCM80 was introduced into M. methylotrophus by electroporation to obtain MM-CM80 strain.
- MM-BDO strain or MM-CM80 strain was aerobic in 100 mL of synthetic B medium (methanol concentration was 1% (v / v)) using methanol as the sole carbon source used in Example 3.
- the cells were cultured at 37 ° C.
- the culture supernatant was collected by centrifugation.
- the culture supernatant was analyzed by LC / MS.
- 1,4-BDO was detected in the MM-BDO strain, but not in the MM-80 strain.
- the accumulated concentration of 1,4-BDO produced by the MM-BDO strain was 15 mM (8.3 mM per OD600).
- MDH methanol dehydrogenase
- SEQ ID NO: 11 is a 1,4-BDO biosynthesis-related enzyme gene cluster
- the gene cluster consists of mdh (SEQ ID NO: 7: methanol dehydrogenase), HPS (SEQ ID NO: 8: 3-hexulose-6-phosphate synthase), PHI (SEQ ID NO: 9: 3-hexulose-6-phosphate isomerization).
- pTrcMeBDO consists of mdh (SEQ ID NO: 7: methanol dehydrogenase), HPS (SEQ ID NO: 8: 3-hexulose-6-phosphate synthase), PHI (SEQ ID NO: 9: 3-hexulose-6-phosphate isomerase).
- SucD ⁇ ⁇ (SEQ ID NO: 2: CoA-dependent succinic semialdehyde dehydrogenase), 4HBd ⁇ ⁇ (SEQ ID NO: 4: 4-hydroxybutyrate dehydrogenase), abfT ⁇ ⁇ (SEQ ID NO: 4: 4-hydroxybutyrate CoA transferase), and Each gene of adhE2 (SEQ ID NO: 5: aldehyde / alcohol dehydrogenase 2) is expressed.
- an expression vector pTrcMDH ( ⁇ ) was constructed by removing MDH from the above seven enzyme groups encoded by pTrcMeBDO. Furthermore, an expression vector pTrcBDO ( ⁇ ) was prepared by removing SucD, 4HBd, abfT and adhE2 which are 1,4-BDO biosynthesis related enzyme genes from the above seven enzyme groups encoded by pTrcMeBDO.
- Expression vectors pTrcMeBDO, pTrcMDH ( ⁇ ) or pTrcBDO ( ⁇ ) were introduced into Escherichia coli K12 strain to obtain EKMeBDO strain, EKMDH ( ⁇ ) strain, and EKBDO ( ⁇ ) strain, respectively.
- Each recombinant Escherichia coli was mixed with methanol-utilized synthetic C medium containing IPTG at a concentration of 0.05 mM (18 g of H 3 PO 4 , 14.28 g of K 2 SO 4 , 3.9 g of KOH, CaSO 4 .2H 2 O per liter).
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
Abstract
Description
本発明の組換え細胞によれば、メチロトローフが本来的に有する「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能」と「ホルムアルデヒド固定化能」を基礎とし、コハク酸を経由して、前記したC1化合物から1,4-ブタンジオールを生産することができる。
本発明の組換え細胞によれば、メチロトローフが本来的に有する「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能」と「ホルムアルデヒド固定化能」を基礎とし、α-ケトグルタル酸を経由して、前記したC1化合物から1,4-ブタンジオールを生産することができる。
すなわち本発明の組換え細胞は、「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子」と「ホルムアルデヒド固定化能を付与する遺伝子」が導入されているので、メチロトローフと同様の特性を有している。そして、これらの外来遺伝子によって付与された「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能」と「ホルムアルデヒド固定化能」を基礎とし、コハク酸を経由して、前記したC1化合物から1,4-ブタンジオールを生産することができる。
すなわち本発明の組換え細胞は、「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子」と「ホルムアルデヒド固定化能を付与する遺伝子」が導入されているので、メチロトローフと同様の特性を有している。そして、これらの外来遺伝子によって付与された「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能」と「ホルムアルデヒド固定化能」を基礎とし、α-ケトグルタル酸を経由して、前記したC1化合物から1,4-ブタンジオールを生産することができる。
セリン経路によるホルムアルデヒド固定に重要な反応は、セリンヒドロキシメチルトランスフェラーゼ(serine hydroxymethyltransferase)による、グリシンと5,10-メチレン-テトラヒドロ葉酸からのセリン生成反応である。5,10-メチレン-テトラヒドロ葉酸は、ホルムアルデヒドとテトラヒドロ葉酸の結合によって生じる。セリン経路では、1分子のホルムアルデヒドから1分子のアセチルCoAが直接生成する。
本経路で生成するF6P等は解糖系へも供され、その後アセチルCoAや、グリセルアルデヒド3リン酸(G3P)及びピルビン酸を生成する。F6Pの場合、1分子あたり、2分子のG3Pに変換され、次いで2分子のピルビン酸を経て2分子のアセチルCoAが生成する。
またホルムアミドをホルムアルデヒドに変換する酵素が、一部の微生物で見出されている(Anthony C., The Biochemistry of Methylotroph, 1982, Academic Press Inc.)。
遺伝子の例(いずれもUniProtKB No.で表示):P76149 (E. coli); P25526 (E. coli); P94428 (Bacillus subtilis); Q55585 (Synechocystis sp.); P38067 (Saccharomyces cerevisiae)等
遺伝子の例(いずれもUniProtKB/Swiss-Prot No.で表示):P0AGE9 (E. coli); P0A836 (E. coli); P53598 (Saccharomyces cerevisiae); P53312 (Saccharomyces cerevisiae); P09143 (Thermus thermophilus); O82662 (Arabidopsis thaliana)等。本酵素活性は、すべての生物が保有するが、必要に応じて外来遺伝子として導入することも有効である。
遺伝子の例(いずれもUniProtKB/Swiss-Prot No.で表示):P38947 (Clostridium kluyveri); A4YGN0 (Metallosphaera sedula)等。
遺伝子の例(いずれもUniProtKB/Swiss-Prot No.で表示):D8GUP1 (Clostridium ljungdahlii); C9YNR6 (Clostridium difficile); Q97IR6 (Clostridium acetobutylicum);Q8XYI7 (Ralstonia solanacearum) ; Q7MWD4 (Porphyromonas gingivalis)等。
遺伝子の例(いずれもUniProtKB/Swiss-Prot No.で表示):Q9RM86 (Clostridium aminobutyricum); P38942 (Clostridium kluyveri); Q185L2 (Clostridium difficile); Q3ACH6 (Carboxydothermus hydrogenoformas); C4Z8H6 (Eubacterium rectale) ; I8UF15 (Porphyromonas gingivalis)等。
遺伝子の例:Q716S8 (Clostridium beijerinckii); Q7X4B7 (Clostridium saccharoperbutylacetonicum); A5HYN9 (Clostridium botulinum); P0A9Q7 (E. coli) (以上、UniProtKB/Swiss-Prot No.で表示); GenBank CAQ57983 (Clostridium saccharobutylicum); NCBI ZP_03705305 (Clostridium methylpentosum); NCBI ZP_08533507 (Caldalkalibacillus thermarum)等。
遺伝子の例(いずれもUniProtKB/Swiss-Prot No.で表示):P0A4X1 (Mycobacterium bovis); P00331(Saccharomycess cerevisiae); P00330(Saccharomycess cerevisiae); Q9HIM3 (Thermoplasma acidophilum); B9WPR7 (Arthrobacter sp.); P00334 (Drosophila melanogaster)等。
本酵素は4-ヒドロキシ酪酸から4-ヒドロキシブチルアルデヒドへの変換を可逆的に触媒できる酵素であり、酵素分類上、アルデヒドデヒドロゲナーゼ (例えばEC 1.2.1.3, EC 1.2.1.4, EC 1.2.1.5等)に属する。
4-ヒドロキシブチルアルデヒド脱水素酵素活性を示すアルデヒドデヒドロゲナーゼ遺伝子の例(いずれもUniProtKB/Swiss-Prot No.で表示):E4R8S4 (Pseudomonas putida); P23883 (E. coli); P12693 (Pseudomonas putida); P40047 (Saccharomyces cerevisiae); P25553 (E. coli); P0C6D7 (Vibrio sp.); P47771 (Saccharomyces cerevisiae); G3XYI2 (Aspergillus niger)等。
遺伝子の例(いずれもUniProtKB/Swiss-Prot No.で表示):A0R2B1 (Mycobacterium smegmatics); I0WZ48 (Rhodococcus imtechensis); G2EJR8 (Corynebacterium glutamicum); J1S9U2 (Streptomyces auratus); J7LQH4 (Arthrobacter sp.)等。
例えば、宿主細胞が細菌等の原核生物の場合には、当該ベクターとして、宿主細胞において自立複製可能ないしは染色体中への組み込みが可能で、挿入された上記遺伝子を転写できる位置にプロモーターを含有しているものを用いることができる。例えば、当該ベクターを用いて、プロモーター、リボソーム結合配列、上記遺伝子、および転写終結配列からなる一連の構成を宿主細胞内で構築することが好ましい。
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。
炭素源として例えばメタノールを用いる場合は、通常、細菌の場合は1.0%(v/v)濃度、酵母の場合は3.0%(v/v)濃度以下で用いるが、人為的にこれらに対する耐性を改良した場合は、それ以上の濃度でも培養可能である。
本様相においても、これらのC1化合物については、1つのみを用いてもよいし、2つ以上を組み合わせて用いてもよい。
以上のことから、本実施例によって、メタノール資化経路の1種であるXuMP経路を介した、真核微生物(酵母)による1,4-BDO生産が可能であることがわかった。
以上のことから、非メチロトローフであるBacillus subtilisにMDH遺伝子、HPS遺伝子、及びPHI遺伝子を導入することで、メタノールを主要炭素源する培地で効率良く生育させることが可能であり、かつ1,4-BDO生合成関連酵素遺伝子クラスター(配列番号6)を導入することで、効率的に1,4-BDOが生成することがわかった。
以上のことから、セリン経路を有するメチロトローフへ、1,4-BDO生合成関連酵素遺伝子クラスター(配列番号10)を導入することによって、メタノールからの効率的な1,4-BDOの生産が可能であることが示された。
実施例3にて作製したpC80BDOをエレクトロポレーションによってM. methylotrophusへ導入し、MM-BDO株を得た。コントロールとして、pCM80をエレクトロポレーションによってM. methylotrophusへ導入し、MM-CM80株を得た。
以上のことから、RuMP経路を有するメチロトローフへ、1,4-BDO生合成関連酵素遺伝子クラスター(配列番号10)を導入することによって、メタノールからの効率的な1,4-BDOの生産が可能であることが示された。
各々の組換え大腸菌を、0.05mM濃度のIPTGを含有するメタノール資化合成C培地(1LあたりH3PO4 18g、K2SO4 14.28g、KOH 3.9g、CaSO4・2H2O 0.9g、MgSO4・7H2O 11.7g、CuSO4・5H2O 8.4mg、KI 1.1mg、MnSO4H2O 4.2mg、NaMoO4・2H2O 0.3mg、H3BO3 0.03mg、CoCl2・6H2O 0.7mg、ZnSO4・7H2O 28mg、FeSO4・7H2O 91mg、ビオチン0.28mg、メタノール5mL、クロラムフェニコール34mg、及びアンピシリン100mgを含む。)100mLにて、好気的に37℃で培養した。培養液のOD600が1.0-1.6の時点で、遠心部分離によって培養上清を回収した。
以上のことから、非メチロトローフである大腸菌にMDH遺伝子、HPS遺伝子、及びPHI遺伝子を導入することで、メタノールを主要炭素源する培地で効率良く生育させることが可能であり、かつ1,4-BDO生合成関連酵素遺伝子クラスター(配列番号11)を導入することで、効率的に1,4-BDOが生成することがわかった。
Claims (21)
- メチロトローフである宿主細胞に、コハク酸セミアルデヒド脱水素酵素、スクシニルCoA合成酵素、CoA依存型コハク酸セミアルデヒド脱水素酵素、4-ヒドロキシ酪酸脱水素酵素、4-ヒドロキシ酪酸CoA転移酵素、4-ヒドロキシ酪酸CoA還元酵素、4-ヒドロキシブチルアルデヒド脱水素酵素、及びアルコールデヒドロゲナーゼからなる群より選ばれた少なくとも1つの酵素をコードする遺伝子が導入されてなり、
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。 - メチロトローフである宿主細胞に、2-オキソグルタル酸脱炭酸酵素、4-ヒドロキシ酪酸脱水素酵素、4-ヒドロキシ酪酸CoA転移酵素、4-ヒドロキシ酪酸CoA還元酵素、4-ヒドロキシブチルアルデヒド脱水素酵素、及びアルコールデヒドロゲナーゼからなる群より選ばれた少なくとも1つの酵素をコードする遺伝子が導入されてなり、
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。 - ホルムアルデヒドの固定化経路として、セリン経路、リブロースモノリン酸経路、及びキシロースモノリン酸経路からなる群より選ばれた少なくとも1つのC1炭素同化経路を有する請求項1又は2に記載の組換え細胞。
- 3-ヘキスロース6リン酸合成酵素をコードする遺伝子と、6-ホスホ-3-ヘキスロイソメラーゼをコードする遺伝子とがさらに導入され、当該遺伝子が宿主細胞内で発現する請求項1~3のいずれかに記載の組換え細胞。
- 宿主細胞がメタノール資化性酵母であり、メタノールを脱水素反応によってホルムアルデヒドに変換する酵素をコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項1~4のいずれかに記載の組換え細胞。
- 宿主細胞に、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子と、ホルムアルデヒド固定化能を付与する遺伝子と、コハク酸セミアルデヒド脱水素酵素、スクシニルCoA合成酵素、CoA依存型コハク酸セミアルデヒド脱水素酵素、4-ヒドロキシ酪酸脱水素酵素、4-ヒドロキシ酪酸CoA転移酵素、4-ヒドロキシ酪酸CoA還元酵素、4-ヒドロキシブチルアルデヒド脱水素酵素、及びアルコールデヒドロゲナーゼからなる群より選ばれた少なくとも1つの酵素をコードする遺伝子とが導入されてなり、
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。 - 宿主細胞に、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子と、ホルムアルデヒド固定化能を付与する遺伝子と、2-オキソグルタル酸脱炭酸酵素、4-ヒドロキシ酪酸脱水素酵素、4-ヒドロキシ酪酸CoA転移酵素、4-ヒドロキシ酪酸CoA還元酵素、4-ヒドロキシブチルアルデヒド脱水素酵素、及びアルコールデヒドロゲナーゼからなる群より選ばれた少なくとも1つの酵素をコードする遺伝子とが導入されてなり、
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。 - ホルムアルデヒド固定化能を付与する遺伝子は、3-ヘキスロース6リン酸合成酵素をコードする遺伝子及び6-ホスホ-3-ヘキスロイソメラーゼをコードする遺伝子である請求項6又は7に記載の組換え細胞。
- ホルムアルデヒドの固定化経路として、セリン経路、リブロースモノリン酸経路、及びキシロースモノリン酸経路からなる群より選ばれた少なくとも1つのC1炭素同化経路を有する請求項6又は7に記載の組換え細胞。
- リブロースモノリン酸経路を有する宿主細胞に、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子と、コハク酸セミアルデヒド脱水素酵素、スクシニルCoA合成酵素、CoA依存型コハク酸セミアルデヒド脱水素酵素、4-ヒドロキシ酪酸脱水素酵素、4-ヒドロキシ酪酸CoA転移酵素、4-ヒドロキシ酪酸CoA還元酵素、4-ヒドロキシブチルアルデヒド脱水素酵素、及びアルコールデヒドロゲナーゼからなる群より選ばれた少なくとも1つの酵素をコードする遺伝子とが導入されてなり、
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。 - リブロースモノリン酸経路を有する宿主細胞に、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子と、2-オキソグルタル酸脱炭酸酵素、4-ヒドロキシ酪酸脱水素酵素、4-ヒドロキシ酪酸CoA転移酵素、4-ヒドロキシ酪酸CoA還元酵素、4-ヒドロキシブチルアルデヒド脱水素酵素、及びアルコールデヒドロゲナーゼからなる群より選ばれた少なくとも1つの酵素をコードする遺伝子とが導入されてなり、
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物から1,4-ブタンジオールを生産可能である組換え細胞。 - 3-ヘキスロース6リン酸合成酵素をコードする遺伝子と、6-ホスホ-3-ヘキスロイソメラーゼをコードする遺伝子とがさらに導入され、当該遺伝子が宿主細胞内で発現する請求項6、7、9、10又は11に記載の組換え細胞。
- メタノールをホルムアルデヒドに変換する機能を付与する遺伝子は、メタノールデヒドロゲナーゼ又はアルコールオキシダーゼをコードする遺伝子であり、ギ酸をホルムアルデヒドに変換する機能を付与する遺伝子は、ホルムアルデヒドデヒドロゲナーゼをコードする遺伝子である請求項6~12のいずれかに記載の組換え細胞。
- メタンをメタノールに変換する機能を付与する遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項6~13のいずれかに記載の組換え細胞。
- メタンをメタノールに変換する機能を付与する遺伝子は、メタンモノオキシゲナーゼをコードする遺伝子である請求項14に記載の組換え細胞。
- 導入された遺伝子が宿主細胞のゲノムに組み込まれている請求項1~15のいずれかに記載の組換え細胞。
- 導入された遺伝子がプラスミドに組み込まれている請求項1~15のいずれかに記載の組換え細胞。
- 少なくとも400mMの1,4-ブタンジオールに対する耐性を有する請求項1~17のいずれかに記載の組換え細胞。
- 少なくとも2%(v/v)のメタノールに対する耐性を有する請求項1~18のいずれかに記載の組換え細胞。
- 請求項1~19のいずれかに記載の組換え細胞を、メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物を炭素源として用いて培養し、当該組換え細胞に1,4-ブタンジオールを生産させる1,4-ブタンジオールの生産方法。
- 請求項1~19のいずれかに記載の組換え細胞に、メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物を接触させ、当該組換え細胞に前記C1化合物から1,4-ブタンジオールを生産させる1,4-ブタンジオールの生産方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14741160.7A EP2947143B1 (en) | 2013-01-21 | 2014-01-20 | Recombinant cell, and method for producing 1,4-butanediol |
CN201480004784.3A CN104919040B (zh) | 2013-01-21 | 2014-01-20 | 重组细胞以及1,4-丁二醇的生产方法 |
US14/760,793 US10202623B2 (en) | 2013-01-21 | 2014-01-20 | Recombinant cell, and method for producing 1,4-butanediol |
JP2014557533A JP6342337B2 (ja) | 2013-01-21 | 2014-01-20 | 組換え細胞、並びに、1,4−ブタンジオールの生産方法 |
KR1020157019594A KR20150108367A (ko) | 2013-01-21 | 2014-01-20 | 재조합 세포, 및 1,4-부탄디올의 생산 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013008810 | 2013-01-21 | ||
JP2013-008810 | 2013-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014112627A1 true WO2014112627A1 (ja) | 2014-07-24 |
Family
ID=51209712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050998 WO2014112627A1 (ja) | 2013-01-21 | 2014-01-20 | 組換え細胞、並びに、1,4-ブタンジオールの生産方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10202623B2 (ja) |
EP (1) | EP2947143B1 (ja) |
JP (1) | JP6342337B2 (ja) |
KR (1) | KR20150108367A (ja) |
CN (1) | CN104919040B (ja) |
WO (1) | WO2014112627A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017037897A1 (ja) * | 2015-09-02 | 2017-03-09 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、1,4-ブタンジオールの生産方法 |
CN108220323A (zh) * | 2016-12-09 | 2018-06-29 | 中国科学院大连化学物理研究所 | 利用甲醇的产油酵母工程菌株构建方法及工程菌和应用 |
WO2019160059A1 (ja) * | 2018-02-14 | 2019-08-22 | 国立大学法人大阪大学 | S-アデノシルメチオニンのリサイクル方法 |
JP6668577B1 (ja) * | 2018-10-30 | 2020-03-18 | GreenEarthInstitute株式会社 | 1,3−プロパンジオールの製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3077501T3 (pl) * | 2013-12-03 | 2022-01-31 | Genomatica, Inc. | Mikroorganizmy i sposoby poprawy wydajności produktu na metanolu z użyciem syntezy acetylo-coa |
WO2015167043A1 (ko) * | 2014-04-30 | 2015-11-05 | 삼성전자 주식회사 | 증가된 알파-케토글루타레이트 데카르복실라제 활성을 갖는 미생물 및 이를 이용한 1,4-부탄디올 생산방법 |
EP3385378A4 (en) * | 2015-11-30 | 2019-04-24 | Sekisui Chemical Co., Ltd. | RECOMBINANT CELL, PROCESS FOR PRODUCING THE RECOMBINANT CELL, AND PROCESS FOR PRODUCING AN ORGANIC COMPOUND |
KR102120995B1 (ko) * | 2018-10-12 | 2020-06-18 | 경희대학교 산학협력단 | 4-하이드록시부티르산 생산용 형질전환 메탄자화균 및 이의 용도 |
KR102289133B1 (ko) * | 2020-04-03 | 2021-08-13 | 경희대학교 산학협력단 | 다이올 생산용 형질전환 메탄자화균 및 이의 용도 |
CN115851850A (zh) * | 2021-09-23 | 2023-03-28 | 中国科学院天津工业生物技术研究所 | 利用二氧化碳制备淀粉的方法、重组微生物和构建重组微生物的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004229662A (ja) | 2003-01-08 | 2004-08-19 | Ajinomoto Co Inc | メタノール資化性菌の組換え体の製造方法 |
JP2007068424A (ja) * | 2005-09-05 | 2007-03-22 | Kyoto Univ | 二機能性ホルムアルデヒド固定酵素遺伝子 |
JP2010521182A (ja) * | 2007-03-16 | 2010-06-24 | ジェノマティカ・インコーポレイテッド | 1,4−ブタンジオールおよびその前駆体の生合成のための組成物および方法 |
WO2010141920A2 (en) | 2009-06-04 | 2010-12-09 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol and related methods |
JP2011055722A (ja) * | 2009-09-07 | 2011-03-24 | Nippon Shokubai Co Ltd | イノシトールの製造方法 |
JP2012511928A (ja) * | 2008-12-16 | 2012-05-31 | ゲノマチカ, インク. | 合成ガス及び他の炭素源の有用な製品への変換のための微生物及び方法 |
WO2014035925A1 (en) * | 2012-08-27 | 2014-03-06 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2007002682A (es) * | 2004-09-07 | 2008-03-05 | Orphan Medical Inc | Composiciones mejoradas de gamma-hidroxibutirato ghb. |
US7947483B2 (en) * | 2007-08-10 | 2011-05-24 | Genomatica, Inc. | Methods and organisms for the growth-coupled production of 1,4-butanediol |
WO2009094485A1 (en) * | 2008-01-22 | 2009-07-30 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
US8444721B2 (en) * | 2008-06-26 | 2013-05-21 | Re Community Energy, Llc | Engineered fuel feed stock |
WO2010006076A2 (en) * | 2008-07-08 | 2010-01-14 | Opx Biotechnologies Inc. | Methods, compositions and systems for biosynthetic bio production of 1,4-butanediol |
US8644580B2 (en) | 2008-08-07 | 2014-02-04 | Cambridge Research & Instrumentation, Inc. | Detection of RNA in tissue samples |
US20110146142A1 (en) * | 2008-08-18 | 2011-06-23 | Ls9, Inc. | Systems and methods for production of mixed fatty esters |
FI20086031L (fi) * | 2008-10-31 | 2010-05-01 | Kemira Oyj | Valkaisumenetelmä |
JP2013507145A (ja) * | 2009-10-13 | 2013-03-04 | ゲノマチカ, インク. | 1,4−ブタンジオール、4−ヒドロキシブタナール、4−ヒドロキシブチリル−CoA、プトレシン及び関連化合物の生成のための微生物体並びに関連する方法 |
US8349587B2 (en) * | 2011-10-31 | 2013-01-08 | Ginkgo Bioworks, Inc. | Methods and systems for chemoautotrophic production of organic compounds |
GB201201178D0 (en) * | 2012-01-25 | 2012-03-07 | Sinvent As | Novel enzymes |
US20150315599A1 (en) * | 2012-12-07 | 2015-11-05 | Ginkgo Bioworks, Inc | Methods and Systems for Methylotrophic Production of Organic Compounds |
EP3013966A2 (en) * | 2013-06-28 | 2016-05-04 | Metabolix, Inc. | Genetically engineered methylotrophs for the production of pha biopolymers and c3, c4, and c5 biochemicals from methanol or methane as sole carbon feedstock |
CA2925699A1 (en) * | 2013-10-04 | 2015-04-09 | Genomatica, Inc. | Alchohol dehydrogenase variants having increased substrate conversion |
PL3077501T3 (pl) * | 2013-12-03 | 2022-01-31 | Genomatica, Inc. | Mikroorganizmy i sposoby poprawy wydajności produktu na metanolu z użyciem syntezy acetylo-coa |
-
2014
- 2014-01-20 KR KR1020157019594A patent/KR20150108367A/ko not_active Application Discontinuation
- 2014-01-20 JP JP2014557533A patent/JP6342337B2/ja not_active Expired - Fee Related
- 2014-01-20 CN CN201480004784.3A patent/CN104919040B/zh not_active Expired - Fee Related
- 2014-01-20 US US14/760,793 patent/US10202623B2/en not_active Expired - Fee Related
- 2014-01-20 WO PCT/JP2014/050998 patent/WO2014112627A1/ja active Application Filing
- 2014-01-20 EP EP14741160.7A patent/EP2947143B1/en not_active Not-in-force
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004229662A (ja) | 2003-01-08 | 2004-08-19 | Ajinomoto Co Inc | メタノール資化性菌の組換え体の製造方法 |
JP2007068424A (ja) * | 2005-09-05 | 2007-03-22 | Kyoto Univ | 二機能性ホルムアルデヒド固定酵素遺伝子 |
JP2010521182A (ja) * | 2007-03-16 | 2010-06-24 | ジェノマティカ・インコーポレイテッド | 1,4−ブタンジオールおよびその前駆体の生合成のための組成物および方法 |
JP2012511928A (ja) * | 2008-12-16 | 2012-05-31 | ゲノマチカ, インク. | 合成ガス及び他の炭素源の有用な製品への変換のための微生物及び方法 |
WO2010141920A2 (en) | 2009-06-04 | 2010-12-09 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol and related methods |
JP2011055722A (ja) * | 2009-09-07 | 2011-03-24 | Nippon Shokubai Co Ltd | イノシトールの製造方法 |
WO2014035925A1 (en) * | 2012-08-27 | 2014-03-06 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto |
Non-Patent Citations (10)
Title |
---|
ANTHONY C.: "The Biochemistry of Methylotroph", 1982, ACADEMIC PRESS INC. |
ANTOINE R. ET AL., MOLECULAR MICROBIOLOGY, vol. 6, 1992, pages 1785 - 1799 |
BRAUTASET T. ET AL., J. BACTERIOLOGY, vol. 186, no. 5, 2004, pages 1229 - 1238 |
CHISTOSERDOV AY. ET AL., J. BACTERIOL, vol. 176, 1994, pages 4052 - 4065 |
CHISTOSERDOV AY. ET AL., PLASMID, vol. 16, 1986, pages 161 - 167 |
CHISTOSERDOVA L. ET AL., MICROBIOLOGY, vol. 146, 2000, pages 233 - 238 |
LANEM. ET AL., ARCH. MICROBIOL., vol. 144, no. 1, 1986, pages 29 - 34 |
MARX CJ. ET AL., MICROBIOLOGY, vol. 147, 2001, pages 2065 - 2075 |
NQUYEN HD. ET AL., PLASMID, vol. 54, no. 3, 2005, pages 241 - 248 |
PARK H. ET AL., MICROBIOLOGY, vol. 156, 2010, pages 463 - 471 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017037897A1 (ja) * | 2015-09-02 | 2017-03-09 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、1,4-ブタンジオールの生産方法 |
JPWO2017037897A1 (ja) * | 2015-09-02 | 2018-06-14 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、1,4−ブタンジオールの生産方法 |
CN108291194A (zh) * | 2015-09-02 | 2018-07-17 | 积水化学工业株式会社 | 重组细胞、重组细胞的制造方法以及1,4-丁二醇的生产方法 |
CN108220323A (zh) * | 2016-12-09 | 2018-06-29 | 中国科学院大连化学物理研究所 | 利用甲醇的产油酵母工程菌株构建方法及工程菌和应用 |
CN108220323B (zh) * | 2016-12-09 | 2021-05-07 | 中国科学院大连化学物理研究所 | 利用甲醇的产油酵母工程菌株构建方法及工程菌和应用 |
WO2019160059A1 (ja) * | 2018-02-14 | 2019-08-22 | 国立大学法人大阪大学 | S-アデノシルメチオニンのリサイクル方法 |
JP6668577B1 (ja) * | 2018-10-30 | 2020-03-18 | GreenEarthInstitute株式会社 | 1,3−プロパンジオールの製造方法 |
WO2020090017A1 (ja) * | 2018-10-30 | 2020-05-07 | Green Earth Institute 株式会社 | 1,3-プロパンジオールの製造方法 |
US11390889B2 (en) | 2018-10-30 | 2022-07-19 | Green Earth Institute Co., Ltd. | Method for manufacturing 1,3-propanediol |
Also Published As
Publication number | Publication date |
---|---|
EP2947143A1 (en) | 2015-11-25 |
KR20150108367A (ko) | 2015-09-25 |
JP6342337B2 (ja) | 2018-06-13 |
EP2947143B1 (en) | 2018-07-11 |
JPWO2014112627A1 (ja) | 2017-01-19 |
CN104919040A (zh) | 2015-09-16 |
US10202623B2 (en) | 2019-02-12 |
CN104919040B (zh) | 2018-07-24 |
EP2947143A4 (en) | 2016-07-06 |
US20150368677A1 (en) | 2015-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6342337B2 (ja) | 組換え細胞、並びに、1,4−ブタンジオールの生産方法 | |
JP6546674B2 (ja) | 組換え細胞、並びに、イソプレンの生産方法 | |
US8852899B2 (en) | Methods of making nylon intermediates from glycerol | |
EP2783007B9 (en) | Microorganism strains for the production of 2,3-butanediol | |
US20230203542A1 (en) | Microbial Production of 2-Phenylethanol from Renewable Substrates | |
US20120244588A1 (en) | Method of producing 3-hydroxypropionic acid using malonic semialdehyde reducing pathway | |
EP3132022A1 (en) | Synthetic methanotrophic and methylotrophic microorganisms | |
AU2012214255A1 (en) | Cells and methods for producing isobutyric acid | |
JP2020506722A (ja) | 目的分子を産生するための遺伝的に最適化された微生物 | |
JP2014155455A (ja) | 組換え細胞、並びに、クロトニルCoA又はクロチルアルコールの生産方法 | |
Skorokhodova et al. | Construction of a synthetic bypass for improvement of aerobic synthesis of succinic acid through the oxidative branch of the tricarboxylic acid cycle by recombinant Escherichia coli strains | |
EP3652322A1 (en) | Threonine-producing yeast | |
JP2017192370A (ja) | 組換え細胞、並びに、イソ酪酸の生産方法 | |
JP2017055702A (ja) | 組換え細胞、組換え細胞の製造方法、並びに、ショウブノールの生産方法 | |
MXPA06007929A (en) | Advanced microorganism for producing 1,2-propanediol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14741160 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014557533 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14760793 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157019594 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014741160 Country of ref document: EP |