WO2014112536A1 - 透明導電フィルムの製造方法 - Google Patents

透明導電フィルムの製造方法 Download PDF

Info

Publication number
WO2014112536A1
WO2014112536A1 PCT/JP2014/050600 JP2014050600W WO2014112536A1 WO 2014112536 A1 WO2014112536 A1 WO 2014112536A1 JP 2014050600 W JP2014050600 W JP 2014050600W WO 2014112536 A1 WO2014112536 A1 WO 2014112536A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive film
power
sputtering
Prior art date
Application number
PCT/JP2014/050600
Other languages
English (en)
French (fr)
Inventor
和明 佐々
祐輔 山本
広宣 待永
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480005118.1A priority Critical patent/CN104937678B/zh
Priority to KR1020157020650A priority patent/KR101982906B1/ko
Priority to US14/761,193 priority patent/US9624573B2/en
Publication of WO2014112536A1 publication Critical patent/WO2014112536A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3444Associated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a transparent conductive film having transparency in the visible light region and having a transparent conductive film on an organic polymer film substrate.
  • the transparent conductive film of the present invention has a transparent conductive thin film having a small specific resistance value and surface resistance value.
  • the transparent conductive film of the present invention requires a low surface resistance value such as a transparent electrode for display used in a film liquid crystal display, a film OLED display, a transparent electrode for capacitive touch panel, and an electrode for film OLED illumination. Useful for electrode applications. In addition, it can be applied to an electrode for a film solar cell, prevention of electrification of a transparent article, electromagnetic wave shielding, and the like.
  • a so-called conductive glass in which an ITO film (indium / tin composite oxide film) is formed on a glass substrate is well known as a transparent conductive film.
  • the film can be formed while heating at 200 ° C. or more, usually 300 ° C. or more. Therefore, a low surface resistance value (specific resistance) of 10 ⁇ / ⁇ or less at a thickness of 130 nm.
  • An ITO film having a value of 1.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm can be easily obtained.
  • the glass substrate is inferior in flexibility and workability and may not be used depending on the application.
  • ITO films have been formed on various organic polymer film base materials such as polyethylene terephthalate film due to advantages such as excellent impact resistance and light weight in addition to flexibility and workability.
  • the formed transparent conductive film is used.
  • the preferable specific resistance value and surface resistance value required for the transparent conductive film having the ITO film differ depending on the use for which the transparent conductive film is used, but also in the ITO film formed on the organic polymer film substrate.
  • a specific resistance value and a surface resistance value equivalent to those of an ITO film formed on a glass substrate have been required.
  • film displays have recently been studied. In this display application, an ITO film formed on an organic polymer film substrate is required to have a low resistance value of 10 ⁇ / ⁇ or less at a thickness of 130 nm, which is equivalent to the ITO film formed on a glass substrate.
  • a low surface resistance value of about 100 ⁇ / ⁇ is required.
  • the ITO film used for capacitive touch panel electrode applications needs to eliminate the color of reflection between the etched portion and the non-etched portion, and therefore requires a low surface resistance value with a thickness of about 20 nm. .
  • an ITO film used for capacitive touch panel electrode applications is required to have a low specific resistance value close to display applications.
  • Patent Documents 1 to 4 Various methods have been proposed as the transparent conductive film having the ITO film.
  • JP 2010-177161 A Japanese Patent Laid-Open No. 02-232358 Japanese Patent Laid-Open No. 03-249171 JP 2011-018623 A
  • the ITO film formed on the organic polymer film substrate generally has a higher specific resistance value than the ITO film formed on the glass substrate.
  • the first reason is that most of the organic polymer film base material has a glass transition temperature or a heat resistant temperature of less than 200 ° C., and thus cannot be heated at a high temperature. For this reason, since the amount of tin atoms substituting for the indium sites is limited, it can be mentioned that the ITO film has an electron density n that is one digit less.
  • the second reason is that the moisture generated on the organic polymer film substrate and the gas generated when it comes into contact with the plasma, as well as excess tin atoms contained in the target, act as impurities. It is mentioned that growth is inhibited.
  • the ITO film formed on the organic polymer film substrate has a surface resistance value of about 30 ⁇ / ⁇ and a specific resistance value of 4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less at a thickness of 130 nm. Was difficult.
  • an ITO film used for capacitive touch panel electrode applications is required to have a thickness of about 20 nm, but when an ITO film having the thickness is formed on an organic polymer film substrate, the ITO film Due to the influence of impurities from the substrate, the ITO film is difficult to crystallize, and it has been difficult to obtain a specific resistance value as good as the thick film.
  • Patent Document 1 by using a plasma assisted sputtering method in which plasma is generated at an intermediate position between a target and a substrate during sputtering, or an ion beam assisted sputtering method in which ion beam assist is performed while performing sputtering, It is proposed that an ITO film having the strongest (400) plane and a specific resistance value (volume resistivity) of 1 ⁇ 10 ⁇ 4 to 6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm can be formed.
  • TS target substrates
  • R-to-R apparatus There are problems with uniformity and stability.
  • the ITO film obtained in Patent Document 1 has a carrier concentration value (5 ⁇ 10 20 to 2 ⁇ 10 21 cm ⁇ 3 ) and a carrier mobility value (15 to 25 cm 2 / V / s).
  • the volume resistivity value of the ITO film described in the example of Patent Document 1 is about 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm with a 200 nm thick film.
  • an ITO film having a specific resistance as low as 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm cannot be obtained with a thin film of 10 to 40 nm.
  • Patent Documents 2 and 3 damages such as recoil argon and oxygen negative ions are applied to the film by increasing the magnetic field strength and lowering the discharge voltage by superimposing RF power in magnetron sputtering film formation. It has been proposed that an ITO film having a low specific resistance value can be formed by reducing the film thickness.
  • a glass substrate is used and high temperature heating is possible.
  • the temperature of the substrate can be heated only to a glass transition temperature or lower. Therefore, the ITO film obtained by applying the methods described in Patent Documents 2 and 3 to the organic polymer film substrate is an amorphous film.
  • Patent Documents 2 and 3 Even if the techniques described in Patent Documents 2 and 3 are used, the organic film It is impossible to obtain a fully crystallized ITO film having a low specific resistance equivalent to that of an ITO film formed on a glass plate on a molecular film substrate. Furthermore, the examples of Patent Documents 2 and 3 only describe the result of a film thickness of 100 nm, and it is considered that a thin film of 10 to 40 nm is not studied.
  • Patent Document 4 proposes a method for forming an ITO film in which RF power is superimposed with a DC power ratio of 0.5 to 2.0 times in a target surface magnetic field of 60 to 80 mT.
  • the ITO film obtained by the film formation method forms a specific crystal state in which the peak of the (400) plane measured by the X-ray diffraction method is larger than the peak of the (222) plane, 1.5 ⁇ 10 ⁇ 4 It is described that a low resistivity (specific resistance value) of ⁇ ⁇ cm or less can be obtained.
  • a glass substrate is used, and the substrate temperature can be set in a temperature range of 230 to 250 ° C.
  • Patent Document 4 when the method described in Patent Document 4 is applied to an organic polymer film substrate, it is difficult to make the peak of the (400) plane the main peak, as described in Patent Document 4, An ITO film having a low specific resistance value cannot be formed.
  • the present invention provides a method for producing a transparent conductive film having a low specific resistance value and a surface resistance value on an organic polymer film substrate and having a transparent conductive film made of a thin crystalline film. Objective.
  • the present inventors have found that the above object can be achieved by the method for producing a transparent conductive film described below, and have completed the present invention.
  • the present invention is a method for producing a transparent conductive film having a transparent conductive film on at least one surface on an organic polymer film substrate, On at least one surface of the organic polymer film substrate, With roll-to-roll equipment, Indium type in which the ratio of oxide of tetravalent metal element / (oxide of tetravalent metal element + indium oxide) ⁇ ⁇ 100 (%) is 7 to 15% by weight
  • the transparent conductive film is a crystalline film of the indium composite oxide
  • the transparent conductive film has a thickness in the range of 10 nm to 40 nm,
  • the transparent conductive film has a specific resistance value of 1.3 ⁇ 10 ⁇ 4 to 2.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and relates to a
  • the transparent conductive film can be provided from the film substrate side through an undercoat layer.
  • indium-tin composite oxide can be used as the indium composite oxide
  • tin oxide can be used as the oxide of the tetravalent metal element
  • the high magnetic field RF superimposed DC sputtering film forming method according to the forming step (A) has an RF power / DC power ratio of 0 when the frequency of the RF power source is 10 to 20 MHz. It is preferably 4 to 1.2.
  • the high magnetic field RF superimposed DC sputtering film forming method according to the forming step (A) includes: RF power / DC power when the frequency of the RF power source is greater than 20 MHz and equal to or less than 60 MHz.
  • the power ratio is preferably 0.2 to 0.6.
  • the temperature of the organic polymer film substrate is preferably 80 to 180 ° C.
  • the high magnetic field RF superimposed DC sputtering film forming method according to the forming step (A) can be performed without introducing oxygen.
  • the high magnetic field RF superimposed DC sputtering film forming method according to the forming step (A) is such that the ratio of the oxygen amount to the inert gas amount is 0.5% or less. , While introducing oxygen.
  • RF is applied by RF superimposed DC sputtering film forming method in the presence of an inert gas without introducing oxygen.
  • the frequency of the power source is 10 to 20 MHz
  • a pre-sputtering step is performed in which film formation is performed until the obtained resistance value becomes stable in a power ratio of RF power / DC power in the range of 0.4 to 1.2 ( a).
  • RF is applied by RF superimposed DC sputtering film forming method in the presence of an inert gas without introducing oxygen.
  • an annealing treatment step (B) can be performed after the formation step (A).
  • the annealing treatment step (B) is preferably performed in the atmosphere at a temperature of 120 ° C. to 180 ° C. for 5 minutes to 5 hours.
  • the organic polymer film substrate has a low specific resistance value and a surface resistance value equivalent to the transparent conductive film formed on the glass substrate, and A transparent conductive film having a crystalline transparent conductive film (for example, indium-tin composite oxide: ITO film) formed of a thin film (20 to 40 nm) indium-based composite oxide can be provided.
  • a transparent conductive film having a crystalline transparent conductive film for example, indium-tin composite oxide: ITO film
  • an R-to-R is formed on an organic polymer film substrate at a lower temperature than when a transparent conductive film is formed on a glass substrate.
  • a transparent conductive film made of a thin crystalline film having a low specific resistance value and a surface resistance value equivalent to those of a transparent conductive film formed on a glass plate can be formed by a -to-roll apparatus.
  • the high magnetic field RF superimposing DC sputtering film forming method can be adapted to the production machine, and the RF power source can be made smaller than the DC power source.
  • An RF power introduction method and radio wave shielding can be easily performed in the DC sputtering film forming method.
  • the annealing treatment step (B) is heat-treated at a low temperature in a short time.
  • the transparent conductive film can be crystallized, and a transparent conductive film with good transmittance and high reliability can be obtained.
  • the pre-sputtering step (a) which has not been known so far, is provided before the forming step (A) related to the high magnetic field RF superposition DC sputtering film forming method, whereby indium
  • it can be modified to prepare for the efficient incorporation of the target's own oxygen into the ITO crystal film, at a lower temperature than when a transparent conductive film is formed on a glass substrate. Under the conditions, a transparent conductive film having few defects and impurities and having a low specific resistance value and a low surface resistance value can be obtained efficiently.
  • the manufacturing method of this invention it is a figure which shows the effect at the time of performing a pre-stapper before performing high magnetic field RF superimposition DC sputter film-forming.
  • the high magnetic field RF superimposition DC sputtering film-forming method of this invention it is a figure which shows the effect of the power ratio of RF power / DC power in case RF power is 13.56 MHz.
  • the high magnetic field RF superimposition DC sputtering film-forming method of this invention it is a figure which shows the effect of the power ratio of RF power / DC power in case RF power is 27.12 MHz.
  • FIG. 1 is a schematic sectional drawing which shows an example of the transparent conductive film obtained by the manufacturing method of this invention, and has a transparent conductive film (2) on one surface of an organic polymer film base material (1).
  • the transparent conductive film (2) is formed of an indium composite oxide containing a tetravalent metal element oxide.
  • the transparent conductive film (2) is provided only on one surface of the organic polymer film substrate (1), but the transparent conductive film is also formed on the other surface of the film substrate (1). (2) can be provided.
  • a transparent conductive film (2) can be provided from the film substrate (1) side through an undercoat layer for the purpose of antireflection and the like.
  • elements such as C and H are formed from the organic polymer film substrate (1). Is taken into the ITO film and is difficult to crystallize, it is preferable to form an undercoat layer.
  • the organic polymer film substrate (1) a film excellent in transparency, heat resistance and surface smoothness is preferably used.
  • polyester such as polyethylene terephthalate or polyethylene naphthalate, polyolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, copolymer with other components such as norbornene A polymer.
  • an epoxy resin film or the like is also used as the organic polymer film substrate (1).
  • the thickness of the film substrate (1) depends on the film forming conditions and application, but generally it is preferably in the range of 16 to 400 ⁇ m, more preferably in the range of 20 to 185 ⁇ m. .
  • R-to-R roll-to-roll
  • the film substrate (1) can be subjected to a surface modification step (pretreatment) depending on the type of the film substrate (1).
  • the surface modification treatment include plasma treatment in an atmosphere of an inert gas such as argon gas or nitrogen gas.
  • the film base of the transparent conductive film (2) or the undercoat layer provided thereon is previously subjected to etching treatment or undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, etc. You may make it improve the adhesiveness with respect to a material (1).
  • dust may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
  • the undercoat layer can be formed of an inorganic material, an organic material, or a mixture of an inorganic material and an organic material.
  • organic substances include organic substances such as acrylic resins, urethane resins, melamine resins, alkyd resins, and siloxane polymers.
  • a thermosetting resin made of a mixture of a melamine resin, an alkyd resin, and an organosilane condensate as the organic substance.
  • the undercoat layer can be formed by using the above materials as a dry process such as a vacuum deposition method, a sputtering method, an ion plating method, or a wet method (coating method).
  • the undercoat layer may be a single layer or a plurality of layers of two or more layers.
  • the thickness of the undercoat layer (in the case of a plurality of layers, the thickness of each layer) is usually preferably about 1 to 300 nm.
  • the transparent conductive film forming step (A) is continuously performed with an R-to-R apparatus, but the undercoat layer is also continuously formed with an R-to-R apparatus. It is preferable to carry out a membrane.
  • the material for forming the transparent conductive film (2) is appropriately selected according to the above-described thin film formation method, but usually a sintered body material of indium oxide and an oxide of a tetravalent metal element is preferably used. .
  • tetravalent metal element examples include tin, cerium, hafnium, zirconium, and titanium.
  • oxides of these tetravalent metal elements include tin oxide, cerium oxide, hafnium oxide, zirconium oxide, and titanium oxide.
  • tetravalent metal element tin is preferably used. Tin oxide is suitable as the oxide of the tetravalent metal element, and indium-tin composite oxide is suitable as the indium composite oxide.
  • the ratio of indium oxide and tetravalent metal element oxide that is, ⁇ tetravalent metal element oxide / (tetravalent metal element oxidation).
  • the proportion of the tetravalent metal element oxide in the indium composite oxide is preferably 8 to 13% by weight.
  • the ratio of the tetravalent metal element oxide in the indium-based composite oxide is reduced, the number of tetravalent metal atoms that substitute for indium atoms is reduced, making it difficult to ensure a sufficient electron density, and the resulting transparent conductive film is low. It is difficult to make a resistive film.
  • the ratio is increased, it becomes difficult to crystallize the obtained transparent conductive film (amorphous film), and the temperature applied to the normal polymer film substrate (1) is about 180 ° C. or less. Since the tetravalent metal atoms to be substituted are limited and an excessive tetravalent metal element or oxide remains as an impurity region, the characteristics of the obtained transparent conductive film are deteriorated.
  • the thickness of the transparent conductive film (2) affects the enlargement of applications and the improvement of the conductive efficiency, so that it is 10 to 40 nm, preferably 15 to 35 nm, from the viewpoint of optical characteristics, resistance value, etc. Is preferably 20 to 30 nm.
  • the transparent conductive film (2) having a thickness of 10 to 40 nm is suitable for electrode applications such as a touch panel.
  • the transparent conductive film (2) is a crystalline film and is preferably completely crystallized. Whether it is a crystalline film can be determined by observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • complete crystallization refers to a state in which crystallized grains exist on the entire surface by transmission electron microscope (TEM) observation.
  • TEM transmission electron microscope
  • the surface resistance value is preferably 100 ⁇ / ⁇ or less, more preferably 70 ⁇ / ⁇ or less.
  • the transparent conductive film (2) has a specific resistance value as low as 1.3 ⁇ 10 ⁇ 4 to 2.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the specific resistance value is preferably 1.3 ⁇ 10 ⁇ 4 to 2.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and more preferably 1.3 ⁇ 10 ⁇ 4 to 1.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Is preferred.
  • the transparent conductive film (2) has main peaks of X-ray diffraction peaks on the (222) plane and the (440) plane, the peak intensity (I 222 ) on the (222) plane and the peak on the (440) plane.
  • intensity peak intensity ratio (I 440) (I 440 / I 222) is less than 0.2.
  • the main peak of the X-ray diffraction peak is a film that has the strongest peak from the (222) plane and is crystallized at a low temperature.
  • the peak intensity ratio (I 440 / I 222 ) is preferably less than 0.2, and since it is not polycrystallized, it has high mobility and high near-infrared transmittance, and the electron density is not high. It is preferable because of its high reliability.
  • the peak intensity ratio (I 440 / I 222 ) is preferably 0.19 or less, and more preferably 0.18 or less.
  • the method for producing a transparent conductive film of the present invention uses an indium-based composite oxide target, a high magnetic field with a horizontal magnetic field of 85 to 200 mT on the target surface, and RF superimposed DC sputtering in the presence of an inert gas.
  • FIG. 2 is a schematic view showing an example of a film forming apparatus used in the high magnetic field RF superimposed DC sputtering film forming method according to the forming step (1).
  • FIG. 2 shows a sputter in which an indium-based composite oxide target (2A) is mounted on a sputter electrode (3), and a thin film of indium-based composite oxide (2) is formed on the opposing film substrate (1).
  • the film base (1) is mounted on a substrate holder or can roll (1A).
  • the horizontal magnetic field on the target (2A) is set to a high magnetic field of 85 to 200 mT compared to the normal magnetic field (30 mT).
  • Such a high magnetic field can be adjusted by providing a high magnetic field magnet (4).
  • the high magnetic field is preferably 100 to 160 mT.
  • sputtering is performed by applying DC power or pulse power to a target with a DC power source (DC power source) (8).
  • DC power source DC power source
  • FIG. 1 As in the apparatus shown in FIG. 1, a DC power source (8) and an RF power source (a high frequency power source capable of changing the frequency) (7) are used.
  • the RF power source (7) and the DC power source (8) are arranged connected to the sputter electrode (3) so that RF power and DC power can be simultaneously applied to the target. Further, as shown in FIG.
  • a matching box (5) is provided between the RF power source (7) and the sputter electrode (3) in order to efficiently transmit the RF power from the RF power source (7) to the target (2A). be able to.
  • a water-cooled low-pass is provided between the DC power source (8) and the sputter electrode (3) so that the DC power source (8) is not affected by the RF power from the RF power source (7).
  • a filter (6) can be arranged.
  • the power ratio of RF power / DC power is 0.4 to 1.2. Setting is preferable from the viewpoint of low damage film-forming property and film oxidation degree.
  • the power ratio is preferably 0.5 to 1.0, and more preferably 0.6 to 1.0.
  • a preferred frequency of the RF power supply frequency (10 to 20 MHz) is 13.56 MHz.
  • the frequency of the RF power source is higher than 20 MHz and lower than or equal to 60 MHz, it is preferable from the viewpoint of low damage film forming property and film oxidation degree that the power ratio of RF power / DC power is set to 0.2 to 0.6.
  • the power ratio is preferably 0.3 to 0.5.
  • a preferable frequency of the RF power source (greater than 20 MHz and less than 60 MHz) includes 27.12 MHz, 40.68 MHz, or 54.24 MHz.
  • the temperature of the organic polymer film substrate (1) is preferably 80 to 180 ° C.
  • the temperature of the film substrate (1) at the time of the sputter deposition is preferably 80 to 180 ° C.
  • crystallization seeds are formed even for an indium-based complex oxide film having a high tetravalent metal atom content. can do.
  • the transparent conductive film formed in the forming step (A) is amorphous, crystallization of the indium composite oxide film in the annealing treatment step (B) described later is facilitated, and the surface resistance is further reduced.
  • a crystalline transparent conductive film (2) having a value is obtained.
  • the temperature of the film substrate (1) is 100 ° C. from the viewpoint of forming a crystalline transparent conductive film (2) having a low surface resistance value. It is preferable that the temperature is 120 ° C. or higher, 130 ° C. or higher, and 140 ° C. or higher. From the viewpoint of suppressing thermal damage to the film substrate (1), the substrate temperature is preferably 180 ° C. or less, more preferably 170 ° C. or less, and particularly preferably 160 ° C. or less.
  • the “temperature of the film substrate” is a set temperature of the base of the film substrate at the time of sputtering film formation.
  • the temperature of the film base material in the case where the sputter deposition is continuously performed by the roll sputtering apparatus is the temperature of the can roll where the sputter deposition is performed.
  • the base material temperature in the case of performing sputtering film formation by a single wafer type (batch type) is a temperature of a substrate holder for placing the base material.
  • the high magnetic field RF superimposed DC sputtering film forming method according to the forming step (A) is performed by introducing an argon gas or the like as an inert gas into a sputtering apparatus equipped with a sputtering target and exhausted to a high vacuum. Do.
  • inert gas such as argon gas
  • oxygen can be introduced into the sputtering apparatus without introducing oxygen.
  • oxygen gas or the like can be introduced in addition to the inert gas such as argon gas.
  • the oxygen gas is preferably introduced while introducing oxygen so that the ratio of the oxygen amount to the inert gas amount is 0.5% or less, and further 0.3% or less.
  • the partial pressure of water in the film formation atmosphere is preferably small. .
  • the partial pressure of water during film formation is preferably 0.1% or less, more preferably 0.07% or less, relative to the partial pressure of the inert gas. Further, the partial pressure of water during film formation is preferably 2 ⁇ 10 ⁇ 4 Pa or less, more preferably 1.5 ⁇ 10 ⁇ 4 Pa or less, and 1 ⁇ 10 ⁇ 4 Pa or less. It is preferable.
  • the atmosphere is exhausted to 10 ⁇ 5 Pa or less to remove impurities such as moisture in the apparatus and organic gas generated from the substrate.
  • a transparent conductive film is produced by continuously performing a transparent conductive film forming step (A) using an R-to-R apparatus.
  • a transparent conductive film forming step (A) is produced by continuously performing a transparent conductive film forming step (A) using an R-to-R apparatus.
  • tetravalent metal element oxide for example, tin oxide
  • the target surface is formed using the same indium-based composite oxide as in the forming step (A) without introducing oxygen.
  • the RF power / DC power ratio is set to any one of the same ranges as the main film formation range by the RF superimposed DC sputtering film formation method.
  • a pre-sputtering step (a) may be performed in which film formation is performed until the obtained resistance value becomes stable.
  • the resistance value When the resistance value is in a stable state, it indicates the region (4) in FIG. 6 and is a region where moisture and generated gas are removed from the target and from the vacuum chamber wall (regions (1) to (3)).
  • the target surface is stably activated by a high magnetic field, RF power, and DC power, and the resistance fluctuation falls within ⁇ 2%.
  • the annealing treatment step (B) can be performed.
  • the transparent conductive film formed in the forming step (A) is amorphous, it can be crystallized by the annealing step (B).
  • the annealing treatment step (B) is preferably performed in the atmosphere at a temperature of 120 ° C. to 180 ° C. for 5 minutes to 5 hours.
  • the annealing treatment can be performed according to a known method, for example, using a heating method such as an infrared heater or a hot air circulation oven.
  • the organic polymer film substrate of the high magnetic field RF superposition DC sputtering film forming method is used.
  • the temperature of the material (1) is preferably 150 ° C. or higher in the above range.
  • the power ratio of the RF power / DC power is preferably set to be less than 1.2 when the frequency of the RF power source is 10 to 20 MHz within the above range.
  • a preferred frequency of the RF power supply frequency (10 to 20 MHz) is 13.56 MHz.
  • the RF power / DC power ratio is preferably set to less than 0.6.
  • a preferable frequency of the RF power source includes 27.12 MHz, 40.68 MHz, or 54.24 MHz.
  • the obtained transparent conductive film (2) is patterned into a predetermined shape (for example, a strip shape). be able to.
  • a predetermined shape for example, a strip shape.
  • the indium composite oxide film is crystallized by the annealing process (B)
  • etching with acid becomes difficult.
  • the amorphous indium composite oxide film before the annealing step (B) can be easily etched. Therefore, when patterning a transparent conductive film (2) by an etching, after an amorphous transparent conductive film (2) is formed, an etching process can be performed before an annealing treatment process (B).
  • a transparent conductive film comprising a crystalline film of an indium composite oxide having a thickness in a range of 10 nm to 40 nm, having the low specific resistance value, and the peak intensity ratio
  • a transparent conductive film having (I 440 / I 222 ) of less than 0.2 can be obtained.
  • the discharge voltage is higher than that of a normal magnetic field film forming method. Since it decreases to 1/2 to 1/5, the kinetic energy of atoms / molecules deposited on the film substrate decreases accordingly.
  • indium-based composite oxide targets (particularly indium-tin composite oxide targets) from Japanese manufacturers has improved dramatically, and any manufacturer's product has become the same characteristics.
  • the relative density of the target is 98% or more, and the oxidation degree is almost the same between the companies.
  • the pre-exhaust in the chamber was sufficiently performed to be 1.5 ⁇ 10 ⁇ 4 Pa or less.
  • the transparent conductive film having the minimum surface resistance value can be obtained when the ratio of the oxygen introduction amount to the sputtering gas amount (inert gas amount) such as argon gas is about 1 to 3%.
  • ITO indium-tin composite oxide
  • An ITO film was formed on a 125 ⁇ m thick PET film.
  • the temperature of the film substrate was 120 ° C.
  • the ratio of the oxygen amount to the argon gas was 0.25%
  • the film formation pressure was 0.3 Pa.
  • FIG. 3 shows the result of measuring the discharge voltage by changing the frequency of the RF power and the RF power source at DC power (1000 W).
  • the horizontal magnetic field on the target surface was 100 mT.
  • the discharge voltage decreases as the RF power increases, but gradually approaches as the power ratio of RF power / DC power approaches 1. Further, there is a difference in the discharge voltage drop curve between the case where the frequency of the RF power source is 13.56 MHz and the case where the frequency of the RF power source is 27.12 MHz, 40.68 MHz, or 54.24 MHz. This is probably because the discharge voltage is lower when the frequency of the RF power source is 13.56 MHz than when the frequency is 13.56 MHz, and the plasma generation capability is higher.
  • an ITO film having a thickness of 28 nm is applied to a PET film having a thickness of 125 ⁇ m by changing the discharge voltage by a high magnetic field RF superimposed DC sputtering film forming method. Formed.
  • the initial surface resistance value (R 0 ) of the obtained ITO film was measured.
  • the surface resistance value (R 150 ° C. 1 h ) after annealing the ITO film at 150 ° C. for 1 hour was measured.
  • the obtained results are shown in FIG. FIG. 4 shows that as the discharge voltage decreases, the initial surface resistance value (R 0 ) decreases and the surface resistance value after annealing (R 150 ° C.
  • the minimum value of the surface resistance value of the obtained ITO film is 160 ⁇ / ⁇
  • the specific resistance value is 4.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm
  • the ITO provided on the glass substrate which is the target value Characteristics equivalent to those of the film (low surface resistance value of 100 ⁇ / ⁇ or less, specific resistance value of 2.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less) were not obtained.
  • a discharge voltage of 110 V (RF power / DC power) was applied to a 125 ⁇ m-thick PET film by a high magnetic field RF superposition DC sputtering film formation method under the same conditions as above (however, an RF frequency of 13.56 MHz was used).
  • the ratio was 1.0
  • the amount of introduced oxygen gas during the ITO film formation was changed to form an ITO film having a thickness of 28 nm.
  • the initial surface resistance value (R 0 ) of the obtained ITO film was measured. Further, the surface resistance value (R 150 ° C. 1 h ) after annealing the ITO film at 150 ° C. for 1 hour was measured.
  • FIG. 5 shows a result of examining whether or not a low surface resistance value can be obtained by changing the ratio of the oxygen amount to the argon gas.
  • the initial surface resistance value (R 0 ) and the surface resistance value after annealing (R 150 ° C. 1 h ) are further reduced by optimizing the amount of oxygen introduced, but the surface resistance value of the obtained ITO film
  • the minimum value was 150 ⁇ / ⁇ , and the specific resistance value was about 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • an ITO film when an organic polymer film substrate is used, an ITO film must be formed under a lower temperature condition than when a glass substrate is used. Even if the RF superposition DC sputtering film forming method is adopted, the characteristics equivalent to those of the ITO film provided on the glass substrate (low resistance value of 100 ⁇ / ⁇ or less, specific resistance value is 2.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm) An ITO film having the following) cannot be formed.
  • FIG. 6 shows a step (A) of forming an R-to-R apparatus by a high magnetic field RF superimposed DC sputter deposition method under the same conditions as the measurement according to FIG. 3 (however, using an RF frequency of 13.56 MHz).
  • the inside of the sputtering apparatus is evacuated to 1.5 ⁇ 10 ⁇ 4 Pa or less, and only with a sputtering gas such as argon gas (without introducing oxygen), the power ratio of RF power / DC power is 0.
  • 6 shows the relationship between the index of the film formation time when the pre-sputtering (a) step is performed under the condition 6 and the index of the surface resistance value of the ITO film obtained in-line. As long as the power ratio of RF power / DC power is within the power ratio range of this film formation, any power ratio is adopted.
  • the resistance value gradually increases with the decrease of moisture and generated gas, and reaches (3) where the moisture and generated gas disappear. If it continues further, stable state (4) will be obtained.
  • the stable state (4) not only impurities due to moisture and generated gas are not mixed in the film, but also the surface of the indium-based composite oxide target is activated by RF discharge, so the amount of oxygen introduced is small and high quality. This is the region where the film is obtained.
  • ITO indium tin composite oxide
  • the sample was mounted on a superposed DC sputtering apparatus (horizontal magnetic field intensity on the target surface was 100 mT), and pre-sputtering (a) was performed while forming an ITO film having a thickness of 28 nm on a 125 ⁇ m-thick PET film.
  • the temperature of the film substrate was 120 ° C.
  • the ultimate vacuum was 5 ⁇ 10 ⁇ 5 Pa
  • the introduction gas was only argon gas
  • the film formation pressure was 0.3 Pa.
  • an ITO film having a thickness of 28 nm is formed under the same conditions as in FIG. 5 except that oxygen gas is not introduced using the same target. did. That is, as the main film forming conditions, an ITO film was obtained under the conditions that the high frequency power of 13.56 MHz was 1000 W, the DC power was 1000 W, and the RF power / DC power ratio was 1. The obtained ITO film had an initial surface resistance value (R 0 ) of 62 ⁇ / ⁇ , and the surface resistance value (R 150 ° C. 1 h ) after annealing at 150 ° C. for 1 hour was 58 ⁇ / ⁇ . From these facts, it can be seen that the target low resistance film can be obtained by performing the film formation step (A) after the pre-sputtering (a).
  • FIG. 7 to 10 show that the preferred RF power / DC power ratio varies depending on the frequency of the RF power source used in the high magnetic field RF superimposed DC sputtering film forming method.
  • FIG. 7 shows the behavior when the frequency of the RF power supply is 13.56 MHz.
  • FIG. 7 shows that the temperature of the roll electrode to be formed is set to 150 ° C., and the pre-sputtering step (a) is performed at a power ratio of RF power / DC power of 0.6 without introducing oxygen until it becomes stable.
  • the temperature of the roll electrode for film formation was set to 150 ° C., and the film thickness of the ITO film was 28 nm. Other conditions were the same as those in FIG.
  • FIGS. 8-9 and 10 the results when the frequency of the RF power source is 27.12 MHz, 40.68 MHz, and 54.24 MHz are shown in FIGS.
  • the power ratio of RF power / DC power in the pre-sputtering step (a) is set to 0.3.
  • RF power / DC power for both the initial surface resistance value (R 0 ) of the ITO film immediately after deposition and the resistance value (R 150 ° C. 1 h ) after annealing the ITO film at 150 ° C. for 1 hour The surface resistance value was the lowest when the ratio was about 0.35.
  • Example 1 Organic polymer film substrate
  • an O300E (thickness 125 ⁇ m) polyethylene terephthalate (PET) film manufactured by Mitsubishi Plastics, Inc. was used as an organic polymer film substrate.
  • the PET film was mounted on an R-to-R sputter deposition apparatus so that an ITO thin film could be formed on a smooth surface that was not the easy-to-smooth surface of the PET film.
  • a roll electrode heated to 120 ° C while dewinding, degassing is performed in the exhaust system of the cryocoil and turbo pump, and an atmosphere with a vacuum degree of 3 ⁇ 10 ⁇ 5 Pa during running without film formation is obtained. Obtained.
  • argon gas was introduced into the sputter deposition apparatus, and the PET film was pretreated by passing through the plasma discharge with an RF power source (13.56 MHz).
  • an Al 2 O 3 thin film having a thickness of 20 nm was formed from an Al metal target by a reactive dual magnetron sputtering method.
  • an ITO oxide target manufactured by Sumitomo Metal Mining Co., Ltd., tin oxide ratio of 10% by weight
  • an ITO oxide target manufactured by Sumitomo Metal Mining Co., Ltd., tin oxide ratio of 10% by weight
  • the horizontal magnetic field on the target surface was 100 mT.
  • the film substrate was rolled up at a low speed while measuring the surface resistance value and transmittance with an in-line monitor. As for other conditions, the temperature of the film substrate was 150 ° C., and the introduction gas was argon gas only.
  • the pre-stutter pressure was 0.32 Pa. This was performed until the in-line resistance value became stable.
  • Example 1 As shown in Table 1, the ratio of tin oxide (SnO 2 ) of the ITO target, the frequency of the RF power source, the RF power / DC power ratio, the oxygen ratio in the high magnetic field RF superimposed DC sputter deposition A transparent conductive film was obtained in the same manner as in Example 1 except that the amount introduced and the temperature of the annealing treatment step were changed as shown in Table 1.
  • Example 6 in addition to the argon gas introduced at the time of the film formation, oxygen gas having an argon ratio of 0.5% was also introduced, and the film base was formed at a temperature of 170 ° C.
  • An ITO film was formed under various conditions. In Example 6, the annealing process (B) was not performed. In Example 7, the ITO film was formed under the same conditions as in Example 1 except that the power ratio of RF power / DC power was 0.6 and oxygen gas with an argon ratio of 0.1% was introduced.
  • Comparative Example 1 normal DC magnetron sputtering film formation was performed in a high magnetic field of 100 mT instead of high magnetic field RF superposition DC sputtering film formation.
  • the surface resistance value of the ITO film of the transparent conductive film was measured using a Loresta GP (type MCP-T600) manufactured by Mitsubishi Yuka Co., Ltd.
  • FIG. 12 is a TEM photograph showing crystals of the ITO film obtained in Example 5 of the present invention.
  • the thickness of the ITO film was measured by cutting a sample fixed with a resin as an ultra-thin slice with Hitachi, FB-2100, and observing it with the TEM.
  • FIG. 11 is an X-ray diffraction chart of the ITO film obtained in Example 1 of the present invention.
  • Rigaku Co., Ltd. Powder X-ray Diffractometer RINT-2000 Light source Cu-K ⁇ ray (wavelength: 1.541mm), 40KV, 40mA Optical system Parallel beam optical system Divergent slit: 0.05 mm Receiving slit: 0.05mm Monochromatic and parallel use with multilayer bevel mirror
  • the ITO films obtained in Examples 1 to 4 had a thickness of 28 nm, and had a low specific resistance value of about 1.7 ⁇ 10 ⁇ 4 ⁇ ⁇ cm in an ITO film having a tin oxide ratio of 10% by weight.
  • the ITO film obtained in Example 5 was 28 nm in thickness, and an ITO film having a tin oxide ratio of 12.7% by weight had a lower specific resistance value of 1.37 ⁇ 10 ⁇ 4 ⁇ / ⁇ . It was. Since the ITO film immediately after film formation obtained in Examples 1 to 5 is an amorphous film interspersed with crystals, the etching process with acid was easy. It was confirmed that the ITO film obtained after the annealing treatment was completely crystallized by TEM measurement. In addition, the ITO film of Example 6 was already completely crystallized immediately after the film formation.
  • the ITO films obtained in Examples 1 to 7 were also confirmed to have a peak intensity ratio (I 440 / I 222 ) of less than 0.2 by X-ray diffraction analysis. Since the obtained ITO film was completely crystallized, the 100 ° C. heating reliability and 85 ° C. 85% humidification heat reliability required for applications such as touch panels were also good results. Further, the transmittance as a transparent conductive film (including a PET film as a base material) was about 90% as measured in air (wavelength of 550 nm). The transmittance was measured with MCPD3000 manufactured by Otsuka Electronics. The transmittance is preferably 85% or more, and more preferably 88% or more.
  • Oxygen introduction amount is unnecessary for most RF power / DC power ratios, but a small amount of oxygen gas may be introduced under both end conditions of the optimum RF power / DC power ratio range at each RF frequency.
  • the power ratio of RF power / DC power at 13.56 MHz was 1, but the film was formed while introducing a small amount of oxygen so that the ratio of the oxygen amount to argon was 0.5%. Under this condition, a large amount of oxygen is taken into the film, and a crystallized ITO film is obtained immediately after film formation. In this case, an annealing treatment step is unnecessary, but when heated at 150 ° C. for 1 hour, a phenomenon in which the resistance value slightly increases as polycrystallization progresses and mobility decreases is observed.
  • Example 7 although the power ratio of RF power / DC power is 0.6 at 13.56 MHz, the film is formed while introducing a small amount of oxygen so that the ratio of the oxygen amount to argon is 0.1%. . Under the condition that the ratio of the oxygen amount to argon is close to 0, the film becomes an oxygen-deficient film, so that the annealing time tends to take a long time to improve the transmittance and reduce the surface resistance value. In that case, when the ratio of the oxygen amount to argon is introduced at 0.5% or less, the transmittance is improved and the annealing time is shortened. However, when an oxygen amount larger than that is introduced, the specific resistance value does not decrease so much and the desired specific resistance value cannot be obtained.
  • the comparative example 1 is a high magnetic field
  • the result in normal magnetron sputtering film-forming was shown.
  • the discharge voltage is reduced to 250 V by the effect of a high magnetic field of 100 mT.
  • the discharge voltage is about 450 V, the film is formed with low damage by the amount corresponding to the decrease in the discharge voltage. Therefore, a specific resistance value of 2.94 ⁇ 10 ⁇ 4 ⁇ ⁇ cm is obtained.
  • Comparative Examples 2 to 4 show the characteristics of ITO films obtained by performing high magnetic field RF superposition DC sputtering film formation in a range where the power ratio of RF power / DC power deviates from the conditions of the present invention at each frequency. From these results, when the upper limit of the power ratio of RF power / DC power is exceeded, an oxygen-rich film is formed, and the resistance value immediately after the film formation is increased. Further, when the annealing process is performed, the surface resistance is further increased. The value gets higher. When the power ratio is lower than the lower limit of the RF power / DC power ratio, the RF superposition effect is weakened and the discharge voltage is increased, so that the low damage film forming effect is diminished and the specific resistance value is not sufficiently lowered.
  • SYMBOLS 1 Organic polymer film base material 1A ... substrate holder or can roll 2 ... transparent conductive film 2A ... indium complex oxide target 3 ... sputter electrode 4 ... magnet generating high magnetic field 5 ... Matching box for high frequency introduction 6 ... Low pass filter 7 ... High frequency power supply (RF power supply) 8 ... DC power supply (DC power supply)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の透明導電性フィルムの製造方法は、有機高分子フィルム基材の少なくとも一方の面に、ロール‐トゥ‐ロールの装置により、{4価金属元素の酸化物/(4価金属元素の酸化物+酸化インジウム)}×100(%)で表される4価金属元素の酸化物の割合が7~15重量%であるインジウム系複合酸化物のターゲットを用いて、当該ターゲット表面での水平磁場が85~200mTの高磁場で、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、透明導電膜を形成する工程(A)を有し、かつ、前記透明導電膜は、前記インジウム系複合酸化物の結晶質膜であり、前記透明導電膜は、膜厚が10nm~40nmの範囲であり、前記透明導電膜は、比抵抗値が1.3×10-4~2.8×10-4Ω・cmである。本発明の製造方法により得られる透明導電性は、低い比抵抗値及び表面抵抗値を有し、かつ薄膜の結晶質膜からなる透明導電膜を有する。

Description

透明導電フィルムの製造方法
 本発明は、可視光線領域に於いて透明性を有し、かつ有機高分子フィルム基材上に透明導電膜を有する透明導電性フィルムの製造方法に関する。本発明の透明導電性フィルムは、比抵抗値及び表面抵抗値が小さい透明導電性の薄膜を有する。
 本発明の透明導電性フィルムは、フィルム液晶ディスプレイ、フィルムOLEDディスプレイなどに用いられるディスプレイ用透明電極や、静電容量方式のタッチパネル用透明電極やフィルムOLED照明用電極などの低い表面抵抗値が必要な電極用途に有用である。その他、フィルム太陽電池用電極、透明物品の帯電防止や電磁波遮断等への適用することができる。
 従来、透明導電性フィルムとしては、ガラス基材上にITO膜(インジウム・スズ複合酸化物膜)を形成した、いわゆる導電性ガラスがよく知られている。ガラス基材上にITO膜を形成する場合には、200℃以上で、通常は300℃以上で加熱しながら成膜ができるため、130nmの厚みで10Ω/□以下の低い表面抵抗値(比抵抗値が1.3×10-4Ω・cm)のITO膜を容易に得ることができる。
 一方、ガラス基材は可撓性、加工性に劣り、用途によっては使用できない場合がある。このため、近年では、可撓性、加工性に加えて、耐衝撃性に優れ、軽量である等の利点から、ポリエチレンテレフタレートフィルムをはじめとする各種の有機高分子フィルム基材上にITO膜を形成した透明導電性フィルムが使用されている。
 前記ITO膜を有する透明導電フィルムに要求される好ましい比抵抗値及び表面抵抗値は、透明導電性フィルムが用いられる用途に応じて異なるが、有機高分子フィルム基材上に形成したITO膜においても、ガラス基材上に形成したITO膜と同等の比抵抗値及び表面抵抗値が要求されるようになってきている。例えば、最近、フィルムディスプレイが検討されている。このディスプレイ用途では、有機高分子フィルム基材上に形成したITO膜においても、ガラス基材上に形成したITO膜と同等の130nmの厚みで10Ω/□以下の低抵抗値が求められている。また、静電容量方式のタッチパネル電極用途に使用されるITO膜はアンテナパターンを形成するため、100Ω/□程度の低い表面抵抗値が必要とされる。しかも、静電容量方式のタッチパネル電極用途に使用されるITO膜は、エッチング有り部と無し部で反射の色味を無くす必要があるため、20nm程度の厚みで低い表面抵抗値が要求されている。その結果、静電容量方式のタッチパネル電極用途に使用されるITO膜には、ディスプレイ用途に近い低い比抵抗値が求められている。
 前記ITO膜を有する透明導電フィルムとしては各種の方法が提案されている(特許文献1乃至4)。
特開2010-177161号公報 特開平02-232358号公報 特開平03-249171号公報 特開2011-018623号公報
 しかし、有機高分子フィルム基材上に成膜されたITO膜は、ガラス基材上に成膜されたITO膜に比較して一般的に比抵抗値が高い。この理由には主に2つの理由が考えられる。一つ目の理由としては、有機高分子フィルム基材の大部分はガラス転移温度、または耐熱温度が200℃に満たないので、高温加熱ができない。そのため、インジウムサイトに置換するスズ原子の量が限られるのでキャリアとなる電子密度nが一桁少ないITO膜になることが挙げられる。二つ目の理由としては、有機高分子フィルム基材に吸着した水分やプラズマに触れた場合に発生するガス、さらには、ターゲットに含有している過剰なスズ原子なども不純物として働くため、結晶成長が阻害されることが挙げられる。また、フィルム基材の熱変形や平滑性の悪さも結晶成長に悪影響すると考えられる。また過剰なスズ原子は局部的にスズ酸化物(SnO)状態になり易く、結晶成長を阻害する以外にも、結晶内部にも電子を散乱させる欠陥を形成することになる。それら両者が相まって電子移動度μが小さくなると考えられる。これらの理由により、有機高分子フィルム基材上で形成されるITO膜は、130nmの厚みにおいて、約30Ω/□の表面抵抗値、4×10-4Ω・cm以下の比抵抗値を有することは困難であった。また、静電容量方式のタッチパネル電極用途に使用されるITO膜には、20nm程度の厚みが要求されるが、当該厚みのITO膜を有機高分子フィルム基材上へ形成した場合には、当該基材からの不純物の影響などによって、ITO膜が結晶化し難くなり厚膜程の良好な比抵抗値を得ることは困難であった。
 特許文献1では、スパッタリング時にターゲットと基板の中間位置でプラズマを発生させるプラズマアシストスパッタリング法や、スパッタリングを行いながらイオンビームアシストを行うイオンビームアシストスパッタリング法を用いることにより、X線回折ピークのうち(400)面が最も強く、比抵抗値(体積抵抗率)が1×10-4~6×10-4Ω・cmのITO膜を成膜できることが提案されている。しかし、ターゲット基板(TS)間距離が狭いスパッタ成膜において、TS間にイオンビームやRFで別のプラズマを採用することは、バッチ成膜装置では可能であるが、R-to―R装置では均一性や安定性に問題がある。また、特許文献1で得られるITO膜は、キャリア濃度値(5×1020~2×1021cm-3)・キャリア移動度値(15~25cm/V/s)であり、さらには、特許文献1の実施例に記載のITO膜の体積抵抗率値は200nmの厚膜で5×10-4Ω・cm程度である。特許文献1では、10~40nmの薄膜においては、実質的に、1×10-4Ω・cmの低い比抵抗値のITO膜を得ることはできていない。
 特許文献2、3では、マグネトロンスパッタ成膜において、磁場強度を強くすること、また、RF電力を重畳することで放電電圧を低下させることにより、膜に対する反跳アルゴンや酸素負イオンなどのダメージが低減させて、低い比抵抗値のITO膜を成膜できることが提案されている。特許文献2、3では、ガラス基材を用いており高温加熱が可能である。しかし、特許文献2、3に記載の方法を、有機高分子フィルム基材において適用した場合には、基材の温度をガラス転移温度以下までしか加熱できない。そのため、特許文献2、3に記載の方法を、有機高分子フィルム基材において適用して得られるITO膜はアモルファス膜であり、特許文献2、3に記載の技術を利用したとしても、有機高分子フィルム基材上に、ガラス板上に形成したITO膜と同等の低い比抵抗値を持つ完全結晶したITO膜を得ることはできない。まして、特許文献2、3の実施例は100nmの膜厚の結果が記載されているのみであり、10~40nmの薄膜は検討もされていないと考えられる。
 特許文献4には、60~80mTのターゲット表面磁場において、DC電力比0.5~2.0倍のRF電力を重畳するITO膜の成膜方法が提案されている。当該成膜方法で得られるITO膜は、X線回折法で測定した(400)面のピークが(222)面のピークより大きくなる特異的な結晶状態を形成すると、1.5×10-4Ω・cm以下の低い抵抗率(比抵抗値)が得られることが記載されている。しかし、特許文献4ではガラス基材を用いており、基材温度を230~250℃の温度範囲に設置することができる。しかし、特許文献4に記載の方法を、有機高分子フィルム基材において適用した場合には、(400)面のピークを主ピークにすることは困難である、特許文献4に記載のように、低い比抵抗値を持つITO膜を成膜することができない。
 本発明は、有機高分子フィルム基材上に、低い比抵抗値及び表面抵抗値を有し、かつ薄膜の結晶質膜からなる透明導電膜を有する透明導電性フィルムの製造方法を提供することを目的とする。
 本発明者らは、上記の目的を達成するために、鋭意検討した結果、下記に示す透明導電フィルムの製造方法等により、上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、有機高分子フィルム基材上の少なくとも一方の面に透明導電膜を有する透明導電性フィルムの製造方法であって、
 有機高分子フィルム基材の少なくとも一方の面に、
 ロール‐トゥ‐ロールの装置により、
 {4価金属元素の酸化物/(4価金属元素の酸化物+酸化インジウム)}×100(%)で表される4価金属元素の酸化物の割合が7~15重量%であるインジウム系複合酸化物のターゲットを用いて、当該ターゲット表面での水平磁場が85~200mTの高磁場で、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、透明導電膜を形成する工程(A)を有し、
 かつ、前記透明導電膜は、前記インジウム系複合酸化物の結晶質膜であり、
 前記透明導電膜は、膜厚が10nm~40nmの範囲であり、
 前記透明導電膜は、比抵抗値が1.3×10-4~2.8×10-4Ω・cmであることを特徴とする透明導電性フィルムの製造方法、に関する。
 前記透明導電性フィルムの製造方法において、前記透明導電膜は、フィルム基材の側からアンダーコート層を介して設けることができる。
 前記透明導電性フィルムの製造方法において、インジウム系複合酸化物としてはインジウム・スズ複合酸化物、4価金属元素の酸化物としてはスズ酸化物を用いることができる。
 前記透明導電性フィルムの製造方法において、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、RF電源の周波数が10~20MHzの時、RF電力/DC電力の電力比が0.4~1.2であることが好ましい。
 また、前記透明導電性フィルムの製造方法において、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、RF電源の周波数が20MHzより大きく60MHz以下の時、RF電力/DC電力の電力比が0.2~0.6であることが好ましい。
 前記透明導電性フィルムの製造方法において、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、有機高分子フィルム基材の温度が、80~180℃であることが好ましい。
 前記透明導電性フィルムの製造方法において、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、酸素を導入することなく行うことができる。
 また、前記透明導電性フィルムの製造方法において、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、不活性ガス量に対する酸素量の割合が0.5%以下になるように、酸素を導入しながら行うことができる。
 前記透明導電性フィルムの製造方法において、前記高磁場RF重畳DCスパッタ成膜法を施す前に、酸素を導入することなく、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、RF電源の周波数が10~20MHzの時、RF電力/DC電力の電力比が0.4~1.2の範囲にて、得られた抵抗値が安定状態になるまで成膜を行うプリスパッタ工程(a)を有することができる。
 前記透明導電性フィルムの製造方法において、前記高磁場RF重畳DCスパッタ成膜法を施す前に、酸素を導入することなく、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、RF電源の周波数が20MHzより大きく60MHz以下の時、RF電力/DC電力の電力比が0.2~0.6の範囲にて、得られた抵抗値が安定状態になるまで成膜を行うプリスパッタ工程(a)を有することができる。
 前記透明導電性フィルムの製造方法において、前記形成工程(A)の後に、アニール処理工程(B)を、施すことができる。前記アニール処理工程(B)は、120℃~180℃の温度で、5分間~5時間、大気中で施すことが好ましい。
 本発明の透明導電性フィルムの製造方法によれば、有機高分子フィルム基材上に、ガラス基板上に形成される透明導電膜と同等の、低い比抵抗値及び表面抵抗値を有し、かつ薄膜(20~40nm)のインジウム系複合酸化物により形成された結晶質膜の透明導電膜(例えばインジウム・スズ複合酸化物:ITO膜)を有する透明導電性フィルムを提供することができる。
 また、本発明の透明導電性フィルムの製造方法によれば、ガラス基板上に透明導電膜を形成する場合よりも低温の条件で、有機高分子フィルム基材上に、R-to―R(ロール‐トゥ‐ロール)装置により、ガラス板上に形成される透明導電膜と同等の低い比抵抗値及び表面抵抗値を有する薄膜の結晶質膜からなる透明導電膜を成膜することできる。
 さらには、本発明の製造方法によれば、高磁場RF重畳DCスパッタ成膜法を、生産機に適応させて、RF電源をDC電源と比べて小さくすることが可能であり、高磁場RF重畳DCスパッタ成膜法におけるRF電力の導入方法や電波シールドを容易に行うことができる。さらには、形成工程(A)では、高磁場RF重畳DCスパッタ成膜法によりアモルファスの透明導電膜が形成された場合においても、アニール処理工程(B)において、低温かつ短時間で加熱処理することで、透明導電膜を結晶化させることができ、透過率が良く、信頼性の高い透明導電膜が得られる。
 さらに、本発明の製造方法では、高磁場RF重畳DCスパッタ成膜法に係る形成工程(A)の前に、これまで知られていなかった、プリスパッタ工程(a)を設けることにより、インジウム系複合酸化物ターゲット表面の水分除去ばかりでなくターゲット自身の持つ酸素をITO結晶膜中に効率良く取り込める準備にあたる改質を行うことができ、ガラス基板上に透明導電膜を形成する場合よりも低温の条件で、欠陥や不純物が少なく、低い比抵抗値及び表面抵抗値を有する透明導電膜を効率よく得ることができる。
本発明の透明導電フィルムの一例を示す概略断面図である。 本発明の透明導電フィルムの製造方法における、高磁場RF重畳DCスパッタ成膜法に用いられる装置の一例を示す概略図である。 本発明の高磁場RF重畳DCスパッタ成膜法における、放電電圧の周波数による変化図である。 従来の、高磁場RF重畳DCスパッタ成膜を追試した場合の、放電電圧と抵抗値と関係図である。 従来の、高磁場RF重畳DCスパッタ成膜を追試した場合の、酸素最適値も含めた抵抗値との関係図である。 本発明の製造方法において、高磁場RF重畳DCスパッタ成膜を行う前に、プリスタッパを行った場合の効果を示す図である。 本発明の高磁場RF重畳DCスパッタ成膜法において、RF電力が13.56MHzの場合のRF電力/DC電力の電力比の効果を示す図である。 本発明の高磁場RF重畳DCスパッタ成膜法において、RF電力が27.12MHzの場合のRF電力/DC電力の電力比の効果を示す図である。 本発明の高磁場RF重畳DCスパッタ成膜法において、RFが40.68MHzの場合のRF電力/DC電力の電力比の効果を示す図である。 本発明の高磁場RF重畳DCスパッタ成膜法において、RFが54.24MHzの場合のRF電力/DC電力の電力比の効果を示す図である。 本発明の実施例1で得られたITOフィルムの斜入射X線回折チャートである。 本発明の実施例5で得られたITOフィルムの結晶を示すTEM写真である。
 以下に本発明の透明導電フィルムの製造方法を、図面を参照しながら説明する。図1は、本発明の製造方法により得られる透明導電フィルムの一例を示す概略断面図であり、有機高分子フィルム基材(1)の一方の面に、透明導電膜(2)を有する。透明導電膜(2)は、4価金属元素の酸化物を含有するインジウム系複合酸化物により形成されている。なお、図1では、有機高分子フィルム基材(1)の一方の面にのみ、透明導電膜(2)が設けられているが、フィルム基材(1)の他の面においても透明導電膜(2)を設けることができる。
 なお、図1には記載されていないが、反射防止等を目的として、フィルム基材(1)の側からアンダーコート層を介して透明導電膜(2)を設けることができる。本発明の製造方法のように、薄膜の透明導電膜(2)を高磁場RF重畳DCスパッタ成膜法により形成する場合には、有機高分子フィルム基材(1)からC、Hなどの元素がITO膜内に取り込まれ結晶化し難くなるので、アンダーコート層を形成することが好ましい。
 前記有機高分子フィルム基材(1)としては、透明性、耐熱性、表面平滑性に優れたフィルムが好ましく用いられる。例えば、その材料として、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリオレフィン、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ノルボルネンなどの単一成分の高分子または他の成分との共重合高分子があげられる。また、前記有機高分子フィルム基材(1)としては、エポキシ系樹脂フィルムなども用いられる。
 前記フィルム基材(1)の厚みは、成膜条件や用途にもよるが、一般的には、16~400μmの範囲内であることが好ましく、20~185μmの範囲内であることがより好ましい。R-to-R(ロール-トゥ-ロール)装置で巻取りながら成膜する場合、薄過ぎると熱ジワや静電気が発生するので巻取り難く、厚すぎると板状になり巻き取れなくなる。
 前記フィルム基材(1)には、フィルム基材(1)の種類に応じて、表面改質工程(前処理)を施すことができる。表面改質処理としては、アルゴンガス、窒素ガスなどの不活性ガスの雰囲気下にプラズマ処理等が挙げられる。その他、予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、この上に設けられる透明導電膜(2)またはアンダーコート層の前記フィルム基材(1)に対する密着性を向上させるようにしてもよい。また、透明導電膜(2)またはアンダーコート層を設ける前に、必要に応じて溶剤洗浄や超音波洗浄などにより除塵、清浄化してもよい。
 前記アンダーコート層は、無機物、有機物または無機物と有機物との混合物により形成することができる。無機材料としては、例えば、無機物として、SiO(x=1~2)、MgF2、Al23、TiO、Nbなどが好ましく用いられる。また有機物としてはアクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマーなどの有機物があげられる。特に、有機物としては、メラミン樹脂とアルキド樹脂と有機シラン縮合物の混合物からなる熱硬化型樹脂を使用するのが望ましい。
 アンダーコート層は、上記の材料を用いて、真空蒸着法、スパッタリング法、イオンプレーテフィング法等のドライプロセスとして、またはウェット法(塗工法)などにより形成できる。アンダーコート層は1層でもよく、2層以上の複数層とすることもできる。アンダーコート層の厚み(複数層の場合は各層の厚み)は、通常、1~300nm程度であるのがよい。本発明の製造方法では、R-to―R装置で連続して、透明導電膜の形成工程(A)を行うが、アンダーコート層の形成についても、R-to―R装置で連続して成膜を行うことが好ましい。
 透明導電膜(2)を形成する材料は、上記の薄膜形成法に応じて、適宜選択されるが、通常は、酸化インジウムと4価金属元素の酸化物との焼結体材料が好ましく用いられる。
 前記4価金属元素としては、例えば、スズ、セリウム、ハフニウム、ジルコニウム、チタン等が挙げられる。これらの4価金属元素の酸化物としては、酸化スズ、酸化セリウム、酸化ハフニウム、酸化ジルコニウム、酸化チタン等が挙げられる。前記4価金属元素としては、スズが好適に用いられる。4価金属元素の酸化物としてはスズ酸化物が好適であり、インジウム系複合酸化物としてはインジウム・スズ複合酸化物が好適である。
 透明導電膜(2)の形成にあたり、インジウム系複合酸化物としては、酸化インジウムと4価金属元素の酸化物との割合、即ち、{4価金属元素の酸化物/(4価金属元素の酸化物+酸化インジウム)}×100(%)で表される4価金属元素の酸化物の割合が7~15重量%のものを用いる。前記インジウム系複合酸化物における4価金属元素の酸化物の割合は、8~13重量%であるのが好ましい。
 前記インジウム系複合酸化物における4価金属元素の酸化物の割合が小さくなると、インジウム原子と置換する4価金属原子が少なくなり十分な電子密度が確保しがたくなり、得られる透明導電膜を低い抵抗膜にし難い。一方、前記割合が大きくなると、得られる透明導電膜(アモルファス膜)の結晶化をし難くなるばかりか、通常の高分子フィルム基材(1)にかけられる温度は180℃程度以下なので、インジウム格子に置換する4価金属原子は限られ余剰の4価金属元素、または酸化物が、不純物領域として残る為、得られる透明導電膜の特性を悪くする。
 前記透明導電膜(2)の厚みは、用途の大型化や導電効率向上に影響するので、光学特性や抵抗値等の観点から、10~40nmであり、15~35nmであるのが好ましく、さらには20~30nmであるのが好ましい。前記透明導電膜(2)の厚みが10~40nmであることは、タッチパネルなどの電極用途に好適である。
 前記透明導電膜(2)は、結晶質膜であり、完全結晶化していることが好ましい。結晶質膜であることは、透過型電子顕微鏡(TEM)観察により判断することができる。ここで、完全結晶化とは、透過型電子顕微鏡(TEM)観察で、結晶化したグレインが全面に存在する状態を言う。なお、透明導電膜は、結晶化に伴い表面抵抗値が低下し、完了すると表面抵抗値が一定となるため、表面抵抗値が一定となることにより、結晶質膜になっていることを判断することができる。表面抵抗値は、100Ω/□以下であることが好ましく、さらには70Ω/□以下であることが好ましい。
 前記透明導電膜(2)は、比抵抗値が1.3×10-4~2.8×10-4Ω・cmの低い比抵抗値を有する。比抵抗値は1.3×10-4~2.0×10-4Ω・cmであるのが好ましく、さらには1.3×10-4~1.8×10-4Ω・cmであるのが好ましい。
 前記透明導電膜(2)は、X線回折ピークの主ピークを(222)面と(440)面に有し、(222)面のピークの強度(I222)と(440)面のピークの強度(I440)のピーク強度比(I440/I222)が0.2未満である。X線回折ピークの主ピークは、(222)面からのピークが一番強く、低温結晶化した膜である。また、ピーク強度比(I440/I222)は0.2未満であるのが好ましく、多結晶化していないので移動度が高く近赤外線の透過率が高い点と電子密度が高くないので加湿熱信頼性が良いので好ましい。ピーク強度比(I440/I222)は、0.19以下が好ましく、さらには0.18以下が好ましい。
 次いで、本発明の透明導電フィルムの製造方法を説明する。本発明の透明導電フィルムの製造方法は、インンジウム系複合酸化物のターゲットを用いて、当該ターゲット表面での水平磁場が85~200mTの高磁場で、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により透明導電膜を形成する工程(A)を有する。
 図2は、前記形成工程(1)に係る、高磁場RF重畳DCスパッタ成膜法に用いる、成膜装置の一例を示す概略図である。図2は、スパッタ電極(3)に、インンジウム系複合酸化物のターゲット(2A)を装着し、対向するフィルム基材(1)上に、インンジウム系複合酸化物(2)の薄膜を形成するスパッタ装置である。フィルム基材(1)は、基板ホルダーまたはキャンロール(1A)に装着されている。前記ターゲット(2A)上の水平磁場は、通常の磁場(30mT)と比べて、85~200mTの高磁場に設定される。かかる高磁場は、高磁場な磁石(4)を設けることにより調整することができる。前記高磁場を設定することにより、低い比抵抗値及び表面抵抗値を有する透明導電膜を得ることができる。前記高磁場は100~160mTであるのが好ましい。
 また、通常のスパッタ成膜では、DC電源(直流電源)(8)でDC電力またはパルス電力をターゲットに印加しスパッタリングを行うが、本発明の高磁場RF重畳DCスパッタ成膜法では、図2に示す装置のように、DC電源(8)およびRF電源(周波数を変動可能な高周波電源)(7)を用いる。RF電源(7)およびDC電源(8)は、RF電力およびDC電力を同時にターゲットに印加できるようにスパッタ電極(3)に接続して配置されている。また、図2に示すように、RF電源(7)からRF電力を効率良くターゲット(2A)に伝えるため、RF電源(7)とスパッタ電極(3)と間にはマッチングボックス(5)を設けることができる。また、図2に示すように、DC電源(8)にRF電源(7)からのRF電力の影響が及ばないように、DC電源(8)とスパッタ電極(3)と間には水冷式ローパスフィルター(6)を配置することできる。
 前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、RF電源の周波数が10~20MHzの時、RF電力/DC電力の電力比が0.4~1.2になるように設定することが低ダメージ成膜性及び膜酸化度の点から好ましい。前記電力比は0.5~1.0であるのが好ましく、さらには0.6~1.0であるのが好ましい。前記RF電源の周波数(10~20MHz)の好ましい周波数としては、13.56MHzが挙げられる。また、RF電源の周波数が20MHzより大きく60MHz以下の時、RF電力/DC電力の電力比が0.2~0.6に設定することが低ダメージ成膜性及び膜酸化度の点から好ましい。前記電力比は0.3~0.5であるのが好ましい。前記RF電源の周波数(20MHzより大きく60MHz以下)の好ましい周波数としては、27.12MHz、40.68MHzまたは54.24MHzが挙げられる。
 また、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法では、有機高分子フィルム基材(1)の温度は、80~180℃であることが好ましい。前記スパッタ成膜時のフィルム基材(1)の温度を80℃以上とすることで、4価金属の原子含有量が大きいインジウム系複合酸化物の膜であっても、結晶化の種を形成することができる。また、形成工程(A)により形成される透明導電膜がアモルファスの場合には、後述するアニール処理工程(B)におけるインジウム系複合酸化物の膜の結晶化が促進され易くなり、さらに低い表面抵抗値の結晶性の透明導電膜(2)が得られる。このように、アモルファスの透明導電膜を加熱して結晶化した際に、低い表面抵抗値の結晶性の透明導電膜(2)とする観点からは、フィルム基材(1)の温度は100℃以上、さらには120℃以上、さらには130℃以上、さらには140℃以上であることが好ましい。また、フィルム基材(1)への熱的ダメージを抑制する観点からは、基材温度は180℃以下が好ましく、170℃以下がさらに好ましく、160℃以下が特に好ましい。
 なお、本明細書において、「フィルム基材の温度」とは、スパッタ成膜時のフィルム基材の下地の設定温度である。例えば、ロールスパッタ装置により連続的にスパッタ成膜を行う場合のフィルム基材の温度とは、スパッタ成膜が行われるキャンロールの温度である。また、枚葉式(バッチ式)でスパッタ成膜を行う場合の基材温度とは、基材を載置するための基板ホルダーの温度である。
 また、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、スパッタターゲットを装着して、高真空に排気したスパッタ装置内に、不活性ガスであるアルゴンガス等を導入して行う。スパッタ装置内には、アルゴンガス等の不活性ガスの他に、酸素を導入することなく行うことができる。一方、形成工程(A)による成膜直後にすでに結晶質膜になっている透明導電膜を得たい場合や、RF電力/DC電力の電力比として、RF電源の周波数が10~20MHzの時、電力比が0.4~0.6を採用する場合、また、RF電源の周波数が20MHzより大きく60MHz以下の時、0.2~0.3を採用する場合には、酸素不足膜になるおそれがあるため、透明導電膜の透過率を向上させるために、前記アルゴンガス等の不活性ガスに加えて酸素ガス等を導入することもできる。前記酸素ガスは、不活性ガス量に対して、酸素量の割合が0.5%以下になるように、さらには0.3%以下になるように、酸素を導入しながら行うことが好ましい。
 成膜雰囲気中の水分子の存在は、成膜中に発生するダングリングボンドを終結させ、インジウム系複合酸化物の結晶成長を妨げるため、成膜雰囲気中の水の分圧は小さいことが好ましい。成膜時の水の分圧は、不活性ガスの分圧に対して0.1%以下であることが好ましく、0.07%以下であることがより好ましい。また、成膜時の水の分圧は、2×10-4Pa以下であることが好ましく、1.5×10-4Pa以下であることがより好ましく、1×10-4Pa以下であることが好ましい。成膜時の水分圧を上記範囲とするためには、成膜開始前にスパッタ装置内を、水の分圧が上記範囲となるように1.5×10-4Pa以下、好ましくは5×10-5Pa以下となるまで排気して、装置内の水分や基材から発生する有機ガスなどの不純物を取り除いた雰囲気とすることが好ましい。
 本発明の製造方法では、R-to―R装置で連続して、透明導電膜の形成工程(A)を行って、透明導電性フィルム製造する。R-to―R装置で連続して製造する場合は、成膜なしで走行させながら発生ガスを除去した方が好ましい。特に、インジウム系複合酸化物中の4価金属元素の酸化物(例えば、スズ酸化物)の量が多く、薄い透明導電膜を得る場合には、結晶化し難いからである。
 前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法を施す前には、前記形成工程(A)と同じインジウム系複合酸化物を用いて、酸素を導入することなく、当該ターゲット表面での水平磁場が85~200mTの高磁場で、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、RF電力/DC電力の電力比が本成膜範囲と同じ範囲のいずれかにてプリスパッタ成膜を行い、得られた抵抗値が安定状態になるまで成膜を行うプリスパッタ工程(a)を有することができる。
 前記の抵抗値が安定状態になるとは、図6の▲4▼の領域を指し、ターゲット上及び真空チャンバー壁からの水分・発生ガスが除去される領域(▲1▼~▲3▼の領域)を過ぎターゲット表面が高磁場、RF電力、DC電力にて安定して活性化され抵抗値変動が±2%以内に入る状態を言う。
 前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法により、透明導薄膜を形成したのちには、アニール処理工程(B)を施すことができる。前記形成工程(A)において形成される透明導電膜がアモルファスの場合には、アニール処理工程(B)により結晶化させることができる。
 アニール処理工程(B)は、120℃~180℃の温度で、5分間~5時間、大気中で施すことが好ましい。加熱温度および加熱時間を適宜に選択することにより、生産性や品質面での悪化を伴うことなく、完全結晶化した膜に転化できる。アニール処理の方法は、公知の方法に準じて、例えば、赤外線ヒーター、熱風循環式オーブン等の加熱方式を用いて行うことができる。
 なお、アニール処理工程(B)を施すことなく、インジウム系複合酸化物の結晶質膜を得るには、前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法の有機高分子フィルム基材(1)の温度は前記範囲のなかでも150℃以上とすることが好ましい。また、前記RF電力/DC電力の電力比は、前記範囲内において、RF電源の周波数が10~20MHzの時は、1.2未満になるように設定することが好ましい。前記RF電源の周波数(10~20MHz)の好ましい周波数としては、13.56MHzが挙げられる。RF電源の周波数が20MHzより大きく60MHz以下の時は、RF電力/DC電力の電力比は0.6未満に設定することが好ましい。前記RF電源の周波数(20MHzより大きく60MHz以下)の好ましい周波数としては、27.12MHz、40.68MHzまたは54.24MHzが挙げられる。
 なお、透明導電性フィルムを投影型静電容量方式のタッチパネルや、マトリックス型の抵抗膜方式タッチパネル等に用いる場合、得られた透明導電膜(2)は所定形状(例えば短冊状)にパターン化することができる。ただし、アニール処理工程(B)によりインジウム系複合酸化物の膜が結晶化されると、酸によるエッチング加工が難しくなる。一方、アニール処理工程(B)を施す前のアモルファスのインジウム系複合酸化物の膜は容易にエッチング加工が可能である。そのため、エッチングにより透明導電膜(2)をパターン化する場合は、アモルファスの透明導電膜(2)を製膜後、アニール処理工程(B)の前にエッチング加工を行うことができる。
 本発明の製造方法によれば、膜厚が10nm~40nmの範囲にあるインジウム系複合酸化物の結晶質膜からなる透明導電膜であって、前記低い比抵抗値を有し、前記ピーク強度比(I440/I222)が0.2未満である透明導電フィルムを得ることができる。80℃~180℃のフィルム基材の温度での加熱で、高磁場RF重畳DCスパッタ成膜法にて透明導電膜を成膜した場合、放電電圧が通常磁場の成膜法と比べ放電電圧が1/2~1/5に低下するので、フィルム基材に成膜する原子・分子の運動エネルギーはその分低下する。また、電子などの負イオンやターゲットに衝突した不活性ガスの反跳分もフィルム基材側に到達し難くなるので膜内の不純物混入や内部応力が低下される。さらに、80℃~180℃のフィルム基材の温度での成膜であるので(222)面の結晶成長が促進される膜が得られる。
 以下に、本発明の透明導電性フィルムの製造方法の条件を図3乃至図11を参照しながら、さらに説明する。
 日本メーカーのインジウム系複合酸化物のターゲット(特に、インジウム・スズ複合酸化物ターゲット)の品質は飛躍的に向上しており、どこのメーカー品共に同様な特性になってきている。前記ターゲットの相対密度は98%以上であり、酸化度も各社ほぼ同等で、通常のマグネトロンスパッタ成膜においては、チャンバー内の前排気1.5×10-4Pa以下になる様に十分行った場合、アルゴンガスなどのスパッタガス量(不活性ガス量)に対する酸素導入量の割合は1~3%程度において、最小の表面抵抗値を有する透明導電膜が得られる。
 スズ酸化物の割合が10重量%のインジウム・スズ複合酸化物(ITO)ターゲットを図2の高磁場RF重畳DCスパッタ装置に装着し、125μm厚のPETフィルム上へ、ITO膜を形成した。フィルム基材の温度は120℃、アルゴンガスに対する酸素量の割合を0.25%とし、成膜気圧を0.3Paとした。DC電力(1000W)において、RF電力及びRF電源の周波数を変えて放電電圧を測定した結果を図3に示す。ターゲット表面での水平磁場は100mTとした。各RF電源の周波数共に、RF電力が増加するにつれて放電電圧は低下するが、RF電力/DC電力の電力比が1に近づくにつれて漸近してくる。また、RF電源の周波数が13.56MHzの場合と、RF電源の周波数が、27.12MHz、40.68MHz、または54.24MHzの場合とでは、放電電圧の低下曲線に差が見られる。RF電源の周波数が13.56MHzの場合よりも、2倍・3倍・4倍の周波数の場合の方が放電電圧はより低下しており、プラズマ化能力が高いからと考えられる。
 上記と同様の条件(但し、13.56MHzのRF周波数を使用)により、125μm厚のPETフィルム上へ、高磁場RF重畳DCスパッタ成膜法により、放電電圧を変化させて、28nm厚みのITO膜を形成した。得られたITO膜の初期の表面抵抗値(R)を測定した。また、ITO膜を150℃で1時間アニール処理した後の表面抵抗値(R150℃1h)を測定した。得られた結果を図4に示す。図4から、放電電圧が低下する程、初期の表面抵抗値(R)は低下し、アニール処理後の表面抵抗値(R150℃1h)は少し減少したことが分かる。しかし、得られたITO膜の表面抵抗値の最小値は160Ω/□であり、比抵抗値は4.5×10-4Ω・cmであり、目標値であるガラス基材上に設けたITO膜と同等の特性(100Ω/□以下の低い表面抵抗値、比抵抗値が2.0×10-4Ω・cm以下)は得られなかった。
 さらに、上記と同様の条件(但し、13.56MHzのRF周波数を使用)により、125μm厚のPETフィルム上へ、高磁場RF重畳DCスパッタ成膜法により、110Vの放電電圧(RF電力/DC電力比が1.0)において、ITO成膜中の導入酸素ガス量を変化させて、28nm厚みのITO膜を形成した。得られたITO膜の初期の表面抵抗値(R)を測定した。また、ITO膜を150℃で1時間アニール処理した後の表面抵抗値(R150℃1h)を測定した。アルゴンガスに対する酸素量の割合を変動させることで、低い表面抵抗値が得られるか否か検討した結果を図5に示す。初期の表面抵抗値(R)、アニール処理後の表面抵抗値(R150℃1h)も導入酸素ガス量の最適化を図ることで、さらに低下するが、得られたITO膜の表面抵抗値の最小値は150Ω/□、比抵抗値4.2×10-4Ω・cm程度であった。
 図4、図5に示すように、有機高分子フィルム基材を用いた場合には、ガラス基材を用いる場合よりも低温条件においてITO膜を成膜せざるを得ないため、通常の高磁場RF重畳DCスパッタ成膜法を採用したとしても、ガラス基材上に設けたITO膜と同等の特性(100Ω/□以下の低抵抗値、比抵抗値が2.0×10-4Ω・cm以下)を持つITO膜を形成できない。
 図6は、R-to―R装置に、図3に係る測定と同様の条件(但し、13.56MHzのRF周波数を使用)において、高磁場RF重畳DCスパッタ成膜法による形成工程(A)を施す前に、スパッタ装置内を前排気して1.5×10-4Pa以下として、アルゴンガスなどのスパッタガスのみで(酸素導入せず)、RF電力/DC電力の電力比が0.6の条件でプリスパッタ(a)工程を行った場合の成膜時間の指標と、インラインで得られるITO膜の表面抵抗値の指標との関係を示す。RF電力/DC電力の電力比は本成膜の電力比範囲であればどの電力比でも採用される。
 図6で示すように、放電成膜の初期はターゲット表面やチャンバー内の壁さらには有機高分子フィルム基材などから水分や発生ガスが発生するので、図6中、▲1▼、▲2▼の比較的低抵抗値だが、混入される不純物変動も大きく抵抗値も刻々変動する挙動をとる。この領域の膜は、一見、高透明・低抵抗値であるが、後加熱で結晶化し難い膜でありさらなる低抵抗値は得られない。この領域でプリスパッタした場合またはプリスパッタしない場合、図4、図5に示した様に、目的とする極端に低い抵抗値が得られない膜になってしまう。
 しかし、さらにプリスパッタを続け放電成膜が▲2▼の領域を超えて来ると、水分や発生ガスの低下と共に抵抗値は徐々に上昇し、水分や発生ガスが無くなる▲3▼に到達する。さらに続けると安定状態▲4▼が得られる。安定状態▲4▼では、水分や発生ガスに起因する不純物が膜中に混入しないだけでなく、インジウム系複合酸化物ターゲットの表面がRF放電により活性化されるので酸素導入量が少なくて良質の膜が得られる領域になる。
 図6の▲4▼の領域(安定状態と呼ぶ)になる様に、R-to―R装置にスズ酸化物の割合が10重量%のインジウム・スズ複合酸化物(ITO)ターゲットを高磁場RF重畳DCスパッタ装置(ターゲット表面上での水平磁場強度は100mT)に装着し、125μm厚のPETフィルム上へ、厚み28nmのITO膜を形成しながらプリスパッタ(a)を行った。フィルム基材の温度は120℃、到達真空度は5×10-5Pa、導入ガスはアルゴンガスのみとし成膜気圧を0.3Paとした。
 図6の▲4▼の安定状態になる様にプリスパッタ(a)した後で、続けて同じターゲットを用いて、酸素ガス導入しない以外は図5と同じ条件で厚み28nmのITO膜を成膜した。つまり、本成膜条件として、13.56MHzの高周波電力1000W、DC電力1000W、RF電力/DC電力比が1の条件でITO膜を得た。得られたITO膜の初期の表面抵抗値(R)は62Ω/□であり、150℃で1時間アニール処理した後の表面抵抗値(R150℃1h)は58Ω/□であった。これらのことからプリスパッタ(a)を施した後に本成膜形成工程(A)を行うことで目的の低抵抗膜が得られることが判る。
 図7乃至図10は、高磁場RF重畳DCスパッタ成膜法に用いるRF電源の周波数の違いにより、好適なRF電力/DC電力の電力比が異なること示す。図7に、RF電源の周波数が13.56MHzの場合の挙動を示す。図7は、成膜するロール電極の温度を150℃に設定して、酸素導入なしでRF電力/DC電力の電力比を0.6にてプリスパッタ工程(a)を安定状態になるまで行った後、高磁場RF重畳DCスパッタ成膜法による形成工程(A)を酸素導入を行うことなしに、RF電力/DC電力の電力比を変化させた場合に得られた、ITO膜の抵抗値を示す。成膜するロール電極の温度を150℃に設定して、ITO膜の膜厚は28nmとした。その他の条件は図6の条件と同じにした。
 図7では、RF電力/DC電力の電力比が1に近づく程、成膜直後の抵抗値が下がって酸化度も適正膜に近づいている。1を超えると酸素過多膜になり、抵抗値が上昇する方向になる。一方、前記電力比が小さくなる程、酸素不足膜になり抵抗値は上昇する。RF電力/DC電力の電力比が1の場合において、150℃で1時間のアニール処理後に、58Ω/□の表面抵抗値、比抵抗値が1.6×10-4Ω・cmが得られたことが分かる。
 同様に、RF電源の周波数が27.12MHz、40.68MHz、54.24MHzの場合の結果を図8、図9、図10に示す。図8、図9、図10に係る前記以外の各条件は、プリスパッタ工程(a)のRF電力/DC電力の電力比を0.3としたこと以外は、図7と同じである。成膜直後のITO膜の初期の表面抵抗値(R)およびITO膜を150℃で1時間アニール処理した後の抵抗値(R150℃1h)のいずれについても、RF電力/DC電力の電力比が0.35程度の時に表面抵抗値が一番低かった。RF電力/DC電力の電力比が1に近づくほど酸素過多の膜になり、一方、0に近づくほど酸素不足膜になっている。図10の、RF電源の周波数が54.24MHzの場合には、28nmの膜厚で150℃1時間のアニール処理後に、57Ω/□の低い表面抵抗値のITO膜が得られたことが分かる。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。以下に、本発明の実施例を記載して、より具体的に説明する。
 実施例1
 (有機高分子フィルム基材)
 有機高分子フィルム基材として、三菱樹脂(株)製のO300E(厚み125μm)のポリエチレンテレフタレート(PET)フィルムを用いた。
 (前処理)
 上記PETフィルムの易滑処理面でない、平滑面上へ、ITO薄膜を成膜できるように、上記PETフィルムを、R-to―Rのスパッタ成膜装置へ装着した。120℃に加熱したロール電極を使用し、巻取りながら、クライオコイルとターボポンプの排気系で脱ガス処理を行い、成膜なしでの走行中の真空度が3×10-5Paの雰囲気を得た。その後、スパッタ成膜装置にアルゴンガスを導入し、上記PETフィルムを、RF電源(13.56MHz)によるプラズマ放電中を通して、PET表面の前処理を行った。
 (アンダーコート層の形成)
 上記PETフィルムのプラズマ処理面へ、Al金属ターゲットから反応性デュアルマグネトロンスパッタ法にて、厚み20nmのAl薄膜を成膜した。
 (ITOターゲットのプリスパッタ)
 その後、真空を維持して、高磁場RF重畳DCスパッタ成膜装置の電極上に、予めセットしてあった、ITO酸化物ターゲット(住友金属鉱山社製,スズ酸化物の割合が10重量%)を1.1W/cmのDC電力密度、RF電力(13.56MHz)/DC電力の電力比が0.6の条件でプリスパッタを行った。ターゲット表面の水平磁場は100mTとした。フィルム基材は低速で巻取りながら、インラインのモニターで表面抵抗値および透過率を測定しながら行った。その他の条件は、フィルム基材の温度は150℃、導入ガスはアルゴンガスのみを用いた。プリスタッタの気圧は0.32Paで行った。インラインの抵抗値が安定状態になるまで行った。
 (ITOターゲットの本スパッタ成膜)
 プリスパッタと同様のITOターゲットを用いて、上記同様の高磁場RF重畳DCスパッタ成膜装置により、1.1W/cmのDC電力密度、RF電力(13.56MHz)/DC電力の電力比が1の条件で本スパッタを行って、膜厚28nmのITO膜を成膜した。ターゲット表面の水平磁場は100mTとした。フィルム基材の温度は150℃とし、導入ガスはアルゴンガスのみを用いた。本スパッタの成膜気圧は0.32Paとした。
 (アニール処理)
 上記ITO膜を形成したPETフィルムについて、大気中において、150℃で1時間の熱処理を行い、透明導電性フィルムを得た。
 実施例2~7、比較例1~4
 実施例1において、表1に示すように、ITOターゲットのスズ酸化物(SnO)の割合、高磁場RF重畳DCスパッタ成膜における、RF電源の周波数、RF電力/DC電力の電力比、酸素導入量、アニール処理工程の温度を表1に示すように変えたこと以外は実施例1と同様にして透明導電性フィルムを得た。
 実施例6では、本成膜時に導入するアルゴンガスに加えて対アルゴン比0.5%の酸素ガスも導入し、フィルム基材の温度170℃にて成膜した以外は、実施例1と同様な条件でITO膜を成膜した。また、実施例6では、アニール処理工程(B)は行わなかった。実施例7では、RF電力/DC電力の電力比が0.6であり、対アルゴン比0.1%の酸素ガスを導入した以外は実施例1と同様な条件でITO膜を成膜した。
 なお、比較例1では、高磁場RF重畳DCスパッタ成膜の代わりに、100mTの高磁場において、通常のDCマグネトロンスパッタ成膜を行った。
 (評価)
 実施例および比較例で得られた透明導電性フィルムについて下記の評価を行なった。結果を表1に示す。
 (表面抵抗値の測定)
 透明導電性フィルムのITO膜の表面抵抗値を、三菱油化(株)社製ロレスタGP(形式MCP-T600)を用いて測定した。
 (膜の結晶状態観察)
 ITO膜の結晶状態の確認は、透明導電性フィルムから、剥離法によりITO膜のみサンプリングし、透過型電子顕微鏡TEM(日立、HF2000)にて、加速電圧200kVで観察を行った。図12は、本発明の実施例5で得られたITOフィルムの結晶を示すTEM写真である。
 (膜厚の評価)
 ITO膜の膜厚測定は、サンプルを樹脂で固定したものを、Hitachi,FB-2100にて超薄膜切片として切り出し、該記のTEMにて観察し測定した。
 (X線回折の測定)
 斜入射X線回折測定は以下の装置を用いて測定し、(222)面と(440)面からのピーク強度比を求めた。図11は、本発明の実施例1で得られたITOフィルムのX線回折チャートである。
 (株)リガク製 粉末X線回折装置RINT-2000
  光源  Cu-Kα線(波長:1.541Å)、40KV、40mA
  光学系 並行ビーム光学系
  発散スリット:0.05mm
  受光スリット:0.05mm
  単色化・並行化  多層ベーベルミラー使用
Figure JPOXMLDOC01-appb-T000001
 実施例1~4で得られたITO膜は厚み28nmであり、スズ酸化物の割合10重量%のITO膜において1.7×10-4Ω・cm前後の低い比抵抗値であった。また、実施例5で得られたITO膜は厚み28nmであり、スズ酸化物の割合12.7重量%のITO膜において、1.37×10-4Ω/□のさらに低い比抵抗値であった。なお、実施例1~5で得られた成膜直後のITO膜は一部結晶が点在したアモルファス膜であるので、酸によるエッチング工程が容易であった。アニール処理後に得られたITO膜は、TEM測定により完全に結晶化していることが確認された。また、実施例6のITO膜は成膜直後ですでに完全結晶化していた。
 また、実施例1~7で得られたITO膜は、X線回折分析により、ピーク強度比(I440/I222)は0.2未満であることも確認された。得られたITO膜は完全に結晶化しているので、タッチパネル等の用途などに必要な100℃加熱信頼性や85℃85%加湿熱信頼性も良好な結果であった。また、透明導電性フィルム(基材のPETフィルムを含む)としての透過率は、空気中の測定(550nmの波長)で約90%であった。なお、透過率の測定は大塚電子製MCPD3000により行った。透過率は85%以上であるのが好ましく、さらには88%以上であるのが好ましい。
 酸素導入量は殆どのRF電力/DC電力の電力比で不要だが、RFの各周波数での最適RF電力/DC電力の電力比範囲の両端条件では、酸素ガスを微量導入しても良い。実施例6では、13.56MHzでRF電力/DC電力の電力比が1であるが、アルゴンに対する酸素量の割合を0.5%になる様に微量な酸素を導入しながら成膜した。この条件の場合、酸素が膜中に多く取り込まれ、成膜直後において結晶化したITO膜が得られる。この場合、アニール処理工程は不要であるが、150℃1時間加熱すると、多結晶化が進み移動度が低下する分若干抵抗値が上昇する現象が見られる。
 実施例7では、13.56MHzでRF電力/DC電力の電力比が0.6であるが、アルゴンに対する酸素量の割合を0.1%になる様に微量な酸素を導入しながら成膜した。アルゴンに対する酸素量の割合が0に近づいた条件では、酸素不足膜になるので、透過率の向上、表面抵抗値の低下にアニール時間が長く掛かる傾向がある。その場合、アルゴンに対する酸素量の割合を0.5%以下で導入すると、透過率の向上とアニール時間短縮になる。しかし、それ以上の酸素量を導入した場合、比抵抗値があまり低下せず目的の比抵抗値を得ることができない。
 一方、比較例1は高磁場であるが、通常のマグネトロンスパッタ成膜での結果を示した。100mTの高磁場の効果で放電電圧は250Vまで低下する。30mTの磁場の場合には、放電電圧は450V程度であるので、放電電圧が低下した分だけ低ダメージで成膜されている。そのため、2.94×10-4Ω・cmの比抵抗値が得られている。
 比較例2~4には、各周波数でRF電力/DC電力の電力比が本発明の条件を外れる範囲で高磁場RF重畳DCスパッタ成膜を行って得られたITO膜の特性を示す。これらの結果から、RF電力/DC電力の電力比の上限を超える場合は、酸素過多膜になり成膜直後の抵抗値は高くなる、しかも、アニール処理工程を施した場合には、さらに表面抵抗値は高くなる。RF電力/DC電力の電力比の下限を下回る場合、RF重畳効果が弱くなり、放電電圧が高くなるので低ダメージ成膜効果が薄れ、比抵抗値は十分低下しないと考えられる。
 1・・・有機機高分子フィルム基材
 1A・・基板ホルダーまたはキャンロール
 2・・・透明導電膜
 2A・・インジウム系複合酸化物ターゲット
 3・・・スパッタ電極
 4・・・高磁場発生する磁石
 5・・・高周波導入用マッチングボックス
 6・・・ローパスフィルター
 7・・・高周波電源(RF電源)
 8・・・直流電源(DC電源)
 

Claims (12)

  1.  有機高分子フィルム基材上の少なくとも一方の面に透明導電膜を有する透明導電性フィルムの製造方法であって、
     有機高分子フィルム基材の少なくとも一方の面に、
     ロール‐トゥ‐ロールの装置により、
     {4価金属元素の酸化物/(4価金属元素の酸化物+酸化インジウム)}×100(%)で表される4価金属元素の酸化物の割合が7~15重量%であるインジウム系複合酸化物のターゲットを用いて、当該ターゲット表面での水平磁場が85~200mTの高磁場で、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、透明導電膜を形成する工程(A)を有し、
     かつ、前記透明導電膜は前記透明導電膜は、膜厚が10nm~40nmの範囲であり、
     前記透明導電膜は、比抵抗値が1.3×10-4~2.8×10-4Ω・cmであることを特徴とする透明導電性フィルムの製造方法。
  2.  前記透明導電膜は、フィルム基材の側からアンダーコート層を介して設けられていることを特徴とする請求項1記載の透明導電性フィルムの製造方法。
  3.  前記インジウム系複合酸化物がインジウム・スズ複合酸化物であり、4価金属元素の酸化物がスズ酸化物であることを特徴とする請求項1または2記載の透明導電性フィルムの製造方法。
  4.  前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、
     RF電源の周波数が10~20MHzの時、RF電力/DC電力の電力比が0.4~1.2であることを特徴とする請求項1~3のいずれかに記載の透明導電性フィルムの製造方法。
  5.  前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、
     RF電源の周波数が20MHzより大きく60MHz以下の時、RF電力/DC電力の電力比が0.2~0.6であることを特徴とする請求項1~3のいずれかに記載の透明導電フィルムの製造方法。
  6.  前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、
     有機高分子フィルム基材の温度が、80~180℃であることを特徴とする請求項1~5のいずれかに記載の透明導電フィルムの製造方法。
  7.  前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、酸素を導入することなく行うことを特徴とする請求項1~6のいずれかに記載の透明導電フィルムの製造方法。
  8.  前記形成工程(A)に係る高磁場RF重畳DCスパッタ成膜法は、不活性ガス量に対して、酸素量の割合が0.5%以下になるように、酸素を導入しながら行うことを特徴とする請求項1~6のいずれかに記載の透明導電フィルムの製造方法。
  9.  請求項1~8のいずれかに記載の透明導電フィルムの製造方法であって、
     前記高磁場RF重畳DCスパッタ成膜法を施す前に、酸素を導入することなく、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、RF電源の周波数が10~20MHzの時、RF電力/DC電力の電力比が0.4~1.2の範囲にて、得られた抵抗値が安定状態になるまで成膜を行うプリスパッタ工程(a)を有することを特徴とする透明導電フィルムの製造方法。
  10.  請求項1~8のいずれかに記載の透明導電フィルムの製造方法であって、
     前記高磁場RF重畳DCスパッタ成膜法を施す前に、酸素を導入することなく、不活性ガスの存在下に、RF重畳DCスパッタ成膜法により、RF電源の周波数が20MHzより大きく60MHz以下の時、RF電力/DC電力の電力比が0.2~0.6の範囲にて、得られた抵抗値が安定状態になるまで成膜を行うプリスパッタ工程(a)を有することを特徴とする透明導電フィルムの製造方法。
  11.  前記形成工程(A)の後に、アニール処理工程(B)を、施すことを特徴と請求項1~10のいずれかに記載の透明導電フィルムの製造方法。
  12.  前記アニール処理工程(B)を、120℃~180℃の温度で、5分間~5時間、大気中で行うことを特徴とする請求項11記載の透明導電フィルムの製造方法。
     
PCT/JP2014/050600 2013-01-16 2014-01-15 透明導電フィルムの製造方法 WO2014112536A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480005118.1A CN104937678B (zh) 2013-01-16 2014-01-15 透明导电性薄膜的制造方法
KR1020157020650A KR101982906B1 (ko) 2013-01-16 2014-01-15 투명 도전성 필름의 제조 방법
US14/761,193 US9624573B2 (en) 2013-01-16 2014-01-15 Production method for transparent conductive film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-005497 2013-01-16
JP2013005497 2013-01-16
JP2014-003950 2014-01-14
JP2014003950A JP6215062B2 (ja) 2013-01-16 2014-01-14 透明導電フィルムの製造方法

Publications (1)

Publication Number Publication Date
WO2014112536A1 true WO2014112536A1 (ja) 2014-07-24

Family

ID=51209625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050600 WO2014112536A1 (ja) 2013-01-16 2014-01-15 透明導電フィルムの製造方法

Country Status (6)

Country Link
US (1) US9624573B2 (ja)
JP (1) JP6215062B2 (ja)
KR (1) KR101982906B1 (ja)
CN (1) CN104937678B (ja)
TW (1) TWI621725B (ja)
WO (1) WO2014112536A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092033A (ja) * 2015-11-09 2017-05-25 日東電工株式会社 光透過性導電フィルムおよび調光フィルム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491754B (zh) * 2011-11-28 2015-07-11 Nitto Denko Corp Method for manufacturing transparent conductive film
US9657386B2 (en) * 2014-03-28 2017-05-23 Kaneka Corporation Transparent conductive film and method for producing same
CN104120397B (zh) * 2014-07-31 2018-03-16 深圳市豪威薄膜技术有限公司 氧化铟锡低温沉积方法及系统
JP6464042B2 (ja) * 2015-06-23 2019-02-06 株式会社カネカ 透明電極付き基板およびその製造方法
KR102117872B1 (ko) * 2018-04-11 2020-06-02 도레이첨단소재 주식회사 투명 가스 배리어 필름
CN113179676B (zh) * 2019-11-27 2024-04-09 东芝三菱电机产业系统株式会社 活性气体生成装置
KR20230015894A (ko) * 2020-05-25 2023-01-31 닛토덴코 가부시키가이샤 광투과성 도전성 시트의 제조 방법
WO2023091330A1 (en) * 2021-11-22 2023-05-25 Corning Incorporated Amorphous transparent conductive oxide films and methods of fabricating the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249171A (ja) * 1990-02-27 1991-11-07 Ulvac Japan Ltd 透明導電膜の製造方法およびその製造装置
JPH07178863A (ja) * 1993-12-24 1995-07-18 Toyobo Co Ltd 透明導電フィルム及びその製造方法
WO2000051139A1 (fr) * 1999-02-24 2000-08-31 Teijin Limited Stratifie conducteur transparent, son procede de fabrication, et dispositif d'affichage comprenant ce stratifie conducteur transparent
JP2003532997A (ja) * 2000-05-12 2003-11-05 ウンアクシス ドイチェランド ゲーエムベーハー インジウム−スズ酸化物(ito)フィルム及びその製造方法
JP2004214184A (ja) * 2002-12-18 2004-07-29 Sony Chem Corp 透明導電膜及びその成膜方法
WO2004105054A1 (ja) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. 非晶質透明導電膜、及びその原料スパッタリングターゲット、及び非晶質透明電極基板、及びその製造方法、及び液晶ディスプレイ用カラーフィルタ
JP2005259628A (ja) * 2004-03-15 2005-09-22 Konica Minolta Holdings Inc 透明導電膜形成方法、該方法により形成された透明導電膜および該透明導電膜を有する物品
JP2005268113A (ja) * 2004-03-19 2005-09-29 Sumitomo Metal Mining Co Ltd 透明導電性薄膜製造用酸化物焼結体ターゲット、透明導電性薄膜、透明導電性基板、表示デバイスおよび有機エレクトロルミネッセンス素子
JP2006117967A (ja) * 2004-10-19 2006-05-11 Riichi Murakami 透明導電膜の形成方法
JP2007141755A (ja) * 2005-11-22 2007-06-07 Dainippon Printing Co Ltd 導電性基板
JP2011018623A (ja) * 2009-07-10 2011-01-27 Geomatec Co Ltd 透明導電膜及びその製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772346B2 (ja) 1989-03-03 1995-08-02 日本真空技術株式会社 低抵抗透明導電膜の製造方法
JPH059724A (ja) * 1991-07-09 1993-01-19 Shinkuron:Kk 透明導電膜の形成方法
JPH07335046A (ja) 1994-06-14 1995-12-22 Idemitsu Kosan Co Ltd 導電性透明基材の製造方法
JP4137254B2 (ja) 1998-11-12 2008-08-20 帝人株式会社 透明導電積層体の製造方法
US20030159925A1 (en) 2001-01-29 2003-08-28 Hiroaki Sako Spattering device
TW562869B (en) 2001-01-29 2003-11-21 Nippon Sheet Glass Co Ltd Sputtering apparatus
US6962756B2 (en) 2001-11-02 2005-11-08 Mitsubishi Gas Chemical Company, Inc. Transparent electrically-conductive film and its use
JP3785109B2 (ja) * 2002-04-08 2006-06-14 日東電工株式会社 透明導電積層体の製造方法
JP2004169138A (ja) * 2002-11-21 2004-06-17 Ulvac Japan Ltd 透明導電膜の製造方法及び製造装置
TWI320804B (en) 2002-12-18 2010-02-21 Sony Chemicals Corp Transparent electroconductive film and film forming method of the same
JP2004349112A (ja) * 2003-05-22 2004-12-09 Toyobo Co Ltd 透明導電性フィルム及び透明導電性シートの製造方法、及びタッチパネル
US20070154629A1 (en) 2003-08-29 2007-07-05 Japan Science And Technology Agency Thin ito films and method of producing the same
US20070224368A1 (en) 2004-04-15 2007-09-27 Hiroshi Hara Transparent gas-barrier layered film
CN1968807A (zh) 2004-04-15 2007-05-23 帝人株式会社 透明阻气性积层薄膜
KR101143281B1 (ko) 2004-08-20 2012-05-08 데이진 가부시키가이샤 투명 도전성 적층체 및 투명 터치 패널
JP2006098856A (ja) 2004-09-30 2006-04-13 Ulvac Japan Ltd Ag系反射膜およびその作製方法
CN101223591A (zh) 2005-07-29 2008-07-16 松下电器产业株式会社 信息记录介质及其制造方法
JP4443516B2 (ja) 2006-01-20 2010-03-31 三洋電機株式会社 光起電力素子およびその光起電力素子を備えた光起電力モジュール
CN101578667B (zh) 2007-01-16 2011-07-06 帝人株式会社 透明导电性层压体及其形成的触摸面板
JP5099893B2 (ja) * 2007-10-22 2012-12-19 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル
WO2009054464A1 (ja) 2007-10-26 2009-04-30 Teijin Limited 透明導電性積層体及び透明タッチパネル
FR2924723B1 (fr) * 2007-12-11 2010-12-17 Centre Nat Rech Scient Support solide revetu d'au moins un film de metal et d'au moins une couche d'oxyde transparent et conducteur pour la detection par spr et/ou par une methode electrochimique
JP2009238416A (ja) * 2008-03-26 2009-10-15 Toppan Printing Co Ltd 透明導電膜付き基板及びその製造方法
JP2010177161A (ja) 2009-02-02 2010-08-12 Toyobo Co Ltd 透明導電性フィルム
KR101410598B1 (ko) 2010-03-02 2014-06-24 도호쿠 다이가쿠 적층체, 그 제조 방법, 및 그것을 이용한 기능 소자
WO2011115177A1 (ja) 2010-03-19 2011-09-22 住友金属鉱山株式会社 透明導電膜
JP5381912B2 (ja) 2010-06-28 2014-01-08 住友金属鉱山株式会社 表面電極付透明導電基板及びその製造方法、並びに薄膜太陽電池及びその製造方法
JP5122670B2 (ja) 2010-11-05 2013-01-16 日東電工株式会社 透明導電性フィルムの製造方法
JP5101719B2 (ja) 2010-11-05 2012-12-19 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル
WO2014077422A1 (ko) 2012-11-14 2014-05-22 주식회사 엘지화학 투명 도전성막 및 이를 포함하는 유기 발광 소자

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249171A (ja) * 1990-02-27 1991-11-07 Ulvac Japan Ltd 透明導電膜の製造方法およびその製造装置
JPH07178863A (ja) * 1993-12-24 1995-07-18 Toyobo Co Ltd 透明導電フィルム及びその製造方法
WO2000051139A1 (fr) * 1999-02-24 2000-08-31 Teijin Limited Stratifie conducteur transparent, son procede de fabrication, et dispositif d'affichage comprenant ce stratifie conducteur transparent
JP2003532997A (ja) * 2000-05-12 2003-11-05 ウンアクシス ドイチェランド ゲーエムベーハー インジウム−スズ酸化物(ito)フィルム及びその製造方法
JP2004214184A (ja) * 2002-12-18 2004-07-29 Sony Chem Corp 透明導電膜及びその成膜方法
WO2004105054A1 (ja) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. 非晶質透明導電膜、及びその原料スパッタリングターゲット、及び非晶質透明電極基板、及びその製造方法、及び液晶ディスプレイ用カラーフィルタ
JP2005259628A (ja) * 2004-03-15 2005-09-22 Konica Minolta Holdings Inc 透明導電膜形成方法、該方法により形成された透明導電膜および該透明導電膜を有する物品
JP2005268113A (ja) * 2004-03-19 2005-09-29 Sumitomo Metal Mining Co Ltd 透明導電性薄膜製造用酸化物焼結体ターゲット、透明導電性薄膜、透明導電性基板、表示デバイスおよび有機エレクトロルミネッセンス素子
JP2006117967A (ja) * 2004-10-19 2006-05-11 Riichi Murakami 透明導電膜の形成方法
JP2007141755A (ja) * 2005-11-22 2007-06-07 Dainippon Printing Co Ltd 導電性基板
JP2011018623A (ja) * 2009-07-10 2011-01-27 Geomatec Co Ltd 透明導電膜及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092033A (ja) * 2015-11-09 2017-05-25 日東電工株式会社 光透過性導電フィルムおよび調光フィルム
JP2018081928A (ja) * 2015-11-09 2018-05-24 日東電工株式会社 光透過性導電フィルムおよび調光フィルム
JP2019033088A (ja) * 2015-11-09 2019-02-28 日東電工株式会社 光透過性導電フィルム
US10720264B2 (en) 2015-11-09 2020-07-21 Nitto Denko Corporation Light transmitting conductive film and light control film

Also Published As

Publication number Publication date
JP2014157816A (ja) 2014-08-28
JP6215062B2 (ja) 2017-10-18
US20160024644A1 (en) 2016-01-28
CN104937678B (zh) 2017-04-26
KR101982906B1 (ko) 2019-05-27
KR20150103710A (ko) 2015-09-11
CN104937678A (zh) 2015-09-23
TW201435106A (zh) 2014-09-16
US9624573B2 (en) 2017-04-18
TWI621725B (zh) 2018-04-21

Similar Documents

Publication Publication Date Title
JP6261987B2 (ja) 透明導電フィルムおよびその製造方法
JP6261988B2 (ja) 透明導電フィルムおよびその製造方法
JP6457443B2 (ja) 透明導電性フィルムおよびその製造方法
JP6215062B2 (ja) 透明導電フィルムの製造方法
WO2014157312A1 (ja) 透明導電積層フィルムおよびその製造方法
KR101060994B1 (ko) 고투과율 아이티오 박막의 제조방법
Kim Post deposition annealing effect on the structural, electrical and optical properties of ZnO/Ag/ZnO thin films
JP2016062783A (ja) 透明導電フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14761193

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157020650

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14740851

Country of ref document: EP

Kind code of ref document: A1