WO2014109087A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2014109087A1
WO2014109087A1 PCT/JP2013/072094 JP2013072094W WO2014109087A1 WO 2014109087 A1 WO2014109087 A1 WO 2014109087A1 JP 2013072094 W JP2013072094 W JP 2013072094W WO 2014109087 A1 WO2014109087 A1 WO 2014109087A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
dummy gate
substrate
fin structure
buried insulating
Prior art date
Application number
PCT/JP2013/072094
Other languages
English (en)
French (fr)
Inventor
穣 小田
雄一 上牟田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2014109087A1 publication Critical patent/WO2014109087A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • high dielectric constant (high-k) films are applied to devices in order to achieve low EOT (Equivalent Physical Oxide Thickness). Furthermore, a replacement gate (damascene gate) for forming a gate insulating film after the SD region is formed in order to avoid the threshold fluctuation and the formation of a low dielectric constant layer due to the thermal load of the high-k film or to introduce strain into the channel. ) Device fabrication using the process is performed.
  • an SD region is formed after forming a dummy gate, the dummy gate is embedded with an insulating film such as SiO 2, and the upper surface of the dummy gate is exposed by a CMP (Chemical Mechanical Polishing) method.
  • CMP Chemical Mechanical Polishing
  • a gate is formed by forming a gate insulating film and a gate electrode again. As a result, the gate stack can be formed without applying a high thermal load when forming the SD region.
  • a process of exposing the upper surface of the dummy gate using the CMP method after depositing the buried insulating film is essential.
  • the wafer area becomes larger in the CMP method it becomes technically difficult to suppress the occurrence of scratches, dishing and erosion.
  • an increase in the diameter of the CMP process is expected due to the increase in diameter, and it is expected that it will become difficult to apply the replacement gate process as the diameter of the wafer increases in the future.
  • the problem to be solved by the invention is to enable a replacement gate process without using the CMP method, suppress in-plane variations and defects of the base film (interlayer insulating film), and reduce the process cost by simplifying the process.
  • An object of the present invention is to provide a method for manufacturing a semiconductor device that can be measured.
  • a method of manufacturing a semiconductor device includes a step of forming a dummy gate on a semiconductor substrate, a buried insulating film is deposited on the substrate and the dummy gate, and the dummy gate is formed on the buried insulating film.
  • a method for manufacturing a semiconductor device includes a step of forming a fin structure on a semiconductor substrate, and a step of forming a semiconductor layer different from the substrate on the surface of the substrate and the fin structure.
  • a method of manufacturing a semiconductor device includes a step of forming a fin structure on a semiconductor substrate, depositing a buried insulating film on the substrate and the fin structure, and filling the fin structure with the buried structure.
  • a method of manufacturing a semiconductor device includes a step of forming a fin structure on a semiconductor substrate, depositing a buried insulating film on the substrate and the fin structure, and filling the fin structure with the buried structure.
  • the replacement gate process can be performed without using the CMP method, in-plane variations and defects of the underlying film (interlayer insulating film) such as dishing, erosion, and scratch, which are problematic in the CMP method, are suppressed. It becomes possible.
  • the process cost can be reduced by simplifying the process. Furthermore, since the gate shape after embedding becomes a reverse taper shape, it becomes possible to reduce gate resistance and to suppress poor embedding of the gate electrode.
  • FIG. 1 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 2 is a photomicrograph showing the cross-sectional structure of the semiconductor device fabricated according to the first embodiment (immediately after gate embedding).
  • FIG. 3 is a photomicrograph showing the cross-sectional structure of the semiconductor device fabricated according to the first embodiment (having voids formed by HF treatment).
  • FIG. 4 is a photomicrograph showing the cross-sectional structure of the semiconductor device manufactured according to the first embodiment (in a state where poly-Si is etched).
  • FIG. 5 is a photomicrograph showing the cross-sectional structure of the semiconductor device fabricated according to the first embodiment (in a state where poly-Si is etched).
  • FIG. 1 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 2 is a photomicrograph showing the cross-sectional structure of the semiconductor device fabricated according to the first embodiment (immediately
  • FIG. 6 is a plan view showing an example in which the gate pattern is finely divided.
  • FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the third embodiment.
  • FIG. 9 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the fourth embodiment.
  • FIG. 10 is a schematic diagram for explaining step coverage.
  • FIG. 11 is a cross-sectional view showing an example in which a step structure is formed on a substrate.
  • FIGS. 1A to 1F are cross-sectional views showing manufacturing steps of the semiconductor device according to the first embodiment.
  • the present embodiment is a method of manufacturing a MOSFET by a replacement gate process.
  • a dummy gate insulating film 2, a dummy gate electrode 3, and a hard mask 4 are formed on a semiconductor substrate 1, and then a dummy gate pattern is formed by an etching process such as lithography and RIE. .
  • a dummy gate insulating film 2 and a dummy gate electrode 3 are deposited on the semiconductor substrate 1, and then a hard mask 4 having a gate pattern is formed on the dummy gate electrode 3.
  • the dummy gate electrode 3 is selectively etched by an etching process such as RIE.
  • the extension region 7 for lowering the parasitic resistance between the channel and the SD region is formed by ion implantation.
  • the deep region (S / D region) 8 is formed.
  • a halo region may be formed in order to improve resistance to the short channel effect.
  • the metal SD region may be formed after only the deep region 8 is formed, and ion implantation for lowering the Schottky barrier between the metal SD and the channel semiconductor may be performed instead of forming the deep region 8. .
  • only the metal SD region may be formed without performing ion implantation.
  • the dummy gate insulating film 2 on the SD region is removed, and a dummy gate 6 is formed in which the dummy gate insulating film 2 ′ is left only under the dummy gate electrode 3.
  • the sidewall film 5 and the hard mask 4 are removed by wet etching or the like.
  • the sidewall film 5 and the hard mask 4 are removed after the dummy gate insulating film 2 on the SD region is removed, but these may be removed before the dummy gate insulating film 2 is removed.
  • FIG. 1C and subsequent figures an example in which the side wall film 5 and the hard mask 4 are removed will be described. However, either or both of the films may be left as they are.
  • a buried insulating film 9 is deposited on the substrate 1 and the dummy gate 6, and the dummy gate 6 is buried with the insulating film 9.
  • the buried insulating film 9 grows from the surface of the substrate 1 and the surface of the dummy gate electrode 3, and finally is connected at the periphery of the dummy gate electrode 3.
  • the buried insulating film 9 is sparse at the portion (boundary) where the portion grown from the surface of the substrate 1 and the portion grown from the surface of the dummy gate electrode 3 are connected.
  • an insulating film having a low step coverage or a strong in-film stress is deposited, and the dummy gate 6 is buried.
  • an insulating film that forms a gap at a specific angle at the end of the step by liquid phase or vapor phase etching when deposited in a step shape may be deposited to bury the dummy gate 6.
  • Examples thereof include SiN films.
  • an LTO film or a TEOS film formed by a CVD method at a low temperature may be used.
  • the insulating film tends to be sparse in the region (boundary) where the insulating film deposited on the side surface of the dummy gate and the semiconductor substrate in the vicinity of the dummy gate collides due to low step coverage or large in-film stress. .
  • the above-described insulating film having a strong in-film stress is a film having the following in-film stress. Specifically, a compressive stress having an in-film stress of 90 MPa or more is preferable, and a film having an in-film compressive stress of 390 MPa or more is particularly preferable.
  • the measurement of the in-film stress said here was estimated by the optical lever method. For example, when measuring film stress of the SiO 2 is a 4-inch Si measured curvature radius of the substrate before and after depositing a SiO 2 film on a substrate, film with a radius of curvature from the elastic constant of the substrate, such as The stress was estimated.
  • the side step coverage (side step coverage) is (Ts / Tt) ⁇ 0.47, or the bottom step coverage (bottom step coverage) is (Tb / Tt) ⁇ 0. 51, or a film having a cusping of ([Tc ⁇ Ts] / Ts) ⁇ 0.34.
  • the insulating film that forms a gap at a specific angle at the end of the step by liquid phase or vapor phase etching when deposited in the step shape described above is a film having the following characteristics. As shown in FIG. 11, when the insulating film is deposited on the step structure formed on the substrate, and then etched in the liquid phase or the gas phase, the normal to the substrate is formed at the end of the step.
  • the insulating film forms a gap in a direction inclined by an angle ⁇ .
  • preferably satisfies 0 ° ⁇ ⁇ ⁇ 60 °. This is because when ⁇ is larger than 60 °, the area of the upper portion of the gate electrode 13 described later increases, which is disadvantageous for miniaturization of the element.
  • the embedded insulating film 9 is etched by a wet etching method or gas, thereby forming a gap 10 in the periphery of the dummy gate 6 as shown in FIG.
  • the gap 10 is inclined along a boundary between a portion where the buried insulating film 9 is sparse, that is, a portion grown from the surface of the substrate 1 of the buried insulating film 9 and a portion grown from the surface of the dummy gate electrode 3. It is formed.
  • the bottom of the dummy gate electrode 3 is exposed to the gap 10.
  • the dummy gate electrode 3 can be lifted off and the holes 11 can be formed as shown in FIG. It becomes.
  • FIG. 1E shows a diagram in which the dummy gate insulating film 2 ′ remains, but the dummy gate insulating film 2 ′ may be removed at the same time when the dummy gate electrode 3 is etched.
  • the insulating film type and etching conditions must be such that the substrate is not etched simultaneously.
  • a gate insulating film 12 is formed by an ALD method or the like, and further a gate electrode 13 is embedded. After embedding the gate electrode 13, the gate electrode 13 may be planarized by performing metal CMP. After that, a CMOS logic circuit can be formed by depositing an interlayer insulating film and performing a wiring process.
  • the following substances can be used for each film type and semiconductor layer.
  • a III-V group compound such as Ge or InGaAs
  • a film etched to HF such as a high-k film such as SiO 2 or HfO 2
  • a film such as La 2 O 3 or LaAlOx etched to HCl or HF, or Al 2 etched to HF, HCl or NaOH.
  • An O 3 film can be used for the dummy gate insulating film 2.
  • the use of the etchable material in chemical other than HF can do.
  • a-Si etched by NaOH or TMAH, NaOH containing H 2 O 2 , a-Ge etched by HCl, a-InP or Ni that can be etched only by HCl can be used.
  • the dummy gate electrode 3 may be formed of SiO 2 or the like etched by HF, but in this case, the buried insulating film 9 needs to be made of SiN that is slow to be etched by HF.
  • La 2 O 3 and LaAlOx etched by HCl if a-Si, a-Ge or the like is used for the dummy gate electrode 3, it can be etched with a chemical solution in which H 2 O 2 is added to TMAH, NaOH or NaOH. is there. Further, if a-InP, Ni, or the like is used for the dummy gate electrode 3, the dummy gate electrode 3 and the dummy gate insulating film 2 can be etched simultaneously with HCl.
  • the dummy gate electrode 3 may be a-Si, a-Ge, a-InP, Ni, or An insulating film such as Al 2 O 3 or SiO 2 can be used.
  • the dummy gate electrode 3 and the dummy gate insulating film 2 can be simultaneously lifted off by TMAH, NaOH, HCl, and HF, respectively.
  • SiO 2 or SiN can be used for the hard mask 4 and the sidewall film 5.
  • a SiO 2 film or a SiN film having a low step coverage or a large in-film compressive stress can be used as the buried insulating film 9.
  • the gap 10 can be formed by HF or H 3 PO 4 , and the dummy gate electrode 3 can be lifted off from the gap 10.
  • the dummy gate electrode 3 and the dummy gate insulating film 2 are formed of an insulating film such as SiO 2 or Al 2 O 3 or a-Si / Al 2 O 3 , NH 4 OH, TMAH, and HF are used. Etching simultaneously dissolves the dummy gate insulating film 2 and the dummy gate electrode 3. At this time, since the semiconductor substrate 1 is hardly dissolved in NH 4 OH, TMAH, and HF, the problem of substrate digging does not occur. For this reason, this structure is preferable because the number of steps can be reduced.
  • Al 2 O 3 is used for the dummy gate insulating film 2
  • a-Si is used for the dummy gate electrode 3
  • PECVD is used for the buried insulating film 9.
  • Examples include a structure using SiO 2 having a low step coverage or a large in-film compressive stress formed by a method.
  • the dummy gate electrode 3 and the dummy gate insulating film 2 can be simultaneously etched with TMAH or NaOH-based chemical without etching the buried insulating film 9 and the semiconductor.
  • Ge or InGaAs substrate digging may occur depending on the processing time and temperature of the a-Si removal process.
  • a structure using a-Si for the dummy gate electrode 3 and HfAlOx or SiO 2 for the dummy gate insulating film 2 can be cited as one of the best structures.
  • SiO 2 or SiN may be used. However, it is preferable to use SiO 2 that is easily etched by HF on the side wall.
  • the semiconductor substrate 1 or the semiconductor substrate surface is a semiconductor layer having a large Si content such as Si or Si 1-x Ge x (x ⁇ 0.7), the substrate is dug by an ammonia chemical solution. Therefore, it is necessary to use a dummy gate 6 having a structure different from that of Ge or III-V group.
  • an insulating film that can be etched with HCl, H 3 PO 4 , HF or the like, which is a chemical solution that does not etch the semiconductor can be used.
  • a high-k film such as SiO 2 , HfO 2 , HfAlOx, etc. etched by HF, an Al 2 O 3 , La 2 O 3 , LaAlO x film, etc. etched by HF, HCl, or H 3 PO 4
  • An SiN film to be etched can be used for the dummy gate insulating film 2.
  • an insulating film such as a-Si, a-InP, Ni, a-Ge, SiO 2 or SiN can be used as the dummy gate electrode 3.
  • the dummy gate electrode 3 can be etched using NaOH, TMAH, HCl, NaOH containing H 2 O 2 , HCl, HF, or H 3 PO 4 .
  • a-Si cannot be used for the dummy gate electrode only when the Al 2 O 3 film is used as described above. This is because a-Si, Al 2 O 3 , and Si are simultaneously etched by TMAH or NaOH-based chemical solution, resulting in substrate digging.
  • the buried insulating film 9 may be made of SiO 2 or SiN having low step coverage or strong in-film stress.
  • the buried insulating film must be a different kind of film so that the buried insulating film is not etched when the dummy gate electrode is removed. That is, when the dummy gate electrode 3 is SiO 2 , the buried insulating film 9 must be made of SiN.
  • the hard mask 4 and the side wall 5 can use insulating films such as SiO 2 and SiN, respectively.
  • the dummy gate insulating film 2 is formed by SiN
  • the dummy gate electrode 3 is formed by a-Si
  • the buried insulating film 9 is formed by a PECVD method.
  • SiO 2 having a low coverage or a large in-film compressive stress is used.
  • the dummy gate electrode 3 can be etched with the TMAH or NH 4 OH liquid, and the holes 11 can be formed.
  • the semiconductor layer can be exposed without digging the substrate.
  • a dummy gate that is, the dummy gate insulating film 2 and the dummy gate electrode 3
  • SiN silicon dioxide
  • the conditions of the dummy gate structure and the buried insulating film described above are not limited to this, and other materials may be used.
  • FIGS. 2 to 5 The experimental results in this embodiment are shown in FIGS. 2 to 5 below.
  • the buried insulating film 9 is made of SiO 2 (250 nm) formed by PECVD at 250 ° C. using SiH 4 gas (10 sccm or less) and N 2 O gas (460 sccm).
  • the sidewall film 5 and the SD region are not formed.
  • FIG. 2 only shows the condition that the thickness of the dummy gate electrode 3 is different from the others, but FIG. 3 and subsequent figures all show the results of the above conditions.
  • FIG. 2 shows a cross-sectional SEM image immediately after the gate is buried, which corresponds to the explanatory view 1 (c) of the present embodiment. From this figure, it can be seen that the region where the air gap 10 is formed later is sparse in the vicinity of the gate side surface.
  • FIG. 3 shows a case where the void 10 is formed by HF treatment (corresponding to FIG. 1D). Here, HF treatment is performed for 1 minute in order to etch SiO 2 .
  • FIGS. 4 and 5 show cross-sectional SEM images after the diluted NH 4 OH solution is heated to 45 ° C. and immersed for about 15 minutes in order to etch the poly-Si of the dummy gate electrode 3 from the gap 10.
  • FIG. 4 is a cross-sectional image in which patterns with a gate length of ⁇ 50 nm are aligned at a pitch of 500 nm, and it can be confirmed that poly-Si is completely removed in all gate patterns.
  • poly-Si removal is performed under the same etching conditions with the gate pattern pitch set to 150 nm or less. At this time, the embedded SiO 2 film existing in the space between the gates is also almost removed, and the pattern is removed over 2 ⁇ m.
  • the gate electrode etching time for lift-off can be shortened by dividing the gate pattern into smaller gate patterns or blocks as shown in FIG. 6 at an arbitrary gate length.
  • the cavity 10 is provided in the peripheral portion of the dummy gate 6, and the lower portion of the dummy gate 6 is etched using the cavity 10, thereby performing the replacement gate process without using the CMP method.
  • the CMP method is not used, it is expected that the process cost is reduced by simplifying the process.
  • the gate shape after embedding becomes a reverse taper shape, it is possible to reduce the gate resistance and to suppress the poor embedding of the gate electrode.
  • (Second Embodiment) 7A to 7E are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the second embodiment.
  • This embodiment is a method of manufacturing a Fin-FET.
  • a fin structure 22 is formed on a semiconductor substrate (support substrate) 21 by using an etching process such as lithography and RIE.
  • the support substrate 21 and the fin structure 22 may be formed by etching the semiconductor substrate 21 to form the fin structure 22, or may be configured by different semiconductors.
  • the substrate 21 may be made of Si or Ge
  • the fin structure 22 may be made of SiGe, Ge, or a III-V group compound formed on the substrate 21 by epitaxial growth or the like.
  • a semiconductor layer 23 different from the substrate surface is formed on the surface of the substrate 21 and on the surface of the fin structure 22.
  • a buried insulating film 24 is deposited on the substrate 21 and the fin structure 22, and the fin structure 22 is buried with the buried insulating film 24.
  • a film having a low step coverage or a large in-film stress is used as in the first embodiment.
  • a void 25 is formed by etching a sparse region of the buried insulating film 24 by a process such as wet etching. As a result, the semiconductor layer 23 is exposed to the gap 25 at the bottom of the fin structure 22.
  • the insulating film 24 deposited on the upper portion of the fin structure 22 can be lifted off by etching the semiconductor layer 23 with a liquid or gas through the gap 25. As a result, a bulk-fin structure can be formed as shown in FIG.
  • a Fin-FET can be manufactured by forming a gate electrode on the surface of the fin structure 22 via a gate insulating film.
  • the gate electrode Proximity to the substrate 21 can be prevented beforehand. That is, the presence of the insulating film 24 in FIG. 7E provides a substantial SOI fin structure, which can contribute to improvement in device characteristics.
  • FIG. 8A to 8E are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the third embodiment. This embodiment is also a method for manufacturing a Fin-FET, as in the second embodiment.
  • the process is the same as that of the second embodiment until the fin structure 32 is formed on the semiconductor substrate (support substrate) 31 by using an etching process such as lithography and RIE.
  • the support substrate 31 and the fin structure 32 may be formed of the same or different semiconductors.
  • a buried insulating film 33 is deposited on the substrate 31 and the fin structure 32, and the fin structure 32 is buried with the buried insulating film 33 having a low step coverage or a large in-film stress. .
  • a gap 34 is formed in a region where the insulating film 33 near the fin structure is sparse by an etching process such as wet etching. As a result, the bottom of the fin structure 32 is exposed in the gap 34.
  • the lower part of the fin structure 32 is etched through the gap 34 by wet etching or gas etching to form the semiconductor floating layer 35.
  • a region having a larger area than the fin structure portion such as an SD-Pad region is formed at both ends thereof, so that the Pad region is connected to the support substrate 31 and the semiconductor floating layer is formed. 35 is held in the air.
  • a gate insulating film is deposited by the ALD method and a gate electrode is deposited by the CVD method.
  • a GAA (Gate-all-around) Fin-FET can be formed.
  • the semiconductor floating layer 35 can be formed by providing the cavity 34 around the fin structure 32 and etching the lower part of the fin structure 32 using the cavity 34. . Then, by forming a gate insulating film and a gate electrode in the semiconductor floating layer 35, a GA-structure Fin-FET can be easily manufactured.
  • FIGS. 8A to 8E are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the fourth embodiment.
  • the same parts as those in FIGS. 8A to 8E are denoted by the same reference numerals, and detailed description thereof is omitted.
  • This embodiment is a modification of forming the semiconductor floating layer in the third embodiment described above.
  • a semiconductor layer 37 electrically isolated from the substrate 31 can be formed by oxidizing the lower portion of the fin structure through the gap 34 to form an oxide film 36. . Thereby, it is possible to form a pseudo SemiOI (SemiconductoremiOn Insulator) structure.
  • the buried insulating film 33 deposited on the outer periphery of the semiconductor layer 37 is removed. Thereafter, by forming a gate electrode on the surface of the semiconductor layer 37 via a gate insulating film, it becomes possible to manufacture a Fin-FET in which a gate is formed on three surfaces of the fin structure 32.
  • the oxide film 36 under the semiconductor layer 37 remains after the buried insulating film 33 is removed.
  • the oxide film 36 below the semiconductor layer 37 may be removed, and a structure similar to that shown in FIG. 8E may be obtained.
  • the semiconductor floating layer 37 can be obtained by forming a region having a large area such as an SD-Pad region at both ends of the fin structure as in the third embodiment.
  • the laminated structure of the dummy gate insulating film and the dummy gate electrode is used as the dummy gate, but the dummy gate is not necessarily limited to the laminated structure, and can be realized by a single layer structure.
  • the etching of the embedded insulating film is not necessarily limited to the wet etching method, and any etching can be used as long as only the embedded insulating film can be selectively etched.
  • a dry etching method using a gas may be used.
  • the materials of the semiconductor substrate, the dummy gate, and the buried insulating film, and the etching conditions for etching the buried insulating film can be appropriately changed according to the specifications.

Abstract

 半導体装置の製造方法であって、半導体基板(1)上にダミーゲート(6)を形成する工程と、基板(1)及びダミーゲート(6)の上に埋め込み絶縁膜(9)を堆積し、ダミーゲート(6)を埋め込み絶縁膜(9)にて埋め込む工程と、埋め込み絶縁膜(9)を一部エッチングし、ダミーゲート(6)の周辺部に空隙(10)を形成する工程と、空隙(10)の形成により露出したダミーゲート(6)をエッチングすることで、ダミーゲート(6)及び該ダミーゲート(6)上の埋め込み絶縁膜(9)を除去する工程と、ダミーゲート(6)の除去により露出した基板(1)上にゲート絶縁膜(12)を介してゲート電極(13)を形成する工程と、を含む。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関する。
 CMOSロジック回路における微細化が進むにつれ、低EOT(Equivalent Physical Oxide Thickness)実現のために、高誘電率(high-k)膜がデバイスへと適用されている。さらに、この high-k 膜の熱負荷による閾値変動や低誘電率層の形成を回避するため、或いはチャネルへの歪み導入のために、SD領域形成後にゲート絶縁膜を形成するリプレイスメントゲート(ダマシンゲート)プロセスを用いたデバイス作製が行われている。
 従来のリプレイスメントゲートプロセスにおいては、ダミーゲート形成後にSD領域を形成し、ダミーゲートをSiOなどの絶縁膜によって埋め込み、CMP(Chemical Mechanical Polishing)法によってダミーゲート上面を露出する。次いで、ダミーゲートを除去した後に、再度ゲート絶縁膜とゲート電極を形成することでゲートを形成する。これにより、SD領域形成時の高い熱負荷がかかることなく、ゲートスタックを形成することが可能となった。
 上述のように、リプレイスメントゲートプロセスを行うにあたっては、埋め込み絶縁膜を堆積した後にCMP法を用いてダミーゲートの上面を露出する工程を必須としていた。しかし、CMP法はウェハ面積が大口径化するにつれ、スクラッチやディッシング、エロージョンの発生を抑制することが技術的に困難になってくる。さらには、大口径化によりCMPプロセスのコストの増大が予想され、今後ウェハが大口径化されていく上でリプレイスメントゲートプロセスの適用が困難になることが予想される。
特開2001-93861号公報 特開2003-158263号公報
 発明が解決しようとする課題は、CMP法を用いずにリプレイスメントゲートプロセスを可能にし、下地膜(層間絶縁膜)の面内ばらつきや欠陥を抑制すると共に、プロセスの簡略化によるプロセスコストの低減をはかり得る半導体装置の製造方法を提供することである。
 本発明の一態様に係わる半導体装置の製造方法は、半導体基板上にダミーゲートを形成する工程と、前記基板及び前記ダミーゲートの上に埋め込み絶縁膜を堆積し、前記ダミーゲートを前記埋め込み絶縁膜にて埋め込む工程と、前記埋め込み絶縁膜を一部エッチングし、前記ダミーゲートの周辺部に空隙を形成する工程と、前記空隙の形成により露出した前記ダミーゲートをエッチングすることで、前記ダミーゲート及び該ダミーゲート上の前記埋め込み絶縁膜を除去する工程と、前記ダミーゲートの除去により露出した前記基板上にゲート絶縁膜を介してゲート電極を形成する工程と、を含むことを特徴とする。
 本発明の別の一態様に係わる半導体装置の製造方法は、半導体基板上にフィン構造を形成する工程と、前記基板及び前記フィン構造の表面上に、前記基板とは異なる半導体層を形成する工程と、前記半導体層が形成された前記基板及び前記フィン構造の上に埋め込み絶縁膜を堆積し、前記フィン構造を前記埋め込み絶縁膜にて埋め込む工程と、前記埋め込み絶縁膜を一部エッチングし、前記フィン構造の周辺部に空隙を形成する工程と、前記空隙により露出した前記フィン構造の下部から、前記フィン構造の外周に成膜された前記半導体層をエッチングすることで、前記フィン構造の外周部の前記半導体層及び前記フィン構造の上部の前記埋め込み絶縁膜を除去する工程と、を含むことを特徴とする。
 本発明の別の一態様に係わる半導体装置の製造方法は、半導体基板上にフィン構造を形成する工程と、前記基板及び前記フィン構造の上に埋め込み絶縁膜を堆積し、前記フィン構造を前記埋め込み絶縁膜にて埋め込む工程と、前記埋め込み絶縁膜を一部エッチングし、前記フィン構造の周辺部に空隙を形成する工程と、前記空隙により露出した前記フィン構造の下部をエッチングし、前記フィン構造の上部を前記基板から浮遊させる工程と、を含むことを特徴とする。
 本発明の別の一態様に係わる半導体装置の製造方法は、半導体基板上にフィン構造を形成する工程と、前記基板及び前記フィン構造の上に埋め込み絶縁膜を堆積し、前記フィン構造を前記埋め込み絶縁膜にて埋め込む工程と、前記埋め込み絶縁膜を一部エッチングして前記フィン構造の周辺部に空隙を形成する工程と、前記空隙により露出した前記フィン構造の下部を酸化することで前記フィン構造を前記基板と電気的に分離させる工程と、
 を含むことを特徴とする。
 本発明によれば、CMP法を用いずにリプレイスメントゲートプロセスを可能とするため、CMP法で問題となるディッシングやエロージョン、スクラッチなどの下地膜(層間絶縁膜)の面内ばらつきや欠陥を抑制することが可能となる。
 また、CMP法を用いないため、プロセスの簡略化によるプロセスコストの低減が期待される。さらに、埋め込み後のゲート形状が逆テーパ形状になるため、ゲート抵抗の低減及びゲート電極の埋め込み不良を抑制することが可能となる。
図1は、第1の実施形態に係わる半導体装置の製造工程を示す断面図である。 図2は、第1の実施形態により作製された半導体装置の断面構造を示す顕微鏡写真である(ゲート埋め込み直後)。 図3は、第1の実施形態により作製された半導体装置の断面構造を示す顕微鏡写真である(HF処理によって空隙を形成したもの)。 図4は、第1の実施形態により作製された半導体装置の断面構造を示す顕微鏡写真である(ポリSiをエッチングした状態)。 図5は、第1の実施形態により作製された半導体装置の断面構造を示す顕微鏡写真である(ポリSiをエッチングした状態)。 図6は、ゲートパターンを細く分割した例を示す平面図である。 図7は、第2の実施形態に係わる半導体装置の製造工程を示す断面図である。 図8は、第3の実施形態に係わる半導体装置の製造工程を示す断面図である。 図9は、第4の実施形態に係わる半導体装置の製造工程を示す断面図である。 図10は、ステップカバレッジを説明するための模式図である。 図11は、基板上に段差構造を形成した例を示す断面図である。
 以下、本発明の詳細を図示の実施形態によって説明する。
 (第1の実施形態)
 図1(a)~(f)は、第1の実施形態に係わる半導体装置の製造工程を示す断面図である。本実施形態は、リプレイスメントゲートプロセスによってMOSFETを製造する方法である。
 まず、図1(a)に示すように、半導体基板1上にダミーゲート絶縁膜2、ダミーゲート電極3、ハードマスク4を形成した後、リソグラフィとRIE等のエッチングプロセスによってダミーゲートパターンを形成する。具体的には、半導体基板1上にダミーゲート絶縁膜2及びダミーゲート電極3を堆積した後、ダミーゲート電極3上にゲートパターンのハードマスク4を形成する。そして、RIE等のエッチングプロセスによってダミーゲート電極3を選択エッチングする。
 次いで、図1(b)に示すように、イオン注入によってチャネルとSD領域間の寄生抵抗を下げるためのエクステンション領域7の形成を行い、続いて側壁膜5を形成した後に、Deep領域(S/D領域)8の形成を行う。ここでは図示しないが、短チャネル効果耐性向上のためにハロー(halo)領域の形成を行ってもよい。また、Deep領域8のみを形成した後にメタルSD領域を形成してもよく、Deep領域8を形成するためではなくメタルSDとチャネル半導体界面のショットキー障壁を下げるためのイオン注入を行ってもよい。更には、イオン注入を行わずにメタルSD領域のみを形成しても構わない。
 SD領域形成の後、SD領域上のダミーゲート絶縁膜2を除去し、ダミーゲート電極3の下のみにダミーゲート絶縁膜2’を残したダミーゲート6を形成する。その後、側壁膜5及びハードマスク4をウェットエッチング等により除去する。ここでは、SD領域上のダミーゲート絶縁膜2を除去した後に側壁膜5及びハードマスク4を除去したが、ダミーゲート絶縁膜2を除去する前にこれらを除去しても構わない。また、以下の図1(c)以降では、側壁膜5及びハードマスク4を除去した場合についての例を説明するが、何れの膜のうちどちらか、或いはどちらとも残したままでも構わない。
 次いで、図1(c)に示すように、基板1及びダミーゲート6の上に埋め込み絶縁膜9を堆積し、ダミーゲート6を絶縁膜9にて埋め込む。ここで、埋め込み絶縁膜9は、基板1の表面及びダミーゲート電極3の表面からそれぞれ成長し、最終的にダミーゲート電極3の周辺部でつながることになる。そして、基板1の表面から成長した部分とダミーゲート電極3の表面から成長した部分とのつながった部分(境界)は、埋め込み絶縁膜9が疎となっている。
 埋め込み絶縁膜9としては、ステップカバレッジ(step coverage)の低い、若しくは膜内応力の強い絶縁膜を堆積し、ダミーゲート6を埋め込む。又は、段差形状に堆積した際に液相若しくは気相エッチングによって段差端部に特定の角度の空隙を形成する絶縁膜を用い、これを堆積してダミーゲート6を埋め込むようにしても良い。
 埋め込み絶縁膜9において上記条件を満たす膜として、例えば300℃以下の低い温度でSiHガス等やN2Oガス等を用いてPECVD法によって形成されるSiO膜、若しくは同じくPECVD法によって形成されるSiN膜などが挙げられる。これ以外にも、低温でCVD法によって成膜されるLTO膜やTEOS膜でも構わない。このとき、ステップカバレッジの低さ、若しくは膜内応力の大きさ故に、ダミーゲート側面とダミーゲート近傍の半導体基板に堆積した絶縁膜が衝突する領域(境界)において、絶縁膜は疎になりやすくなる。
 上述した膜内応力の強い絶縁膜とは、以下のような膜内応力を有する膜である。具体的には、膜内応力の大きさが90MPa以上の圧縮応力が好ましく、特に390MPa以上の膜内圧縮応力を持つ膜であることが好ましい。なお、ここで言う膜内応力の測定は光てこ法によって見積もられた。例えば、SiOの膜内応力を測定する場合には、4インチSi基板上にSiO膜を堆積する前後で基板の曲率半径を測定し、基板の弾性定数等から曲率半径を用いて膜内応力を見積もった。
 また、上述したステップカバレッジの低い膜とは、以下に示す特徴を有する膜である。具体的には、図10に示したアスペクトレシオ(aspect ratio)が(H/W)≒1.9(=~130nm/~70nm)となる段差形状を用いた場合、段差構造に絶縁膜を堆積した際の各部位における絶縁膜厚を用いて、サイドステップカバレッジ(side step coverage)が(Ts/Tt)<0.47、若しくはボトムステップカバレッジ(bottom step coverage)が(Tb/Tt)<0.51、若しくはカスピング(cusping)が([Tc-Ts]/Ts)≧0.34となる膜である。
 また、上述した段差形状に堆積した際に液相若しくは気相エッチングによって段差端部に特定の角度の空隙を形成する絶縁膜、とは以下のような特徴を有する膜である。図11に示すように、基板上に形成された段差構造に対して当該絶縁膜を堆積し、その後に液相若しくは気相にてエッチングを行った場合に、段差端部に基板に対する法線から角度θだけ傾いた方向に空隙を形成するような絶縁膜である。ここで、θは0°≦θ≦60°を満たすのが望ましい。これは、θが60°よりも大きくなると、後述するゲート電極13を上部の面積が大きくなり、素子の微細化に不利となるためである。
 次いで、埋め込み絶縁膜9をウェットエッチング法或いはガスでエッチングすることにより、図1(d)に示すように、ダミーゲート6の周辺部に空隙10を形成する。この空隙10は、埋め込み絶縁膜9が疎になっている部分、即ち埋め込み絶縁膜9の基板1の表面から成長した部分とダミーゲート電極3の表面から成長した部分との境界に沿って斜めに形成される。
 上記のプロセスにより、ダミーゲート電極3の底部が空隙10に露出することになる。この状態で、空隙を通しての液体、若しくは気体によるダミーゲート電極3のエッチングを行うことで、図1(e)に示すように、ダミーゲート電極3をリフトオフし、空孔11を形成することが可能となる。
 図1(e)では、ダミーゲート絶縁膜2’が残っている図を示しているが、ダミーゲート電極3のエッチング時に同時にダミーゲート絶縁膜2’が除去されても構わない。しかしこの場合には、基板を同時にエッチングすることがないような絶縁膜種、及びエッチング条件でなければならない。
 これ以降は、従来のCMP法を用いたリプレイスメントゲートプロセスと同様である。即ち、図1(f)に示すように、ダミーゲート絶縁膜2’を除去した後、MOS界面と半導体基板1の表面を洗浄する。その後、ALD法などによりゲート絶縁膜12を形成し、更にゲート電極13を埋め込む。ゲート電極13を埋め込んだ後は、メタルCMPを行うことでゲート電極13の平坦化を行ってもよい。これ以降は、層間絶縁膜を堆積し、配線工程を行うことで、CMOSロジック回路を形成することができる。
 本実施形態における上述のプロセス条件を考慮すると、各膜種や半導体層には以下のような物質を用いることができる。基板1として、GeやInGaAs等の III-V族化合物を用いる場合においては、これらの半導体をエッチングしない薬液であるHCl,NaOH,HF等でエッチング可能な絶縁膜をダミーゲート絶縁膜2として用いることができる。例えば、SiO若しくはHfOといった high-k 膜等のHFにエッチングされる膜、HClやHFにエッチングされるLa2やLaAlOx等の膜、或いはHF,HCl,NaOHにエッチングされるAl2膜をダミーゲート絶縁膜2に用いることができる。
 HFのみにエッチングされるSiO、又はHfO、HfAlOxなどの high-k 膜がダミーゲート絶縁膜2の場合には、ダミーゲート電極3としては、HF以外の薬液でエッチング可能な物質を用いることができる。例えば、NaOHやTMAHにエッチングされるa-Si、H2を含むNaOHやHClにエッチングされるa-Ge、HClのみでエッチング可能なa-InPやNi等、を用いることができる。さらには、HFでエッチングされるSiOなどでダミーゲート電極3を形成してもよいが、この場合には埋め込み絶縁膜9をHFによるエッチングが遅いSiNにするなどの必要がある。
 HClにエッチングされるLa2やLaAlOx等においては、ダミーゲート電極3にa-Si,a-Geなどを用いれば、TMAH、NaOHやNaOHにH2を加えた薬液でエッチング可能である。さらに、ダミーゲート電極3にa-InPやNi等を用いれば、ダミーゲート電極3とダミーゲート絶縁膜2を同時にHClにてエッチング可能である。
 次に、HF,HCl,NaOHにエッチングされるAl2膜等をダミーゲート絶縁膜2に用いる場合については、ダミーゲート電極3にa-Si,a-Ge,a-InP,Ni、或いはAl2やSiOなどの絶縁膜を用いることができる。このとき、TMAHやNaOH,HCl,HFにてそれぞれダミーゲート電極3とダミーゲート絶縁膜2を同時にリフトオフすることが可能である。
 ハードマスク4や側壁膜5には、SiO或いはSiNを用いることができる。埋め込み絶縁膜9には、ステップカバレッジの低い若しくは膜内圧縮応力の大きいSiO膜やSiN膜を用いることができる。これにより、HFやH3POにて空隙10を形成することが可能となり、この空隙10よりダミーゲート電極3をリフトオフすることが可能となる。
 ダミーゲート電極3とダミーゲート絶縁膜2をSiOやAl2等の絶縁膜で形成した場合、若しくはa-Si/Al2とした場合には、NH4OHやTMAH,HFによってエッチングすることでダミーゲート絶縁膜2とダミーゲート電極3が同時に溶解する。このとき、半導体基板1はNH4OHやTMAH,HFに殆ど溶解しないため、基板掘れの問題は起きない。このため、この構造は、工程数を減らすことが可能となるため好ましい。
 以上のことから考えて、Geや III-V族基板における最良となる構造の一例としては、ダミーゲート絶縁膜2にAl2、ダミーゲート電極3にa-Si、埋め込み絶縁膜9にPECVD法によって形成されるステップカバレッジの低い、若しくは膜内圧縮応力の大きいSiOを用いる構造が挙げられる。この場合、埋め込み絶縁膜9や半導体をエッチングすることなく、ダミーゲート電極3とダミーゲート絶縁膜2をTMAHやNaOH系薬液によって同時にエッチングすることが可能である。なお、上述したa-Si/Al2構造では、a-Si除去工程の処理時間や温度によってはGeやInGaAs基板掘れが起きる可能性もある。この可能性を考慮すると、ダミーゲート電極3にa-Si、ダミーゲート絶縁膜2にHfAlOxやSiOを用いる構造も最良の構造の一つに挙げられる。以上述べたゲートスタックでは、ハードマスク4はリフトオフ可能なため、SiOやSiNでも構わないが、側壁にはHFにエッチングされやすいSiOなどを用いることが好ましい。
 半導体基板1、若しくは半導体基板表面がSiやSi1-xGex(x<0.7)のようなSi含有量の多い半導体層となる場合には、アンモニア薬液による基板掘れが起きる。このため、ダミーゲート6の構造としては、Geや III-V族とは異なったものを使用する必要がある。
 ダミーゲート絶縁膜2には、半導体をエッチングしない薬液であるHCl,H3PO4,HF等でエッチング可能な絶縁膜を用いることができる。例えば、HFにエッチングされるSiOやHfO,HfAlOx等の high-k 膜、HF,HClにエッチングされるAl2,La2,LaAlO等の膜、或いはH3POにエッチングされるSiN膜をダミーゲート絶縁膜2に用いることができる。これらのダミーゲート絶縁膜2を用いる場合においては、ダミーゲート電極3としてa-Si,a-InP,Ni,a-Ge若しくはSiOやSiN等の絶縁膜を用いることができる。そして、NaOH、TMAH,HCl,H2を含むNaOH、HCl、HF、若しくはH3POを用いてダミーゲート電極3をエッチングすることができる。但し、前述のようにAl2膜を用いる場合のみ、ダミーゲート電極にa-Siを用いることができない。というのもa-Si,Al2,SiがTMAHやNaOH系薬液によって同時にエッチングされてしまうため、基板掘れが起きてしまうためである。
 上述の構造においては、埋め込み絶縁膜9にステップカバレッジの低い、若しくは膜内応力の強いSiOやSiNを用いればよい。但し、ダミーゲート電極3にSiOやSiNを用いている場合のみ、ダミーゲート電極除去時の埋め込み絶縁膜のエッチングが起きないように、それぞれ埋め込み絶縁膜は別種の膜にしなければならない。つまり、ダミーゲート電極3がSiOの場合には、埋め込み絶縁膜9はSiNにするなどしなければならない。最後に、ハードマスク4や側壁5はそれぞれSiO,SiNなどの絶縁膜を用いることができる。
 ダミーゲートと埋め込み絶縁膜の組み合わせとして、最良な構造の一例として挙げられるのが、ダミーゲート絶縁膜2をSiN、ダミーゲート電極3をa-Si、埋め込み絶縁膜9をPECVD法によって形成されるステップカバレッジの低い、若しくは膜内圧縮応力の大きいSiOを用いる場合である。この場合には、HF液にて空隙10を形成したのち、TMAHやNH4OH液にてダミーゲート電極3をエッチングすることが可能となり、空孔11を形成することができる。次に、ダミーゲート絶縁膜2を熱リン酸で除去することで、基板掘れがなく半導体層を露出することができる。
 また、最良構造のもう一例として挙げられるのが、SiNのみでダミーゲート(つまりダミーゲート絶縁膜2とダミーゲート電極3)を形成する場合である。この場合には、側壁を形成する必要がなくなるという点、空隙を形成したのちにH3PO処理の一工程のみでダミーゲート全体をリフトオフして表面を露出することが可能となる点、からプロセスの簡略化につながる。
 以上、上述したダミーゲート構造や埋め込み絶縁膜の条件はこれに限るものではなく、他の物質を用いても構わない。
 以下に、本実施形態における実験結果を、図2~図5に示す。半導体基板1にSi、ダミーゲート絶縁膜2に熱酸化によって形成されたSiO(10nm)、ダミーゲート電極3にポリSi(70nm)、ハードマスク4にALD法によって形成されたSiN(20nm)、埋め込み絶縁膜9にSiHガス(10sccm以下)及びN2Oガス(460sccm)を用いて250℃でPECVD法によって成膜されたSiO(250nm)を用いている。またここでは、側壁膜5やSD領域の形成は行っていない。なお、図2のみダミーゲート電極3の厚さが他とは異なる条件を示しているが、図3以降は全て上述の条件の結果を示している。
 まず、図2ではゲート埋め込み直後の断面SEM像を示しており、本実施形態の説明図1(c)に該当する。この図から、ゲート側面近傍で後に空隙10の形成される領域が疎になっていることが分かる。次に、HF処理によって空隙10を形成したもの(図1(d)に相当)を、図3に示している。ここでは、SiOをエッチングするため、HF処理を1分間行っている。
 次に、図4、図5では、空隙10よりダミーゲート電極3のポリSiをエッチングするため、希釈したNH4OH液を45℃に熱して15分ほど浸漬した後の断面SEM像を示している。図4は、ゲート長~50nmのパターンがピッチ500nmで整列した断面像であるが、全てのゲートパターンにおいて完全にポリSiが除去されているのが確認できる。また、図5においては、ゲートパターンのピッチを150nm以下にして、同一エッチング条件でポリSi除去を行っている。このとき、ゲート間のスペースに存在する埋め込みSiO膜もほぼ除去され、2μmにわたってパターンが除去されている。
 このことから任意のゲート長において、図6のようにゲートパターンをそれより細いゲートパターンに分割、或いはブロックに分割することで、リフトオフするためのゲート電極エッチング時間を短縮することが可能となる。
 このように本実施形態によれば、ダミーゲート6の周辺部に空洞10を設け、この空洞10を利用してダミーゲート6の下部をエッチングすることにより、CMP法を用いずにリプレイスメントゲートプロセスを可能とすることができる。このため、CMP法で問題となるディッシングやエロージョン、スクラッチなどの下地膜(層間絶縁膜)の面内ばらつきや欠陥を抑制することが可能となる。また、CMP法を用いないため、プロセスの簡略化によるプロセスコストの低減が期待される。さらに、埋め込み後のゲート形状が逆テーパ形状になるため、ゲート抵抗の低減、及びゲート電極の埋め込み不良を抑制することが可能となる。
 (第2の実施形態)
 図7(a)~(e)は、第2の実施形態に係わる半導体装置の製造工程を示す断面図である。本実施形態は、Fin-FETを製造する方法である。
 まず、図7(a)に示すように、半導体基板(支持基板)21上にリソグラフィ及びRIE等のエッチングプロセスを用いて、フィン(Fin)構造22を形成する。ここで、支持基板21とフィン構造22においては、半導体基板21をエッチング加工してフィン構造22を形成したものであっても良く、それぞれ異なる半導体で構成されていても良い。例えば、基板21がSi若しくはGeであり、フィン構造22が基板21上にエピタキシャル成長などで形成されたSiGe,Ge、或いは III-V族化合物から構成されていてもよい。
 次いで、図7(b)に示すように、基板21の表面上及びフィン構造22の表面上に基板表面とは異なる半導体層23を形成する。
 次いで、図7(c)に示すように、基板21及びフィン構造22の上に埋め込み絶縁膜24を堆積し、フィン構造22を埋め込み絶縁膜24にて埋め込む。この埋め込み絶縁膜24は、第1の実施形態と同様で、ステップカバレッジが低い、若しくは膜内応力の大きい膜を用いる。
 次いで、図7(d)に示すように、ウェットエッチング等のプロセスにより、埋め込み絶縁膜24の疎の領域をエッチングすることで空隙25を形成する。これにより、フィン構造22の底部において半導体層23が空隙25に露出することになる。
 次いで、空隙25を通しての液体、若しくは気体による半導体層23のエッチングを行うことで、フィン構造22の上部に堆積した絶縁膜24をリフトオフすることが可能となる。これにより、図7(e)に示すとおり、バルク-フィン構造を形成することが可能となる。
 これ以降は図示しないが、フィン構造22の表面上にゲート絶縁膜を介してゲート電極を形成することにより、Fin-FETを作製することが可能となる。
 このように本実施形態によれば、フィン構造22の周辺部で基板21上に絶縁膜24が残っているため、フィン構造22にゲート絶縁膜を介してゲート電極を形成した場合、ゲート電極が基板21に近接することを未然に防止することができる。即ち、図7(e)の絶縁膜24の存在により実質的なSOIフィン構造となり、素子特性の向上に寄与することが可能となる。
 (第3の実施形態)
 図8(a)~(e)は、第3の実施形態に係わる半導体装置の製造工程を示す断面図である。本実施形態も、第2の実施形態と同様にFin-FETを製造する方法である。
 まず、図8(a)に示すように、半導体基板(支持基板)31上にリソグラフィ及びRIE等のエッチングプロセスを用いてフィン構造32を形成するまでは、第2の実施形態と同様である。ここでも第2の実施形態と同じく、支持基板31とフィン構造32は構成する半導体が同じでも異なっていても構わない。
 次いで、図8(b)に示すように、基板31及びフィン構造32の上に埋め込み絶縁膜33を堆積し、フィン構造32をステップカバレッジが低い若しくは膜内応力の大きい埋め込み絶縁膜33にて埋め込む。
 次いで、図8(c)に示すように、ウェットエッチング等のエッチングプロセスによりフィン構造の近傍の絶縁膜33が疎の領域に空隙34を形成する。これにより、フィン構造32の底部が空隙34に露出することになる。
 次いで、図8(d)に示すように、空隙34を通して、ウェットエッチング若しくはガスエッチングによりフィン構造32の下部をエッチングし、半導体浮遊層35を形成する。半導体浮遊層35を形成するにあたっては、その両端を例えばSD-Pad領域のようなフィン構造部よりも面積の大きい領域を形成しておくことで、Pad領域が支持基板31とつながり、半導体浮遊層35は空中に保持されることとなる。
 次いで、半導体浮遊層35の外周部に成膜されている埋め込み絶縁膜33をウェットエッチング等により除去することで、図8(e)に示すような半導体浮遊構造を得ることができる。
 これ以降は、半導体浮遊層35が形成された後、ALD法によってゲート絶縁膜、CVD法によってゲート電極を堆積する。そして、リソグラフィ及びRIE等を用いることで、GAA(Gate all around)のFin-FETを形成することが可能となる。
 このように本実施形態によれば、フィン構造32の周辺部に空洞34を設け、この空洞34を利用してフィン構造32の下部をエッチングすることにより、半導体浮遊層35を形成することができる。そして、この半導体浮遊層35にゲート絶縁膜及びゲート電極を形成することにより、GAA構造のFin-FETを簡易に作製することができる。
 (第4の実施形態)
 図9(a)~(c)は、第4の実施形態に係わる半導体装置の製造工程を示す断面図である。なお、図8(a)~(e)と同一部分には同一符号を付して、その詳しい説明は省略する。
 この実施形態は、先に説明した第3の実施形態において、半導体浮遊層を形成するにあたっての変形例である。
 図9(a)に示すように、前記図8(c)の空隙形成までは第3の実施形態と同様である。次いで、図9(b)に示すように、空隙34を通してフィン構造下部を酸化して酸化膜36を形成することで、基板31とは電気的に分離された半導体層37を形成することができる。これにより、疑似SemOI(Semiconductor On Insulator)構造を形成することが可能である。
 次いで、図9(c)に示すように、半導体層37の外周部に堆積されている埋め込み絶縁膜33を除去する。これ以降は、半導体層37の表面上にゲート絶縁膜を介してゲート電極を形成することにより、フィン構造32の3面にゲートを形成したFin-FETを作製することが可能となる。
 なお、ここでは埋め込み絶縁膜33の除去後に半導体層37の下部の酸化膜36が残っている。しかし、埋め込み絶縁膜33の種類、及び埋め込み絶縁膜エッチング条件次第では、半導体層37の下部の酸化膜36は除去されることもあり、図8(e)と同様な構造が得られる場合もある。この場合には、第3の実施形態と同じくフィン構造の両端をSD-Pad領域のような面積の大きい領域を形成することで、半導体浮遊層37を得ることが可能となる。
 (変形例)
 なお、本発明は上述した各実施形態に限定されるものではない。
 実施形態では、ダミーゲートとしてダミーゲート絶縁膜及びダミーゲート電極の積層構造を用いたが、ダミーゲートは必ずしも積層構造に限るものではなく、単層構造で実現することも可能である。
 また、埋め込み絶縁膜をエッチングするのは必ずしもウェットエッチング法に限るものではなく、埋め込み絶縁膜のみを選択的にエッチングできるものであれば良い。例えば、ガスを用いたドライエッチング法であっても良い。
 また、半導体基板、ダミーゲート、及び埋め込み絶縁膜の材料、更には埋め込み絶縁膜をエッチングする際のエッチング条件等は、仕様に応じて適宜変更可能である。
 本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1,21,31…半導体基板
 2…ダミーゲート絶縁膜
 3…ダミーゲート電極
 4…ハードマスク
 5…側壁膜
 6…ダミーゲート
 7…エクステンション領域
 8…Deep領域(SD領域)
 9,24,33…埋め込み絶縁膜
 10,25,34…空洞
 11…空孔
 12…ゲート絶縁膜
 13…ゲート電極
 22,32…フィン構造
 23…半導体層
 35…半導体浮遊層
 36…酸化膜
 37…半導体層

Claims (14)

  1.  半導体基板上にダミーゲートを形成する工程と、
     前記基板及び前記ダミーゲートの上に埋め込み絶縁膜を堆積し、前記ダミーゲートを前記埋め込み絶縁膜にて埋め込む工程と、
     前記埋め込み絶縁膜を一部エッチングし、前記ダミーゲートの周辺部に空隙を形成する工程と、
     前記空隙の形成により露出した前記ダミーゲートをエッチングすることで、前記ダミーゲート及び該ダミーゲート上の前記埋め込み絶縁膜を除去する工程と、
     前記ダミーゲートの除去により露出した前記基板上に、ゲート絶縁膜を介してゲート電極を形成する工程と、
     を含むことを特徴とする半導体装置の製造方法。
  2.  前記ダミーゲートを形成する工程として、前記基板上にダミーゲート絶縁膜及びダミーゲート電極の積層構造を形成した後に、前記ダミーゲート電極をゲートパターンに加工することを特徴とする、請求項1に記載の半導体装置の製造方法。
  3.  前記ダミーゲートを前記埋め込み絶縁膜にて埋め込む工程として、前記基板の表面側及び前記ダミーゲートの表面側から埋め込み絶縁膜を成長し、
     前記空隙を形成する工程として、前記埋め込み絶縁膜の前記基板表面から成長した部分と前記ダミーゲートの表面から成長した部分との境界に沿って、前記埋め込み絶縁膜をウェットエッチング法にてエッチングすることを特徴とする、請求項1に記載の半導体装置の製造方法。
  4.  前記基板はSi基板であり、
     前記ダミーゲート絶縁膜にSiN若しくはSiO、前記ダミーゲート電極にa-Si、前記埋め込み絶縁膜にSiO膜を用い、
     前記埋め込み絶縁膜に空隙を形成する際にフッ酸を用い、前記ダミーゲート電極を除去する際にアンモニア又はTMAHを用い、前記ダミーゲート絶縁膜を除去する際にリン酸を用いることを特徴とする、請求項2に記載の半導体装置の製造方法。
  5.  前記基板はIII-V族化合物半導体であり、
     前記ダミーゲート絶縁膜にAl2若しくはSiO、前記ダミーゲート電極にa-Si、前記埋め込み絶縁膜にSiO膜を用い、
     前記埋め込み絶縁膜に空隙を形成する際にフッ酸を用い、前記ダミーゲート電極を除去する際にアンモニア又はTMAHを用い、前記ダミーゲート絶縁膜を除去する際に塩酸若しくはアンモニア薬液を用いることを特徴とする、請求項2に記載の半導体装置の製造方法。
  6.  前記埋め込み絶縁膜として、所定の段差形状に堆積した後の液相若しくは気相エッチングによって、前記基板の表面に対して傾いた方向に空隙が形成される絶縁膜、を用いることを特徴とする、請求項1に記載の半導体装置の製造方法。
  7.  半導体基板上にフィン構造を形成する工程と、
     前記基板及び前記フィン構造の表面上に、前記基板とは異なる半導体層を形成する工程と、
     前記半導体層が形成された前記基板及び前記フィン構造の上に埋め込み絶縁膜を堆積し、前記フィン構造を前記埋め込み絶縁膜にて埋め込む工程と、
     前記埋め込み絶縁膜を一部エッチングし、前記フィン構造の周辺部に空隙を形成する工程と、
     前記空隙により露出した前記フィン構造の下部から、前記フィン構造の外周に成膜された前記半導体層をエッチングすることで、前記フィン構造の外周部の前記半導体層及び前記フィン構造の上部の前記埋め込み絶縁膜を除去する工程と、
     を含むことを特徴とする半導体装置の製造方法。
  8.  半導体基板上にフィン構造を形成する工程と、
     前記基板及び前記フィン構造の上に埋め込み絶縁膜を堆積し、前記フィン構造を前記埋め込み絶縁膜にて埋め込む工程と、
     前記埋め込み絶縁膜を一部エッチングし、前記フィン構造の周辺部に空隙を形成する工程と、
     前記空隙により露出した前記フィン構造の下部をエッチングし、前記フィン構造の上部を前記基板から浮遊させる工程と、
     を含むことを特徴とする半導体装置の製造方法。
  9.  半導体基板上にフィン構造を形成する工程と、
     前記基板及び前記フィン構造の上に埋め込み絶縁膜を堆積し、前記フィン構造を前記埋め込み絶縁膜にて埋め込む工程と、
     前記埋め込み絶縁膜を一部エッチングして前記フィン構造の周辺部に空隙を形成する工程と、
     前記空隙により露出した前記フィン構造の下部を酸化することで前記フィン構造を前記基板と電気的に分離させる工程と、
     を含むことを特徴とする半導体装置の製造方法。
  10.  前記フィン構造を前記埋め込み絶縁膜にて埋め込む工程として、前記基板の表面側及び前記フィン構造の表面側から埋め込み絶縁膜を成長し、
     前記空隙を形成する工程として、前記埋め込み絶縁膜の前記基板表面から成長した部分と前記フィン構造の表面から成長した部分との境界に沿って、前記埋め込み絶縁膜をウェットエッチング法にてエッチングすることを特徴とする、請求項7~9の何れかに記載の半導体装置の製造方法。
  11.  前記フィン構造は、前記基板と同じ材料又は前記基板上にエピタキシャル成長されたSiGe層、Ge層、又はIII-V族化合物半導体層であることを特徴とする、請求項7~9の何れかに記載の半導体装置の製造方法。
  12.  前記埋め込み絶縁膜として、ステップカバレッジが所定値以下の膜、又は膜内圧縮応力が90MPa以上の絶縁膜を用いることを特徴とする、請求項7~9の何れかに記載の半導体装置の製造方法。
  13.  前記埋め込み絶縁膜として、PECVD法でSiHガス及びN2Oガスを用いて300℃未満の温度で成膜されるSiO膜を用いることを特徴とする、請求項12に記載の半導体装置の製造方法。
  14.  前記埋め込み絶縁膜として、所定の段差形状に堆積した後の液相若しくは気相エッチングによって、前記基板の表面に対して傾いた方向に空隙が形成される絶縁膜、を用いることを特徴とする、請求項7~9の何れかに記載の半導体装置の製造方法。
PCT/JP2013/072094 2013-01-09 2013-08-19 半導体装置の製造方法 WO2014109087A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-001850 2013-01-09
JP2013001850A JP2014135353A (ja) 2013-01-09 2013-01-09 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2014109087A1 true WO2014109087A1 (ja) 2014-07-17

Family

ID=51166753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072094 WO2014109087A1 (ja) 2013-01-09 2013-08-19 半導体装置の製造方法

Country Status (3)

Country Link
JP (1) JP2014135353A (ja)
TW (1) TW201428829A (ja)
WO (1) WO2014109087A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595780B1 (ko) * 2014-08-14 2016-02-19 경북대학교 산학협력단 GaN-Fin 구조 및 FinFET를 제조하는 방법 및 이러한 방법으로 제조된 GaN-Fin 구조를 사용하는 소자 및 FinFET
JP2021015891A (ja) * 2019-07-12 2021-02-12 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び撮像装置
US11545556B2 (en) * 2021-04-19 2023-01-03 Nanya Technology Corpoartion Semiconductor device with air gap between gate-all-around transistors and method for forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329861A (ja) * 2001-05-01 2002-11-15 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2008506253A (ja) * 2004-07-06 2008-02-28 インターナショナル・ビジネス・マシーンズ・コーポレーション シリサイド化金属ゲートの形成のための方法
JP2012227276A (ja) * 2011-04-18 2012-11-15 Fujitsu Semiconductor Ltd 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329861A (ja) * 2001-05-01 2002-11-15 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2008506253A (ja) * 2004-07-06 2008-02-28 インターナショナル・ビジネス・マシーンズ・コーポレーション シリサイド化金属ゲートの形成のための方法
JP2012227276A (ja) * 2011-04-18 2012-11-15 Fujitsu Semiconductor Ltd 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2014135353A (ja) 2014-07-24
TW201428829A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
US11222826B2 (en) FinFET structure and device
US10622261B2 (en) FinFET devices with unique shape and the fabrication thereof
US8269209B2 (en) Isolation for nanowire devices
US7629220B2 (en) Method for forming a semiconductor device and structure thereof
CN103177950B (zh) 制造鳍器件的结构和方法
US8497198B2 (en) Semiconductor process
US20160149038A1 (en) Facet-free strained silicon transistor
JP2008041901A (ja) 半導体装置及びその製造方法
WO2012142734A1 (zh) 浅沟槽隔离结构、其制作方法及基于该结构的器件
JP2014042022A (ja) 底部酸化物ライナー及び上部窒化物ライナーを具備するシャロートレンチアイソレーション(sti)領域を含む電子装置及び関連方法
JP5117906B2 (ja) ナノワイヤトランジスタおよびその製造方法
US8987070B2 (en) SOI device with embedded liner in box layer to limit STI recess
WO2014109087A1 (ja) 半導体装置の製造方法
US8377770B2 (en) Method for manufacturing transistor
US9136349B2 (en) Dummy gate structure for semiconductor devices
WO2019007335A1 (zh) 半导体器件及其制备方法
CN106856189B (zh) 浅沟槽隔离结构及其形成方法
WO2016008194A1 (zh) 半导体器件及其制造方法
US9437674B2 (en) Insulating trench forming method
CN105914178A (zh) 浅沟槽隔离结构的制作方法
US8642419B2 (en) Methods of forming isolation structures for semiconductor devices
US9911825B2 (en) Integrated circuits with spacer chamfering and methods of spacer chamfering
TWI641029B (zh) 在通過不同間距分開的閘極之間形成具有應力的磊晶層
US20130256810A1 (en) Semiconductor Device and Method for Manufacturing the Same
US20130260532A1 (en) Method for Manufacturing Semiconductor Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870725

Country of ref document: EP

Kind code of ref document: A1