WO2014109232A1 - ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法 - Google Patents

ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法 Download PDF

Info

Publication number
WO2014109232A1
WO2014109232A1 PCT/JP2013/084674 JP2013084674W WO2014109232A1 WO 2014109232 A1 WO2014109232 A1 WO 2014109232A1 JP 2013084674 W JP2013084674 W JP 2013084674W WO 2014109232 A1 WO2014109232 A1 WO 2014109232A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
reaction
mpa
catalyst
autoclave
Prior art date
Application number
PCT/JP2013/084674
Other languages
English (en)
French (fr)
Inventor
裕輝 橋本
佳男 早川
中村 光宏
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to EP13871157.7A priority Critical patent/EP2944656B1/en
Priority to KR1020157017308A priority patent/KR101731748B1/ko
Priority to US14/758,872 priority patent/US9487605B2/en
Priority to CN201380069385.0A priority patent/CN104918970B/zh
Priority to JP2014556374A priority patent/JP5839754B2/ja
Publication of WO2014109232A1 publication Critical patent/WO2014109232A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a method for producing a hydride of a polyhydroxy unsaturated hydrocarbon polymer. More specifically, the present invention relates to a method for producing a hydride of a polyhydroxy unsaturated hydrocarbon polymer capable of suppressing a side reaction such as a hydrogenolysis reaction of a terminal hydroxyl group and achieving a high hydrogenation rate in a short reaction time.
  • a side reaction such as a hydrogenolysis reaction of a terminal hydroxyl group and achieving a high hydrogenation rate in a short reaction time.
  • a so-called terminal hydroxyl group-modified polybutadiene hydride in which a hydroxyl group is bonded to the end of the main chain of polybutadiene hydride is known.
  • This terminal hydroxyl group-modified polybutadiene hydride can be obtained by hydrogenating the main chain or side chain carbon-carbon double bond in the terminal hydroxyl group-modified polybutadiene.
  • Patent Document 1 discloses that polyhydroxypolybutadiene was hydrogenated in the presence of a carbon-supported ruthenium catalyst or an alumina-supported ruthenium catalyst at 100 ° C. while maintaining an internal pressure of 50 mg / cm 2 (about 4.9 Pa). Is described.
  • the reaction temperature for example, 120 ° C.
  • An object of the present invention is to provide a method for producing a hydride of a polyhydroxy unsaturated hydrocarbon polymer capable of suppressing a side reaction such as a hydrogenolysis reaction of a terminal hydroxyl group and achieving a high hydrogenation rate in a short reaction time. That is.
  • the present inventors conducted a hydrogenation reaction until a hydrogenation rate of 30 mol% or more was reached in a temperature range of 80 ° C. to 130 ° C., and then 98 mol at a temperature higher than 130 ° C. It has been found that the above problem can be solved by a method including performing a hydrogenation reaction until a hydrogenation rate of at least% is reached, and the present invention has been completed.
  • this invention includes the following forms.
  • the hydrogenation catalyst is at least one selected from the group consisting of a nickel-based catalyst, a cobalt-based catalyst, a ruthenium-based catalyst, a rhodium-based catalyst, a palladium-based catalyst, and a platinum-based catalyst [1] to [3] The method as described in any one of.
  • a hydride of a polyhydroxy unsaturated hydrocarbon polymer can be produced at a high hydrogenation rate while suppressing side reactions.
  • the polyhydroxy unsaturated hydrocarbon polymer used in the present invention has a carbon-carbon double bond in the main chain or side chain of the molecule, and has an average of 0.5 or more hydroxyl groups in the molecule. It is a hydrocarbon polymer.
  • the polyhydroxy unsaturated hydrocarbon polymer can be produced by various methods. For example, a conjugated diene monomer alone, a mixture of two or more conjugated diene monomers, or a mixture of a conjugated diene monomer and another monomer copolymerizable therewith 1) Polymerized using hydrogen peroxide as a reaction initiator 2) a method of polymerizing using another initiator, for example, an azobisisonitrile compound having a functional group, and 3) an alkali metal such as sodium or lithium, or an alkali metal and a polycyclic aroma
  • An anion polymerization using a complex with a group compound as a catalyst, followed by a reaction with an alkylene oxide, epichlorohydrin or the like, and a treatment with a protonic acid such as hydrochloric acid, sulfuric acid or acetic acid can be used.
  • examples of the raw material conjugated diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, chloroprene, and the other copolymerizable monomers include styrene, acrylonitrile, acrylic acid, Examples include methacrylic acid, acrylic acid alkyl ester, and methacrylic acid alkyl ester.
  • Specific examples of the polymer obtained by the above method include polyhydroxypolybutadiene, polyhydroxypolyisoprene, polyhydroxypoly1,3-pentadiene, and the above copolymers having a hydroxy group. Of these, polybutadiene having hydroxyl groups at both ends is preferred.
  • the polyhydroxy unsaturated hydrocarbon polymer used in the present invention may be composed of only 1,4-bonds or only 1,2-bonds. It is preferable that a compound composed of the above (1,4-bond unit) and a compound composed of 1,2-bond (1,2-bond unit) coexist.
  • the molar ratio of 1,2-bond units / 1,4-bond units is not particularly limited, but is preferably 45/55 to 95/5, more preferably 50/50 to 90/10.
  • the polyhydroxy unsaturated hydrocarbon polymer used in the present invention preferably has a number average molecular weight of 300 to 10,000, more preferably 500 to 6,000.
  • the number of hydroxyl groups contained in the polyhydroxy unsaturated hydrocarbon polymer is preferably 50 KOHmg / g or more, more preferably 60 KOHmg / g or more, as a hydroxyl value.
  • a commercially available polyhydroxy unsaturated hydrocarbon polymer can be used.
  • NISSO-PB-G-1000 manufactured by Nippon Soda Co., Ltd.
  • NISSO-PB-G-2000 manufactured by Nippon Soda Co., Ltd.
  • NISSO-PB-G-3000 manufactured by Nippon Soda Co., Ltd.
  • PoIy bd R45HT Idemitsu Kosan Co., Ltd.
  • the hydrogenation catalyst used in the present invention is not particularly limited as long as it is a catalyst for smoothly performing a hydrogenation reaction of a polyhydroxy unsaturated hydrocarbon polymer.
  • the hydrogenation catalyst that can be used in the present invention include nickel-based catalysts, cobalt-based catalysts, ruthenium-based catalysts, rhodium-based catalysts, palladium-based catalysts, platinum-based catalysts, and mixtures or alloy-based catalysts thereof. Of these, nickel-based catalysts and ruthenium-based catalysts are preferable from the viewpoint that hydroxyl group hydrogenolysis hardly occurs.
  • hydrogenation catalysts can be used alone, as a solid or soluble homogeneous complex, or as a carrier-supported type supported on a carrier such as carbon, silica, or diatomaceous earth. Of these, a catalyst supported on a diatomaceous earth support is preferred. Furthermore, as the hydrogenation catalyst, in addition to the above metal catalyst, a metal complex obtained by reducing a compound containing nickel, titanium, cobalt and the like with an organometallic compound (for example, trialkylaluminum, alkyllithium, etc.) can also be used.
  • organometallic compound for example, trialkylaluminum, alkyllithium, etc.
  • the amount of the hydrogenation catalyst used in the method of the present invention is preferably 0.01 to 20% by weight with respect to the polyhydroxy unsaturated hydrocarbon polymer, although it varies depending on the kind of metal and the amount supported. .
  • the hydrogenation catalyst may be attached to the reactor as a fixed bed or suspended in the reaction solvent.
  • reaction solvent used in the present invention various conventionally used organic solvents are used.
  • organic solvent include hexane, heptane, octane, nonane, decane, cyclohexane, methylcyclohexane, isoparaffin, benzene, toluene, xylene, trimethylbenzene, solvent naphtha and other hydrocarbons; n-propyl alcohol, isopropyl alcohol, n-butyl.
  • Examples include alcohols such as alcohols; ethers such as diethyl ether, dipropyl ether and tetrahydrofuran; esters such as ethyl acetate and butyl acetate; or mixed solvents composed of any combination thereof. It is not limited to things.
  • the amount of the reaction solvent used in the method of the present invention is not particularly limited, but is preferably 30 to 300 parts by weight with respect to 100 parts by weight of the polyhydroxy unsaturated hydrocarbon polymer.
  • the hydrogen used in the present invention is not particularly limited as long as it does not contain a component that becomes a catalyst poison.
  • the hydrogenation reaction is performed in at least two stages.
  • the stage (I) is a stage from the start of the hydrogenation reaction to a predetermined hydrogenation rate or higher.
  • the predetermined hydrogenation rate is 30 mol%, preferably 40 mol%, more preferably 60 mol%, and most preferably 85 mol%.
  • the upper limit of the predetermined hydrogenation rate that is the end point of the stage (I) is preferably 97 mol%. If the hydrogenation rate as the end point of stage (I) is set too low, the ratio of occurrence of hydrogenolysis reaction of hydroxyl groups and thermal polymerization of unsaturated bonds in stage (II) increases, and polyhydroxy unsaturated hydrocarbon system There is a tendency for the hydroxyl value of the polymer hydride to decrease.
  • A is the number of moles of monomer unit units hydrogenated in the polyhydroxy unsaturated hydrocarbon polymer hydride
  • B is the total number of hydrogen contained in the polyhydroxy unsaturated hydrocarbon polymer hydride.
  • the number of moles of monomer unit. A and B are calculated by 1 H-NMR integration ratio.
  • the temperature is maintained in the range of 80 to 130 ° C., preferably 100 to 130 ° C., more preferably 120 to 130 ° C.
  • the reaction temperature is lowered, the hydrogenation reaction does not proceed or the reaction tends to become extremely slow.
  • the reaction temperature in the stage (I) increases, the rate at which the thermal polymerization reaction (side reaction) between the polyhydroxy unsaturated hydrocarbon polymers proceeds tends to increase.
  • the hydrogen pressure is preferably adjusted to 6 MPa or less, more preferably 4 MPa or less, and further preferably 2 MPa or less by introducing hydrogen gas.
  • the lower limit of the hydrogen pressure is preferably 0.2 MPa.
  • the stage (II) is a stage from the predetermined hydrogenation rate until the hydrogenation rate becomes 98% or more.
  • the step (II) may be performed in the reactor used in the step (I), or may be performed by transferring the reaction solution to a reactor different from the reactor used in the step (I). It is preferable from the viewpoint of production efficiency that the step (I) and the step (II) are performed without interruption.
  • the temperature is higher than 130 ° C, preferably 140 ° C or higher.
  • the upper limit of the temperature in the stage (II) is 190 ° C.
  • the hydrogen pressure is preferably adjusted to 2 MPa or more, more preferably 4 MPa or more, and further preferably 6 MPa or more by introducing hydrogen gas.
  • the upper limit of the hydrogen pressure is determined by the pressure limit of the reactor, but is preferably 10 MPa.
  • the product polyhydroxy unsaturated hydrocarbon polymer hydride can be isolated and purified according to a known method.
  • the hydrogenation catalyst when the hydrogenation catalyst is suspended in the reaction solvent, the liquid containing the reaction product can be filtered to recover the hydrogenation catalyst.
  • the recovered hydrogenation catalyst can be regenerated by a known method and reused in a hydrogenation reaction or the like.
  • the reaction solvent can be removed by isolating the liquid containing the reaction product by thin film drying, vacuum drying, or the like, and the product can be isolated.
  • Hydroxyl value This is the number of mg of potassium hydroxide required to acetylate the OH group contained in 1 g of the sample. It measured by the method based on JISK0070: 1992. The ratio of the hydroxyl value after hydrogenation to the hydroxyl value before hydrogenation was defined as the hydroxyl group retention.
  • Iodine number This is a value obtained by converting the amount of halogen that reacts with 100 grams of the sample into grams of iodine. It measured by the method based on JISK0070: 1992.
  • Example 1 In an autoclave having a capacity of 0.98 liter equipped with a heater for heating, a stirring mechanism and a thermometer, 12.01 g of nickel catalyst supported on diatomaceous earth was charged and purged with nitrogen. To this was added 250 g of a 60 wt% octane solution of terminal hydroxyl group-modified polybutadiene (“G-1000” manufactured by Nippon Soda Co., Ltd., number average molecular weight: 1400). Next, hydrogen gas was pressurized and sealed in the autoclave until the pressure became 2.0 MPa. The hydrogenation reaction was performed while maintaining the temperature at 120 to 130 ° C. Hydrogen gas was consumed by the reaction, and the hydrogen pressure in the autoclave dropped to 0.2 MPa.
  • G-1000 60 wt% octane solution of terminal hydroxyl group-modified polybutadiene
  • the temperature inside the autoclave was raised to 165 ° C. Hydrogen gas was pressurized and sealed until the hydrogen pressure in the autoclave reached 9.2 MPa. The hydrogenation reaction was carried out for 3 hours while maintaining the temperature at 165 ° C. Hydrogen gas was consumed by the reaction, and the hydrogen pressure in the autoclave became 8.3 MPa.
  • the autoclave was cooled to room temperature. The liquid containing the reaction product was filtered to remove the hydrogenation catalyst.
  • the obtained terminal hydroxyl group-modified polybutadiene hydride had a hydrogenation rate of 99%, an iodine value of 13.8 Ig / 100 g, a hydroxyl value of 64.3 KOHmg / g, and a hydroxyl value retention of 90.4%.
  • Example 2 A terminal hydroxyl group-modified polybutadiene hydride was obtained in the same manner as in Example 1 except that the hydrogen pressure in the hydrogen enclosure after raising the temperature in the autoclave to 165 ° C. was changed to 6.4 MPa.
  • the obtained terminal hydroxyl group-modified polybutadiene hydride had a hydrogenation rate of 99%, an iodine value of 14.9 Ig / 100 g, a hydroxyl value of 64.0 KOHmg / g, and a hydroxyl value retention of 90.0%.
  • Example 3 In an autoclave having a capacity of 0.98 liter equipped with a heater for heating, a stirring mechanism, and a thermometer, 12.01 g of a diatomaceous earth-supported nickel catalyst was charged and purged with nitrogen. To this was added 250 g of a 60 wt% octane solution of terminal hydroxyl group-modified polybutadiene (“G-1000” manufactured by Nippon Soda Co., Ltd., number average molecular weight: 1400). Next, hydrogen gas was pressurized and sealed in the autoclave until the pressure became 2.0 MPa. The hydrogenation reaction was performed while maintaining the temperature at 120 to 130 ° C.
  • G-1000 60 wt% octane solution of terminal hydroxyl group-modified polybutadiene
  • the obtained terminal hydroxyl group-modified polybutadiene hydride had a hydrogenation rate of 99%, an iodine value of 15.1 Ig / 100 g, a hydroxyl value of 63.4 KOHmg / g, and a hydroxyl value retention of 89.2%.
  • Example 4 In an autoclave having a capacity of 0.98 liter equipped with a heater for heating, a stirring mechanism, and a thermometer, 12.01 g of a diatomaceous earth-supported nickel catalyst was charged and purged with nitrogen. To this was added 250 g of a 60 wt% octane solution of terminal hydroxyl group-modified polybutadiene (“G-1000” manufactured by Nippon Soda Co., Ltd., number average molecular weight: 1400). Next, hydrogen gas was pressurized and sealed in the autoclave until the pressure became 2.0 MPa. The hydrogenation reaction was performed while maintaining the temperature at 120 to 130 ° C. Hydrogen gas was consumed by the reaction, and the hydrogen pressure in the autoclave dropped to 0.2 MPa.
  • G-1000 60 wt% octane solution of terminal hydroxyl group-modified polybutadiene
  • the obtained terminal hydroxyl group-modified polybutadiene hydride had a hydrogenation rate of 99%, an iodine value of 13.9 Ig / 100 g, a hydroxyl value of 62.1 KOHmg / g, and a hydroxyl value retention of 87.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

末端水酸基の水素分解反応などの副反応を抑制し、短い反応時間で高い水素化率にすることができるポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法を提供する。ポリヒドロキシ不飽和炭化水素系重合体を、水素化触媒および反応溶媒の存在下、(I)80℃~130℃の温度範囲で水素化率30mol%以上となるまで水素化反応を行い、(II)その後、130℃より高い温度で水素化率98mol%以上となるまで水素化反応を行うことを含む方法によってポリヒドロキシ不飽和炭化水素系重合体水素化物を得る。

Description

ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法
 本発明は、ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法に関する。より詳細に、本発明は、末端水酸基の水素分解反応などの副反応を抑制し、短い反応時間で高い水素化率にすることができるポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法に関する。
 本願は、2013年1月10日に、日本に出願された特願2013-002503号に基づき優先権を主張し、その内容をここに援用する。
 ポリブタジエン水素化物の主鎖の末端部に水酸基が結合した、いわゆる末端水酸基変性ポリブタジエン水素化物が知られている。この末端水酸基変性ポリブタジエン水素化物は、末端水酸基変性ポリブタジエン中の主鎖または側鎖の炭素-炭素二重結合に水素付加反応させることによって得られる。例えば、特許文献1には、ポリヒドロキシポリブタジエンを、カーボン担持ルテニウム触媒やアルミナ担持ルテニウム触媒の存在下、100℃にて系内圧力50mg/cm(約4.9Pa)を保って水素化したことが記載されている。また、特許文献2には、反応温度(例えば、120℃±5℃)を一定に維持して反応圧力35kg/cm(約3.4MPa)以下の圧力に設定して60%以上の水素化率となるまで水素化反応を行った後、反応温度(例えば、120℃±5℃)を一定に維持して35kg/cmを超える圧力に設定して99%以上の水素化率となるまで水素化反応を行うことを特徴とするポリヒドロキシ不飽和炭化水素系重合体の水素化方法が提案されている。
特公昭52-24559号公報 特開平9-100317号公報
 ところが、従来の方法では、短い反応時間で高い水素化率にしようとすると、末端水酸基の切断等の副反応が起きやすくなり、ポリヒドロキシ不飽和炭化水素系重合体水素化物の水酸基価が低下する傾向があった。
 本発明の課題は、末端水酸基の水素分解反応などの副反応を抑制し、短い反応時間で高い水素化率にすることができるポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法を提供することである。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、80℃~130℃の温度範囲で30mol%以上の水素化率となるまで水素化反応を行い、その後130℃より高い温度で98mol%以上の水素化率となるまで水素化反応を行うことを含む方法により、上記の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の形態を包含する。
〔1〕 水素雰囲気にて、ポリヒドロキシ不飽和炭化水素系重合体を、水素化触媒および反応溶媒の存在下、
 (I)80℃~130℃の温度範囲で水素化率30mol%以上となるまで水素化反応を行い、
 (II)その後、130℃より高い温度で水素化率98mol%以上となるまで水素化反応を行うことを含むポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法。
〔2〕(I)の段階における水素圧力が6MPa以下である〔1〕に記載の方法。
〔3〕(II)の段階における水素圧力が2MPa以上である〔1〕または〔2〕に記載の方法。
〔4〕水素化触媒が、ニッケル系触媒、コバルト系触媒、ルテニウム系触媒、ロジウム系触媒、パラジウム系触媒、および白金系触媒からなる群から選ばれる少なくとも1つである〔1〕~〔3〕のいずれかひとつに記載の方法。
 本発明の方法によれば、副反応を抑制しつつ、高い水素化率で、ポリヒドロキシ不飽和炭化水素系重合体水素化物を製造することができる。
(ポリヒドロキシ不飽和炭化水素系重合体)
 本発明に用いられるポリヒドロキシ不飽和炭化水素系重合体は、分子の主鎖または側鎖に炭素-炭素二重結合を有し、かつ、その分子中に平均0.5個以上の水酸基を有する炭化水素系重合体である。
 ポリヒドロキシ不飽和炭化水素系重合体は、種々の方法で製造することができる。例えば、共役ジエン系モノマー単独、2種以上の共役ジエン系モノマーの混合物、または共役ジエン系モノマーとこれらと共重合可能な他のモノマーとの混合物を、1)過酸化水素を反応開始剤として重合させる方法、また、2)他の反応開始剤、例えば官能基を有するアゾビスイソニトリル化合物を使用して重合させる方法、さらに、3)ナトリウム、リチウム等のアルカリ金属、または、アルカリ金属と多環芳香族化合物との錯体を触媒としてアニオン重合させ、次いでアルキレンオキシド、エピクロルヒドリン等を反応させ、塩酸、硫酸、酢酸等のプロトン酸で処理する方法、等によって製造することができる。
 この場合、原料共役ジエン系モノマーとしては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、クロロプレン等が挙げられ、また、共重合可能な他のモノマーとしては、スチレン、アクリロニトリル、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル等が挙げられる。
 上記方法で得られる重合体の具体例としては、ポリヒドロキシポリブタジエン、ポリヒドロキシポリイソプレン、ポリヒドロキシポリ1,3-ペンタジエン、およびヒドロキシ基を有する上記各共重合体等が挙げられる。これらのうち、両末端に水酸基を有するポリブタジエンが好ましい。本発明に用いられるポリヒドロキシ不飽和炭化水素系重合体は1,4-結合のみで構成されたものまたは1,2-結合のみで構成されたものであってもよいが、1,4-結合で構成されたもの(1,4-結合ユニット)と1,2-結合で構成されたもの(1,2-結合ユニット)とが共存するものであることが好ましい。1,2-結合ユニット/1,4-結合ユニットのモル比は、特に限定されないが、好ましくは45/55~95/5、より好ましくは50/50~90/10である。また、本発明に用いられるポリヒドロキシ不飽和炭化水素系重合体は、数平均分子量が好ましくは300~10000、より好ましくは500~6000である。ポリヒドロキシ不飽和炭化水素系重合体に含まれる水酸基の数は、水酸基価として、好ましくは50KOHmg/g以上、より好ましくは60KOHmg/g以上である。
 また、ポリヒドロキシ不飽和炭化水素系重合体として市販のものを用いることができる。例えば、NISSO-PB-G-1000(日本曹達社製)、NISSO-PB-G-2000(日本曹達社製)、NISSO-PB-G-3000(日本曹達社製)、PoIy bd R45HT(出光興産社製)などを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。
 本発明に用いられる水素化触媒は、ポリヒドロキシ不飽和炭化水素系重合体の水素化反応を円滑に行わせるための触媒であれば特に限定されない。本発明で用いることができる水素化触媒としては、ニッケル系触媒、コバルト系触媒、ルテニウム系触媒、ロジウム系触媒、パラジウム系触媒、白金系触媒およびこれらの混合物または合金系触媒を挙げることができる。これらのうち、水酸基の水素化分解が生じにくいという観点から、ニッケル系触媒、ルテニウム系触媒が好ましい。
 これらの水素化触媒は、単独で、固体または可溶性均一錯体として、或いはカーボン、シリカ、珪そう土等の担体に担持された担体担持型として使用できる。これらのうち、珪そう土担体に担持された触媒が好ましい。さらに、水素化触媒としては、上記金属触媒のほか、ニッケル、チタン、コバルト等を含む化合物を有機金属化合物(例えば、トリアルキルアルミニウム、アルキルリチウム等)で還元して得られる金属錯体も使用できる。
 本発明の方法において使用される水素化触媒の量は、金属の種類や担持量等によって異なるが、ポリヒドロキシ不飽和炭化水素系重合体に対して、好ましくは0.01~20重量%である。水素化触媒は、反応器に固定床として取り付けてもよいし、反応溶媒に懸濁させてもよい。
 本発明に用いられる反応溶媒は、従来より使用されている各種の有機溶媒が用いられる。該有機溶媒としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、メチルシクロヘキサン、イソパラフィン、ベンゼン、トルエン、キシレン、トリメチルベンゼン、ソルベントナフサ等の炭化水素;n一プロピルアルコール、イソプロピルアルコール、n一ブチルアルコール等のアルコール類;ジエチルエーテル、ジプロピルエーテル、テトラヒドロフラン等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;或いはこれらの任意組み合わせからなる混合溶媒等を挙げることができるが、これら例示されたものに限定されるものではない。
 本発明の方法において使用される反応溶媒の量は特に限定されないが、ポリヒドロキシ不飽和炭化水素系重合体100重量部に対して好ましくは30~300重量部である。
 本発明に用いられる水素は、触媒毒となる成分が含まれていないものであれば特に制限されない。
 本発明の方法においては水素化反応を少なくとも2段階に分けて行う。
 まず、(I)の段階は、水素化反応開始から所定の水素化率以上になるまでの段階である。所定の水素化率は、30mol%、好ましくは40mol%、さらに好ましくは60mol%、最も好ましくは85mol%である。(I)段階の終了点である所定水素化率の上限は、好ましくは97mol%である。(I)段階の終了点としての水素化率を低く設定しすぎると、(II)段階において、水酸基の水素分解反応や不飽和結合の熱重合が起きる割合が増え、ポリヒドロキシ不飽和炭化水素系重合体水素化物の水酸基価が低下する傾向がある。
なお、水素化率(mol%)は、以下の式で定義される値である。
  水素化率(mol%)=(A/B)×100
 式中、Aは、ポリヒドロキシ不飽和炭化水素系重合体水素化物中の水素化されているモノマー単位ユニットのモル数、Bは、ポリヒドロキシ不飽和炭化水素系重合体水素化物中に含まれる全モノマー単位ユニットのモル数である。AおよびBはH-NMRの積分比によって算出する。
 (I)の段階においては、温度を80℃~130℃、好ましくは100~130℃、より好ましくは120~130℃の範囲内に維持する。反応温度が低くなると、水素化反応が進行しないか、あるいは、反応が極端に遅くなる傾向がある。(I)の段階における反応温度が高くなると、ポリヒドロキシ不飽和炭化水素系重合体同士の熱重合反応(副反応)の進行する割合が増加する傾向がある。また、水素ガス導入によって水素圧力を、好ましくは6MPa以下、より好ましくは4MPa以下、さらに好ましくは2MPa以下に調整する。水素圧力の下限は、好ましくは0.2MPaである。このような水素圧力で水素化反応を行うことにより、副反応を抑えることができる。
 次に、(II)の段階は、前記の所定水素化率から98%以上の水素化率となるまでの段階である。(II)の段階は(I)の段階において用いた反応器において行ってもよいし、(I)の段階において用いた反応器とは別の反応器に反応液を移して行ってもよい。(I)の段階と(II)の段階とは中断せずに続けて行うことが製造効率の点で好ましい。
 (II)の段階においては、温度を130℃より高く、好ましくは140℃以上にする。(II)の段階における温度の上限は190℃である。(II)の段階における温度が130℃以下である場合は、98mol%以上の水素化率とすることが困難であるか、または98mol%以上の水素化率とするまでに非常に長い時間を要する。また、水素ガス導入によって水素圧力を、好ましくは2MPa以上、より好ましくは4MPa以上、さらに好ましくは6MPa以上に調整する。水素圧力の上限は、反応器の耐圧限界によって決まるが、好ましくは10MPaである。このような水素圧力で水素化反応を行うことにより、副反応を抑えつつ、短い時間で高い水素化率にすることができる。
 水素化反応終了後、公知の方法に従って、生成物であるポリヒドロキシ不飽和炭化水素系重合体水素化物を単離精製することができる。例えば、水素化触媒を反応溶媒に懸濁して用いた場合には、反応生成物を含む液をろ過して水素化触媒を回収することができる。回収した水素化触媒は公知の方法によって再生させ水素化反応などに再利用することができる。また、反応生成物を含む液を薄膜乾燥、真空乾燥などすることによって反応溶媒を除去し、生成物を単離することができる。
 次に、実施例および比較例を示し、本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。
(水酸基価)
 試料1g中に含まれるOH基をアセチル化するために要する水酸化カリウムのmg数である。JIS K 0070:1992に準拠した方法で測定した。水素化前の水酸基価に対する水素化後の水酸基価との比率を水酸基保持率と定義した。
(ヨウ素価)
 試料100グラムと反応するハロゲンの量をヨウ素のグラム数に換算した値である。JIS K 0070:1992に準拠した方法で測定した。
(実施例1)
 加温用ヒーター、攪拌機構および温度計を備えた容量0.98リットルのオートクレーブに、珪藻土担持ニッケル触媒12.01gを仕込み、窒素置換した。これに末端水酸基変性ポリブタジエン(「G-1000」日本曹達社製、数平均分子量:1400)の60重量%オクタン溶液250gを加えた。
 次に、このオートクレーブ内に水素ガスを2.0MPaとなるまで加圧封入した。120~130℃に維持して水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が0.2MPaまで下がった。
 0.2MPになった時点で、水素ガスを2.0MPaとなるまで加圧封入した。この操作を水素化率が84%となるまで繰り返した。所要時間は15時間であった。この段階で得られた生成物の水酸基価は63.2KOHmg/gであった。
 オートクレーブ内を165℃まで昇温した。オートクレーブ内の水素圧力が9.2MPaとなるまで、水素ガスを加圧封入した。温度165℃に維持して3時間水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が8.3MPaになった。
 オートクレーブを室温まで冷却した。反応生成物を含む液を濾過して水素化触媒を除去した。得られた末端水酸基変性ポリブタジエン水素化物は、水素化率が99%、ヨウ素価が13.8Ig/100g、水酸基価が64.3KOHmg/g、水酸基価保持率が90.4%であった。
(実施例2)
 オートクレーブ内を165℃に昇温した後の水素封入の水素圧力を6.4MPaに変えた以外は実施例1と同じ方法で末端水酸基変性ポリブタジエン水素化物を得た。得られた末端水酸基変性ポリブタジエン水素化物は、水素化率が99%、ヨウ素価が14.9Ig/100g、水酸基価が64.0KOHmg/g、水酸基価保持率が90.0%であった。
(実施例3)
 加温用ヒーター、攪拌機構および温度計を備えた容量0.98リットルのオートクレーブに、珪藻土担持ニッケル触媒12.01gを仕込み窒素置換した。これに末端水酸基変性ポリブタジエン(「G-1000」日本曹達社製、数平均分子量:1400)の60重量%オクタン溶液250gを加えた。
 次に、オートクレーブ内に水素ガスを2.0MPaとなるまで加圧封入した。120~130℃に維持して水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が0.2MPaまで下がった。
 0.2MPaになった時点で、水素ガスを2.0MPaとなるまで加圧封入した。この操作を水素化率が32%となるまで繰り返した。所要時間は5時間であった。この段階で得られた生成物の水酸基価は65.8KOHmg/gであった。
 次に、オートクレーブ内に水素ガスを5.5MPaとなるまで加圧封入した。2時間かけてオートクレーブ内を165℃まで昇温しながら水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が0.9MPaまで下がった。 165℃に達した時点で、オートクレーブ内の水素圧力が9.2MPaとなるまで水素ガスを加圧封入した。温度を165℃に維持して3時間水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が7.0MPaになった。
 オートクレーブを室温まで冷却した。反応生成物を含む液をろ過して水素化触媒を除去した。得られた末端水酸基変性ポリブタジエン水素化物は、水素化率が99%、ヨウ素価が15.1Ig/100g、水酸基価が63.4KOHmg/g、水酸基価保持率が89.2%であった。
(実施例4)
 加温用ヒーター、攪拌機構および温度計を備えた容量0.98リットルのオートクレーブに、珪藻土担持ニッケル触媒12.01gを仕込み窒素置換した。これに末端水酸基変性ポリブタジエン(「G-1000」日本曹達社製、数平均分子量:1400)の60重量%オクタン溶液250gを加えた。
 次に、オートクレーブ内に水素ガスを2.0MPaとなるまで加圧封入した。120~130℃に維持して水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が0.2MPaまで下がった。
 0.2MPaになった時点で、水素ガスを2.0MPaとなるまで加圧封入した。この操作を水素化率が34%となるまで繰り返した。所要時間は5時間であった。この段階で得られた生成物の水酸基価は67.3KOHmg/gであった。
 次に、オートクレーブ内に水素ガスを5.7MPaとなるまで加圧封入した。2時間かけて反応系内を165℃まで昇温しながら水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が1.5MPaまで下がった。
 165℃に達した時点で、オートクレーブ内の水素圧力が7.8MPaとなるまで水素ガスを加圧封入した。温度を165℃に維持して3時間水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が5.7MPaになった。
 オートクレーブを室温まで冷却した。反応生成物を含む液をろ過して水素化触媒を除去した。得られた末端水酸基変性ポリブタジエン水素化物は、水素化率が99%、ヨウ素価が13.9Ig/100g、水酸基価が62.1KOHmg/g、水酸基価保持率が87.3%であった。
(比較例1)
 加温用ヒーター、攪拌機構および温度計を備えた容量0.98リットルのオートクレーブに、珪藻土担持ニッケル触媒12.01gを仕込み窒素置換した。これに末端水酸基変性ポリブタジエン(「G-1000」日本曹達社製、数平均分子量:1400)の60重量%オクタン溶液250gを加えた。
 次に、オートクレーブ内に水素ガスを2.0MPaとなるまで加圧封入した。120~130℃に維持して水素化反応を行った。反応によって水素ガスが消費され、オートクレーブ内の水素圧力が0.2MPaまで下がった。
 0.2MPaになった時点で、水素ガスを2.0MPaとなるまで加圧封入した。この操作を水素化率が96%となるまで繰り返した。所要時間は15時間であった。
 オートクレーブを室温まで冷却した。反応生成物を含む液をろ過して水素化触媒を除去した。得られた末端水酸基変性ポリブタジエン水素化物は、水素化率が96%、ヨウ素価が30.7Ig/100g、水酸基価が65.5KOHmg/g、水酸基価保持率が92.1%であった。
(比較例2)
 加温用ヒーター、攪拌機構および温度計を備えた容量0.98リットルのオートクレーブに、珪藻土担持ニッケル触媒12.01gを仕込み窒素置換した。これに末端水酸基変性ポリブタジエン(「G-1000」日本曹達社製、数平均分子量:1400)の60重量%オクタン溶液250gを加えた。
 次に、オートクレーブ内に水素ガスを2.0MPaとなるまで加圧封入した。140~150℃に維持して水素化反応を行った。反応によって水素ガスが消費され、系内の水素圧力が0.2MPaまで下がった。
 0.2MPaになった時点で、水素ガスを2.0MPaとなるまで加圧封入した。この操作を水素化率が98%となるまで繰り返した。所要時間は15時間であった。
 オートクレーブを室温まで冷却した。反応生成物を含む液をろ過して水素化触媒を除去した。得られた末端水酸基変性ポリブタジエン水素化物は、水素化率が98%、ヨウ素価が20.8Ig/100g、水酸基価が61.8KOHmg/g、水酸基価保持率が86.9%であった。
 以上の結果が示すとおり、120~130℃の温度に保って水素化反応を長時間掛けて行っても水素化率が高くなり難い。また140~150℃の温度に保って水素化反応を長時間掛けて行うと、水素化率を高くすることができるが、水酸基価が低下する。
 これに対して、本発明の方法によれば、水酸基価をほとんど低下させずに、短い反応時間で高い水素化率にすることができる。

Claims (4)

  1.  水素雰囲気にて、ポリヒドロキシ不飽和炭化水素系重合体を、水素化触媒および反応溶媒の存在下、
     (I)80℃~130℃の温度範囲で水素化率30mol%以上となるまで水素化反応を行い、
     (II)その後、130℃より高い温度で水素化率98mol%以上となるまで水素化反応を行うことを含むポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法。
  2.  (I)の段階における水素圧力が6MPa以下である請求項1に記載の方法。
  3.  (II)の段階における水素圧力が2MPa以上である請求項1または2に記載の方法。
  4.  水素化触媒が、ニッケル系触媒、コバルト系触媒、ルテニウム系触媒、ロジウム系触媒、パラジウム系触媒、および白金系触媒からなる群から選ばれる少なくとも1つである請求項1~3のいずれかひとつに記載の方法。
PCT/JP2013/084674 2013-01-10 2013-12-25 ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法 WO2014109232A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13871157.7A EP2944656B1 (en) 2013-01-10 2013-12-25 Method for producing a hydrogenated unsaturated polyhydroxyhydrocarbon polymer
KR1020157017308A KR101731748B1 (ko) 2013-01-10 2013-12-25 폴리하이드록시 불포화 탄화수소계 중합체 수소화물의 제조 방법
US14/758,872 US9487605B2 (en) 2013-01-10 2013-12-25 Method for producing hydrogenated unsaturated polyhydroxyhydrocarbon polymer
CN201380069385.0A CN104918970B (zh) 2013-01-10 2013-12-25 多羟基不饱和烃系聚合物氢化物的制造方法
JP2014556374A JP5839754B2 (ja) 2013-01-10 2013-12-25 ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-002503 2013-01-10
JP2013002503 2013-01-10

Publications (1)

Publication Number Publication Date
WO2014109232A1 true WO2014109232A1 (ja) 2014-07-17

Family

ID=51166889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084674 WO2014109232A1 (ja) 2013-01-10 2013-12-25 ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法

Country Status (6)

Country Link
US (1) US9487605B2 (ja)
EP (1) EP2944656B1 (ja)
JP (1) JP5839754B2 (ja)
KR (1) KR101731748B1 (ja)
CN (1) CN104918970B (ja)
WO (1) WO2014109232A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432552A (zh) * 2016-09-09 2017-02-22 珠海市泽涛粘合制品有限公司 一种改性聚合物及其制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109153445A (zh) 2016-02-17 2019-01-04 雅顿技术有限公司 具有不同用途螺旋桨的多旋翼飞行器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224559B2 (ja) 1973-12-14 1977-07-01
JPS5440897A (en) * 1977-09-07 1979-03-31 Mitsubishi Chem Ind Ltd Hydrogenation of polymer
JPH07247302A (ja) * 1994-03-10 1995-09-26 Mitsubishi Chem Corp ポリヒドロキシ不飽和炭化水素系重合体の水添方法
JPH07247303A (ja) * 1994-03-14 1995-09-26 Mitsubishi Chem Corp ポリヒドロキシ不飽和炭化水素系重合体の水添方法
JPH09100317A (ja) 1995-10-05 1997-04-15 Mitsubishi Chem Corp ポリヒドロキシ不飽和炭化水素系重合体の水素添加方法
JPH09176233A (ja) * 1995-12-22 1997-07-08 Kuraray Co Ltd 水酸基含有共役ジエン系重合体の水素化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442877A (en) * 1965-07-20 1969-05-06 Exxon Research Engineering Co Two-stage hydrogenation process
US3446740A (en) * 1967-10-25 1969-05-27 Sinclair Research Inc Mineral oil improved in pour point by hydrogenated hydroxy diene polymer
FR2077907A1 (ja) * 1970-02-23 1971-11-05 Inst Francais Du Petrole
JPS5326890A (en) * 1976-08-25 1978-03-13 Mitsubishi Chem Ind Ltd Preparation of polyhydroxy saturated hydrocarbon polymer
DE2831719A1 (de) * 1978-07-19 1980-01-31 Bayer Ag Verfahren zur herstellung von niedermolekularen polyhydroxylverbindungen
CA1339235C (en) 1987-12-07 1997-08-05 Hideo Takamatsu Process for the hydrogenation of conjugated diene polymers
TW356474B (en) * 1994-10-11 1999-04-21 Shell Internat Res Monohydroxylated diene polymers and epoxidized derivatives thereof
ES2271027T3 (es) * 2000-06-30 2007-04-16 Asahi Kasei Kabushiki Kaisha Procedimiento para la hidratacion de polimeros y copolimeros de dieno conjungados.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224559B2 (ja) 1973-12-14 1977-07-01
JPS5440897A (en) * 1977-09-07 1979-03-31 Mitsubishi Chem Ind Ltd Hydrogenation of polymer
JPH07247302A (ja) * 1994-03-10 1995-09-26 Mitsubishi Chem Corp ポリヒドロキシ不飽和炭化水素系重合体の水添方法
JPH07247303A (ja) * 1994-03-14 1995-09-26 Mitsubishi Chem Corp ポリヒドロキシ不飽和炭化水素系重合体の水添方法
JPH09100317A (ja) 1995-10-05 1997-04-15 Mitsubishi Chem Corp ポリヒドロキシ不飽和炭化水素系重合体の水素添加方法
JPH09176233A (ja) * 1995-12-22 1997-07-08 Kuraray Co Ltd 水酸基含有共役ジエン系重合体の水素化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2944656A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432552A (zh) * 2016-09-09 2017-02-22 珠海市泽涛粘合制品有限公司 一种改性聚合物及其制备方法与应用
CN106432552B (zh) * 2016-09-09 2018-11-20 珠海市泽涛粘合制品有限公司 一种eva鞋材处理剂

Also Published As

Publication number Publication date
US9487605B2 (en) 2016-11-08
KR101731748B1 (ko) 2017-04-28
KR20150091361A (ko) 2015-08-10
CN104918970B (zh) 2017-03-15
US20160002375A1 (en) 2016-01-07
JPWO2014109232A1 (ja) 2017-01-19
CN104918970A (zh) 2015-09-16
EP2944656A1 (en) 2015-11-18
JP5839754B2 (ja) 2016-01-06
EP2944656A4 (en) 2016-08-31
EP2944656B1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
KR101856896B1 (ko) 폴리알케닐 커플링제 및 이것으로 제조된 공액 디엔 중합체
JP5839754B2 (ja) ポリヒドロキシ不飽和炭化水素系重合体水素化物の製造方法
US11208505B2 (en) Process and catalyst composition for producing selectively hydrogenated conjugated diene polymer
RU2609020C2 (ru) Композиция катализатора для гидрирования и способ гидрирования с ее использованием
KR20130095693A (ko) 부분 수소화 중합체 및 그의 제조방법
US20070254802A1 (en) Catalyst composition and method for hydrogenating a polymer having a conjugated diene
EP2272588B1 (en) Catalyst for the hydrogenaton of unsaturated compounds
TWI524938B (zh) 觸媒組合物、氫化苯乙烯系嵌段式聚合物的方法、及所得之氫化聚合物
EP1278782B1 (en) A process for preparing hydrogenated aromatic polymers
CN107828000A (zh) 一种苯乙烯‑异戊二烯‑苯乙烯三嵌段共聚物均相催化加氢的方法
JP2008045074A (ja) 水素化高分子量体の製造方法
JP4921849B2 (ja) 共役ジエン重合体の水素化方法
TWI458768B (zh) 橡膠組成及其製造方法
US20010051691A1 (en) Process for preparing hydrogenated aromatic polymers
JP3163963B2 (ja) ポリヒドロキシ不飽和炭化水素系重合体の水素添加方法
CN102977230B (zh) 一种除去聚合物溶液中加氢催化剂的方法
WO2003025026A1 (en) Block copolymers containing hydrogenated vinyl aromatic/(alpha-alkylstyrene)copolymer blocks
JP2016037511A (ja) 1,2−ポリブタジエンジオール水素化物、およびその製造方法と精製方法
JPH07247303A (ja) ポリヒドロキシ不飽和炭化水素系重合体の水添方法
TW202346378A (zh) 氫化聚合物的製造方法
CN116472295A (zh) 具有统计嵌段和两个终端聚乙烯嵌段的富含乙烯的二烯三嵌段聚合物
JPH07247302A (ja) ポリヒドロキシ不飽和炭化水素系重合体の水添方法
JPH09176233A (ja) 水酸基含有共役ジエン系重合体の水素化方法
JP2006124430A (ja) 芳香族ビニル重合体水素化物の製造方法
JP2002338620A (ja) 水素化した水酸基含有共役ジエン系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556374

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013871157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013871157

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157017308

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14758872

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE