WO2014112008A1 - 樹脂組成物、樹脂成形体、およびこれらの製造方法 - Google Patents
樹脂組成物、樹脂成形体、およびこれらの製造方法 Download PDFInfo
- Publication number
- WO2014112008A1 WO2014112008A1 PCT/JP2013/007337 JP2013007337W WO2014112008A1 WO 2014112008 A1 WO2014112008 A1 WO 2014112008A1 JP 2013007337 W JP2013007337 W JP 2013007337W WO 2014112008 A1 WO2014112008 A1 WO 2014112008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- resin
- pentaerythritol
- molding
- thermoplastic resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/053—Polyhydroxylic alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0001—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
- B29K2067/06—Unsaturated polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
Definitions
- the present invention provides a resin composition having improved molding processability and stability of mechanical properties.
- plastic waste has been able to solve the problems that have caused a great burden on the global environment, such as impact on the ecosystem, generation of harmful gases during combustion, global warming due to a large amount of combustion heat, Biodegradable plastics are actively developed.
- PHA polyhydroxyalkanoate
- P3HB Poly (3-hydroxybutyrate) homopolymer resin
- P3HB3HV poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer resin
- P3HB3HH Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin
- P3HB4HB polymerized resin
- PLA polylactic acid
- PLA polylactic acid
- aliphatic polyester resins such as the PHA resin are known to have a low crystallization rate. Therefore, it is necessary to increase the cooling time for solidification after heating and melting in the molding process. There is a problem that productivity and productivity are poor.
- pentaerythritol has a remarkably high crystallization effect on the PHA resin.
- pentaerythritol tends to be difficult to uniformly disperse in the PHA resin, and when a molding resin composition containing PHA resin and pentaerythritol is produced, melt kneading at a high temperature is required and workability is lowered. There was a problem to do.
- the present invention has an object to provide a resin composition capable of achieving the crystallization effect of pentaerythritol with good workability.
- the inventors of the present invention can uniformly disperse pentaerythritol in the thermoplastic resin if pentaerythritol is contained in the resin in the form of fine particles. It has been found that a resin composition for molding can be produced with good workability while achieving the crystallization effect due to.
- the present invention is a resin composition
- a resin composition comprising (A) a thermoplastic resin and (B) pentaerythritol particles, wherein (B) 70% or more of the pentaerythritol particles are particles having a particle size of 100 ⁇ m or less. is there.
- thermoplastic resin is preferably an aliphatic polyester resin, More preferred are polyhydroxyalkanoates, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxy) Valerate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-4-hydroxybutyrate), polylactic acid And more preferably one or more selected from the group consisting of polybutylene succinate, polybutylene succinate adipate, and polyethylene succinate.
- the present invention is also a molding resin composition obtained by mixing (C) a thermoplastic resin with the resin composition.
- the thermoplastic resin is preferably at least one selected from the group consisting of aromatic polyesters and aliphatic polyesters, and more preferably polyhydroxyalkanoates.
- the present invention is a method for producing the resin composition, comprising: (A) a thermoplastic resin and (B) a raw material of pentaerythritol particles that are melt-kneaded at 170 ° C. or higher and then cooled. It is also a method for producing a composition.
- the present invention is a method for producing the resin composition, which is a method for producing a resin composition including a step of mixing (A) a thermoplastic resin component and (B) pentaerythritol particles.
- the present invention is a method for producing a molded body comprising the molding resin composition, wherein the mixture containing the resin composition and the thermoplastic resin (C) is directly charged into a molding machine for molding. It is also a manufacturing method of a molded object including the process to do.
- the present invention is also a resin molded body obtained by molding the resin composition.
- the resin composition of the present invention can be used as a resin composition for a masterbatch, and can also be used as a molding resin composition.
- the resin composition of the present invention is used as a resin composition for a masterbatch
- the resin composition for a masterbatch containing a high concentration of pentaerythritol is mixed with a thermoplastic resin
- the resin composition for a masterbatch A resin composition for molding containing pentaerythritol having a predetermined blending ratio can be easily obtained by appropriately adjusting the mixing ratio of the resin and the thermoplastic resin. For this reason, it is not necessary to prepare the molding resin composition which changed the compounding ratio of pentaerythritol variously beforehand.
- the resin composition of the present invention is used as a molding resin composition, it is not always necessary to perform melt kneading when producing the molding resin composition.
- a molding resin composition containing erythritol at a desired concentration can be obtained efficiently.
- pentaerythritol can be uniformly finely dispersed in the resin, and as a result, the effect of improving the molding processability by adding pentaerythritol and the effect of suppressing the change in mechanical properties of the molded product over time are efficiently obtained. Can be achieved.
- the resin composition of the present invention contains (A) a thermoplastic resin and (B) pentaerythritol particles.
- the (A) thermoplastic resin used in the resin composition of the present invention is not particularly limited.
- Aliphatic polyesters are preferred because they are excellent in biodegradability and processability such as kneading and have high dispersibility of pentaerythritol.
- the aliphatic polyester resin include PHA, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, and polylactic acid.
- PHA is particularly preferable because it is easy to obtain particularly high dispersibility.
- thermoplastic resins may be used alone or in combination.
- the PHA used in the present invention has the formula (1): [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is 1 or more and 15 or less). It is preferably an aliphatic polyester containing a repeating unit represented by:
- the PHA is preferably a polymer resin composed of 80 mol% or more of 3-hydroxybutyrate, more preferably a polymer resin composed of 85 mol% or more, and is preferably produced by microorganisms.
- Specific examples include poly (3-hydroxybutyrate) homopolymer resin, poly (3-hydroxybutyrate-co-3-hydroxypropionate) copolymer resin, poly (3-hydroxybutyrate-co-3- Hydroxyvalerate) copolymer resin, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin, poly (3-hydroxybutyrate-co-3-hydroxyheptanoate) copolymer resin, Poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) copolymer resin, poly (3-hydroxybutyrate-co-3-hydroxynonanoate) copolymer resin, poly (3-hydroxybutyrate-co-polymer) -3-hydroxydecanoate) copolymer resin, poly (3-hydroxybutyrate-co
- poly (3-hydroxybutyrate) homopolymer resin poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer resin, poly (3-hydroxy Butyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) copolymer resin, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin, poly (3-hydroxy Butyrate-co-4-hydroxybutyrate) copolymer resin can be preferably used.
- 3-hydroxybutyrate (hereinafter sometimes referred to as 3HB), a comonomer copolymerized therewith (for example, 3-hydroxyvalerate (hereinafter sometimes referred to as 3HV), 3-
- the comonomer ratio is less than 3 mol%, the molding process temperature and the thermal decomposition temperature are close to each other, and it may be difficult to perform the molding process. When the comonomer ratio exceeds 20 mol%, the crystallization of PHA is delayed, and thus productivity may be deteriorated.
- the ratio of each monomer in the PHA copolymer resin can be measured by gas chromatography as follows. To about 20 mg of dried PHA, 2 ml of a sulfuric acid / methanol mixture (15/85 (weight ratio)) and 2 ml of chloroform are added and sealed, and heated at 100 ° C. for 140 minutes to obtain the methyl ester of the PHA decomposition product. After cooling, 1.5 g of sodium hydrogen carbonate is added little by little to neutralize it, and the mixture is allowed to stand until the generation of carbon dioxide gas stops.
- the monomer unit composition of the PHA decomposition product in the supernatant is analyzed by capillary gas chromatography to determine the ratio of each monomer in the copolymer resin.
- GC-17A manufactured by Shimadzu Corporation was used, and “NEUTRA BOND-1” manufactured by GL Science Co., Ltd. (column length: 25 m, column inner diameter: 0.25 mm, liquid film thickness: 0.2 mm). 4 ⁇ m) is used. He is used as the carrier gas, the column inlet pressure is 100 kPa, and 1 ⁇ l of the sample is injected. As temperature conditions, the temperature is raised from an initial temperature of 100 ° C. to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at a rate of 30 ° C./min.
- the weight average molecular weight (hereinafter sometimes referred to as Mw) of the PHA of the present invention is preferably 200,000 to 2,500,000, more preferably 250,000 to 2,000,000, and further preferably 300,000 to 1,000,000.
- Mw weight average molecular weight
- mechanical properties and the like may be inferior, and when it exceeds 2.5 million, molding may be difficult.
- the weight average molecular weight was measured using gel permeation chromatography (“Shodex GPC-101” manufactured by Showa Denko KK), using polystyrene gel (“Shodex K-804” manufactured by Showa Denko KK) as the column, and moving chloroform. It can be determined as the molecular weight when converted to polystyrene. At this time, a calibration curve is prepared using polystyrene having a weight average molecular weight of 31400, 197000, 668000, and 1920,000.
- the PHA is, for example, the Alcaligenes eutrophus AC32 strain in which the PHA synthase gene derived from Aeromonas caviae is introduced into Alcaligenes eutrophus (International deposit based on the Budapest Treaty, International Depositary Agency: National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary) (Japan, Ibaraki Prefecture, Tsukuba City, 1-1-1 Higashi 1-Chuo 6), Date of original deposit: August 12, 1996, transferred on August 7, 1997, deposit number FERM BP-6038 (original deposit FERM P -15786))) (J. Bacteriol., 179, 4821 (1997)).
- the resin composition of the present invention contains pentaerythritol as a crystallization nucleating agent for (A) thermoplastic resin.
- Pentaerythritol is the following formula (2)
- Pentaerythritol is classified as a sugar alcohol, but is not derived from a natural product and can be synthesized by condensing acetaldehyde and formaldehyde in a basic environment.
- the pentaerythritol used in the present invention is not particularly limited, and generally available ones such as reagent products or industrial products can be used.
- reagent products include Wako Pure Chemical Industries, Ltd., Sigma-Aldrich, Tokyo Chemical Industry Co., and Merck.
- reagent products include Wako Pure Chemical Industries, Ltd., Sigma-Aldrich, Tokyo Chemical Industry Co., and Merck.
- Guangei Chemical Co., Ltd. (trade name: Pentalit) and Toyo Chemicals Co., Ltd. can be mentioned, but not limited thereto.
- Some commonly available reagent products and industrial products contain impurities such as dipentaerythritol and tripentaerythritol produced by dehydration condensation of pentaerythritol as impurities.
- the oligomer has no effect on the crystallization of the thermoplastic resin, but does not inhibit the crystallization effect of pentaerythritol. Therefore, the pentaerythritol used in the present invention may contain an oligomer.
- pentaerythritol is contained in the resin composition in the form of fine particles.
- 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 95% or more) of the particles are particles having a particle size of 100 ⁇ m or less. Is preferred.
- the resin composition contains finely divided pentaerythritol, the pentaerythritol can be uniformly finely dispersed in the resin, and it is necessary to always perform melt kneading when producing the molding resin composition. There is no. Since pentaerythritol is contained in the form of fine particles, the crystallization effect of pentaerythritol can be achieved when forming a molded body without melt kneading.
- the ratio of the pentaerythritol particles used in the present invention to a particle size of 100 ⁇ m or less can be determined using image analysis software (“Win Roof” manufactured by Mitani Corporation).
- the particle diameter of pentaerythritol can be obtained visually by observing the surface of the pellet with an optical microscope.
- the lower limit of the amount of pentaerythritol in the resin composition of the present invention is such that the lower limit of pentaerythritol is the value of the resin contained in the molding resin composition.
- the lower limit of pentaerythritol is the value of the resin contained in the molding resin composition.
- it is 0.05 weight part with respect to 100 weight part of total amounts, More preferably, it is 0.1 weight part, More preferably, it is 0.5 weight part.
- the amount of pentaerythritol is too large, the viscosity at the time of melt processing may decrease, and it may be difficult to process.
- the upper limit of pentaerythritol is 100 weights of the total amount of resin contained in the molding resin composition.
- the amount is preferably 12 parts by weight, more preferably 10 parts by weight, and still more preferably 8 parts by weight with respect to parts.
- [Resin composition] As a method for producing such a resin composition containing finely divided pentaerythritol, (A) a thermoplastic resin and (B) a raw material of pentaerythritol particles (pentaerythritol which does not satisfy the upper limit of fine particles as described above) When mixing, the mixture is melt kneaded at a high temperature of 170 ° C. or higher and then cooled, or finely divided pentaerythritol is prepared in advance using a technique such as pulverization or the like, and a commercially available product is obtained. Examples thereof include a method of mixing with a resin by melt kneading or other mixing methods.
- pentaerythritol softens once during melt kneading, and pentaerythritol precipitates in the thermoplastic resin in the cooling process after melt kneading. It is considered that a resin composition containing pentaerythritol is formed.
- the lower limit value of the amount of pentaerythritol particles in the masterbatch resin composition of the present invention is 15 parts by weight, preferably 20 parts by weight, more preferably 25 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Part. If the blending amount is less than 15 parts by weight, the dilution ratio when the resin composition for molding is mixed with a thermoplastic resin later is lowered, so that the substantial effect of using the master batch may be lost. Moreover, when there is too much quantity of pentaerythritol, the dispersibility of pentaerythritol may be impaired and the crystallization effect may be impaired. Therefore, the upper limit of the amount of pentaerythritol particles is 400 parts by weight, preferably 300 parts by weight, and more preferably 200 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
- the resin composition of the present invention When used as a resin composition for a masterbatch, it is heated to a temperature equal to or higher than the melting point of the thermoplastic resin, and is produced by an apparatus that can uniformly mix (A) the thermoplastic resin and (B) pentaerythritol particles. it can.
- “mixed uniformly” refers to a state in which the surface of the mixture is visually confirmed and no particulate resin is observed.
- the heating temperature of the resin is preferably high. For example, it is preferably 170 ° C. or higher and lower than the decomposition temperature of the resin.
- a known melt-kneader such as an extruder, a roll mill, or a Banbury mixer can be used as an apparatus that can uniformly mix.
- a method of melt-kneading a thermoplastic resin, pentaerythritol, and, if necessary, another modifier, using a melt-kneader to form a pellet can be used.
- the thermoplastic resin and pentaerythritol may be added to the melt kneader at the same time, or the thermoplastic resin may be melted first and then pentaerythritol may be added and kneaded.
- a molding resin composition can be produced by mixing a thermoplastic resin with the above-described resin composition for a masterbatch.
- the resin composition for molding formed by mixing (C) the thermoplastic resin with the resin composition is prepared in advance by preparing a resin composition containing a high content of pentaerythritol, and (C) the thermoplastic resin is mixed therewith.
- a molding resin composition it is preferable from the viewpoint that a molding resin composition containing pentaerythritol having a predetermined blending ratio can be easily obtained. In particular, it is suitable for forming into a film or sheet.
- the (C) thermoplastic resin used in the molding resin composition of the present invention is not particularly limited.
- examples of the (C) thermoplastic resin in the masterbatch resin composition include poly (tetramethylene succinate- Aromatic polyester such as co-terephthalate), poly (ethylene succinate-co-terephthalate), poly (tetramethylene adipate-co-terephthalate), PHA, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate
- an aliphatic polyester such as polyethylene sebacate, polybutylene sebacate, polyhexamethylene sebacate, polylactic acid, etc., from the viewpoint of compatibility with these, poly (tetramethylene succinate-co-terephthalate) , Poly (ethylene succinate-co- ), Aromatic polyesters such as poly (tetramethylene adipate-co-terephthalate), PHA, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polyethylene sebacate
- thermoplastic resins may be used alone or in combination.
- thermoplastic resin may be the same as (A) thermoplastic resin contained in the resin composition for masterbatches. The two resins may be different.
- thermoplastic resin and the masterbatch resin composition are not particularly limited. What is necessary is just to determine suitably according to the compounding ratio of the pentaerythritol contained in the resin composition for shaping
- the blending ratio of pentaerythritol in the molding resin composition varies depending on the usage and molding method of the molded body.
- the lower limit of pentaerythritol is preferably 0.05 parts by weight with respect to 100 parts by weight of the total amount of resins contained in the molding resin composition. Yes, more preferably 0.1 parts by weight, still more preferably 0.5 parts by weight.
- the amount of pentaerythritol is too large, the viscosity at the time of melt processing may decrease, and it may be difficult to process.
- the upper limit of pentaerythritol is 100 weights of the total amount of resin contained in the molding resin composition.
- the amount is preferably 12 parts by weight, more preferably 10 parts by weight, and still more preferably 8 parts by weight with respect to parts.
- the masterbatch resin composition of the present invention, (C) a thermoplastic resin, and optionally other additives such as a plasticizer, an antioxidant, and a lubricant are uniformly mixed in a mixer and pelletized.
- a melt kneader may be used as the mixer, but a mixer other than the melt kneader can also be used.
- the obtained pellets are subjected to injection molding, extrusion molding using an extruder equipped with a T die, tubular molding using an extruder equipped with a circular die, film molding using inflation molding, and the like.
- the molding resin composition of the present invention can be obtained by stretching.
- the molded body of the present invention may be produced by mixing the masterbatch resin composition and the thermoplastic resin (c) as described above, or without using the masterbatch resin composition.
- (A) It may be produced by mixing pentaerythritol directly with a thermoplastic resin.
- the resin composition according to the present invention is excellent in dispersibility of pentaerythritol, prior kneading is unnecessary, and the molded article of the present invention is a mixture containing the resin composition according to the present invention and (C) a thermoplastic resin.
- C a thermoplastic resin.
- thermoplastic resin and pentaerythritol used here, and the blending ratio of pentaerythritol are the same as those described above.
- thermoplastic resin and pentaerythritol melt kneading at a high temperature of 170 ° C. or higher, and then cooling, or A method of preparing finely divided pentaerythritol in advance using a technique such as pulverization or obtaining a commercially available product and mixing it with a thermoplastic resin by melt-kneading or other mixing methods can be applied.
- the pellets obtained by these methods are subjected to injection molding, extrusion molding using an extruder equipped with a T-die, tubular molding using an extruder equipped with a circular die, film molding using inflation molding, etc. By extending
- the molded article of the present invention can be suitably used in agriculture, fishery, forestry, horticulture, medicine, hygiene, food industry, clothing, non-clothing, packaging, automobiles, building materials, and other fields.
- Tanehaha medium 1w / v% Meat-extract, 1w / v% Bacto-Tryptone, 0.2w / v% Yeast-extract, 0.9w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.15w / V% KH 2 PO 4 (pH 6.8).
- the composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 ⁇ 7H 2 O , 0.5v / v% trace metal salt solution (1.6 w in 0.1N HCl / v% FeCl 3 ⁇ 6H 2 O, 1w / v% CaCl 2 ⁇ 2H 2 O, 0 0.02 w / v% CoCl 2 .6H 2 O, 0.016 w / v% CuSO 4 .5H 2 O, 0.012 w / v% NiCl 2 .6H 2 O).
- palm oil was added at a concentration of 10 g / L.
- the composition of the PHA production medium is 0.385 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.067 w / v% KH 2 PO 4 , 0.291 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 W / v% FeCl 3 .6H 2 O in 0.1N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 ⁇ 6H 2 O, 0.016 w / v% CuSO 4 ⁇ 5H 2 O, 0.012 w / v% NiCl 2 ⁇ 6H 2 O), 0.05 w / v% BIOSPUREX 200K (Antifoamer: manufactured by Cognis Japan).
- a glycerol stock (50 ⁇ l) of the KNK-005 strain was inoculated into a seed medium (10 ml) and cultured for 24 hours to perform seed culture.
- 1.0 v / v% of the seed mother culture solution was inoculated into a 3 L jar fermenter (MDL-300 type, manufactured by Maruhishi Bioengine) containing 1.8 L of a preculture medium.
- the operating conditions were a culture temperature of 33 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 L / min, and the culture was performed for 28 hours while controlling the pH between 6.7 and 6.8.
- a 14% aqueous ammonium hydroxide solution was used for pH control.
- 1.0 V / v% of the preculture solution was inoculated into a 10 L jar fermenter (MDS-1000, manufactured by Maruhishi Bioengine) containing 6 L of production medium.
- the operating conditions were a culture temperature of 28 ° C., a stirring speed of 400 rpm, an aeration rate of 6.0 L / min, and a pH controlled between 6.7 and 6.8.
- a 14% aqueous ammonium hydroxide solution was used for pH control. Palm kernel olein oil was used as the carbon source. Culturing was performed for 64 hours, and after completion of the cultivation, the cells were collected by centrifugation, washed with methanol, lyophilized, and the weight of the dried cells was measured.
- He was used as the carrier gas, the column inlet pressure was set to 100 kPa, and 1 ⁇ l of the sample was injected.
- the temperature was raised from an initial temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at a rate of 30 ° C./min.
- PHA poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (P (3HB-co-3HH): PHBH).
- the 3-hydroxyhexanoate (3HH) composition was 5.6 mol%.
- PHBH was obtained from the culture solution by the method described in International Publication No. 2010/066753.
- the weight average molecular weight Mw measured by GPC was 600,000.
- Polyester raw material A4 Polybutylene succinate resin (product name: Bionore 1020) manufactured by Showa Denko KK was used.
- the resin temperature at the time of melt-kneading was measured directly with a K-type thermocouple for the molten resin coming out of the die of the twin screw extruder.
- the master batch was taken out of the die into a strand, cut into a pellet, and dried with dehumidified air at 80 ° C. for 4 hours.
- Pentaerythritol before melt kneading had a particle ratio of 23.9% with a particle size of 100 ⁇ m or less, but as can be seen from Table 1, the resin temperature was higher than the softening start temperature of pentaerythritol (170 ° C.). In the master batch, 70% or more of all particles became 100 ⁇ m or less because pentaerythritol was finely dispersed in the resin by melt-kneading in (1).
- Examples 4 to 12 (injection molding)
- the polyhydroxyalkanoate raw material A1 which is a thermoplastic resin
- the masterbatch resin compositions obtained in Examples 1 to 3 were mixed at room temperature in a polyethylene bag at the blending ratio shown in Table 2. .
- the mixture is put into a hopper of an injection molding machine (Toshiba Machine Co., Ltd .: IS-75E).
- the molding machine has a cylinder setting temperature of 120 to 150 ° C and a mold setting temperature of 50 ° C.
- a test piece was molded.
- the mold temperature during molding was measured by contacting the surface of the mold with a K-type thermocouple.
- Molding processability was evaluated by mold release time. After injecting the molding resin composition into the mold, the mold is opened, the test piece is ejected without being deformed by the ejector pin, and the time required for releasing from the mold is defined as the mold release time. . The shorter the mold release time, the faster the crystallization, and the better the molding processability is. The results are shown in Table 2.
- the masterbatch resin composition containing a high concentration of pentaerythritol is mixed with a thermoplastic resin and subjected to secondary processing such as injection molding, and then melt kneading is performed in the secondary processing. Despite this, the effect of adding pentaerythritol could be achieved.
- ⁇ Comparative example 4> Resin composition containing 40% pentaerythritol by melt-kneading polyhydroxyalkanoate raw material A1 and pentaerythritol in the same manner as in Example 2 except that the setting temperature is 110 to 130 ° C. and the screw rotation speed is 50 rpm. Got. The ratio of particles having a particle size of 100 ⁇ m or less in the pentaerythritol in the obtained resin composition was 45.3%.
- Comparative Examples 5-7 The resin composition of Comparative Example 4 and the polyhydroxyalkanoate raw material A1 were mixed at the blending ratio shown in Table 4, and injection molding was carried out in the same manner as in Examples 4 to 12 for the same evaluation. The results are shown in Table 4.
- Example 13 to 14 Master batch B4 and master batch B5 were produced in the same manner as in Example 1 except that the ratio of pentaerythritol was changed to the ratio shown in Table 5. In each master batch, the particle size of 70% or more of all the pentaerythritol particles became 100 ⁇ m or less.
- Examples 15 to 18 The polyhydroxyalkanoate raw material A1 and the master batch B4 or B5 obtained in Examples 13 to 14 at the blending ratio shown in Table 6 were directly put into an injection molding machine in the same manner as in Example 4, and injection moldability was achieved. Evaluated. The results are shown in Table 6.
- pentaerythritol is finely divided in advance, and a master batch in which the particle size of 70% or more of the pentaerythritol particles is reduced to 100 ⁇ m or less is mixed with the main raw material resin, and then directly put into a secondary processing machine such as injection molding. Therefore, there was no need to melt and knead, and the effect of improving the workability of pentaerythritol was obtained.
- Example 19 A masterbatch B6 was produced in the same manner as in Example 1 except that the polyester resin raw material A4 was used instead of the polyhydroxyalkanoate raw material A1. In the master batch, the particle size of 70% or more of all the pentaerythritol particles became 100 ⁇ m or less.
- Example 8 The polyester resin raw material A4 and pentaerythritol are melt-kneaded in the same manner as in Example 19 except that the setting temperature is 110 to 130 ° C. and the screw rotation speed is 50 rpm, to obtain a resin composition containing 30% pentaerythritol. It was. The ratio of particles having a particle size of 100 ⁇ m or less in the pentaerythritol particles in the obtained resin composition was 58.5%.
- Examples 20 to 22> The polyhydroxyalkanoate raw material A1 and the master batch B6 obtained in Example 19 at the blending ratio shown in Table 9 were directly charged into an injection molding machine in the same manner as in Example 4 to evaluate injection moldability. The results are shown in Table 9.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
ポリヒドロキシアルカノエートであることがより好ましく、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、およびポリエチレンサクシネートからなる群より選択される1種以上であることがさらに好ましい。
本発明の樹脂組成物で使用する(A)熱可塑性樹脂としては特に限定されないが、例えば、ポリ(テトラメチレンスクシネート-コ-テレフタレート)、ポリ(エチレンスクシネート-コ-テレフタレート)、ポリ(テトラメチレンアジペート-コ-テレフタレート)等の芳香族ポリエステルや、PHA、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリエチレンセバケート、ポリブチレンセバケート、ポリヘキサメチレンセバケート、ポリ乳酸等の脂肪族ポリエステルが挙げられる。生分解性および混練等の加工性に優れ、ペンタエリスリトールの分散性が高いことから、好ましくは脂肪族ポリエステルである。脂肪族ポリエステル樹脂としては、PHA、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリ乳酸等が挙げられる。これらの中でも特に高い分散性が得られやすいことから、特に好ましくはPHAである。これら各(A)熱可塑性樹脂は、単独で用いても、複数組み合わせて用いてもよい。
本発明の樹脂組成物は、(A)熱可塑性樹脂の結晶化核剤として、ペンタエリスリトールを含有する。
このような微粒状のペンタエリスリトールを含有する樹脂組成物を製造する方法としては、(A)熱可塑性樹脂と(B)ペンタエリスリトール粒子の原料(上述のような微粒子の上限を満足しないペンタエリスリトール)を混合する時に170℃以上という高温で溶融混練を実施し、次いで冷却する方法、あるいは、粉砕等の手法を用いてあらかじめ微粒子状のペンタエリスリトールを作製し又は市販品を入手し、これを熱可塑性樹脂と、溶融混練あるいはこれ以外の混合法により混合する方法が挙げられる。170℃以上の温度で溶融混練を実施する方法では、溶融混練中にペンタエリスリトールが一旦軟化し、溶融混練後の冷却過程において熱可塑性樹脂中でペンタエリスリトールが微粒子状に析出するために、微粒子状のペンタエリスリトールを含有する樹脂組成物が形成されるものと考えられる。
本発明の樹脂組成物をマスターバッチ用樹脂組成物として使用する場合について説明する。
上述したマスターバッチ用樹脂組成物に対し、熱可塑性樹脂を混合することで成形用樹脂組成物を製造することができる。
次に、本発明の成形体について説明する。
培養生産にはKNK-005株(米国特許第7384766号明細書参照)を用いた。
(マスターバッチ用樹脂組成物B1~B3の製造)
同方向噛合型2軸押出機(日本製鋼社製:TEX30)を用い、設定温度150℃~170℃、スクリュー回転数150rpmの条件で、100重量部のポリヒドロキシアルカノエート原料A1に対して表1に示す部数のペンタエリスリトール(和光純薬工業株式会社製、100μm以下の比率=23.9%)を溶融混練により均一に混合し、ポリヒドロキシアルカノエート中にペンタエリスリトール微粒子を含有するマスターバッチを得た。溶融混練時の樹脂温度は、2軸押出機のダイスから出てくる溶融した樹脂を直接K型熱電対で測定した。当該マスターバッチをダイスからストランド状に引き取り、ペレット状にカットし、80℃の除湿エアで4時間乾燥した。
マスターバッチ用樹脂組成物中のペンタエリスリトールの粒径はペレットの表面を光学顕微鏡で200倍~400倍で観察することで測定した。すなわち、得られた顕微鏡写真において、画像解析ソフト(三谷商事社製「Win Roof」)を用いて、ペンタエリスリトール粒子の総数に対する粒径が100μm以下の粒子の数の比率を算出した。結果は表1に示した。
(射出成形)
熱可塑性樹脂であるポリヒドロキシアルカノエート原料A1と、実施例1~3で得られたマスターバッチ用樹脂組成物を、表2に示す配合割合で、ポリエチレン製の袋の中で室温にて混合した。混合物を射出成形機(東芝機械社製:IS-75E)のホッパーに投入し、成形機のシリンダー設定温度120~150℃、金型の設定温度50℃で、D-638に準拠したダンベル状の試験片を成形した。成形時の金型温度は金型の表面をK型熱電対で接触測定した。
成形加工性は離型時間で評価した。金型内に成形用樹脂組成物を射出した後、金型を開いて突き出しピンによって試験片を変形させることなく突き出し、金型から離型させることができるまでに要する時間を離型時間とした。離型時間が短いほど結晶化が早く、成形加工性が良好で改善されていることを示す。結果は表2に示した。
機械物性の経時変化は引張破断伸びで評価した。射出成形で得られたダンベル状試験片について、ASTM D-638に準拠して、23℃における引張測定を行い、破断伸度を測定した。測定は成形後168時間後、336時間後、720時間後、1440時間後に行った。破断伸度の値が変わらないほど安定で良好であることを示す。結果は表2に示した。
同方向噛合型2軸押出機(日本製鋼社製:TEX30)を用い、設定温度120℃~140℃、スクリュー回転数100rpmの条件で、100重量部のポリヒドロキシアルカノエート原料A1に対して、ペンタエリスリトール(和光純薬工業株式会社製、100μm以下の比率=23.9%)を実施例4~12と同じ比率で溶融混練し、ダイスからストランド状に引き取り、ペレット状にカットし、80℃の除湿エアで4時間乾燥した。
設定温度110~130℃、スクリュー回転数50rpmの条件にした以外は実施例2と同様の方法でポリヒドロキシアルカノエート原料A1とペンタエリスリトールを溶融混練し、40%のペンタエリスリトールを含有する樹脂組成物を得た。得られた樹脂組成物中のペンタエリスリトールにおいて粒径100μm以下の粒子の比率は、45.3%であった。
比較例4の樹脂組成物とポリヒドロキシアルカノエート原料A1を、表4に示す配合割合で混合し、そのまま、実施例4~12と同様の方法で射出成形を行い、同様の評価を行った。結果を表4に示した。
ペンタエリスリトールを表5に示す比率にした以外は実施例1と同様の方法でマスターバッチB4およびマスターバッチB5を作製した。それぞれのマスターバッチ中ではペンタエリスリトール全粒子のうち70%以上の粒子の粒径が100μm以下になった。
表6に示す配合比率でポリヒドロキシアルカノエート原料A1と実施例13~14で得られたマスターバッチB4またはB5を、実施例4と同様の方法で、直接射出成形機に投入して射出成形性を評価した。結果を表6に示した。
ポリヒドロキシアルカノエート原料A1のかわりに、ポリエステル樹脂原料A4を用いた以外は、実施例1と同様の方法でマスターバッチB6を作製した。マスターバッチ中ではペンタエリスリトール全粒子のうち70%以上の粒子の粒径が100μm以下になった。
設定温度110~130℃、スクリュー回転数50rpmの条件にした以外は実施例19と同様の方法でポリエステル樹脂原料A4とペンタエリスリトールを溶融混練し、30%のペンタエリスリトールを含有する樹脂組成物を得た。得られた樹脂組成物中のペンタエリスリトール粒子において粒径100μm以下の粒子の比率は、58.5%であった。
表9に示す配合比率でポリヒドロキシアルカノエート原料A1と実施例19で得られたマスターバッチB6を、実施例4と同様の方法で、直接射出成形機に投入して射出成形性を評価した。結果を表9に示した。
比較例8で得た樹脂組成物とポリヒドロキシアルカノエート原料A1を、ペンタエリスリトールの比率が表9になるように混合し、そのまま、実施例20~22と同様の方法で射出成形性を評価した。結果を表9に示した。
Claims (11)
- (A)熱可塑性樹脂と(B)ペンタエリスリトール粒子を含有し、(B)ペンタエリスリトール粒子の70%以上が粒径100μm以下の粒子であることを特徴とする樹脂組成物。
- (A)熱可塑性樹脂が脂肪族ポリエステル樹脂である、請求項1に記載の樹脂組成物。
- (A)熱可塑性樹脂がポリヒドロキシアルカノエートである、請求項1に記載の樹脂組成物。
- (A)熱可塑性樹脂が、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、およびポリエチレンサクシネートからなる群より選択される1種以上である、請求項1に記載の樹脂組成物。
- 請求項1~4のいずれかに記載の樹脂組成物に(C)熱可塑性樹脂を混合してなる成形用樹脂組成物。
- (C)熱可塑性樹脂が、芳香族ポリエステルおよび脂肪族ポリエステルからなる群より選ばれる少なくとも1種である、請求項5に記載の成形用樹脂組成物。
- (C)熱可塑性樹脂が、ポリヒドロキシアルカノエートである、請求項5または6に記載の成形用樹脂組成物。
- 請求項1~4のいずれかに記載の樹脂組成物を製造する方法であって、(A)熱可塑性樹脂と(B)ペンタエリスリトール粒子の原料とを170℃以上で溶融混練し、次いで冷却する工程を含む、樹脂組成物の製造方法。
- 請求項1~4のいずれかに記載の樹脂組成物を製造する方法であって、(A)熱可塑性樹脂成分と(B)ペンタエリスリトール粒子とを混合する工程を含む、樹脂組成物の製造方法。
- 請求項5~7のいずれかに記載の成形用樹脂組成物からなる成形体を製造する方法であって、請求項1~4のいずれかに記載の樹脂組成物と(C)熱可塑性樹脂とを含む混合物を直接成形機に投入して成形を実施する工程を含む、成形体の製造方法。
- 請求項1~7のいずれかに記載の樹脂組成物を成形してなる樹脂成形体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/761,811 US9624346B2 (en) | 2013-01-18 | 2013-12-12 | Resin composition, resin molded article, and methods respectively for producing these products |
JP2014557196A JP6401615B2 (ja) | 2013-01-18 | 2013-12-12 | 樹脂組成物、樹脂成形体、およびこれらの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-007039 | 2013-01-18 | ||
JP2013007039 | 2013-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014112008A1 true WO2014112008A1 (ja) | 2014-07-24 |
Family
ID=51209136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007337 WO2014112008A1 (ja) | 2013-01-18 | 2013-12-12 | 樹脂組成物、樹脂成形体、およびこれらの製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9624346B2 (ja) |
JP (1) | JP6401615B2 (ja) |
WO (1) | WO2014112008A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015052045A (ja) * | 2013-09-06 | 2015-03-19 | 株式会社カネカ | ポリエステル樹脂組成物、ポリエステル樹脂発泡体及びその製造方法 |
WO2015114719A1 (ja) * | 2014-01-30 | 2015-08-06 | 株式会社カネカ | ポリエステル樹脂組成物の製造方法およびポリエステル樹脂成形体 |
EP3266831A4 (en) * | 2015-03-05 | 2018-11-07 | Kaneka Corporation | Method for producing polyester resin composition and molded product, and polyester resin composition and molded product |
US10544301B2 (en) * | 2016-02-09 | 2020-01-28 | Kaneka Corporation | Biodegradable polyester resin composition and molded article formed from said resin composition |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3357955A4 (en) * | 2015-09-30 | 2019-06-26 | Sekisui Plastics Co., Ltd. | POROUS RESIN MICROPARTICLES AND MANUFACTURING METHOD THEREFOR |
CA3094014A1 (en) * | 2018-03-21 | 2019-09-26 | Ercros, S.A. | Poly(lactic acid) composition comprising dipentaerythritol |
JP7288807B2 (ja) * | 2019-06-03 | 2023-06-08 | 株式会社Dnpファインケミカル | 水系仮止め接着剤及び該水系仮止め接着剤を用いた各種部材又は部品の製造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0873711A (ja) * | 1994-07-07 | 1996-03-19 | Mitsubishi Chem Corp | 難燃性ポリエステル樹脂組成物 |
JPH0873713A (ja) * | 1994-07-05 | 1996-03-19 | Mitsubishi Chem Corp | ポリエステル樹脂組成物 |
JP2001170985A (ja) * | 1999-12-21 | 2001-06-26 | Mitsubishi Chemicals Corp | 熱可塑性ポリエステル樹脂発泡体の製造方法 |
JP2007231184A (ja) * | 2006-03-02 | 2007-09-13 | Shin Etsu Chem Co Ltd | 難燃バイオプラスチック樹脂組成物 |
JP2008031439A (ja) * | 2006-06-30 | 2008-02-14 | Toray Ind Inc | 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品 |
JP2008280503A (ja) * | 2007-04-12 | 2008-11-20 | Toray Ind Inc | 熱可塑性樹脂組成物およびそれからなる成形品 |
JP2009506191A (ja) * | 2005-08-31 | 2009-02-12 | ゼネラル・エレクトリック・カンパニイ | 高流動性ポリエステル組成物 |
JP2009132851A (ja) * | 2007-10-31 | 2009-06-18 | Toray Ind Inc | 熱可塑性樹脂組成物およびそれからなる成形品ならびに複合成形体 |
JP2009155479A (ja) * | 2007-12-26 | 2009-07-16 | Toray Ind Inc | 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品 |
JP2009155478A (ja) * | 2007-12-26 | 2009-07-16 | Toray Ind Inc | 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品 |
JP2012177011A (ja) * | 2011-02-25 | 2012-09-13 | Toray Ind Inc | ポリ乳酸組成物 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0691370A3 (en) * | 1994-07-07 | 1996-07-17 | Mitsubishi Chem Corp | Flame retardant polyester resin composition |
AU1281499A (en) * | 1997-10-31 | 1999-05-24 | Monsanto Company | Plasticized polyhydroxyalkanoate compositions and methods for their use in the production of shaped polymeric articles |
US20080033077A1 (en) * | 2005-12-14 | 2008-02-07 | Kaneka Corporation | Biodegradable Resin Compositions and Molded Objects Thereof |
KR101372345B1 (ko) * | 2006-06-30 | 2014-03-12 | 도레이 카부시키가이샤 | 열가소성 수지 조성물 및 그 성형품 |
US7384766B2 (en) | 2006-07-26 | 2008-06-10 | Kaneka Corporation | Gene-substituted microorganisms, and production method of polyesters using the same |
JPWO2008099586A1 (ja) | 2007-02-15 | 2010-05-27 | 国立大学法人東京工業大学 | 生分解性樹脂組成物 |
EP2366794B1 (en) | 2008-12-09 | 2017-02-22 | Kaneka Corporation | Method for producing poly-3-hydroxyalkanoate and agglomerate of poly-3-hydroxyalkanoate |
-
2013
- 2013-12-12 JP JP2014557196A patent/JP6401615B2/ja active Active
- 2013-12-12 WO PCT/JP2013/007337 patent/WO2014112008A1/ja active Application Filing
- 2013-12-12 US US14/761,811 patent/US9624346B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0873713A (ja) * | 1994-07-05 | 1996-03-19 | Mitsubishi Chem Corp | ポリエステル樹脂組成物 |
JPH0873711A (ja) * | 1994-07-07 | 1996-03-19 | Mitsubishi Chem Corp | 難燃性ポリエステル樹脂組成物 |
JP2001170985A (ja) * | 1999-12-21 | 2001-06-26 | Mitsubishi Chemicals Corp | 熱可塑性ポリエステル樹脂発泡体の製造方法 |
JP2009506191A (ja) * | 2005-08-31 | 2009-02-12 | ゼネラル・エレクトリック・カンパニイ | 高流動性ポリエステル組成物 |
JP2007231184A (ja) * | 2006-03-02 | 2007-09-13 | Shin Etsu Chem Co Ltd | 難燃バイオプラスチック樹脂組成物 |
JP2008031439A (ja) * | 2006-06-30 | 2008-02-14 | Toray Ind Inc | 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品 |
JP2008280503A (ja) * | 2007-04-12 | 2008-11-20 | Toray Ind Inc | 熱可塑性樹脂組成物およびそれからなる成形品 |
JP2009132851A (ja) * | 2007-10-31 | 2009-06-18 | Toray Ind Inc | 熱可塑性樹脂組成物およびそれからなる成形品ならびに複合成形体 |
JP2009155479A (ja) * | 2007-12-26 | 2009-07-16 | Toray Ind Inc | 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品 |
JP2009155478A (ja) * | 2007-12-26 | 2009-07-16 | Toray Ind Inc | 熱可塑性樹脂組成物、その製造方法およびそれからなる成形品 |
JP2012177011A (ja) * | 2011-02-25 | 2012-09-13 | Toray Ind Inc | ポリ乳酸組成物 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015052045A (ja) * | 2013-09-06 | 2015-03-19 | 株式会社カネカ | ポリエステル樹脂組成物、ポリエステル樹脂発泡体及びその製造方法 |
WO2015114719A1 (ja) * | 2014-01-30 | 2015-08-06 | 株式会社カネカ | ポリエステル樹脂組成物の製造方法およびポリエステル樹脂成形体 |
EP3101055A4 (en) * | 2014-01-30 | 2017-10-04 | Kaneka Corporation | Method for manufacturing polyester resin composition and polyester resin molding |
EP3266831A4 (en) * | 2015-03-05 | 2018-11-07 | Kaneka Corporation | Method for producing polyester resin composition and molded product, and polyester resin composition and molded product |
US10544301B2 (en) * | 2016-02-09 | 2020-01-28 | Kaneka Corporation | Biodegradable polyester resin composition and molded article formed from said resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP6401615B2 (ja) | 2018-10-10 |
JPWO2014112008A1 (ja) | 2017-01-19 |
US20150353707A1 (en) | 2015-12-10 |
US9624346B2 (en) | 2017-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6401615B2 (ja) | 樹脂組成物、樹脂成形体、およびこれらの製造方法 | |
JP6368245B2 (ja) | 脂肪族ポリエステル樹脂組成物および該樹脂組成物を含む成形体 | |
JP6339939B2 (ja) | ポリエステル樹脂組成物および該樹脂組成物を含む成形体 | |
EP3000846B1 (en) | Polyester resin composition and molded article including resin composition | |
JP6666328B2 (ja) | ポリエステル樹脂組成物及び成形体の製造方法、並びにポリエステル樹脂組成物及び成形体 | |
EP3018173B1 (en) | Polyester resin composition and molded article comprising said resin composition | |
JP6480345B2 (ja) | 脂肪族ポリエステル樹脂組成物および脂肪族ポリエステル樹脂成形体 | |
JP6172795B2 (ja) | ポリエステル樹脂組成物およびその製造方法、並びに該樹脂組成物から形成される成形体 | |
JP6650414B2 (ja) | ポリエステル樹脂組成物およびポリエステル樹脂成形体 | |
JP6059991B2 (ja) | マスターバッチ用脂肪族ポリエステル樹脂組成物及び成形用樹脂組成物 | |
JP2016169374A (ja) | ポリエステル樹脂成形体、およびその製造方法 | |
WO2015114719A1 (ja) | ポリエステル樹脂組成物の製造方法およびポリエステル樹脂成形体 | |
WO2016114127A1 (ja) | ポリエステル樹脂組成物およびポリエステル樹脂成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13872209 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014557196 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14761811 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13872209 Country of ref document: EP Kind code of ref document: A1 |