WO2014112299A1 - 表示装置、および表示装置におけるデータ処理方法 - Google Patents
表示装置、および表示装置におけるデータ処理方法 Download PDFInfo
- Publication number
- WO2014112299A1 WO2014112299A1 PCT/JP2013/084564 JP2013084564W WO2014112299A1 WO 2014112299 A1 WO2014112299 A1 WO 2014112299A1 JP 2013084564 W JP2013084564 W JP 2013084564W WO 2014112299 A1 WO2014112299 A1 WO 2014112299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- frequency component
- current
- component data
- low
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims description 6
- 238000007906 compression Methods 0.000 claims abstract description 184
- 230000006835 compression Effects 0.000 claims abstract description 160
- 238000012545 processing Methods 0.000 claims abstract description 88
- 238000012937 correction Methods 0.000 claims abstract description 52
- 239000000284 extract Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 107
- 238000005259 measurement Methods 0.000 claims description 100
- 238000013144 data compression Methods 0.000 claims description 77
- 238000004364 calculation method Methods 0.000 claims description 37
- 238000013139 quantization Methods 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 10
- 238000012886 linear function Methods 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 6
- 239000011787 zinc oxide Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 3
- 238000005070 sampling Methods 0.000 abstract description 39
- 238000005401 electroluminescence Methods 0.000 abstract description 24
- 230000006870 function Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 23
- 239000011159 matrix material Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 10
- 229920005994 diacetyl cellulose Polymers 0.000 description 7
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/04—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
- G09G3/06—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources
- G09G3/12—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources using electroluminescent elements
- G09G3/14—Semiconductor devices, e.g. diodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2011—Display of intermediate tones by amplitude modulation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3258—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3275—Details of drivers for data electrodes
- G09G3/3283—Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0233—Improving the luminance or brightness uniformity across the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0271—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/043—Preventing or counteracting the effects of ageing
- G09G2320/045—Compensation of drifts in the characteristics of light emitting or modulating elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/043—Preventing or counteracting the effects of ageing
- G09G2320/046—Dealing with screen burn-in prevention or compensation of the effects thereof
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
- G09G2320/0633—Adjustment of display parameters for control of overall brightness by amplitude modulation of the brightness of the illumination source
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/02—Handling of images in compressed format, e.g. JPEG, MPEG
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1213—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
Definitions
- the present invention relates to a display device, and more particularly to a display device using an electro-optic element such as an organic light emitting diode (OLED) as a display element and a data processing method in the display device.
- an electro-optic element such as an organic light emitting diode (OLED) as a display element and a data processing method in the display device.
- OLED organic light emitting diode
- display elements included in a display device include an electro-optical element whose luminance is controlled by an applied voltage and an electro-optical element whose luminance is controlled by a flowing current.
- a typical example of an electro-optical element whose luminance is controlled by an applied voltage is a liquid crystal display element.
- a typical example of an electro-optical element whose luminance is controlled by a flowing current is an OLED.
- the OLED is also called an organic electroluminescence (EL) element.
- EL organic electroluminescence
- Organic EL display devices using self-luminous electro-optic elements, such as OLEDs can be easily reduced in thickness, power consumption, and brightness as compared to liquid crystal display devices that require backlights and color filters. be able to. Therefore, in recent years, the development of organic EL display devices has been actively promoted.
- An organic EL display device adopting a passive matrix system (hereinafter referred to as a “passive matrix organic EL display device”) has a simple structure, but is difficult to increase in size and definition.
- an organic EL display device adopting an active matrix system (hereinafter referred to as an “active matrix type organic EL display device”) has a larger size and higher definition than a passive matrix type organic EL display device. It can be easily realized.
- the active matrix type organic EL display device includes a plurality of pixel circuits arranged in a matrix.
- a pixel circuit of an active matrix organic EL display device typically includes an input transistor that selects a pixel and a drive transistor that controls supply of current to the OLED.
- driving current the current flowing from the driving transistor to the OLED may be referred to as “driving current”.
- a thin film transistor (Thin Film Transistor: TFT) is typically used as the driving transistor.
- TFT Thin Film Transistor
- the drive transistor tends to vary in its characteristics. Variations in the characteristics of the drive transistors cause luminance variations. For example, even if the same gradation signal (gradation voltage) is given to all the pixels, different luminance appears for each pixel.
- the “characteristics of the driving transistor” referred to here are, for example, the threshold voltage and mobility of the driving transistor.
- the OLED deteriorates as the light emission time becomes longer, and as a result, the light emission luminance is lower than the original. That is, when the deterioration of the OLED progresses, even if the same drive current as that at the beginning is supplied, the desired light emission luminance is not reached.
- the deterioration that progresses as the light emission time of the OLED becomes longer is referred to as “aging deterioration”.
- aging deterioration the deterioration that progresses as the light emission time of the OLED becomes longer.
- Japanese Unexamined Patent Publication No. 2001-175221 discloses techniques for suppressing the occurrence of burn-in in a display device.
- a process for reducing the light emission luminance of a pixel to the same level as the light emission luminance of a pixel that has burned in accordinging to the light emission luminance of the deteriorated pixel.
- the burn-in is made inconspicuous by performing the process of adjusting the light emission luminance of other pixels.
- Japanese Laid-Open Patent Publication No. 2006-284971 discloses a correction amount determination unit that determines a correction amount corresponding to each pixel based on a deterioration amount of each pixel, and a variation that calculates information indicating the degree of variation in the distribution of the correction amount.
- a determination unit, and a gradation conversion unit that converts an input gradation value into an output gradation value with reference to a gamma curve in which the gradation difference is effectively compressed as the variation in the correction amount distribution increases.
- a burn-in correction device is disclosed.
- Japanese Patent Laid-Open No. 2006-195313 discloses a technique for reducing the memory capacity required for storing burn-in information.
- Japanese Unexamined Patent Application Publication No. 2012-141626 discloses a technique for suppressing the occurrence of uneven brightness in a display device.
- Japanese Unexamined Patent Application Publication No. 2007-279290 discloses a technique for reducing the memory capacity necessary for storing correction data for suppressing variations in luminance.
- Japanese Unexamined Patent Publication No. 2001-175221 Japanese Unexamined Patent Publication No. 2007-286295 Japanese Unexamined Patent Publication No. 2006-284971 Japanese Unexamined Patent Publication No. 2006-195313 Japanese Unexamined Patent Publication No. 2012-141626 Japanese Unexamined Patent Publication No. 2007-279290
- the data is used to measure the characteristics of the drive transistors and OLEDs. It has also been proposed to correct the tone signal. Specifically, it has been proposed to correct the gradation signal for each pixel based on data (measurement data) obtained by measuring the current for each pixel. Since the measurement data is used to compensate for variations in the characteristics of the driving transistors and the deterioration of the OLED over time, such measurement data is also referred to as “compensation data” hereinafter.
- the amount of compensation data increases, so that the memory capacity required for storing compensation data increases. An increase in memory capacity causes an increase in cost.
- an object of the present invention is to make it possible to reduce the memory capacity required for storing compensation data (data used to compensate for variations in characteristics of driving transistors) in a display device as compared with the conventional case. .
- a first aspect of the present invention is an electro-optical element whose luminance is controlled by current and a transistor for controlling a current to be supplied to the electro-optical element, in which a channel layer is formed of an oxide semiconductor.
- a display device including a plurality of pixel circuits each having a certain driving transistor, A current measurement unit that measures the drive current of the drive transistor included in each pixel circuit and outputs the value of the drive current as current data; A current data separator for separating the current data into high-frequency component data and low-frequency component data; A high frequency component data compression processing unit for compressing the high frequency component data; A low frequency component data compression processing unit for compressing the low frequency component data; A storage unit for storing the high frequency component data compressed by the high frequency component data compression processing unit and the low frequency component data compressed by the low frequency component data compression processing unit; The high frequency component data compression processing unit and the low frequency component data compression processing unit perform data compression by different methods.
- the current data separator is A high frequency component removal filter that passes the low frequency component data out of the current data and removes the high frequency component data; And a low-frequency component removal filter that removes the low-frequency component data by passing the high-frequency component data of the current data.
- the current data separator is A high frequency component removal filter that passes the low frequency component data out of the current data and removes the high frequency component data; And a high frequency component calculation unit that obtains the high frequency component data based on a difference between the low frequency component data that has passed through the high frequency component removal filter and the current data.
- the current data separator is A low frequency component removal filter that passes the high frequency component data out of the current data and removes the low frequency component data; And a low-frequency component calculation unit that obtains the low-frequency component data based on a difference between the high-frequency component data that has passed through the low-frequency component removal filter and the current data.
- the low-frequency component data compression processing unit extracts data to be stored in the storage unit from a data group constituting the low-frequency component data for each predetermined number of pixel circuits.
- a sixth aspect of the present invention is the fifth aspect of the present invention.
- the low-frequency component data compression processing unit applies data from the data group constituting the low-frequency component data to the storage unit so that a target compression rate obtained in consideration of the capacity of the storage unit is obtained. An extraction interval for extracting data to be stored is calculated.
- the high frequency component data compression processing unit separates the high frequency component data into low amplitude data having an amplitude of a predetermined width or less and high amplitude data having an amplitude larger than the predetermined width, and the low amplitude data and the high amplitude Of the data, only the high-amplitude data is stored in the storage unit.
- the high frequency component data compression processing unit performs redefinition of the high amplitude data with reference to an upper limit value and a lower limit value of an amplitude of the predetermined width, and stores the redefined high amplitude data in the storage unit.
- a ninth aspect of the present invention is the eighth aspect of the present invention.
- the high-frequency component data compression processing unit performs data compression for each high-frequency component data corresponding to one row of pixel circuits,
- the upper limit value and lower limit value of the amplitude used as a reference when redefining the high amplitude data are already compressed when the high frequency component data corresponding to the pixel circuits in each row is compressed. It is obtained based on the amount of data after compression for a certain row and the capacity of the storage unit.
- the high frequency component data compression processing unit separates the high frequency component data into low amplitude data having an amplitude of a predetermined width or less and high amplitude data having an amplitude larger than the predetermined width. Quantization is performed roughly, the high-amplitude data is quantized relatively finely, and data obtained by the quantization is stored in the storage unit.
- the high frequency component data compression processing unit compresses the high frequency component data by performing requantization on the high frequency component data and performing Huffman coding on the data obtained by the requantization.
- a twelfth aspect of the present invention is the eleventh aspect of the present invention.
- the high-frequency component data compression processing unit performs re-quantization and Huffman coding for each high-frequency component data corresponding to one row of pixel circuits, Before the re-quantization is performed, a process of multiplying the value of the high-frequency component data to be re-quantized by the parameter value is performed,
- the parameter value is the amount of data after Huffman coding for a row that has already undergone requantization and Huffman coding when high-frequency component data corresponding to the pixel circuit of each row is requantized. And the capacity of the storage unit.
- At least one of the high frequency component data compression processing unit and the low frequency component data compression processing unit compresses data by performing requantization.
- the current measuring unit measures a driving current corresponding to at least two gradation values for each pixel circuit;
- the gradation value correction unit Based on the current data output from the current measurement unit and corresponding to the at least two gradation values for each pixel circuit, a measured current-voltage characteristic that is a current-voltage characteristic at the time of measurement of the drive current in each pixel circuit is obtained.
- a first characteristic calculation unit to be obtained Second characteristic calculation for obtaining a target current-voltage characteristic, which is a target current-voltage characteristic in each pixel circuit, based on current data corresponding to the at least two gradation values for a plurality of pixel circuits including the pixel circuit. And A current value corresponding to the gradation value of the gradation signal obtained from the target current voltage characteristic and a current value corresponding to the gradation value of the driving gradation signal obtained from the measured current voltage characteristic. And a driving gradation value calculating section for obtaining a gradation value of the driving gradation signal so as to be equal to each other.
- a fifteenth aspect of the present invention is the fourteenth aspect of the present invention.
- the first characteristic calculator converts a function representing the measured current-voltage characteristic from a nonlinear function to a linear function
- the second characteristic calculator converts a function representing the target current-voltage characteristic from a non-linear function to a linear function.
- the oxide semiconductor is indium gallium zinc oxide containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
- an electro-optic element whose luminance is controlled by a current and a transistor for controlling a current to be supplied to the electro-optic element, wherein a channel layer is formed of an oxide semiconductor.
- a data processing method in a display device including a plurality of pixel circuits each having a certain driving transistor, A current measurement step of measuring a drive current of the drive transistor included in each pixel circuit and outputting a value of the drive current as current data; A current data separation step for separating the current data into high-frequency component data and low-frequency component data; A high-frequency component data compression processing step for compressing the high-frequency component data; Low frequency component data compression processing step for compressing the low frequency component data; Storing the high frequency component data after compression by the high frequency component data compression processing step and the low frequency component data after compression by the low frequency component data compression processing step in a predetermined storage unit; In the high frequency component data compression processing step and the low frequency component data compression processing step, data compression is performed by different methods.
- a display device typically an organic EL display device
- an electro-optical element whose luminance is controlled by a current as a display element
- Current data as compensation data acquired in order to suppress “occurrence of image sticking or luminance variation” due to “time degradation of the electro-optic element” is processed as follows. First, the current data is separated into high frequency component data and low frequency component data. The high-frequency component data and the low-frequency component data are compressed using different methods.
- a transistor in which a channel layer is formed of an oxide semiconductor (oxide transistor) is employed as the driving transistor.
- the data amount of the high-frequency component data and the data amount of the low-frequency component data can be reduced in consideration of this.
- the amount of current data to be stored can be effectively reduced without causing a display defect when displaying an image based on the decoded data.
- the capacity of a storage unit (memory) for storing compensation data (current data) can be effectively reduced.
- the same effect as the first aspect of the present invention is obtained.
- the same effect as that of the first aspect of the present invention can be obtained in the configuration including the high-frequency component removal filter.
- the same effect as that of the first aspect of the present invention can be obtained in the configuration including the low-frequency component removal filter.
- the capacity of the storage unit for storing the compensation data can be more effectively reduced by appropriately setting the sampling interval in consideration of the data amount of the low frequency component data and the capacity of the storage unit. It becomes possible.
- the sampling interval is determined in consideration of the capacity of the storage unit. For this reason, even when the luminance variation in the panel changes with time, the compressed data can be reliably stored in the storage unit.
- the low amplitude data in the high frequency component data is not a storage target in the storage unit. For this reason, the amount of compensation data to be stored in the storage unit is effectively reduced. This makes it possible to more effectively reduce the capacity of the storage unit for storing compensation data.
- the high-amplitude data of the high-frequency component data is stored in the storage unit after being redefined so that the data amount is small. For this reason, it is possible to more effectively reduce the capacity of the storage unit for storing the compensation data.
- the amplitude value at the boundary between the high amplitude data and the low amplitude data is determined in consideration of the capacity of the storage unit. For this reason, even when the luminance variation in the panel changes with time, the compressed data can be reliably stored in the storage unit.
- the data amount of the high frequency component data is reduced in consideration of the characteristics of the oxide transistor, the data amount of compensation data to be stored in the storage unit is effectively reduced. The This makes it possible to more effectively reduce the capacity of the storage unit for storing compensation data.
- the amount of high frequency component data to be stored in the storage unit is effectively reduced.
- the parameter value when the high frequency component data is compressed is determined in consideration of the capacity of the storage unit. For this reason, even when the luminance variation in the panel changes with time, the compressed data can be reliably stored in the storage unit.
- At least one of the data amount of the high frequency component data to be stored in the storage unit and the data amount of the high frequency component data to be stored in the storage unit is effectively reduced.
- the gradation value is corrected based on the current-voltage characteristics of each pixel circuit. For this reason, while achieving the effect of the first aspect of the present invention, the occurrence of image sticking and luminance variations due to the variation in the characteristics of the drive transistors and the aging of the electro-optic element are suppressed.
- a linear function is used as a function representing the current-voltage characteristic in the process of correcting the gradation value. For this reason, it is easy to realize a circuit for correcting the gradation value.
- the effect of the first aspect of the present invention can be achieved reliably by using indium gallium zinc oxide as the oxide semiconductor forming the channel layer of the transistor. Further, higher definition and lower power consumption can be achieved than in the past.
- the same effect as in the first aspect of the present invention can be achieved in the data processing method of the display device.
- FIG. 3 is a block diagram for explaining compression and decoding of pixel current data in the active matrix organic EL display device according to the first embodiment of the present invention. It is a block diagram which shows the whole structure of the active matrix type organic electroluminescence display which concerns on the said 1st Embodiment. In the said 1st Embodiment, it is a block diagram for demonstrating the structure of the display part shown in FIG.
- FIG. 3 is a block diagram illustrating a detailed configuration of a source driver in the first embodiment.
- FIG. 3 is a circuit diagram showing a pixel circuit and components for measuring drive current (part of components of a source driver) in the first embodiment.
- FIG. 5 is a timing chart for explaining operations in a normal display period of some components of the pixel circuit and the source driver in the first embodiment.
- 6 is a timing chart for explaining operations in a current value measurement period of some components of the pixel circuit and the source driver in the first embodiment.
- FIG. 3 is a block diagram showing a schematic configuration of a gradation signal correction circuit in the first embodiment. It is a block diagram which shows the modification of a structure of a pixel electric current data compression / decoding part. It is a block diagram which shows the modification of a structure of a pixel electric current data compression / decoding part. It is a figure which shows the example of pixel current data. It is a figure which shows the histogram in the whole pixel current data.
- Some compression methods determine the data capacity after compression almost uniquely when input data to be compressed is given.
- a typical example of such a compression method is compression using a Huffman code. According to the compression by the Huffman code, the information amount of the input data becomes the data amount of the compressed data. Therefore, when input data having an information amount exceeding a predetermined capacity is given, the compressed data is not normally stored in the memory, and data corruption occurs.
- the lossy compression is employed when a certain amount of data deterioration (error due to compression) is allowed in order to reduce the data amount of the compressed data to a predetermined capacity or less.
- the lossy compression is used, for example, for compressing a moving image.
- the amount of compressed data is controlled by adjusting the compression parameters used for the compression process. For example, by utilizing the fact that “the compression parameter increases when the compression parameter is set to a small value, and the compression rate decreases when the compression parameter is set to a large value”, the data amount of the compressed data is suppressed to a target value or less. It is done. In this way, although the capacity (bit rate) per unit changes, the method of reducing the data amount of the compressed data to a predetermined capacity or less by setting a certain compression rate on the average is “Average Bit Rate”. (ABR) method ”. In the present specification, “(data capacity after compression / data capacity before compression) ⁇ 100” is referred to as “compression rate”. In addition, “the compression ratio increases” means that the numerical value of the compression ratio becomes smaller, and “the compression ratio becomes lower” means that the numerical value of the compression ratio becomes larger.
- ABR Average Bit Rate
- Compressing parameter control methods include single-pass and multi-pass methods.
- the single pass method is a method of changing a compression parameter while performing compression.
- a compression parameter is set in the course of the compression process based on the relationship between the amount of remaining data to be compressed and the free memory capacity for storing the compressed data.
- a determination is made as to how to vary. That is, if it is determined that the memory capacity is insufficient when the current compression rate is maintained, the compression parameters used in future compression are adjusted so that the compression rate becomes high. On the other hand, if it is determined that the memory capacity remains when the current compression rate is maintained, the compression parameters used in future compression are adjusted so that the compression rate is low.
- the multi-pass method is a method that separates the stage of determining compression parameters from the stage of actual compression.
- the multi-pass method first, compression using temporarily determined compression parameters is performed. Then, the compression parameter is adjusted so that the compression rate is increased if the compression rate of the compressed data is lower than the desired compression rate, and the compression rate is increased if the compression rate of the compressed data is higher than the desired compression rate. The compression parameter is adjusted to be lower. Thereafter, the desired compression rate is achieved by compressing the data using the updated compression parameters. Note that as the number of repetitions of the stage for determining the compression rate increases, compression closer to the desired compression rate is performed. Depending on the number of repetitions, the multi-pass method is called a “2-pass method”, a “3-pass method”, or the like.
- the single-pass method is easy to implement, but it is relatively difficult to approach the desired compression rate. According to the multi-pass method, it is relatively easy to obtain a desired compression ratio, but it is difficult to implement it.
- a single path method will be described as an example. However, the present invention is not limited to the single pass method.
- FIG. 2 is a block diagram showing the overall configuration of the active matrix organic EL display device 1 according to the first embodiment of the present invention.
- the organic EL display device 1 includes a timing controller 10, a source driver 20, a gate driver 30, a gradation signal correction circuit 40, and a display unit 50.
- the source driver 20 includes a data voltage supply unit 21 and a current measurement unit 22. Note that either one or both of the source driver 20 and the gate driver 30 may be formed integrally with the display unit 50.
- the display unit 50 is formed with a plurality of pixel circuits 51 including an OLED 52 that is an electro-optic element. A detailed configuration of the pixel circuit 51 will be described later.
- FIG. 2 shows only one pixel circuit 51.
- FIG. 3 is a block diagram for explaining the configuration of the display unit 50 shown in FIG.
- the display unit 50 is provided with m data lines DA1 to DAm and n scanning lines DM1 to DMn orthogonal thereto.
- the display unit 50 is provided with m ⁇ n pixel circuits 51 corresponding to the intersections of the m data lines DA1 to DAm and the n scanning lines DM1 to DMn.
- DA data lines DA1 to DAm
- DM1 to DMn the symbols. Represented by DM.
- Each pixel circuit 51 forms one of a red sub-pixel (R sub-pixel), a green sub-pixel (G sub-pixel), and a blue sub-pixel (B sub-pixel).
- the pixel circuits 51 arranged in the row direction (left-right direction in FIG. 3) form, for example, an R sub-pixel, a G sub-pixel, and a B sub-pixel in order from the left.
- the types of sub-pixels are not limited to red, green, and blue, but may be cyan, magenta, yellow, and the like.
- the display unit 50 includes a power supply line for supplying a high level power supply voltage ELVDD (hereinafter referred to as “high level power supply line”) and a power supply line for supplying a low level power supply voltage ELVSS (hereinafter referred to as “low level power supply line”). ) And a line for supplying a reference voltage Vref (hereinafter referred to as “reference voltage line”).
- the high level power supply voltage ELVDD, the low level power supply voltage ELVSS, and the reference voltage Vref are constant voltages.
- the low level power supply voltage ELVSS is a ground voltage, for example.
- the power supply line that supplies the high-level power supply voltage ELVDD is represented by the same symbol ELVDD as the high-level power supply voltage
- the power supply line that supplies the low-level power supply voltage ELVSS is represented by the same symbol ELVSS as the low-level power supply voltage.
- the line for supplying the reference voltage Vref is represented by the same reference symbol Vref as the reference voltage.
- the timing controller 10 controls the operations of the source driver 20, the gate driver 30, and the gradation signal correction circuit 40 based on the image signal DAT sent from the outside. More specifically, the timing controller 10 transmits various control signals to the source driver 20 and the gate driver 30, and transmits the gradation signal and the various control signals to the gradation signal correction circuit 40, whereby the source driver 20, The operation of the gate driver 30 and the gradation signal correction circuit 40 is controlled.
- the source driver 20 supplies the data voltage to the data line DA and measures the drive current in each pixel based on the drive gradation signal VD sent from the gradation signal correction circuit 40 according to the control signal sent from the timing controller 10. I do.
- the data voltage supply unit 21 supplies a data voltage based on the driving gradation signal VD to the data line DA.
- the current measurement unit 22 measures the drive current obtained from the pixel circuit 51 according to the data voltage based on the drive gradation signal VD corresponding to a predetermined gradation value, and expresses the magnitude of the drive current as a digital value.
- Pixel current data I which is the obtained data is acquired.
- the pixel current data I is compensation data.
- the current measurement unit 22 also transmits the acquired pixel current data I to the gradation signal correction circuit 40.
- the gate driver 30 sequentially selects the n scanning lines DM1 to DMn in accordance with the control signal sent from the timing controller 10.
- the gradation signal correction circuit 40 corrects the gradation signal sent from the timing controller 10 based on the pixel current data I, and gives the driving gradation signal VD obtained by the correction to the source driver 20.
- the data voltage is applied to the m data lines DA1 to DAm, and the n scanning lines DM1 to DMn are sequentially selected, whereby an image based on the image signal DAT is displayed on the display unit 50. Is done.
- 1 frame period consists of normal display period and vertical blanking period.
- a part of the vertical blanking period is used as a current value measurement period for acquiring the pixel current data I.
- a current value measurement period within one vertical blanking period for example, a predetermined number of scanning lines DM (p scanning lines DM) out of n scanning lines DM are sequentially selected.
- the pixel current data I is obtained by measuring the drive current in the pixel circuit 51 connected to the selected scanning line DM.
- the gate driver 30 shifts the p scanning lines DM to be selected every vertical blanking period (that is, every frame period).
- the drive current is measured for each of the pixel circuits 51 corresponding to the first to p-th scanning lines DM1 to DMp in a vertical blanking period of a certain frame period, the next frame period In the vertical blanking period, the drive current is measured for each of the pixel circuits 51 corresponding to the scanning lines DMp + 1 to DM2p of the (p + 1) th row to the 2pth row.
- the measurement of the drive current for each of the m ⁇ n pixel circuits 51 is performed by sequentially shifting the m ⁇ p pixel circuits 51 to be measured for each frame period without overlapping. It can be performed.
- the display panel in this embodiment is an FHD (Full High Definition) system
- the total number of scanning lines is 1125 and the number of effective scanning lines is 1080.
- the number n of the scanning lines DM corresponds to the number of effective scanning lines.
- the vertical blanking period is 45H period.
- the drive current can be measured for all the pixel circuits 51 in 120 frames (1080 rows / 9 rows), that is, 2 seconds. Note that the value of p and the length of the period during which the scanning line DM is selected are merely examples, and the present invention is not limited to this.
- FIG. 4 is a block diagram showing a detailed configuration of the source driver 20.
- the source driver 20 includes a shift register 23, a first latch unit 24, a second latch unit 25, a D / A conversion unit 26, and a voltage output / current measurement unit 27.
- the second latch unit 25 includes m latch circuits 250 respectively corresponding to m data lines DA1 to DAm.
- the D / A conversion unit 26 includes m D / A converters (hereinafter referred to as “DACs”) 260 corresponding to the m data lines DA1 to DAm, respectively.
- the voltage output / current measurement unit 27 includes m voltage output / current measurement circuits 270 respectively corresponding to the m data lines DA1 to DAm.
- the timing controller 10 supplies the source driver 20 with a data start pulse DSP, a data clock DCK, a latch strobe signal LS, and an input / output control signal DWT as the various control signals.
- the gradation signal correction circuit 40 supplies the driving gradation signal VD to the source driver 20. Note that during the normal display period, the value (tone value) of the drive gradation signal VD becomes a value corresponding to the target display image in each pixel, and during the current value measurement period, the drive gradation signal VD. Is a predetermined value for measuring the drive current.
- a data start pulse DSP and a data clock DCK are input to the shift register 23.
- the shift register 23 sequentially transfers pulses included in the data start pulse DSP from the input end to the output end based on the data clock DCK.
- sampling pulses corresponding to the data lines DA are sequentially output from the shift register 23, and the sampling pulses are sequentially input to the first latch unit 24.
- the first latch unit 24 sequentially stores the value of the driving gradation signal VD for one row at the timing of the sampling pulse.
- Each latch circuit 250 captures and holds the gradation value of the corresponding column among the gradation values for one row stored in the first latch unit 24 in accordance with the latch strobe signal LS.
- Each latch circuit 250 also supplies the held gradation value to the corresponding DAC 260 as internal gradation data.
- Each DAC 260 selects a grayscale voltage corresponding to the internal grayscale data output from the corresponding latch circuit 250, and applies the grayscale voltage as a data voltage to the corresponding voltage output / current measurement circuit 270.
- the voltage output / current measurement circuit 270 performs different operations depending on the level of the input / output control signal DWT. If the input / output control signal DWT is “1” level (high level in this specification), the voltage output / current measurement circuit 270 supplies the data voltage output from the DAC 260 to the corresponding data line DA. If the input / output control signal DWT is “0” level (low level in this specification), the voltage output / current measurement circuit 270 outputs the value (current value) of the drive current output from the pixel circuit 51 to the corresponding data line DA. ). Pixel current data I obtained by the measurement is sent from the voltage output / current measurement circuit 270 to the gradation signal correction circuit 40.
- a current measurement unit 22 (see FIG. 2) is configured by a part of the voltage output / current measurement unit 27, and the remaining part of the voltage output / current measurement unit 27, the shift register 23, the first latch unit 24, the second The latch unit 25 and the D / A converter 26 constitute a data voltage supply unit 21 (see FIG. 2).
- FIG. 5 is a circuit diagram showing the pixel circuit 51 and components for measuring drive current (part of components of the source driver 20) in the present embodiment.
- the pixel circuit 51 includes one OLED 52, three transistors T1 to T3, and one capacitor C1.
- the transistor T1 is a driving transistor
- the transistor T2 is a reference voltage supply transistor
- the transistor T3 is an input transistor.
- the transistors T1 to T3 are all n-channel type.
- oxide TFTs thin film transistors using an oxide semiconductor as a channel layer
- InGaZnOx indium gallium zinc oxide
- IGZO indium gallium zinc oxide
- an oxide TFT such as an IGZO-TFT is particularly effective when employed as an n-channel transistor included in the pixel circuit 51.
- the present invention does not exclude the use of a p-channel oxide TFT.
- a transistor using an oxide semiconductor other than IGZO for the channel layer can also be employed.
- at least one of indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead (Pb) is included. The same effect can be obtained when a transistor using an oxide semiconductor for a channel layer is employed.
- the transistor T1 is provided in series with the OLED 52.
- the drain terminal is connected to the high-level power supply line ELVDD, and the source terminal is connected to the anode terminal of the OLED 52.
- the transistor T2 is provided between the reference voltage line Vref and the gate terminal of the transistor T1.
- the gate terminal of the transistor T2 is connected to the scanning line DM.
- the transistor T3 is provided between the data line DA and the source terminal of the transistor T1.
- the gate terminal of the transistor T3 is connected to the scanning line DM.
- the capacitor C1 is provided between the gate terminal and the source terminal of the transistor T1.
- the cathode terminal of the OLED 52 is connected to the low level power line ELVSS.
- the source driver 20 includes a DAC 260, an operational amplifier 2701, a resistance element R1, a control switch SW, and a measurement data acquisition unit 2702.
- the DAC 260 is a component of the data voltage supply unit 21
- the operational amplifier 2701 and the control switch SW are components shared by the data voltage supply unit 21 and the current measurement unit 22, and the resistance element R1 and the measurement data acquisition unit 2702 Is a component of the current measuring unit 22.
- the resistance element R1 functions as a current-voltage conversion element.
- the non-inverting input terminal of the operational amplifier 2701 is connected to the output terminal of the DAC 260, and the inverting input terminal of the operational amplifier 2701 is connected to the corresponding data line DA.
- a resistor element R1 and a control switch SW are connected in parallel between the output terminal and the inverting input terminal of the operational amplifier 2701.
- the control switch SW is controlled by an input / output control signal DWT transmitted from the timing controller 10, for example. When the input / output control signal DWT is at “1” level, the control switch SW is closed. When the input / output control signal DWT is at “0” level, the control switch SW is opened.
- the measurement data acquisition unit 2702 acquires pixel current data I as measurement data based on the output from the operational amplifier 2701. The pixel current data I is sent to the gradation signal correction circuit 40.
- the control switch SW When the input / output control signal DWT is “1” level, the control switch SW is closed, so that the output terminal and the inverting input terminal of the operational amplifier 2701 are short-circuited. Therefore, when the input / output control signal DWT is at “1” level, the operational amplifier 2701 functions as a buffer amplifier. As a result, the data voltage based on the drive gradation signal VD is supplied to the data line DA with a low output impedance. At this time, it is desirable to prevent the data voltage from being input to the measurement data acquisition unit 2702 by controlling the measurement data acquisition unit 2702 with the input / output control signal DWT.
- the control switch SW When the input / output control signal DWT is “0” level, the control switch SW is open, so that the output terminal and the inverting input terminal of the operational amplifier 2701 are connected to each other via the resistor element R1. For this reason, the operational amplifier 2701 functions as a current amplification amplifier using the resistance element R1 as a feedback resistor.
- the potential of the inverting input terminal becomes substantially equal to the potential of the data voltage due to a virtual short circuit.
- the drive current that flows according to the gate-source voltage Vgs (of the transistor T1) based on the data voltage is output from the pixel circuit 51 to the data line DA. Accordingly, the measurement data acquisition unit 2702 can acquire the pixel current data I described above.
- FIG. 6 is a timing chart for explaining operations in a normal display period of some components of the pixel circuit 51 and the source driver 20. Note that in the pixel circuit 51 of interest here, the data voltage Vm should be written during the period A3 between times t1 and t2.
- n scanning lines DM are sequentially selected.
- the input / output control signal DWT is at the “1” level. Therefore, the operational amplifier 2701 functions as a buffer amplifier as described above.
- the scanning line DM is at the “0” level.
- the transistors T2 and T3 are in an off state, and a driving current corresponding to the gate-source voltage Vgs held in the capacitor C1 flows through the transistor T1.
- the OLED 52 emits light with a luminance corresponding to the drive current.
- the drive current flowing through the OLED 52 is referred to as a light emission drive current Ioled.
- the data voltage Vm is supplied to the data line DA via the operational amplifier 2701. Further, the scanning line DM changes to “1” level, and the transistors T2 and T3 are turned on. Therefore, one end of the capacitor C1 (source terminal of the transistor T1) is supplied with the data voltage Vm via the data line DA and the transistor T3, and the other end of the capacitor C1 (gate terminal of the transistor T1) is connected via the transistor T2.
- the reference voltage Vref is applied.
- the capacitor C1 is charged to the gate-source voltage Vgs given by the following equation (1).
- Vgs Vref-Vm (1)
- the data voltage Vm is preferably set to a value given by the following equation (2).
- Vm ⁇ ELVSS + Vtholed (2) By applying the data voltage Vm set as in the above equation (2) to the anode terminal of the OLED 52 (the source terminal of the transistor T1), the light emission drive current Ioled in the period A3 (the same applies to the periods A1 and A2 described later). Becomes 0. For this reason, the light emission of the OLED 52 can be stopped.
- the scanning line DM changes to “0” level, and the transistors T2 and T3 are turned off.
- the holding voltage of the capacitor C1 is fixed to the gate-source voltage Vgs shown by the above equation (1).
- the light emission drive current Ioled according to the gate-source voltage Vgs flows, and the OLED 52 has a luminance according to the light emission drive current Ioled. Emits light.
- the OLED 52 in each pixel circuit 51 emits light with a luminance corresponding to the image signal DAT sent from the outside.
- FIG. 7 is a timing chart for explaining the operation in the current value measurement period of some components of the pixel circuit 51 and the source driver 20.
- Each of the period A1 from the time t1 to the time t2 and the period A1 from the time t3 to the time t4 is a data voltage (hereinafter simply referred to as “measurement gradation value”) used for the measurement of the drive current. This is a period for writing “measurement data voltage” to the pixel circuit 51.
- Each of the period A2 from time t2 to t3 and the period A2 from time t4 to t5 is a period for measuring the drive current according to the measurement data voltage.
- gradation values of two levels are used as measurement gradation values. That is, two voltages respectively corresponding to two levels of measurement gradation values are used as measurement data voltages.
- a relatively high level gradation value is employed as the first level measurement gradation value
- a relatively low level gradation value is employed as the second level measurement gradation value.
- the first-level measurement gradation value is “186” (the level at which the average luminance is 150 nits)
- the second-level measurement gradation value is “82” (the average luminance is 25 nits). Level).
- first measurement data voltage the measurement data voltage corresponding to the first level measurement gradation value
- second measurement data voltage the measurement data voltage corresponding to the second level measurement gradation value.
- the first measurement data voltage is denoted by reference numeral Vm1
- the second measurement data voltage is denoted by reference numeral Vm2.
- the level of the input / output control signal DWT is “1” level, “0” level, “1” in the 5H period from time t1 to t6 when the scanning line DM is at “1” level.
- the level is switched every 1H period in the order of “0” level and “1” level.
- the operational amplifier 2701 functions as a buffer amplifier when the input / output control signal DWT is at “1” level, and the operational amplifier 2701 functions as a current amplification amplifier when the input / output control signal DWT is at “0” level.
- the scanning line DM Prior to time t1, the scanning line DM is at the “0” level. At this time, the transistors T2 and T3 are in an off state, and the transistor T1 passes a driving current according to the gate-source voltage Vgs held in the capacitor C1. The drive current flowing through the transistor T1 flows through the OLED 52 as the light emission drive current Ioled. The OLED 52 emits light with a luminance corresponding to the light emission drive current Ioled.
- the scanning line DM changes to “1” level, and the transistors T2 and T3 are turned on. Further, the input / output control signal DWT becomes “1” level, and the control switch SW is closed.
- the first measurement data voltage Vm1 is input to the non-inverting input terminal of the operational amplifier 2701. For this reason, as shown in FIG. 7, the first measurement data voltage Vm1 is supplied to the data line DA.
- the capacitor C1 is charged with the gate-source voltage Vgs given by the following equation (3).
- Vgs Vref-Vm1 (3)
- the input / output control signal DWT changes to “0” level and the control switch SW is opened. Further, since the first measurement data voltage Vm1 is input to the non-inverting input terminal of the operational amplifier 2701 after time t1, the potential of the inverting input terminal becomes Vm1 due to a virtual short circuit. Since the data line DA has already been charged to the first measurement data voltage Vm1 in the period A1 from the time t1 to the time t2, the time required for the potential of the inverting input terminal to become Vm1 is very short.
- a current path for driving current is formed through the transistor T3 in the on state, and the driving current is output from the pixel circuit 51 to the data line DA.
- the light emission drive current Ioled does not flow.
- the transistor T3 can output the drive current to the data line DA when the transistor T3 is in the ON state. Then, the measurement of the drive current output to the data line DA is performed by the measurement data acquisition unit 2702 (see FIG. 5), and the pixel current data I corresponding to the first measurement data voltage Vm1 is acquired.
- the gate-source voltage corresponding to the second measurement data voltage Vm2 is charged in the capacitor C1, as in the period A1 from time t1 to t2.
- the pixel current data I corresponding to the second measurement data voltage Vm2 is acquired in the same manner as the period A2 from the time t2 to the time t3. Since the operation in the period A3 from the time t5 to the time t6 is the same as that in the normal display period, description thereof is omitted.
- the first measurement data voltage Vm1 is applied to each of the pixel circuits 51 (m ⁇ p) corresponding to the p scanning lines DM. And pixel current data I corresponding to the second measurement data voltage Vm2.
- FIG. 8 is a block diagram showing a schematic configuration of the gradation signal correction circuit 40.
- the gradation signal correction circuit 40 includes a data compression unit 42, a data decoding unit 44, and a gradation value correction unit 46.
- the data compression unit 42 compresses the pixel current data I sent from the source driver 20 based on the control signal TC sent from the timing controller 10.
- the data decoding unit 44 decodes the pixel current data I compressed by the data compression unit 42 based on the control signal TC sent from the timing controller 10.
- the gradation value correction unit 46 generates a driving gradation signal VD corresponding to each pixel based on the control signal TC and the gradation signal Va sent from the timing controller 10.
- the gradation value of the gradation signal Va is reduced.
- a predetermined correction is performed.
- FIG. 1 is a block diagram for explaining compression and decoding of pixel current data I.
- the pixel current data compression / decoding unit includes a low pass filter (high frequency component removal filter) 421, a first calculation unit 422, a downsampling unit 426, a high frequency signal compression processing unit 427, a storage unit (memory) 480, a memory controller 482, and a post filter.
- An up-sampling unit 443, a high-frequency signal decoding processing unit 444, and a second calculation unit 446 are included.
- the low-pass filter 421, the first calculation unit 422, the downsampling unit 426, and the high frequency signal compression processing unit 427 are components of the data compression unit 42.
- the post-filter / upsampling unit 443, the high-frequency signal decoding processing unit 444, and the second arithmetic unit 446 are components of the data decoding unit 44.
- a current data separation unit is realized by the low-pass filter 421 and the first calculation unit 422, a high-frequency component calculation unit is realized by the first calculation unit 422, and low-frequency component data is acquired by the down-sampling unit 426.
- a compression processing unit is realized, and the high frequency signal compression processing unit 427 realizes a high frequency component data compression processing unit.
- the pixel current data compression / decoding unit receives the pixel current data I acquired by the current measurement unit 22 of the source driver 20.
- the low pass filter 421 functions as a filter that attenuates the high frequency component of the pixel current data I and passes the low frequency component.
- the data output from the low pass filter 421 is referred to as “low frequency component data”.
- the low frequency component data is denoted by a symbol IL.
- the first calculation unit 422 calculates a difference between the pixel current data I and the low frequency component data IL.
- the difference data is output from the first calculation unit 422 as a high-frequency component in the pixel current data I.
- the data output from the first calculation unit 422 is referred to as “high frequency component data”.
- the high frequency component data is denoted by the symbol IH.
- a high-pass filter (low-frequency component removal filter) 423 is provided instead of the low-pass filter 421, and based on the difference between the high-frequency component data IH output from the high-pass filter 423 and the pixel current data I.
- the low frequency component data IL may be obtained (the computation unit (low frequency component computation unit) 424 in FIG. 9 obtains the low frequency component data IL).
- both the low-pass filter 421 and the high-pass filter 423 are provided, and the low-frequency component data IL is obtained by applying the low-pass filter 421 to the pixel current data I, and the high-pass is applied to the pixel current data I.
- the filter 423 may be applied to obtain the high frequency component data IH.
- the down-sampling unit 426 reduces the amount of low-frequency component data to be stored in the storage unit 480 by sampling data from the low-frequency component data IL. That is, the downsampling unit 426 compresses the low frequency component data IL.
- the data output from the downsampling unit 426 is referred to as “compressed low frequency component data”.
- the compressed low-frequency component data is denoted by reference symbol ILc.
- the high frequency signal compression processing unit 427 reduces the amount of high frequency component data to be stored in the storage unit 480 by extracting data with a predetermined amplitude from the high frequency component data IH. That is, the high frequency signal compression processing unit 427 compresses the high frequency component data IH.
- the data output from the high-frequency signal compression processing unit 427 is referred to as “compressed high-frequency component data”.
- the compressed high frequency component data is denoted by reference symbol IHc.
- the storage unit (memory) 480 stores compressed low frequency component data ILc and compressed high frequency component data IHc.
- the memory controller 482 writes the compressed low-frequency component data ILc and the compressed high-frequency component data IHc into the storage unit 480, or the compressed low-frequency component data ILc and the compressed data in accordance with the memory control signal SM given from the timing controller 10 or the like.
- the readout of the high-frequency component data IHc from the storage unit 480 is controlled.
- the storage unit 480 may be configured such that the compressed low-frequency component data ILc and the compressed high-frequency component data IHc are written or read out simultaneously and in parallel. It is not necessary.
- the post filter / upsampling unit 443 decodes the compressed low frequency component data ILc read from the storage unit 480.
- the data output from the post filter / upsampling unit 443 is referred to as “decoded low frequency component data”.
- the decoded low-frequency component data is given a code ILd.
- decoding is performed so that the compressed low-frequency component data ILc is completely in a state before compression. This can be achieved by using an appropriate low-pass filter 421 according to the data sampling interval (extraction interval) in the downsampling unit 426 during the compression process (Nyquist theorem).
- the high frequency signal decoding processing unit 444 decodes the compressed high frequency component data IHc read from the storage unit 480.
- the data output from the high frequency signal decoding processing unit 444 is referred to as “decoded high frequency component data”.
- the decoded high-frequency component data is given a code IHd.
- the second calculation unit 446 obtains decoded pixel current data Id by performing a process of adding the decoded low-frequency component data ILd and the decoded high-frequency component data IHd.
- the pixel current data I and the decoded pixel current data Id are equal, and when the high frequency component data IH is subjected to lossy compression, the pixel current data IH is equal to the decoded pixel current data Id.
- the current data I and the decoded pixel current data Id are almost equal.
- the pixel current data I is stored in the storage unit 480 in the following procedure. Each time the pixel current data I for one row is acquired in the current value measurement period described above, the pixel current data I for one row is stored in the first memory (provided in advance in the organic EL display device 1). (Not shown) are temporarily stored. The pixel current data I stored in the first memory is subjected to the compression process as described above until the pixel current data I for the next row is acquired, and is obtained by the compression process. The stored data is stored in the second memory (the storage unit 480).
- the first memory has at least a capacity capable of storing the pixel current data I for one row, and the second memory compresses the pixel current data I for all pixels.
- the data (compressed low-frequency component data ILc and compressed high-frequency component data IHc) obtained by the above is at least stored.
- the data amount MA of the pixel current data I for one row of each color for one level is as follows.
- FIG. 11 shows pixel current data I in the 1st to 512th columns for a certain two rows (row A and row B).
- the histogram of the entire pixel current data I is as shown in FIG.
- the pixel current data I can be divided into a low frequency component and a high frequency component.
- FIG. 13 shows low frequency components of the pixel current data I in the 1st to 512th columns
- FIG. 14 shows a histogram of the entire low frequency components.
- FIG. 15 shows high frequency components of the pixel current data I in the 1st to 512th columns
- FIG. 16 shows a histogram of the entire high frequency components.
- the transistors T1 to T3 in the pixel circuit 51 employ IGZO-TFTs that are oxide TFTs.
- the IGZO-TFT and LTPS (Low Temperature Polysilicon) -TFT are compared, the IGZO-TFT has less variation in characteristics in the local region than the LTPS-TFT.
- FIG. 17 is a diagram illustrating luminance variation in a display device employing an IGZO-TFT and luminance variation in a display device employing an LTPS-TFT.
- the horizontal axis represents the luminance ratio of pixels when the overall average luminance is used as a reference, and the vertical axis represents the normalized frequency.
- pixel luminance ratio data is dispersed in a range from about 55% to about 120%.
- pixel luminance ratio data is included in a range from about 85% to about 115%.
- the IGZO-TFT has less variation in characteristics than the LTPS-TFT. This is because the laser process is used in the LTPS-TFT, whereas the laser process is not used in the IGZO-TFT. Further, as can be seen from FIG. 17, in the IGZO-TFT, the distribution of variation in characteristics is close to a normal distribution.
- the pixel current data I described above when the amplitude of the high frequency component is small, no correction is required, and therefore the high frequency component data IH having an amplitude value within a predetermined range can be deleted.
- the IGZO-TFT since the IGZO-TFT has a small variation in characteristics and is close to a normal distribution as described above, it is stored in the storage unit 480 by deleting the high frequency component data IH having an amplitude value within a predetermined range. The amount of data to be reduced can be greatly reduced.
- the compression processing in this embodiment will be described in detail.
- the low-pass filter 421 is applied to the pixel current data I stored in the first memory described above.
- the low frequency component of the pixel current data I is extracted as the low frequency component data IL.
- a difference between the pixel current data I and the low frequency component data IL is obtained by the first calculation unit 422.
- the high frequency component of the pixel current data I is extracted as the high frequency component data IH.
- the downsampling unit 426 extracts data from the low frequency component data IL at an appropriate sampling interval.
- the sampling interval is set so that the low frequency component data IL before compression can be completely decoded.
- the sampling interval is “4”.
- data is extracted for every four pixels. Therefore, in this embodiment, the data amount MB of the compressed low frequency component data ILc for one row is as follows.
- the high frequency signal compression processing unit 427 performs compression processing on the high frequency component data IH.
- the amplitude of each high-frequency component data IH is examined. Since one pixel current data I is 10 bits, the amplitude values that the high frequency component data IH can take are values of “ ⁇ 1023” to “1023”.
- the IGZO-TFT has less variation in characteristics in the local region than the LTPS-TFT. Therefore, it is understood that the amplitude of the high-frequency component data IH is significantly smaller when the IGZO-TFT is employed than when the LTPS-TFT is employed.
- the amplitude value of the high frequency component data IH is a value of “ ⁇ 58” to “65”.
- the relatively small amplitude data (low amplitude data) of the high frequency component data IH has a small influence on the display.
- the low amplitude data in the high frequency component data IH can be deleted.
- data with amplitude values “ ⁇ 31” to “31” is deleted from the high frequency component data IH.
- data whose amplitude values are “ ⁇ 58” to “ ⁇ 31” in the high frequency component data IH and data whose amplitude values are “31” to “65” among the high frequency component data IH are data to be saved.
- the range of amplitude values from which data is deleted in this way is a so-called dead zone.
- the high-amplitude data of the high-frequency component data IH is redefined based on the upper limit value or the lower limit value of the dead zone.
- the data to be saved (high amplitude data) in the high frequency component data IH is expressed by a difference value from the upper limit value or the lower limit value of the dead zone.
- the data of the amplitude value “ ⁇ 58” to “ ⁇ 31” in the high frequency component data IH is expressed by the values “ ⁇ 27” to “0” (see FIG. 18).
- data having amplitude values “31” to “65” are represented by values “0” to “34” (see FIG. 18). From the above, it is only necessary to store a value within the range of “ ⁇ 27” to “34”, so that the data to be stored can be expressed by 7 bits.
- the method of recording (saving) the high frequency component data in the storage unit 480 by reducing the data amount in this way is hereinafter referred to as “first high frequency component recording method”.
- the data amount MD of data to be stored in the storage unit 480 is as follows.
- the data amount MF of each color data to be stored in the storage unit 480 when the compression processing is not performed is as follows.
- the low amplitude data is deleted from the high frequency component data IH, but the present invention is not limited to this.
- the high-frequency component data IH the low-amplitude data is relatively coarsely quantized, and among the high-frequency component data IH, the high-amplitude data is relatively finely quantized, and the data obtained by the quantization is stored in the storage unit 480. You may make it preserve
- the current measurement step is realized by the process in which the current measurement unit 22 acquires the pixel current data I, and the low-pass filter 421 and the first calculation unit 422 convert the pixel current data I into the low-frequency component data IL.
- the current data separation step is realized by the separation into the high frequency component data IH
- the high frequency component data compression processing step is realized by the high frequency signal compression processing unit 427 extracting only the high amplitude data from the high frequency component data IH.
- the down-sampling unit 426 extracts the data from the low-frequency component data IL at a predetermined sampling interval, thereby realizing a low-frequency component data compression processing step.
- the down-sampling unit 426 and the high-frequency signal compression processing unit 427 By the process of saving data in the storage unit 480 Save step Te has been realized.
- the pixel current data I is separated into the high frequency component data IH and the low frequency component data IL using the low-pass filter 421, but the present invention is not limited to this.
- the pixel current data I may be separated into the high-frequency component data IH and the low-frequency component data IL by a method different from the method using the low-pass filter by using a high-pass filter. That is, if a component that functions as the current data separator 420 that separates the pixel current data I into the high frequency component data IH and the low frequency component data IL is provided, the pixel current data I is converted into the high frequency component data IH and the low frequency component data IL.
- the method for separating the data IL is not particularly limited. Therefore, the configuration of the pixel current data compression / decoding unit can be expressed as shown in FIG. Further, the low frequency component data IL may be compressed by a method different from sampling at a predetermined interval. That is, the method for compressing the low-frequency component data IL is not particularly limited as long as it includes a component that functions as the low-frequency signal compression processing unit 425 that compresses the low-frequency component data IL. Therefore, the configuration of the pixel current data compression / decoding unit can be expressed as shown in FIG.
- correction of the gradation value in the gradation value correction unit 46 will be described with reference to FIGS.
- “correction of the gradation value” is performed by correcting the gradation value of the gradation signal Va sent from the timing controller 10 to the gradation value correction unit 46 in the gradation signal correction circuit 40, to the source driver 20. It means that the gradation value of the driving gradation signal VD to be given is obtained.
- the data sent to the gradation value correction unit 46 as the gradation signal Va is referred to as “input gradation voltage data”, and is output from the gradation value correction unit 46 as the driving gradation signal VD.
- the data is called “output gradation voltage data”. Both the input gradation voltage data and the output gradation voltage data are data associated with gradation values. The input gradation voltage data and the output gradation voltage data are collectively referred to simply as “gradation voltage data”.
- the gradation value correction unit 46 the gradation value is corrected based on the pixel current data after decoding by the data decoding unit 44. More specifically, the gradation value is corrected based on the two decoded pixel current data respectively associated with the measurement gradation values of the two levels (first level and second level) described above.
- the pixel current data associated with the first-level measurement gradation value is referred to as “first-level pixel current data”
- second level pixel current data is referred to as “second level pixel current data”.
- FIG. 21 is a diagram illustrating a relationship between gradation voltage data and pixel current data in a certain pixel (hereinafter referred to as “target pixel”) in which the pixel current is measured.
- target pixel a certain pixel
- the relationship between the gradation voltage and the display luminance is set in advance so as to be expressed by an exponential function with a gamma value of 2.2. Further, a substantially proportional relationship is established between the light emission luminance and the pixel current in each pixel. Therefore, the relationship between the pixel current (drive current) measured by the current measuring unit 22 (see FIG. 2) and the gradation voltage is also an index with a gamma value of 2.2 as shown in the following equation (4). Expressed by function.
- V P represents the gray scale voltage corresponding to an arbitrary gradation value P
- I P denotes a pixel current corresponding to the gradation value P
- J and K represent constants. Note that P is an arbitrary gradation value.
- the value of J and the value of K are different for each pixel. This is because the current-voltage characteristics of the drive transistor are different for each pixel, and the influence of the change in the characteristics of the drive transistor with time is different for each pixel.
- the measurement gradation value (measurement data voltage) has at least two levels. If corresponding pixel current data exists, an approximate expression of a current value corresponding to an arbitrary gradation value is possible.
- a pixel current value corresponding to an arbitrary gradation value is estimated based on pixel current data corresponding to two levels of measurement gradation values (hereinafter simply referred to as “two-level pixel current data”). It is possible. Similarly, the target current-voltage characteristics (ideal current-voltage characteristics after gradation value correction) for the pixel of interest can be obtained based on the two pixel current data.
- the pixel current data (all pixels included in one row or all the pixels in the display unit 50 (The average value of the pixel current data I P ) obtained by the measurement can be used as the pixel current data I C (target pixel current data) (see the following equation (5)).
- the pixel current to the data group may be a value calculated based on some criteria as pixel current data I C, measured predetermined value regardless of the pixel current data are (fixed value) pixel current data I C It is also good.
- P1 indicates the value of the first level pixel current data at the measurement point in the pixel of interest
- P2 indicates the value of the second level pixel current data at the point of measurement in the pixel of interest
- C1 is the target in the pixel of interest.
- the value of the first level pixel current data is indicated
- C2 indicates the value of the target second level pixel current data in the target pixel.
- the solid line denoted by reference numeral 61 represents the current-voltage characteristic at the measurement point in the pixel of interest
- the dotted line denoted by reference numeral 62 represents the target current-voltage characteristic of the pixel of interest.
- the relationship between the gradation voltage and the pixel current is expressed by an exponential function with a gamma value of 2.2.
- the output gradation voltage data corrected gradation voltage data
- the processing becomes complicated. Therefore, in the present embodiment, the pixel current data I P obtained by the measurement is converted using the following equation (6), and the target pixel current data I C is used by the following equation (7). By performing the conversion, the current-voltage characteristics at the time of measurement and the target current-voltage characteristics are expressed.
- the current-voltage characteristic at the time of measurement is represented by a solid line denoted by reference numeral 63 in FIG.
- the target current-voltage characteristic is expressed by a dotted line indicated by reference numeral 64 in FIG. 22 by conversion using the above equation (7). That is, the current-voltage characteristics at the time of measurement and the target current-voltage characteristics are expressed by functions that are linearly approximated.
- the data of A1, A2, B1, and B2 in FIG. 22 correspond to the data of P1, P2, C1, and C2 in FIG. 21, respectively.
- the straight line connecting A1 and A2 is represented by the following equation (8)
- the straight line connecting B1 and B2 is represented by the following equation (9).
- the converted pixel current data is hereinafter referred to as “linearized pixel current data”.
- the above-described conversion is performed on the decoded data.
- the present invention is not limited to this, and the above-described conversion is performed on the data before compression.
- current-voltage characteristics as indicated by reference numerals 63 and 64 in FIG. 22 are obtained without performing conversion on the decoded data.
- Each of the above formulas (8) and (9) is a function of V P (gray scale voltage corresponding to an arbitrary gray scale value P).
- V P gray scale voltage corresponding to an arbitrary gray scale value P.
- V P is the value shown by the arrow sign 65
- the value of the linearized pixel current data of the measurement point in the target pixel becomes a value of the position indicated by the arrow sign 66
- the value of the current data is the value at the position indicated by the arrow 67.
- output gradation voltage data is obtained for each pixel based on the decoded two-level pixel current data.
- arithmetic processing is performed by a logic circuit that expresses the above equations (9) and (11). Note that a method other than the above can be adopted as a specific method of correcting the gradation value.
- the gradation value correction unit 46 is composed of functional blocks as shown in FIG. That is, the gradation value correction unit 46 includes a first characteristic calculation unit 460, a second characteristic calculation unit 462, and a driving gradation value calculation unit 464. Based on the first level pixel current data and the second level pixel current data for each pixel, the first characteristic calculation unit 460 obtains a current voltage characteristic (measurement current voltage characteristic) at the time of measurement in each pixel.
- the second characteristic calculation unit 462 uses, for example, an average value of pixel current data in all pixels included in one row or all pixels in the display unit 50 as pixel current data I C (target pixel current data).
- a target current-voltage characteristic (target current-voltage characteristic) in each pixel is obtained. That is, the second characteristic calculation unit 462 obtains the target current-voltage characteristic in each pixel based on the first level pixel current data and the second level pixel current data for a plurality of pixels including the pixel.
- the first characteristic calculation unit 460 and the second characteristic calculation unit 462 convert the function representing the current-voltage characteristic from a non-linear function to a linear function (a function approximated by a straight line) as described above.
- the driving gradation value calculation unit 464 obtains output gradation voltage data according to the above-described procedure.
- the driving gradation value calculation unit 464 obtains the “current value corresponding to the gradation value of the gradation signal Va” obtained from the target current voltage characteristic and the “current value of the driving gradation signal VD obtained from the measurement current voltage characteristic”.
- the gradation value of the driving gradation signal VD is obtained so that the “current value corresponding to the gradation value” becomes equal.
- the organic EL display device 1 using the IGZO-TFT in order to suppress “occurrence of image sticking and luminance variation” due to “variation in characteristics of driving transistors and deterioration with time of OLED”.
- the acquired pixel current data I as compensation data is processed as follows. First, the pixel current data I is separated into high frequency component data IH and low frequency component data IL. And about the low frequency component data IL, the amount of the data which should be preserve
- the low amplitude data is deleted, and the high amplitude data is redefined based on the upper limit value and the lower limit value of the dead zone (the amplitude range of the data to be deleted). In this way, the amount of data to be stored in the storage unit 480 is also reduced for the high frequency component data IH.
- the compression process considering the characteristics of the IGZO-TFT is performed. For this reason, it is possible to greatly reduce the amount of compensation data to be stored without causing a display defect when displaying an image based on the decoded data.
- the capacity of the storage unit (memory) for storing the compensation data can be significantly reduced as compared with the conventional case.
- Second high-frequency component recording method For each pixel, 1-bit data indicating whether or not recording is necessary and data that actually needs to be recorded are sequentially stored in the storage unit 480.
- the second high-frequency component recording method is employed, for example, when the ratio of data that needs to be recorded in the high-frequency component data IH is a certain fixed value or more. According to the second high-frequency component recording method, it is not necessary to add position information for each data that needs to be recorded.
- FIG. 24 is a diagram illustrating a comparison result in which compression processing is performed by changing the width of the dead band when compressing the high-frequency component data IH and the sampling interval when compressing the low-frequency component data IL to various values.
- 24 means the sampling interval in the downsampling unit 426 (the same applies to FIGS. 25 and 26).
- the range from “ ⁇ 31” to “31” is the dead zone, and the sampling interval in the downsampling unit 426 is “4”.
- the overall compression rate was about 40%.
- the overall compression ratio is about 26% by setting the dead zone in the range of “ ⁇ 63” to “63” or the range of “ ⁇ 127” to “127”. Further, when the sampling interval is increased, the low frequency component data IL to be stored is reduced, so that the compression rate is further increased.
- FIG. 25 and 26 are diagrams for comparing the first high-frequency component recording method and the second high-frequency component recording method.
- FIG. 25 shows the overall compression rate and extraction of the high frequency component data IH when the extraction rate of the high frequency component data IH is 20% in each of the first high frequency component recording method and the second high frequency component recording method. The overall compression rate when the rate is 8% is shown.
- FIG. 26 shows ““ compression rate by the first high-frequency component recording method ”and“ compression by the second high-frequency component recording method ”when the extraction rates of the high-frequency component data IH are 20% and 8%. The ratio is “ratio”.
- the second high-frequency component recording method is more effective than the first high-frequency component recording method when the luminance variation in the display panel is particularly large and the memory capacity can be made relatively large. Data compression is performed.
- either the first high-frequency component recording method or the second high-frequency component recording method may be selected according to the memory capacity that can be mounted on the display device or the degree of luminance variation in the display panel.
- a display device having 1920 ⁇ 1080 pixels is compressed out of a storage unit (memory) 480 prepared for the sake of simplicity.
- the storage unit for later high-frequency component data is 2 Mbit.
- the data of each pixel is 6 bits.
- the data amount D1 of the pixel current data I before compression is as follows.
- the compression method of the high frequency component data IH is different from that in the first embodiment. Accordingly, a method for compressing the high-frequency component data IH in the present embodiment (hereinafter referred to as “dead zone method”) will be described below.
- the dead zone technique the dead zone width is set as the compression parameter P.
- the high frequency component data IH having a value within the range of the dead zone is deleted. For this reason, as the range of the compression parameter P increases, the compression rate increases, and the amount of data after compression (compressed high-frequency component data IHc) decreases.
- the compression parameter P is set to“ ⁇ 31 ”to“ 31 ”, the compression processing of the first row is performed, and the number of the high frequency component data IH that is out of the dead band range at that time is“ 130 ”.
- the compression parameter P is updated (changed) from “ ⁇ 32” to “32”, the compression processing is performed on the data in the second row.
- the compression parameter P is updated (changed) by the memory controller 482 (see FIG. 1).
- the average number of data D5 of the high-frequency component data IH to be stored per line in the compression process for the third and subsequent lines is as follows.
- the number of high-frequency component data IH (high-frequency component data IH that is actually to be stored) that is outside the range of the dead zone is larger than the target number of data to be stored. Therefore, after the compression parameter P is updated to “ ⁇ 33” to “33”, the compression process is performed on the data in the third row.
- the number of high-frequency component data IH that has become a value outside the range of the dead zone during the compression process for the data in the third row is “100”.
- the number of high-frequency component data IH (high-frequency component data IH that is actually stored) that is a value outside the range of the dead zone is smaller than the target number of data to be stored. Therefore, after the compression parameter P is updated to “ ⁇ 32” to “32”, the compression process is performed on the data in the fourth row.
- the high frequency component data IH is compressed while repeating the above processing. That is, in the present embodiment, the high-frequency signal compression processing unit 427 compresses data for each high-frequency component data IH corresponding to one row of pixel circuits 51.
- the dead band range (the upper limit value and the lower limit value of the amplitude), which is a reference when redefining high amplitude data in the high frequency component data IH, is the compression of the high frequency component data IH corresponding to the pixel circuits 51 in each row. Is calculated in consideration of the amount of data after compression and the capacity of the storage unit 480 for a row in which data has already been compressed. Thereby, the data amount of the compressed data is reduced so that the compressed pixel current data I is normally stored in the storage unit 480.
- the value of the compression parameter P is updated in increments of 1, but the present invention is not limited to this.
- the value of the compression parameter P may be varied greatly when the number of data that is outside the dead zone is significantly different from the target number of data to be stored. Further, for example, when the number of data having values outside the range of the dead zone is substantially equal to the target number of data to be stored, the value of the compression parameter P may be maintained as it is.
- the value of the compression parameter P is determined in consideration of the remaining capacity of the storage unit 480. Therefore, even when the luminance variation in the panel changes with time, the compressed data The amount of data can be reduced below a predetermined capacity.
- the compression method of the high frequency component data IH is different from that in the first embodiment. Therefore, a compression method (hereinafter referred to as “requantization method”) of the high frequency component data IH in the present embodiment will be described below.
- requantization method data (high-frequency component data IH) is multiplied by a predetermined coefficient before requantization, and the value of the coefficient for the multiplication is set as the compression parameter P.
- the value of the compression parameter P decreases, the data value obtained by multiplication approaches “0”, and the Huffman code length decreases.
- the compression rate increases, and the data amount of the compressed data (compressed high frequency component data IHc) decreases.
- a detailed example will be described.
- FIG. 27 is a diagram for explaining requantization of the high-frequency component data IH.
- FIG. 27 shows an example in which the high-frequency component data IH is requantized to 5-bit data.
- data with a small absolute value is roughly quantized, and data with a large absolute value is quantized finely.
- data in the range of “ ⁇ 15” to “15” is quantized to “0”
- data in the range of “16” to “31” is quantized to “1”.
- data within the range of “ ⁇ 63” to “ ⁇ 32” is quantized to “ ⁇ 5” to “ ⁇ 2”.
- the data in the range of “ ⁇ 63” to “ ⁇ 32” will be described in detail.
- the data in the range of “ ⁇ 63” to “ ⁇ 56” is quantized to “ ⁇ 5”, and “ ⁇ 55” to “ ⁇ ”
- the data within the range is quantized to “ ⁇ 2”.
- the high frequency component data IH within the range of “ ⁇ 103” to “103” is expressed by 5 bits.
- the quantization width (“31 steps”) with respect to the data range width (“ ⁇ 15” to “15”, “16” to “31”, etc.) , “16 increments”, etc.) are increased for the following reason.
- the distribution of the high frequency component data IH is generally close to a normal function. Therefore, even if gradation compensation is performed on data within a certain range, the effect of compensating for variations in current becomes relatively small.
- the quantization width is adjusted according to the distribution of the high frequency component data IH rather than making the quantization roughness uniform over the entire range. Quantization is performed more efficiently.
- the compression parameter P value coefficient value
- the compression parameter P (coefficient) is set to the same value for all data ranges.
- FIG. 28 is a diagram illustrating an example of a Huffman encoding table.
- the result of requantizing the high-frequency component data IH as shown in FIG. 15 into 5-bit data (specifically, data of 31 levels from “ ⁇ 15” to “15”) (see FIG. 27).
- 5-bit data specifically, data of 31 levels from “ ⁇ 15” to “15”
- FIG. 27 are sequentially replaced according to the Huffman coding table.
- data having a value of “ ⁇ 60” is requantized to “ ⁇ 5”.
- “ ⁇ 5” is encoded to “110111”.
- data having a value of “10” is requantized to “0”.
- “0” is encoded to “0”.
- the compression parameter P is set to“ 10/16 ”and compression processing including re-quantization for the first row is performed, and as a result, the number of bits of Huffman encoded data for one row becomes“ 1700 ”.
- the average number of bits D8 of the high-frequency component data IH to be stored per line in the compression process for the third and subsequent lines is as follows.
- the actual number of bits of the storage target data is relatively close to the target number of bits of the storage target data. Therefore, the compression process is performed on the data in the third row without updating the compression parameter P.
- the number of bits of the Huffman encoded data for one row becomes “2000” during the compression process for the data on the third row.
- the actual number of bits of the storage target data is larger than the target number of bits of the storage target data. Therefore, after the compression parameter P is updated to “10/16”, the compression process is performed on the data in the fourth row.
- the high frequency component data IH is compressed while repeating the above processing. That is, in the present embodiment, the high-frequency signal compression processing unit 427 performs compression processing including re-quantization and Huffman coding for each high-frequency component data IH corresponding to one row of pixel circuits 51. Before the requantization is performed, a process of multiplying the value of the high frequency component data IH to be requantized by a coefficient (parameter value) is performed. The coefficient is the data after the Huffman encoding for the row that has already been requantized and Huffman encoded when the requantization is performed on the high frequency component data IH corresponding to the pixel circuit 51 of each row. It is determined in consideration of the amount and the capacity of the storage unit 480.
- requantization may be performed on the low frequency component data IL.
- the value of the compression parameter P in the compression process including re-quantization is determined in consideration of the remaining capacity of the storage unit 480. In the case of changing together, the data amount of the compressed data can be reduced to a predetermined capacity or less.
- the capacity of the storage unit 480 for holding compensation data is limited, and the pixel current data I acquired by the current measurement unit 22 must be compressed at a compression rate of 25%.
- the low-frequency component data IL is compressed by sampling as in the first embodiment
- the high-frequency component data IH is compressed by requantization as in the third embodiment. It is assumed.
- Equation (12) is established between the overall data compression ratio K and the Huffman average code length H of the high-frequency component data IH.
- M represents the number of bits of one pixel current data I
- N represents a sampling interval when compressing the low frequency component data IL.
- the filter coefficient of the low pass filter 421 used for extracting the low frequency component data IL from the pixel current data I is changed according to the value of N.
- the application range of the filter coefficient may be limited depending on which height of the frequency component is allowed as the low frequency component data IL.
- the sampling interval N of the low-frequency component data IL is increased, the distribution of the low-frequency component data IL changes somewhat, and one of the data included in the low-frequency component data IL before the sampling interval N is increased. Shifts to the high frequency component data IH. Thereby, the number of high frequency component data IH increases. However, since the data level distribution hardly changes, the change in the Huffman average code length due to the above-described requantization is small.
- the downsampling unit 426 is selected from the data group constituting the low frequency component data IL so that a target compression rate obtained in consideration of the capacity of the storage unit 480 is obtained.
- a sampling interval N for extracting data to be stored in the storage unit 480 is calculated. For this reason, even when the luminance variation in the panel changes with the passage of time, the amount of compressed data can be reduced to a predetermined capacity or less.
- driving gradation value calculation unit 480 ... storage unit 482 ... memory controller
- I ... pixel current data IH ... high frequency component data IL ... low frequency component data
- IHc compressed high frequency component data
- ILc compressed low frequency component data
- Id decoded pixel current data
- IHd decoded high frequency component data
- ILd decoded low frequency component data
- Va gradation signal
- VD driving gradation signal
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
各画素回路に含まれる前記駆動トランジスタの駆動電流を測定して当該駆動電流の値を電流データとして出力する電流測定部と、
前記電流データを高周波成分データと低周波成分データとに分離する電流データ分離部と、
前記高周波成分データを圧縮する高周波成分データ圧縮処理部と、
前記低周波成分データを圧縮する低周波成分データ圧縮処理部と、
前記高周波成分データ圧縮処理部による圧縮後の高周波成分データと前記低周波成分データ圧縮処理部による圧縮後の低周波成分データとを保存するための記憶部と
を備え、
前記高周波成分データ圧縮処理部と前記低周波成分データ圧縮処理部とでは異なる手法でデータの圧縮が行われることを特徴とする。
前記電流データ分離部は、
前記電流データのうち前記低周波成分データを通過させて前記高周波成分データを除去する高周波成分除去フィルタと、
前記電流データのうち前記高周波成分データを通過させて前記低周波成分データを除去する低周波成分除去フィルタと
を有することを特徴とする。
前記電流データ分離部は、
前記電流データのうち前記低周波成分データを通過させて前記高周波成分データを除去する高周波成分除去フィルタと、
前記高周波成分除去フィルタを通過した前記低周波成分データと前記電流データとの差分に基づいて前記高周波成分データを求める高周波成分演算部と
を有することを特徴とする。
前記電流データ分離部は、
前記電流データのうち前記高周波成分データを通過させて前記低周波成分データを除去する低周波成分除去フィルタと、
前記低周波成分除去フィルタを通過した前記高周波成分データと前記電流データとの差分に基づいて前記低周波成分データを求める低周波成分演算部と
を有することを特徴とする。
前記低周波成分データ圧縮処理部は、前記低周波成分データを構成するデータ群の中から前記記憶部への保存対象とするデータを所定数の画素回路毎に抽出することを特徴とする。
前記低周波成分データ圧縮処理部は、前記記憶部の容量を考慮して求められる目標とする圧縮率が得られるように、前記低周波成分データを構成するデータ群の中から前記記憶部への保存対象とするデータを抽出する際の抽出間隔を算出することを特徴とする。
前記高周波成分データ圧縮処理部は、前記高周波成分データを所定幅以下の振幅を有する低振幅データと前記所定幅よりも大きな振幅を有する高振幅データとに分離し、前記低振幅データおよび前記高振幅データのうち前記高振幅データのみを前記記憶部に保存することを特徴とする。
前記高周波成分データ圧縮処理部は、前記所定幅の振幅の上限値および下限値を基準にして前記高振幅データの再定義を行い、再定義後の高振幅データを前記記憶部に保存することを特徴とする。
前記高周波成分データ圧縮処理部は、1行分の画素回路に対応する高周波成分データ毎にデータの圧縮を行い、
前記高振幅データの再定義が行われる際の基準となる振幅の上限値および下限値は、各行の画素回路に対応する高周波成分データの圧縮が行われる際に、既にデータの圧縮が行われている行についての圧縮後のデータ量と前記記憶部の容量とに基づいて求められることを特徴とする。
前記高周波成分データ圧縮処理部は、前記高周波成分データを所定幅以下の振幅を有する低振幅データと前記所定幅よりも大きな振幅を有する高振幅データとに分離し、前記低振幅データについては比較的粗く量子化を行い、前記高振幅データについては比較的細かく量子化を行い、量子化によって得られたデータを前記記憶部に保存することを特徴とする。
前記高周波成分データ圧縮処理部は、前記高周波成分データに対して再量子化を行い、再量子化によって得られたデータに対してハフマン符号化を行うことによって、前記高周波成分データを圧縮することを特徴とする。
前記高周波成分データ圧縮処理部は、1行分の画素回路に対応する高周波成分データ毎に再量子化およびハフマン符号化を行い、
再量子化が行われる前に、再量子化対象の高周波成分データの値にパラメータ値を乗ずる処理が行われ、
前記パラメータ値は、各行の画素回路に対応する高周波成分データに対して再量子化が行われる際に、既に再量子化およびハフマン符号化が行われている行についてのハフマン符号化後のデータ量と前記記憶部の容量とに基づいて求められることを特徴とする。
前記高周波成分データ圧縮処理部および前記低周波成分データ圧縮処理部の少なくとも一方は、再量子化を行うことによってデータを圧縮することを特徴とする。
各画素回路に対応する階調値を示す階調信号を受け取り、前記駆動トランジスタの駆動に供される駆動用階調信号を前記階調信号の階調値を補正することによって生成する階調値補正部を更に備え、
前記電流測定部は、各画素回路につき少なくとも2つの階調値に対応する駆動電流を測定し、
前記階調値補正部は、
前記電流測定部から出力される、各画素回路についての前記少なくとも2つの階調値に対応する電流データに基づいて、各画素回路における駆動電流の測定時点の電流電圧特性である測定電流電圧特性を求める第1の特性算出部と、
各画素回路における目標とする電流電圧特性である目標電流電圧特性を、当該画素回路を含む複数の画素回路についての前記少なくとも2つの階調値に対応する電流データに基づいて求める第2の特性算出部と、
前記目標電流電圧特性から求められる、前記階調信号の階調値に対応する電流値と、前記測定電流電圧特性から求められる、前記駆動用階調信号の階調値に対応する電流値とが等しくなるように、前記駆動用階調信号の階調値を求める駆動用階調値算出部と
を有することを特徴とする。
前記第1の特性算出部は、前記測定電流電圧特性を表す関数を非線形の関数から線形の関数に変換し、
前記第2の特性算出部は、前記目標電流電圧特性を表す関数を非線形の関数から線形の関数に変換することを特徴とする。
前記酸化物半導体は、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(О)を主成分とする酸化インジウムガリウム亜鉛であることを特徴とする。
各画素回路に含まれる前記駆動トランジスタの駆動電流を測定して当該駆動電流の値を電流データとして出力する電流測定ステップと、
前記電流データを高周波成分データと低周波成分データとに分離する電流データ分離ステップと、
前記高周波成分データを圧縮する高周波成分データ圧縮処理ステップと、
前記低周波成分データを圧縮する低周波成分データ圧縮処理ステップと、
前記高周波成分データ圧縮処理ステップによる圧縮後の高周波成分データと前記低周波成分データ圧縮処理ステップによる圧縮後の低周波成分データとを所定の記憶部に保存する保存ステップと
を含み、
前記高周波成分データ圧縮処理ステップと前記低周波成分データ圧縮処理ステップとでは異なる手法でデータの圧縮が行われることを特徴とする。
本発明の実施形態について説明する前に、データ圧縮に関する一般的な事項などについて説明する。従来より、目的や用途に応じて様々なデータ圧縮手法が提案されている。表示装置に内蔵されたメモリに圧縮データ(元のデータに対して圧縮処理が施された後のデータ)の保存が行われる場合、圧縮データのデータ量が所定容量以下となるような圧縮方法が採用されなければならない。この理由は、圧縮データがメモリに格納されないことに起因するデータ破損を防ぐため、および、そのようなデータ破損を回避すべくメモリ容量に余裕を持たせることに起因するコスト増を防ぐためである。
<1.1 全体構成>
図2は、本発明の第1の実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、タイミングコントローラ10,ソースドライバ20,ゲートドライバ30,階調信号補正回路40,および表示部50を含んでいる。ソースドライバ20には、データ電圧供給部21と電流測定部22とが含まれている。なお、ソースドライバ20およびゲートドライバ30のいずれか一方または双方が表示部50と一体的に形成された構成であっても良い。表示部50には、電気光学素子であるOLED52を含む複数の画素回路51が形成されている。画素回路51の詳しい構成については後述する。なお、図2には1つの画素回路51のみを示している。
図4は、ソースドライバ20の詳しい構成を示すブロック図である。ソースドライバ20は、シフトレジスタ23,第1ラッチ部24,第2ラッチ部25,D/A変換部26,および電圧出力/電流測定部27を備えている。第2ラッチ部25は、m本のデータ線DA1~DAmにそれぞれ対応するm個のラッチ回路250を備えている。D/A変換部26は、m本のデータ線DA1~DAmにそれぞれ対応するm個のD/Aコンバータ(以下「DAC」という。)260を備えている。電圧出力/電流測定部27は、m本のデータ線DA1~DAmにそれぞれ対応するm個の電圧出力/電流測定回路270を備えている。タイミングコントローラ10は、上記各種制御信号として、データスタートパルスDSP,データクロックDCK,ラッチストローブ信号LS,および入出力制御信号DWTをこのソースドライバ20に与える。階調信号補正回路40は、駆動用階調信号VDをこのソースドライバ20に与える。なお、通常の表示期間には、駆動用階調信号VDの値(階調値)は各画素における目標とする表示画像に応じた値となり、電流値測定期間には、駆動用階調信号VDの値は駆動電流を測定するための所定の値となる。
図5は、本実施形態における画素回路51および駆動電流の測定のための構成要素(ソースドライバ20の一部の構成要素)を示す回路図である。画素回路51は、1個のOLED52、3個のトランジスタT1~T3、および1個のコンデンサC1を備えている。トランジスタT1は駆動トランジスタであり、トランジスタT2は参照電圧供給トランジスタであり、トランジスタT3は入力トランジスタである。
図6は、画素回路51およびソースドライバ20の一部の構成要素の通常の表示期間における動作について説明するためのタイミングチャートである。なお、ここで着目する画素回路51においては時刻t1~t2の期間A3にデータ電圧Vmの書き込みが行われるべきものとする。
Vgs = Vref - Vm …(1)
Vm < ELVSS + Vtholed …(2)
上式(2)のように設定されたデータ電圧VmがOLED52のアノード端子(トランジスタT1のソース端子)に与えられることにより、上記期間A3(後述の期間A1,A2でも同様)において発光駆動電流Ioledが0になる。このため、OLED52の発光を停止することができる。
図7は、画素回路51およびソースドライバ20の一部の構成要素の電流値測定期間における動作について説明するためのタイミングチャートである。時刻t1~t2の期間A1および時刻t3~t4の期間A1のそれぞれは、駆動電流の測定に使用する階調値(以下「測定用階調値」という。)に対応するデータ電圧(以下、単に「測定用データ電圧」という。)を画素回路51に書き込むための期間である。時刻t2~t3の期間A2および時刻t4~t5の期間A2のそれぞれは、測定用データ電圧に応じた駆動電流を測定するための期間である。
Vgs = Vref - Vm1 …(3)
図8は、階調信号補正回路40の概略構成を示すブロック図である。階調信号補正回路40は、データ圧縮部42とデータ復号部44と階調値補正部46とによって構成されている。データ圧縮部42は、タイミングコントローラ10から送られる制御信号TCに基づいて、ソースドライバ20から送られる画素電流データIに圧縮を施す。データ復号部44は、タイミングコントローラ10から送られる制御信号TCに基づいて、データ圧縮部42によって圧縮された画素電流データIを復号する。階調値補正部46は、タイミングコントローラ10から送られる制御信号TCと階調信号Vaとに基づいて、各画素に対応する駆動用階調信号VDを生成する。その際、「駆動トランジスタ(図5のトランジスタT1)の特性のばらつきやOLED52の経時劣化」に起因する「焼き付きや輝度のばらつきの発生」を抑制するために、階調信号Vaの階調値に所定の補正が施される。なお、データ圧縮部42での画素電流データIの圧縮,データ復号部44での画素電流データIの復号,および階調値補正部46での階調信号Vaの補正についての詳しい説明は後述する。
<1.5.1 圧縮および復号の概略>
図1は、画素電流データIの圧縮および復号について説明するためのブロック図である。なお、以下においては、図1に示す構成要素の全体のことを「画素電流データ圧縮・復号部」という。画素電流データ圧縮・復号部は、ローパスフィルタ(高周波成分除去フィルタ)421,第1演算部422,ダウンサンプリング部426,高周波信号圧縮処理部427,記憶部(メモリ)480,メモリコントローラ482,ポストフィルタ・アップサンプリング部443,高周波信号復号処理部444,および第2演算部446を含んでいる。ローパスフィルタ421,第1演算部422,ダウンサンプリング部426,および高周波信号圧縮処理部427は、データ圧縮部42の構成要素である。ポストフィルタ・アップサンプリング部443,高周波信号復号処理部444,および第2演算部446はデータ復号部44の構成要素である。
MA = 10bit × 1,920 × 1
= 19,200bit (18.75キロビット)
ここで、本発明におけるデータ量の削減に関する考え方について説明する。まず、画素電流データIの例を図11に示す。図11には、或る2つの行(行A,行B)についての1~512列目の画素電流データIを示している。なお、画素電流データIの全体でのヒストグラムは図12に示すようなものとなる。画素電流データIは、低周波成分と高周波成分とに分けることができる。図13には1~512列目の画素電流データIの低周波成分を示し、図14には低周波成分の全体でのヒストグラムを示している。また、図15には1~512列目の画素電流データIの高周波成分を示し、図16には高周波成分の全体でのヒストグラムを示している。
本実施形態における圧縮処理について詳しく説明する。圧縮処理においては、まず、上述した第1のメモリに保存されている画素電流データIにローパスフィルタ421が適用される。これにより、画素電流データIのうちの低周波成分が低周波成分データILとして抽出される。次に、第1演算部422によって、画素電流データIと低周波成分データILとの差分が求められる。これにより、画素電流データIのうちの高周波成分が高周波成分データIHとして抽出される。
MB = MA / 4
= 19,200bit / 4
= 4,800bit (4.6875キロビット)
なお、駆動電流を測定する順序やサンプリングするデータの画素の位置は定まっているため、保存対象のデータに位置情報を付加する必要はない。
MC = 1,920 × (11+7) × 0.08
= 2,764.8bit (2.7キロビット)
なお、このようにしてデータ量を削減して高周波成分データを記憶部480に記録(保存)する手法のことを以下「第1の高周波成分記録方法」という。
MD = MB + MC
= 7,564.8bit (7.3875キロビット)
5型フルHDのパネルには1080行あるので、1水準についての各色の全体での保存すべきデータのデータ量MEは次のようになる。
ME = MD × 1,080
= 8,169,984bit (約7.792メガビット)
また、上記圧縮処理を行わない場合に記憶部480に保存すべき各色のデータのデータ量MFは次のようになる。
MF = 10bit × 1,920 × 1,080
= 20,736,000bit (約19.775メガビット)
よって、上述した例における画素電流データIの圧縮率は約39%となる。
上述の説明においては、ローパスフィルタ421を用いて画素電流データIを高周波成分データIHと低周波成分データILとに分離しているが、本発明はこれに限定されない。例えばハイパスフィルタを用いるなどして、ローパスフィルタを用いる手法とは別の手法で画素電流データIを高周波成分データIHと低周波成分データILとに分離しても良い。すなわち、画素電流データIを高周波成分データIHと低周波成分データILとに分離する電流データ分離部420として機能する構成要素を備えていれば、画素電流データIを高周波成分データIHと低周波成分データILとに分離する手法については特に限定されない。従って、画素電流データ圧縮・復号部の構成を図19のように表すことができる。また、低周波成分データILの圧縮を所定の間隔でのサンプリングとは異なる手法で行うようにしても良い。すなわち、低周波成分データILを圧縮する低周波信号圧縮処理部425として機能する構成要素を備えていれば、低周波成分データILを圧縮する手法については特に限定されない。従って、画素電流データ圧縮・復号部の構成を図20のように表すことができる。
次に、図21および図22を参照しつつ、階調値補正部46における階調値の補正について説明する。ここでの「階調値の補正」は、タイミングコントローラ10から階調信号補正回路40内の階調値補正部46に送られる階調信号Vaの階調値を補正して、ソースドライバ20に与えるべき駆動用階調信号VDの階調値を求めることを意味する。なお、ここでは、階調信号Vaとして階調値補正部46に送られるデータのことを「入力階調電圧データ」といい、駆動用階調信号VDとして階調値補正部46から出力されるデータのことを「出力階調電圧データ」という。入力階調電圧データおよび出力階調電圧データはいずれも階調値に対応付けられるデータである。また、入力階調電圧データおよび出力階調電圧データを総称して単に「階調電圧データ」という。
本実施形態によれば、IGZO-TFTを用いた有機EL表示装置1において、「駆動トランジスタの特性のばらつきやOLEDの経時劣化」に起因する「焼き付きや輝度のばらつきの発生」を抑制するために取得される補償用データとしての画素電流データIは、以下のように処理される。まず、画素電流データIは、高周波成分データIHと低周波成分データILとに分離される。そして、低周波成分データILについては、サンプリングによるデータの抽出が行われることによって、記憶部480に保存すべきデータの量が低減される。また、高周波成分データIHについては、低振幅データは削除され、高振幅データは不感帯(削除対象のデータの振幅の範囲)の上限値・下限値を基準にして再定義される。このようにして、高周波成分データIHについても、記憶部480に保存すべきデータの量が低減される。
<1.8.1 高周波成分データの圧縮について>
高周波成分データIHの記憶部480への記録(保存)に関し、上述した第1の高周波成分記録方法とは異なる手法(「第2の高周波成分記録方法」という。)について説明する。第2の高周波成分記録方法では、各画素について、記録が必要であるか否かを示す1ビットのデータと、実際に記録が必要なデータとが順次に記憶部480に格納される。第2の高周波成分記録方法は、例えば、高周波成分データIHのうち記録の必要なデータの割合が或る一定値以上である場合に採用される。この第2の高周波成分記録方法によれば、記録の必要なデータ毎に位置情報を付加する必要が無い。
図24は、高周波成分データIHを圧縮する際の不感帯の幅および低周波成分データILを圧縮する際のサンプリング間隔を様々な値に変えて圧縮処理を行った比較結果を示す図である。なお、図24における間引き画素単位とはダウンサンプリング部426におけるサンプリング間隔のことを意味している(図25,図26においても同様)。上記第1の実施形態においては、“-31”~“31”の範囲が不感帯であって、ダウンサンプリング部426におけるサンプリング間隔は“4”であった。このとき、全体での圧縮率は約40%であった。ここで、図24より、“-63”~“63”の範囲あるいは“-127”~“127”の範囲を不感帯とすることによって全体での圧縮率が約26%となることが把握される。また、サンプリング間隔を大きくすると、保存対象の低周波成分データILが少なくなるので、圧縮率がより高められる。
図25および図26は、第1の高周波成分記録方法と第2の高周波成分記録方法とを比較するための図である。図25には、第1の高周波成分記録方法および第2の高周波成分記録方法のそれぞれにおいて高周波成分データIHの抽出率が20%であった場合の全体での圧縮率と高周波成分データIHの抽出率が8%であった場合の全体での圧縮率を示している。また、図26には、高周波成分データIHの抽出率が20%および8%である場合における「“第1の高周波成分記録方法での圧縮率”と“第2の高周波成分記録方法での圧縮率”との比」を示している。
以下、上記第1の実施形態と異なる点についてのみ説明し、上記第1の実施形態と同様の点については説明を省略する。なお、本実施形態および後述する第3の実施形態においては、1920×1080個の画素を有する表示装置に関し、説明を簡単にするために、用意されている記憶部(メモリ)480のうち、圧縮後の高周波成分データ用の記憶部が2Mbitであると仮定する。なお、各画素のデータは6bitであると仮定する。この場合、圧縮前の画素電流データIのデータ量D1は次のようになる。
D1 = 6 × 1,920 × 1,080
= 12,441,600bit (約11.87メガビット)
従って、約17%の圧縮率が実現されなければならない。1行ずつ圧縮パラメータを制御しながら圧縮処理が行われる場合、圧縮後の画素電流データIについての1行当たりの平均データ量D2を次のようにする必要がある。
D2 = 2 × 1,024 × 1,024 / 1,080
= 1,941bit
本実施形態においては、高周波成分データIHの圧縮方法が上記第1の実施形態とは異なる。そこで、以下、本実施形態における高周波成分データIHの圧縮方法(以下、「不感帯手法」という。)について説明する。不感帯手法においては、不感帯の幅が圧縮パラメータPに設定される。上述したように、不感帯の範囲内の値を持つ高周波成分データIHは削除される。このため、圧縮パラメータPの範囲が大きくなるにつれて、圧縮率が高くなり、圧縮後のデータ(圧縮済み高周波成分データIHc)のデータ量は小さくなる。ここで、不感帯の範囲外の値を持つ高周波成分データIHを記憶部480に保存するために、1つのデータにつき17bit(振幅の情報6bitおよび水平位置情報11bit)が必要となる。従って、1行当たりの保存対象となる高周波成分データIHの平均データ数D3は次のようになる。
D3 = (2 × 1,024 × 1,024 / 1,080) / 17
= 114個
D4 = ((2 × 1,024 × 1,024 - 17 × 130) / (1,080 - 1)) / 17
= 114個
D4が“114”であるのに対し、1行目に関して不感帯の範囲外の値となった高周波成分データIHの数が“130”である。2行目のデータの傾向が1行目のデータの傾向とほぼ同じであると仮定すると、圧縮パラメータPの値を維持した場合には、目標とする保存対象データ数よりも不感帯の範囲外の値となる高周波成分データIH(実際に保存対象となる高周波成分データIH)の数の方が多くなる。このため、圧縮パラメータPを“-32”~“32”に更新(変更)してから2行目のデータについての圧縮処理が行われる。なお、圧縮パラメータPの更新(変更)はメモリコントローラ482(図1参照)によって行われる。
D5 = ((2 × 1,024 × 1,024 - 17 × (130 + 120) / (1,080 - 2)) / 17
= 114個
ここでも、目標とする保存対象データ数よりも不感帯の範囲外の値となる高周波成分データIH(実際に保存対象となる高周波成分データIH)の数の方が多くなっている。従って、圧縮パラメータPを“-33”~“33”に更新してから3行目のデータについての圧縮処理が行われる。
D6 = ((2 × 1,024 × 1,024 - 17 × (130 + 120 + 100) / (1,080 - 3)) / 17
= 114個
ここでは、目標とする保存対象データ数よりも不感帯の範囲外の値となる高周波成分データIH(実際に保存対象となる高周波成分データIH)の数の方が少なくなっている。従って、圧縮パラメータPを“-32”~“32”に更新してから4行目のデータについての圧縮処理が行われる。
表示装置での画像表示に関し、初期状態では輝度のばらつきがある程度の領域内におさまっていたとしても、時間の経過とともに輝度のばらつきが徐々に大きくなることが起こり得る。この点、本実施形態によれば、記憶部480の残容量を考慮しつつ圧縮パラメータPの値が決定されるので、パネルにおける輝度のばらつきが時間の経過とともに変化する場合にも、圧縮データのデータ量を所定容量以下にすることができる。
<3.1 圧縮手法>
本実施形態においては、高周波成分データIHの圧縮方法が上記第1の実施形態とは異なる。そこで、以下、本実施形態における高周波成分データIHの圧縮方法(以下、「再量子化手法」という。)について説明する。再量子化手法においては、再量子化前にデータ(高周波成分データIH)と所定の係数との乗算が行われ、その乗算用の係数の値が圧縮パラメータPに設定される。圧縮パラメータPの値が小さくなるにつれて、乗算によって得られるデータの値は“0”に近づき、Huffman符号長が短くなる。これにより、圧縮率が高くなり、圧縮後のデータ(圧縮済み高周波成分データIHc)のデータ量は小さくなる。以下、具体例を挙げて詳しく説明する。
D7 = (2 × 1,024 × 1,024 - 1,700) / (1,080 - 1)
= 1,942
D7が“1942”であるのに対し、1行目についてのHuffman符号化データのビット数が“1700”である。2行目のデータの傾向が1行目のデータの傾向とほぼ同じであると仮定すると、圧縮パラメータPの値を維持した場合には、保存対象データの実際のビット数は、保存対象データの目標とするビット数よりも少なくなる。このため、圧縮パラメータPを“11/16”に更新してから2行目のデータについての圧縮処理が行われる。
D8 = (2 × 1,024 × 1,024 - (1,700 + 1,950)) / (1,080 - 2)
= 1,942
ここでは、保存対象データの実際のビット数は、保存対象データの目標とするビット数に比較的近い値となっている。従って、圧縮パラメータPを更新することなく3行目のデータについての圧縮処理が行われる。
D9 = (2 × 1,024 × 1,024 - (1,700 + 1,950 +2,000)) / (1,080 - 3)
= 1,941
ここでは、保存対象データの実際のビット数は、保存対象データの目標とするビット数よりも大きくなっている。従って、圧縮パラメータPを“10/16”に更新してから4行目のデータについての圧縮処理が行われる。
表示装置での画像表示に関し、初期状態では輝度のばらつきがある程度の領域内におさまっていたとしても、時間の経過とともに輝度のばらつきが徐々に大きくなることが起こり得る。この点、本実施形態によれば、記憶部480の残容量を考慮しつつ再量子化を含む圧縮処理の際の圧縮パラメータPの値が決定されるので、パネルにおける輝度のばらつきが時間の経過とともに変化する場合にも、圧縮データのデータ量を所定容量以下にすることができる。
<4.1 サンプリング間隔の調整>
本実施形態においては、補償用データを保持するための記憶部480の容量に制限があり、電流測定部22によって取得された画素電流データIに25%の圧縮率で圧縮が施されなければならないものと仮定する。なお、低周波成分データILについては上記第1の実施形態と同様にサンプリングによる圧縮が行われ、高周波成分データIHについては上記第3の実施形態と同様に再量子化による圧縮が行われることを前提としている。
表示装置での画像表示に関し、初期状態では輝度のばらつきがある程度の領域内におさまっていたとしても、時間の経過とともに輝度のばらつきが徐々に大きくなることが起こり得る。この点、本実施形態においては、ダウンサンプリング部426は、記憶部480の容量を考慮して求められる目標とする圧縮率が得られるように、低周波成分データILを構成するデータ群の中から記憶部480への保存対象とするデータを抽出する際のサンプリング間隔Nを算出する。このため、パネルにおける輝度のばらつきが時間の経過とともに変化する場合にも、圧縮データのデータ量を所定容量以下にすることができる。
本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、高周波成分データIHあるいは低周波成分データILを圧縮する具体的な方法については、上記各実施形態で説明した方法には限定されない。
10…タイミングコントローラ
20…ソースドライバ
21…データ電圧供給部
22…電流測定部
30…ゲートドライバ
40…階調信号補正回路
42…データ圧縮部
44…データ復号部
46…階調値補正部
50…表示部
51…画素回路
52…OLED(電気光学素子)
420…電流データ分離部
421…ローパスフィルタ
422…第1演算部
425…低周波信号圧縮処理部
426…ダウンサンプリング部
427…高周波信号圧縮処理部
443…ポストフィルタ・アップサンプリング部
444…高周波信号復号処理部
460…第1の特性算出部
462…第2の特性算出部
464…駆動用階調値算出部
480…記憶部
482…メモリコントローラ
I…画素電流データ
IH…高周波成分データ
IL…低周波成分データ
IHc…圧縮済み高周波成分データ
ILc…圧縮済み低周波成分データ
Id…復号済み画素電流データ
IHd…復号済み高周波成分データ
ILd…復号済み低周波成分データ
Va…階調信号
VD…駆動用階調信号
Claims (17)
- 電流によって輝度が制御される電気光学素子と前記電気光学素子に供給すべき電流を制御するためのトランジスタであって酸化物半導体によってチャネル層が形成されたトランジスタである駆動トランジスタとをそれぞれが有する複数の画素回路を含む表示装置であって、
各画素回路に含まれる前記駆動トランジスタの駆動電流を測定して当該駆動電流の値を電流データとして出力する電流測定部と、
前記電流データを高周波成分データと低周波成分データとに分離する電流データ分離部と、
前記高周波成分データを圧縮する高周波成分データ圧縮処理部と、
前記低周波成分データを圧縮する低周波成分データ圧縮処理部と、
前記高周波成分データ圧縮処理部による圧縮後の高周波成分データと前記低周波成分データ圧縮処理部による圧縮後の低周波成分データとを保存するための記憶部と
を備え、
前記高周波成分データ圧縮処理部と前記低周波成分データ圧縮処理部とでは異なる手法でデータの圧縮が行われることを特徴とする、表示装置。 - 前記電流データ分離部は、
前記電流データのうち前記低周波成分データを通過させて前記高周波成分データを除去する高周波成分除去フィルタと、
前記電流データのうち前記高周波成分データを通過させて前記低周波成分データを除去する低周波成分除去フィルタと
を有することを特徴とする、請求項1に記載の表示装置。 - 前記電流データ分離部は、
前記電流データのうち前記低周波成分データを通過させて前記高周波成分データを除去する高周波成分除去フィルタと、
前記高周波成分除去フィルタを通過した前記低周波成分データと前記電流データとの差分に基づいて前記高周波成分データを求める高周波成分演算部と
を有することを特徴とする、請求項1に記載の表示装置。 - 前記電流データ分離部は、
前記電流データのうち前記高周波成分データを通過させて前記低周波成分データを除去する低周波成分除去フィルタと、
前記低周波成分除去フィルタを通過した前記高周波成分データと前記電流データとの差分に基づいて前記低周波成分データを求める低周波成分演算部と
を有することを特徴とする、請求項1に記載の表示装置。 - 前記低周波成分データ圧縮処理部は、前記低周波成分データを構成するデータ群の中から前記記憶部への保存対象とするデータを所定数の画素回路毎に抽出することを特徴とする、請求項1に記載の表示装置。
- 前記低周波成分データ圧縮処理部は、前記記憶部の容量を考慮して求められる目標とする圧縮率が得られるように、前記低周波成分データを構成するデータ群の中から前記記憶部への保存対象とするデータを抽出する際の抽出間隔を算出することを特徴とする、請求項5に記載の表示装置。
- 前記高周波成分データ圧縮処理部は、前記高周波成分データを所定幅以下の振幅を有する低振幅データと前記所定幅よりも大きな振幅を有する高振幅データとに分離し、前記低振幅データおよび前記高振幅データのうち前記高振幅データのみを前記記憶部に保存することを特徴とする、請求項1に記載の表示装置。
- 前記高周波成分データ圧縮処理部は、前記所定幅の振幅の上限値および下限値を基準にして前記高振幅データの再定義を行い、再定義後の高振幅データを前記記憶部に保存することを特徴とする、請求項7に記載の表示装置。
- 前記高周波成分データ圧縮処理部は、1行分の画素回路に対応する高周波成分データ毎にデータの圧縮を行い、
前記高振幅データの再定義が行われる際の基準となる振幅の上限値および下限値は、各行の画素回路に対応する高周波成分データの圧縮が行われる際に、既にデータの圧縮が行われている行についての圧縮後のデータ量と前記記憶部の容量とに基づいて求められることを特徴とする、請求項8に記載の表示装置。 - 前記高周波成分データ圧縮処理部は、前記高周波成分データを所定幅以下の振幅を有する低振幅データと前記所定幅よりも大きな振幅を有する高振幅データとに分離し、前記低振幅データについては比較的粗く量子化を行い、前記高振幅データについては比較的細かく量子化を行い、量子化によって得られたデータを前記記憶部に保存することを特徴とする、請求項1に記載の表示装置。
- 前記高周波成分データ圧縮処理部は、前記高周波成分データに対して再量子化を行い、再量子化によって得られたデータに対してハフマン符号化を行うことによって、前記高周波成分データを圧縮することを特徴とする、請求項1に記載の表示装置。
- 前記高周波成分データ圧縮処理部は、1行分の画素回路に対応する高周波成分データ毎に再量子化およびハフマン符号化を行い、
再量子化が行われる前に、再量子化対象の高周波成分データの値にパラメータ値を乗ずる処理が行われ、
前記パラメータ値は、各行の画素回路に対応する高周波成分データに対して再量子化が行われる際に、既に再量子化およびハフマン符号化が行われている行についてのハフマン符号化後のデータ量と前記記憶部の容量とに基づいて求められることを特徴とする、請求項11に記載の表示装置。 - 前記高周波成分データ圧縮処理部および前記低周波成分データ圧縮処理部の少なくとも一方は、再量子化を行うことによってデータを圧縮することを特徴とする、請求項1に記載の表示装置。
- 各画素回路に対応する階調値を示す階調信号を受け取り、前記駆動トランジスタの駆動に供される駆動用階調信号を前記階調信号の階調値を補正することによって生成する階調値補正部を更に備え、
前記電流測定部は、各画素回路につき少なくとも2つの階調値に対応する駆動電流を測定し、
前記階調値補正部は、
前記電流測定部から出力される、各画素回路についての前記少なくとも2つの階調値に対応する電流データに基づいて、各画素回路における駆動電流の測定時点の電流電圧特性である測定電流電圧特性を求める第1の特性算出部と、
各画素回路における目標とする電流電圧特性である目標電流電圧特性を、当該画素回路を含む複数の画素回路についての前記少なくとも2つの階調値に対応する電流データに基づいて求める第2の特性算出部と、
前記目標電流電圧特性から求められる、前記階調信号の階調値に対応する電流値と、前記測定電流電圧特性から求められる、前記駆動用階調信号の階調値に対応する電流値とが等しくなるように、前記駆動用階調信号の階調値を求める駆動用階調値算出部と
を有することを特徴とする、請求項1に記載の表示装置。 - 前記第1の特性算出部は、前記測定電流電圧特性を表す関数を非線形の関数から線形の関数に変換し、
前記第2の特性算出部は、前記目標電流電圧特性を表す関数を非線形の関数から線形の関数に変換することを特徴とする、請求項14に記載の表示装置。 - 前記酸化物半導体は、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(О)を主成分とする酸化インジウムガリウム亜鉛であることを特徴とする、請求項1に記載の表示装置。
- 電流によって輝度が制御される電気光学素子と前記電気光学素子に供給すべき電流を制御するためのトランジスタであって酸化物半導体によってチャネル層が形成されたトランジスタである駆動トランジスタとをそれぞれが有する複数の画素回路を含む表示装置におけるデータ処理方法であって、
各画素回路に含まれる前記駆動トランジスタの駆動電流を測定して当該駆動電流の値を電流データとして出力する電流測定ステップと、
前記電流データを高周波成分データと低周波成分データとに分離する電流データ分離ステップと、
前記高周波成分データを圧縮する高周波成分データ圧縮処理ステップと、
前記低周波成分データを圧縮する低周波成分データ圧縮処理ステップと、
前記高周波成分データ圧縮処理ステップによる圧縮後の高周波成分データと前記低周波成分データ圧縮処理ステップによる圧縮後の低周波成分データとを所定の記憶部に保存する保存ステップと
を含み、
前記高周波成分データ圧縮処理ステップと前記低周波成分データ圧縮処理ステップとでは異なる手法でデータの圧縮が行われることを特徴とする、データ処理方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/759,440 US9495894B2 (en) | 2013-01-21 | 2013-12-25 | Display device, and data processing method in display device |
CN201380070623.XA CN104919517B (zh) | 2013-01-21 | 2013-12-25 | 显示装置和显示装置的数据处理方法 |
JP2014557374A JP6012768B2 (ja) | 2013-01-21 | 2013-12-25 | 表示装置、および表示装置におけるデータ処理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-008059 | 2013-01-21 | ||
JP2013008059 | 2013-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014112299A1 true WO2014112299A1 (ja) | 2014-07-24 |
Family
ID=51209401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084564 WO2014112299A1 (ja) | 2013-01-21 | 2013-12-25 | 表示装置、および表示装置におけるデータ処理方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9495894B2 (ja) |
JP (1) | JP6012768B2 (ja) |
CN (1) | CN104919517B (ja) |
WO (1) | WO2014112299A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017097767A (ja) * | 2015-11-27 | 2017-06-01 | カシオ計算機株式会社 | 移動情報取得装置、移動情報取得方法、及び、プログラム |
JP2020191634A (ja) * | 2019-05-23 | 2020-11-26 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 表示装置のストレス補償の方法およびシステム |
US11462144B2 (en) | 2018-09-28 | 2022-10-04 | Sharp Kabushiki Kaisha | Display device and driving method therefor |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015037331A1 (ja) | 2013-09-10 | 2015-03-19 | シャープ株式会社 | 表示装置およびその駆動方法 |
KR102112325B1 (ko) * | 2014-01-08 | 2020-05-19 | 삼성디스플레이 주식회사 | 유기전계발광 표시장치 및 그의 구동방법 |
KR102180792B1 (ko) * | 2014-07-30 | 2020-11-20 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 유기 발광 표시 장치의 구동 방법 |
KR102280452B1 (ko) * | 2014-11-05 | 2021-07-23 | 삼성디스플레이 주식회사 | 표시장치 및 그의 구동방법 |
KR102306070B1 (ko) * | 2015-04-06 | 2021-09-29 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 유기 발광 표시 장치의 구동 방법 |
WO2016163314A1 (ja) * | 2015-04-10 | 2016-10-13 | シャープ株式会社 | 液晶表示装置およびその駆動方法 |
KR102452533B1 (ko) * | 2015-09-25 | 2022-10-11 | 삼성디스플레이 주식회사 | 유기전계발광 표시장치 및 그의 구동방법 |
CN105788551B (zh) * | 2016-05-05 | 2018-10-19 | 深圳市华星光电技术有限公司 | 一种可兼容多种显示模式的驱动系统 |
KR102601350B1 (ko) * | 2016-05-31 | 2023-11-13 | 엘지디스플레이 주식회사 | 데이터 압축 방법 및 이를 이용한 표시 장치 |
KR102526355B1 (ko) * | 2016-09-22 | 2023-05-02 | 엘지디스플레이 주식회사 | 유기 발광 표시 장치 |
CN106782300B (zh) * | 2016-11-11 | 2019-01-22 | 深圳市华星光电技术有限公司 | Oled显示面板的补偿数据处理方法 |
US10706779B2 (en) * | 2017-02-23 | 2020-07-07 | Synaptics Incorporated | Device and method for image data processing |
KR102309599B1 (ko) * | 2017-04-11 | 2021-10-08 | 삼성디스플레이 주식회사 | 유기전계발광 표시장치 |
CN110276812B (zh) * | 2018-03-13 | 2023-03-14 | 奇景光电股份有限公司 | 有机发光二极管显示面板的补偿数据的压缩方法 |
US10860399B2 (en) | 2018-03-15 | 2020-12-08 | Samsung Display Co., Ltd. | Permutation based stress profile compression |
US10803791B2 (en) | 2018-10-31 | 2020-10-13 | Samsung Display Co., Ltd. | Burrows-wheeler based stress profile compression |
CN109300444B (zh) * | 2018-12-03 | 2020-01-21 | 深圳市华星光电半导体显示技术有限公司 | 补偿表的压缩方法 |
CN109887456A (zh) * | 2019-01-17 | 2019-06-14 | 硅谷数模半导体(北京)有限公司 | 数据压缩方法及装置 |
KR102639309B1 (ko) | 2019-06-12 | 2024-02-23 | 삼성디스플레이 주식회사 | 표시 장치 |
US11245931B2 (en) | 2019-09-11 | 2022-02-08 | Samsung Display Co., Ltd. | System and method for RGBG conversion |
CN111341258B (zh) * | 2020-03-25 | 2021-04-02 | 上海天马有机发光显示技术有限公司 | 像素驱动电路及其驱动方法和显示装置 |
US11874997B2 (en) * | 2020-11-27 | 2024-01-16 | Sharp Kabushiki Kaisha | Display device equipped with touch panel and control method therefor |
KR20230046532A (ko) * | 2021-09-30 | 2023-04-06 | 엘지디스플레이 주식회사 | 표시 장치, 보상 시스템, 및 보상 데이터 압축 방법 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06225151A (ja) * | 1992-09-08 | 1994-08-12 | Victor Co Of Japan Ltd | 帯域圧縮伸長方式及び帯域圧縮伸長装置 |
JPH10254410A (ja) * | 1997-03-12 | 1998-09-25 | Pioneer Electron Corp | 有機エレクトロルミネッセンス表示装置及びその駆動方法 |
JP2002354394A (ja) * | 2001-05-29 | 2002-12-06 | Konica Corp | デジタルスチルカメラ |
JP2003195813A (ja) * | 2001-09-07 | 2003-07-09 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2006287633A (ja) * | 2005-03-31 | 2006-10-19 | Seiko Epson Corp | 画像表示装置の補正値作成方法、この方法をコンピュータに実行させるプログラム、このプログラムを記録したコンピュータ読み取り可能な記録媒体、及び画像表示装置 |
JP2007271940A (ja) * | 2006-03-31 | 2007-10-18 | Toshiba Corp | 映像表示装置及び映像表示方法 |
JP2007279290A (ja) * | 2006-04-05 | 2007-10-25 | Eastman Kodak Co | 表示装置 |
WO2008066025A1 (fr) * | 2006-11-27 | 2008-06-05 | Panasonic Corporation | Appareil de codage d'image et partie de décodage d'image |
JP2009258302A (ja) * | 2008-04-15 | 2009-11-05 | Eastman Kodak Co | 有機el表示装置のムラ補正データ取得方法、有機el表示装置およびその製造方法 |
JP2011019077A (ja) * | 2009-07-08 | 2011-01-27 | Canon Inc | 符号化装置および符号化方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0622515A (ja) * | 1992-07-02 | 1994-01-28 | Fanuc Ltd | 籠形誘導電動機の回転子 |
JP2001175221A (ja) | 1999-12-17 | 2001-06-29 | Toshiba Corp | 表示装置 |
TWI221268B (en) * | 2001-09-07 | 2004-09-21 | Semiconductor Energy Lab | Light emitting device and method of driving the same |
JP4201338B2 (ja) * | 2004-02-03 | 2008-12-24 | シャープ株式会社 | 画像処理装置、画像処理方法、画像表示装置、携帯用情報機器、制御プログラムおよび可読記録媒体 |
JP4872213B2 (ja) | 2005-01-17 | 2012-02-08 | ソニー株式会社 | 焼き付き情報の保存方法、焼き付き情報の復元方法、焼き付き情報保存装置、焼き付き情報復元装置、自発光装置及びプログラム |
JP2006284971A (ja) | 2005-04-01 | 2006-10-19 | Sony Corp | 焼き付き現象補正方法、自発光装置、焼き付き現象補正装置及びプログラム |
JP2007286295A (ja) | 2006-04-17 | 2007-11-01 | Sony Corp | 焼き付き補正装置、自発光表示装置及びプログラム |
DE102009024853A1 (de) * | 2008-06-12 | 2009-12-17 | Abb Technology Ag | Fernmesstechnische Einrichtung mit einem schleifengespeisten Gerät und Verfahren zu dessen Betriebsspannungsversorgung |
US20120314969A1 (en) * | 2010-02-25 | 2012-12-13 | Sharp Kabushiki Kaisha | Image processing apparatus and display device including the same, and image processing method |
CN103189907A (zh) * | 2010-09-01 | 2013-07-03 | 视瑞尔技术公司 | 背板装置 |
JP6099372B2 (ja) * | 2011-12-05 | 2017-03-22 | 株式会社半導体エネルギー研究所 | 半導体装置及び電子機器 |
JP5389966B2 (ja) | 2012-02-28 | 2014-01-15 | シャープ株式会社 | 表示装置および表示装置の輝度ムラ補正方法 |
-
2013
- 2013-12-25 US US14/759,440 patent/US9495894B2/en active Active
- 2013-12-25 CN CN201380070623.XA patent/CN104919517B/zh active Active
- 2013-12-25 JP JP2014557374A patent/JP6012768B2/ja active Active
- 2013-12-25 WO PCT/JP2013/084564 patent/WO2014112299A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06225151A (ja) * | 1992-09-08 | 1994-08-12 | Victor Co Of Japan Ltd | 帯域圧縮伸長方式及び帯域圧縮伸長装置 |
JPH10254410A (ja) * | 1997-03-12 | 1998-09-25 | Pioneer Electron Corp | 有機エレクトロルミネッセンス表示装置及びその駆動方法 |
JP2002354394A (ja) * | 2001-05-29 | 2002-12-06 | Konica Corp | デジタルスチルカメラ |
JP2003195813A (ja) * | 2001-09-07 | 2003-07-09 | Semiconductor Energy Lab Co Ltd | 発光装置 |
JP2006287633A (ja) * | 2005-03-31 | 2006-10-19 | Seiko Epson Corp | 画像表示装置の補正値作成方法、この方法をコンピュータに実行させるプログラム、このプログラムを記録したコンピュータ読み取り可能な記録媒体、及び画像表示装置 |
JP2007271940A (ja) * | 2006-03-31 | 2007-10-18 | Toshiba Corp | 映像表示装置及び映像表示方法 |
JP2007279290A (ja) * | 2006-04-05 | 2007-10-25 | Eastman Kodak Co | 表示装置 |
WO2008066025A1 (fr) * | 2006-11-27 | 2008-06-05 | Panasonic Corporation | Appareil de codage d'image et partie de décodage d'image |
JP2009258302A (ja) * | 2008-04-15 | 2009-11-05 | Eastman Kodak Co | 有機el表示装置のムラ補正データ取得方法、有機el表示装置およびその製造方法 |
JP2011019077A (ja) * | 2009-07-08 | 2011-01-27 | Canon Inc | 符号化装置および符号化方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017097767A (ja) * | 2015-11-27 | 2017-06-01 | カシオ計算機株式会社 | 移動情報取得装置、移動情報取得方法、及び、プログラム |
US10348967B2 (en) | 2015-11-27 | 2019-07-09 | Casio Computer Co., Ltd. | Motion information obtaining device, motion information obtaining method, and non-transitory recording medium |
US11462144B2 (en) | 2018-09-28 | 2022-10-04 | Sharp Kabushiki Kaisha | Display device and driving method therefor |
JP2020191634A (ja) * | 2019-05-23 | 2020-11-26 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 表示装置のストレス補償の方法およびシステム |
JP7393295B2 (ja) | 2019-05-23 | 2023-12-06 | 三星ディスプレイ株式會社 | 表示装置のストレス補償方法およびシステム |
Also Published As
Publication number | Publication date |
---|---|
CN104919517B (zh) | 2016-10-26 |
US9495894B2 (en) | 2016-11-15 |
CN104919517A (zh) | 2015-09-16 |
JPWO2014112299A1 (ja) | 2017-01-19 |
US20150356899A1 (en) | 2015-12-10 |
JP6012768B2 (ja) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6012768B2 (ja) | 表示装置、および表示装置におけるデータ処理方法 | |
US9818373B2 (en) | Data processing device for display device, display device equipped with same and data processing method for display device | |
CN108009993B (zh) | 处理高动态范围图像的方法和模块以及使用其的显示设备 | |
JP6138236B2 (ja) | 表示装置およびその駆動方法 | |
US9953563B2 (en) | Display device and drive current detection method for same | |
US10019942B2 (en) | Data driver and organic light emitting diode display device using the same | |
DE102020103876A1 (de) | Anzeige-Ansteuerschaltung und Anzeigevorrichtung mit derselben | |
KR102144329B1 (ko) | 유기 발광 디스플레이 장치와 이의 구동 방법 | |
US9443471B2 (en) | Display device and driving method thereof | |
KR102116034B1 (ko) | 비선형 감마 보상 전류 모드 디지털-아날로그 컨버터 및 이를 포함하는 표시 장치 | |
US10141020B2 (en) | Display device and drive method for same | |
US11450249B2 (en) | Display device and compensation method thereof | |
US11257430B2 (en) | Drive method and display device | |
US9747836B2 (en) | Signal processing method, display device, and electronic apparatus | |
KR102132866B1 (ko) | 유기 발광 디스플레이 장치와 이의 구동 방법 | |
CN111599307A (zh) | Oled显示面板的像素补偿方法及信息处理装置 | |
KR102034051B1 (ko) | 곡면형 평판 표시장치와 그 구동방법 | |
KR102511039B1 (ko) | 영상 처리 방법 및 영상 처리 회로와 그를 이용한 표시 장치 | |
KR20160010163A (ko) | 유기전계 발광표시장치 및 이의 데이터 처리방법 | |
US11430387B2 (en) | Display device and driving method therefor | |
KR101970561B1 (ko) | 유기 발광 다이오드 표시장치와 그 구동방법 | |
KR20170026976A (ko) | 유기전계발광표시장치와 이의 구동방법 | |
CN110880299B (zh) | 画面显示方法及画面显示装置 | |
KR20240092577A (ko) | 데이터 전송 방법 및 장치와, 데이터 전송 장치를 포함한 표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13872011 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014557374 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14759440 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13872011 Country of ref document: EP Kind code of ref document: A1 |