WO2014107040A1 - Silver alloy bonding wire - Google Patents

Silver alloy bonding wire Download PDF

Info

Publication number
WO2014107040A1
WO2014107040A1 PCT/KR2014/000038 KR2014000038W WO2014107040A1 WO 2014107040 A1 WO2014107040 A1 WO 2014107040A1 KR 2014000038 W KR2014000038 W KR 2014000038W WO 2014107040 A1 WO2014107040 A1 WO 2014107040A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding wire
silver alloy
grain size
bonding
average grain
Prior art date
Application number
PCT/KR2014/000038
Other languages
French (fr)
Korean (ko)
Inventor
홍성재
허영일
김재선
이종철
문정탁
Original Assignee
엠케이전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠케이전자 주식회사 filed Critical 엠케이전자 주식회사
Priority to CN201480011968.2A priority Critical patent/CN105122435A/en
Publication of WO2014107040A1 publication Critical patent/WO2014107040A1/en
Priority to PH12015501521A priority patent/PH12015501521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • B23K20/004Wire welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85464Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a silver alloy bonding wire, and more particularly, to a silver alloy bonding wire that is strong in thermal shock strength, has excellent SOB bonding properties, and exhibits excellent bonding characteristics in a nitrogen atmosphere.
  • bonding wires are still widely used to connect the substrate and the semiconductor device or to connect the semiconductor devices.
  • gold bonding wires have been used a lot, but they are expensive and there is a demand for bonding wires that can replace them since the price has risen recently.
  • the present invention has been made in an effort to provide a silver alloy bonding wire that is strong in thermal shock strength, has excellent SOB bonding properties, and exhibits excellent bonding characteristics even under a nitrogen atmosphere.
  • a silver alloy bonding wire is provided in which the ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the center with respect to the vertical cross section in the longitudinal direction is 0.3 to 3.
  • the average grain size b of the center portion of the silver alloy bonding wire may be larger than the average grain size a of the outer portion. At this time, the average grain size (b) of the central portion may be about 2 ⁇ m or less.
  • a ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the central portion may be about 0.3 to about 1.
  • the silver alloy bonding wire may further include a first physical property control element.
  • the first physical property control element may be at least one selected from the group consisting of beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), and cerium (Ce).
  • the content of the first physical property control element may be about 30 ppm by weight to about 100 ppm by weight based on the total silver alloy bonding wire.
  • the silver alloy bonding wire may further include a second physical property control element.
  • the second physical property control element may be at least one selected from the group consisting of platinum (Pt) and copper (Cu).
  • the content of the second physical property control element may be about 0.01 wt% to about 3 wt% based on the total silver alloy bonding wire.
  • the silver alloy bonding wire may have a reduction ratio of about 7% to about 10% in a drawing process for manufacturing the same.
  • bonding wire of the present invention When the bonding wire of the present invention is used, bonding properties that are strong in thermal shock strength, excellent in SOB bonding, and excellent in a nitrogen atmosphere can be obtained.
  • FIG. 1 is a cross-sectional perspective view showing a silver alloy bonding wire according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a silver alloy bonding wire according to an embodiment of the present invention.
  • 3A is a side view illustrating a bonding state of a silver alloy bonding wire according to an embodiment of the present invention for explaining SOB bonding in more detail.
  • FIG. 3B is a plan view of the portion B of FIG. 3A viewed from above.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and vice versa, the second component may be referred to as the first component.
  • the concept of the present invention discloses a silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au).
  • the main component means that the concentration of the corresponding element with respect to the total component exceeds 50%. That is, having silver (Ag) as the main component means that the concentration of silver in the total amount of silver and other elements exceeds 50%.
  • the concentration refers to the concentration based on the number of moles of atoms.
  • the content of palladium (Pd) may be about 0.5% to about 4% by weight. If the content of palladium (Pd) is too small, the acid resistance may deteriorate so that it may be easily corroded or short-circuited by nitric acid or sulfuric acid. In particular, if palladium is not contained, oxidation resistance of the silver alloy bonding wire may be weak. On the contrary, when the content of palladium is excessively high, the hardness of the ball formed at the end of the wire during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
  • the content of gold (Au) may be about 2% by weight to about 8% by weight. If the content of gold (Au) is too small, the shape of the ball formed at the end of the bonding wire is excessively deviated from the spherical ball ( ⁇ ⁇ ) may cause poor bonding properties. Conversely, if the content of gold is excessively high, the hardness of the balls formed at the wire ends during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate thereunder, and also so-called stitch bonding on the bumps. SOB (stitch-on-bump) connectivity may be degraded.
  • SOB switch-on-bump
  • the bonding wire may be composed of a number of crystal grains.
  • the grain size may have a constant spread over the entire bonding wire.
  • the size of the crystal grains may vary depending on the position of the bonding wire in the radial direction.
  • the ratio of the average grain size (a) of the outer portion to the average grain size (b) of the center with respect to the vertical cross section with respect to the longitudinal direction of the silver alloy bonding wire ( a / b) may be about 0.3 to about 3.
  • a ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the center portion may be about 0.5 to about 2.5.
  • FIG. 1 is a perspective view showing a silver alloy bonding wire 100 according to an embodiment of the present invention, a cross-sectional view so as to know the structure of the cross section perpendicular to the z-direction in the longitudinal direction.
  • the silver alloy bonding wire 100 is closer to the center O of the bonding wire 100 and farther from the center O of the bonding wire 100 based on the intermediate interface 105 as the interface. It may be configured as an outer portion 120.
  • the intermediate interface 105 may be virtual, and no physical interface may be observed between the central portion 110 and the outer portion 120.
  • the location of the intermediate interface 105 may be the center of the center O of the bonding wire 100 and the surface of the bonding wire 100. That is, if the cross section of the bonding wire 100 is regarded as a circle of radius R, the intermediate interface 105 may be a circle having a radius R / 2 as a concentric circle.
  • FIG. 2 is a schematic view showing an embodiment of a method of measuring the average grain size (a) of the outer portion and the average grain size (b) of the central portion.
  • the average grain size a of the outer portion may be measured along the outer circumferential direction of the bonding wire 100, denoted by a1.
  • the average grain size a of the outer portion can be measured using a method such as, for example, electron backscatter diffraction (EBSD).
  • EBSD electron backscatter diffraction
  • the average grain size (a) of the outer portion can be obtained by counting the number of grains crossing over a predetermined length in a direction perpendicular to the wire length direction in the grain image obtained through EBSD analysis, and dividing the predetermined length by the number of grains. have.
  • the grain boundary can be determined.
  • the grain boundary between the adjacent grains is 15 degrees or more.
  • the average grain size a can be determined in software using an EBSD system. If the average grain size (a) is determined in software using an EBSD system, for example, after calculating the area of the grains exposed on the side surface, the diameter of the circle having the same area is the grain size, and The average grain size determined as described above can be averaged to obtain an average grain size (a).
  • the average grain size (a) may be obtained by using an EBSD system but measuring the grain size in software for the outer range indicated by a2 and calculating its average value.
  • the average grain size b of the core may be an average of the grain sizes measured for any range or the entire center range within the core.
  • a method such as EBSD can be used. If EBSD is used to calculate the average grain size (b) in software, it can be obtained as described above.
  • the average grain size b of the said center part measured here is 2 micrometers or less.
  • the average grain size (a) of the outer portion and the average grain size (b) of the center portion can be obtained, and the average grain size (b) of the center portion is larger than the average grain size (a) of the outer portion.
  • the ratio (a / b) of the average grain size (a) of the outer side to the average grain size (b) of the center with respect to the vertical cross section in the longitudinal direction of the bonding wire may be less than about 1.
  • the ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the central portion may be about 0.3 to about 1.
  • Bonding wires connecting the substrate and the semiconductor die, or the semiconductor die and another semiconductor die can often experience significant temperature variations, where the size of the grains and the dispersion of the grain sizes can be related to the stability of the thermal changes. In other words, if the grain size is small, the instability of the thermal change may be reduced compared to when the grain size is large.
  • the ratio (a / b) of the average grain size (a) of the outer side to the average grain size (b) of the center with respect to the vertical cross section with respect to the longitudinal direction of the bonding wire may be one index indicating the dispersion.
  • a first physical property control element may be further added.
  • the first physical property control element can prevent the grains inside the bonding wire from becoming excessively large.
  • the first physical property control element may be at least one selected from the group consisting of beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), and cerium (Ce).
  • the content of the first physical property control element may include, for example, about 30 wtppm to about 100 wtppm of the total silver alloy bonding wire.
  • the effect of preventing coarsening of the grain size may be insignificant.
  • the content of the first physical property control element in the silver alloy bonding wire is too large, the hardness of the ball formed at the end of the bonding wire may be excessively high. Excessively high hardness of the balls may cause cracking or cratering of the pads or semiconductor dies and poor stitch-on-bump (SOB) bonding to the bumps.
  • SOB stitch-on-bump
  • FIG. 3A is a side view for explaining SOB bonding in more detail
  • FIG. 3B is a plan view of the B portion of FIG. 3A viewed from above.
  • a first side bonding pad 10 and a second side bonding pad 20 to be electrically connected are provided, and a bump 30 is provided on the second side bonding pad 20. do.
  • the bumps 30 may be ball bumps or stud bumps, which will be described in the case of stud bumps.
  • Bumps 30 are provided on the second side bonding pads 20 of the provided bonding pads 10, 20, and a method of providing such bumps 30 is well known to those skilled in the art, and thus a detailed description thereof will be omitted. do.
  • the silver alloy bonding wire 100 After ball bonding to the first side bonding pad 10 which forms the ball at the tip of the silver alloy bonding wire 100, the silver alloy bonding wire 100 is directed toward the bump 30 on the second side bonding pad 20. It guides and performs stitch bonding on bumps 30.
  • the shape and size of the left and right are substantially symmetric about the center line C in the stitch bonded form.
  • the shape and size of the left and right sides of the stitch joint surface about the centerline C are substantially symmetrical. Can be.
  • a second physical property control element may be further added.
  • the second physical property control element can suppress work hardening that may occur during deformation of the bonding wire. As a result, an excellent effect capable of SOB bonding can be achieved, and an effect of improving cratering can also be obtained.
  • the second physical property control element may be at least one selected from the group consisting of platinum (Pt) and copper (Cu).
  • the content of the second physical property control element may include, for example, about 0.01 wt% to about 3 wt% of the total silver alloy bonding wire.
  • the effect of suppressing work hardening due to deformation of the bonding wire may be insignificant.
  • the content of the second physical property control element in the silver alloy bonding wire is too high, the electrical resistance of the bonding wire becomes excessively high, and side effects such as hardening due to alloying may occur.
  • the cross section of the wire is reduced by drawing after casting in the form of a bar according to the content given above. At this time, it is appropriate to adjust the cross-sectional reduction rate of the bonding wires before and after the die to about 7% to about 10%. That is, when the wire in the wire passes through one die, it is desirable to configure the process such that the cross-sectional area after passage decreases by about 7% to about 10% compared to the cross-sectional area before passage.
  • the cross sectional reduction rate of the bonding wire is too high, the dispersion of grains in the bonding wire may be excessively large.
  • the cross sectional reduction rate of the bonding wire is too low, the number of drawing operations required to obtain the bonding wire of the desired diameter is too large, which may be economically disadvantageous.
  • the method may further include a purification process for purifying raw materials prior to the casting process.
  • the intermediate annealing process may be further included from time to time during the drawing process.
  • the size of the grains inside the bonding wire becomes finer, and as the size of the grains becomes finer, the ductility and malleability of the bonding wire may be degraded, so that the intermediate annealing is alleviated and diffused to distribute the components more uniformly.
  • the process can be performed. More specifically, by performing the intermediate annealing process, the grains inside the bonding wire may be increased in size, and ductility and malleability required for processing may be secured.
  • the intermediate annealing temperature may be performed for about 0.5 seconds to about 30 seconds at a temperature of approximately 250 °C to 450 °C.
  • intermediate annealing temperature is too low, ductility and malleability necessary for processing may not be secured. On the contrary, if the intermediate annealing temperature is too high, strength may be weakened, thereby causing disconnection during drawing.
  • the final annealing process may be performed after the drawing is completed.
  • the final annealing process may be carried out for about 1 second to about 20 minutes at a temperature of about 400 ° C to about 600 ° C.
  • the final annealing temperature is too low, the ductility and malleability required for bonding bonding may not be secured. On the contrary, if the final annealing temperature is too high, the grain size may be excessively large, and the loop of the bonding may be excessively large. It is not preferable because a defect such as sag can occur.
  • the final annealing time is too short, ductility and malleability necessary for processing may not be secured. On the contrary, if the final annealing time is too long, the grain size may be excessively large and economically disadvantageous, which is not preferable.
  • the intermediate annealing process and the final annealing process above can be performed, for example, by passing the bonding wire through the furnace at a suitable speed.
  • the speed of passing the bonding wire through the furnace can be determined from the annealing time and the dimensions of the furnace.
  • Wire samples were immersed in 5% hydrochloric acid and sulfuric acid to visually inspect the degree of corrosion of the surface in units of time. If surface corrosion is confirmed within 1 hour, ⁇ 1 hour resistance is confirmed, but if surface corrosion is confirmed within 2 hours, ⁇ , resistance is confirmed for 2 hours or more. If there was no change, it evaluated as ().
  • Bonding of the ball bonding / stitch bonding method was performed by ultrasonic thermocompression method using K & S Maxum Ultra equipment using the manufactured bonding wire.
  • a ball is formed at the end of the wire by arc discharge in an N 2 gas atmosphere to first bond to an approximately 0.6 ⁇ m thick aluminum pad on a silicon substrate, which is then extended to a wedge bond to a 2 ⁇ m Ag or Pd plated 220 ° C. lead frame. was done.
  • Bonding was performed on 6000 bonding pads using the same bonding wire, and after the aluminum pad was dissolved with an alkaline solution to remove the bonded wire, the silicon substrate at the position where the aluminum pad was present was observed to be damaged. .
  • if there is no damage or cracks on the silicon substrate at all, ⁇ if there are no damages or cracks 3 or less, ⁇ if there are 4 or 10 damages or cracks, ⁇ , if there are more than 10 damages or cracks It evaluated by x.
  • the bonding wire is located at the center of the ball, and the edge is determined to be round without a petal shape
  • the length of the bonded ball in the horizontal and vertical directions When the ratio of is 0.96 or more and less than 0.99 and the bonding wire is located at the center of the ball, and the edge is determined to be round without petal shape, the ratio of the length of the bonded ball in the horizontal axis direction and the vertical axis direction is 0.9 or more, and the edge is shaped like a petal. There was no, and if it did not correspond to ⁇ or ⁇ above, ⁇ , otherwise, evaluated as ⁇ .
  • Thermal shock reliability was used commercially available thermal cycling test (TCT) equipment. After wire bonding, it is sealed with epoxy molding resin (EMC), and thermal shock is repeatedly applied under severe conditions (-45 ° C / 30 minutes to + 125 ° C / 30 minutes), and then the bonding wire is broken by shrinkage / expansion. The number of losing wires was measured. ⁇ if there are no wires broken out of 6000 wires, ⁇ if there are more than 1 or less than 5 wires broken, ⁇ if 5 or more and less than 20 wires are broken, ⁇ .
  • TCT thermal cycling test
  • the package sealed with epoxy molding resin was left under 121 degreeC and 85% humidity, the time which the short circuit generate
  • produces in a joining surface is 500 hours or more, (circle), 396 hours or more and less than 500 hours, it evaluated as (circle), 198 hours or more and less than 396 hours, (triangle
  • Bonding was carried out under N 2 gas not containing hydrogen and evaluated for the number of times the equipment was stopped by ball-shaped nonuniformity for 1 hour. When the number of times stopped by ball-shaped nonuniformity for 1 hour was 0, it was evaluated as ⁇ , 1 to 3 times, ⁇ , 4 to 10 times, ⁇ , and 10 times or more.
  • the composition of palladium (Pd) and gold (Au) is within 0.5 to 4% by weight, within 2 to 8% by weight, respectively, and the first physical property control element is 30 to 100 ppm by weight Even if added in the range of ppm, if the ratio (a / b) of the average grain size (a) of the outer part to the average grain size (b) of the center part is not present in the range of 0.3 to 3, pad cratering, stitch bonding, thermal shock It was found to have inferior physical properties in terms of strength and the like.
  • the first physical property control element is 30 ppm by weight to 100 ppm by weight. It could be confirmed from the results of Tables 1 to 4 that it can have more excellent physical properties if added in the range.
  • the composition of palladium (Pd) and gold (Au) is respectively within 0.5 to 4% by weight, within 2 to 8% by weight and 0.01 to 3% by weight of the second physical property control element. Even if added in the range of%, if the ratio (a / b) of the average grain size (a) of the outer part to the average grain size (b) of the center part is not present in the range of 0.3 to 3, pad cratering, stitch bonding, thermal shock It was found to have inferior physical properties in terms of strength and the like.
  • the second physical property adjusting element is 0.01 wt% to 3 wt% It could be confirmed from the results of Tables 1 to 4 that it can have more excellent physical properties if added in the range.
  • the present invention can be usefully used in the semiconductor industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wire Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a silver(Ag)alloy bonding wire, and more particularly, to a silver alloy bonding wire with silver as the main ingredient, which includes 0.5 to 4 % by weight of palladium (Pd) and 2 to 8 % by weight of gold (Au), characterized in that, when the bonding wire is cut perpendicularly to the direction of the length, the ratio (a/b) of the average particle size (a) of the outer part of the cross section to that (b) of the central part thereof is 0.3 to 3. The bonding wire according to the present invention has the properties of high resistance to a thermal impulse, excellent SOB bonding, and excellent bonding in an atmosphere of nitrogen.

Description

은 합금 본딩 와이어Silver alloy bonding wire
본 발명은 은 합금 본딩 와이어에 관한 것으로서, 더욱 구체적으로는 열충격 강도에 강하고 SOB 접합성이 우수하며 질소 분위기에서도 우수한 본딩 특성을 보이는 은 합금 본딩 와이어에 관한 것이다.The present invention relates to a silver alloy bonding wire, and more particularly, to a silver alloy bonding wire that is strong in thermal shock strength, has excellent SOB bonding properties, and exhibits excellent bonding characteristics in a nitrogen atmosphere.
반도체 장치를 실장하기 위한 패키지에는 다양한 구조들이 존재하며, 기판과 반도체 장치를 연결하거나 반도체 장치들 사이를 연결하기 위하여 본딩 와이어가 여전히 널리 사용되고 있다. 본딩 와이어로서는 금 본딩 와이어가 많이 사용되었으나 고가일 뿐만 아니라 최근 가격이 급상승하였기 때문에 이를 대체할 수 있는 본딩 와이어에 대한 요구가 있다.Various structures exist in a package for mounting a semiconductor device, and bonding wires are still widely used to connect the substrate and the semiconductor device or to connect the semiconductor devices. As a bonding wire, gold bonding wires have been used a lot, but they are expensive and there is a demand for bonding wires that can replace them since the price has risen recently.
금(Au)의 대체재료로서 각광받았던 구리 와이어의 경우 구리 본연의 높은 경도로 인해 볼 본딩시 칩이 깨어지는 패드 크랙(pad crack) 현상이 빈번하게 일어나고 있고, 고집적 패키지에 필요한 SOB (stitch-on-bump) 본딩이 구리의 높은 경도와 강한 산화성으로 인해 해결되지 않고 있다.In the case of copper wire, which has been spotlighted as an alternative to Au, the pad crack phenomenon occurs frequently during ball bonding due to the inherent high hardness of copper, and SOB (stitch-on) required for highly integrated packages Bump bonding is not solved due to the high hardness and strong oxidative properties of copper.
이에 대한 대안으로서 저렴한 가격의 은(Ag)을 주성분으로 하는 본딩 와이어에 대한 연구가 활발하게 진행되고 있다. 그러나, 수소 혼합가스를 사용하여야만 안정적인 볼본딩이 가능하고, 고습신뢰성 및 고온 신뢰성이 저하되는 문제점이 있다. 또한, 기존의 금 본딩 와이어에 비하여 압축, 팽창에 대한 내성이 약하여 고온과 저온이 반복되는 열충격 신뢰성이 크게 저하되는 문제점이 발생하였다. 또한, 최근 SOB 본딩에 대한 필요성이 증대되나, 은의 가공경화현상, 산화 등에 대한 개선책도 요구되고 있는 실정이다.As an alternative, research on bonding wires based on low-cost silver (Ag) has been actively conducted. However, only when the hydrogen mixed gas is used, stable ball bonding is possible, and high humidity reliability and high temperature reliability are deteriorated. In addition, compared with the existing gold bonding wire, the resistance to compression and expansion is weak, causing a problem in that the thermal shock reliability of high temperature and low temperature is repeatedly reduced. In addition, although the need for SOB bonding has recently increased, there is also a demand for improvement of work hardening and oxidation of silver.
본 발명이 이루고자 하는 기술적 과제는 열충격 강도에 강하고 SOB 접합성이 우수하며 질소 분위기에서도 우수한 본딩 특성을 보이는 은 합금 본딩 와이어를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a silver alloy bonding wire that is strong in thermal shock strength, has excellent SOB bonding properties, and exhibits excellent bonding characteristics even under a nitrogen atmosphere.
본 발명은 상기 기술적 과제를 이루기 위하여, 은(Ag)을 주성분으로 하는 은 합금 본딩 와이어로서, 팔라듐(Pd) 0.5 내지 4 중량% 및 금(Au) 2 내지 8 중량% 포함하고, 상기 본딩 와이어의 길이 방향에 대한 수직 단면에 대하여 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 0.3 내지 3인 은 합금 본딩 와이어가 제공된다.The present invention, in order to achieve the above technical problem, a silver alloy bonding wire containing silver (Ag) as a main component, containing 0.5 to 4% by weight of palladium (Pd) and 2 to 8% by weight of gold (Au), of the bonding wire A silver alloy bonding wire is provided in which the ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the center with respect to the vertical cross section in the longitudinal direction is 0.3 to 3.
상기 은 합금 본딩 와이어의 상기 중심부의 평균 결정립 크기(b)는 상기 외측부의 평균 결정립 크기(a)보다 클 수 있다. 이 때, 상기 중심부의 평균 결정립 크기(b)는 약 2㎛ 이하일 수 있다.The average grain size b of the center portion of the silver alloy bonding wire may be larger than the average grain size a of the outer portion. At this time, the average grain size (b) of the central portion may be about 2㎛ or less.
또한, 상기 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 약 0.3 내지 약 1일 수 있다.In addition, a ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the central portion may be about 0.3 to about 1.
또, 상기 은 합금 본딩 와이어는 제 1 물성 조절 원소를 더 포함할 수 있다. 상기 제 1 물성 조절 원소는 베릴륨(Be), 칼슘(Ca), 란타넘(La), 이트륨(Y), 및 세륨(Ce)으로 구성되는 군으로부터 선택되는 1종 이상일 수 있다. 상기 제 1 물성 조절 원소의 함량은 은 합금 본딩 와이어 전체에 대하여, 총계로 약 30 중량ppm 내지 약 100 중량ppm일 수 있다.In addition, the silver alloy bonding wire may further include a first physical property control element. The first physical property control element may be at least one selected from the group consisting of beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), and cerium (Ce). The content of the first physical property control element may be about 30 ppm by weight to about 100 ppm by weight based on the total silver alloy bonding wire.
또, 상기 은 합금 본딩 와이어는 제 2 물성 조절 원소를 더 포함할 수 있다. 상기 제 2 물성 조절 원소는 백금(Pt) 및 구리(Cu)로 구성되는 군으로부터 선택되는 1종 이상일 수 있다. 상기 제 2 물성 조절 원소의 함량은 은 합금 본딩 와이어 전체에 대하여, 총계로 약 0.01 중량% 내지 약 3 중량%일 수 있다.In addition, the silver alloy bonding wire may further include a second physical property control element. The second physical property control element may be at least one selected from the group consisting of platinum (Pt) and copper (Cu). The content of the second physical property control element may be about 0.01 wt% to about 3 wt% based on the total silver alloy bonding wire.
또한, 상기 은 합금 본딩 와이어는 이를 제조하기 위한 신선 공정에서의 단면감소율이 약 7% 내지 약 10%일 수 있다.In addition, the silver alloy bonding wire may have a reduction ratio of about 7% to about 10% in a drawing process for manufacturing the same.
본 발명의 본딩 와이어를 이용하면 열충격 강도에 강하고 SOB 접합성이 우수하며 질소 분위기에서도 우수한 본딩 특성이 얻어질 수 있다.When the bonding wire of the present invention is used, bonding properties that are strong in thermal shock strength, excellent in SOB bonding, and excellent in a nitrogen atmosphere can be obtained.
도 1은 본 발명의 일 실시예에 따른 은 합금 본딩 와이어를 나타낸 단면 사시도이다.1 is a cross-sectional perspective view showing a silver alloy bonding wire according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 은 합금 본딩 와이어를 나타낸 단면도이다.2 is a cross-sectional view showing a silver alloy bonding wire according to an embodiment of the present invention.
도 3a는 SOB 접합성을 보다 상세하게 설명하기 위한, 본 발명의 일 실시예에 따른 은 합금 본딩 와이어의 본딩 모습을 나타낸 측면도이다.3A is a side view illustrating a bonding state of a silver alloy bonding wire according to an embodiment of the present invention for explaining SOB bonding in more detail.
도 3b는 도 3a의 B 부분을 상부에서 바라본 평면도이다.FIG. 3B is a plan view of the portion B of FIG. 3A viewed from above.
이하, 첨부도면을 참조하여 본 발명 개념의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명 개념의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명 개념의 범위가 아래에서 상술하는 실시예들로 인해 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명 개념의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명 개념을 보다 완전하게 설명하기 위해서 제공되어지는 것으로 해석되는 것이 바람직하다. 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명 개념은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되어지지 않는다.Hereinafter, exemplary embodiments of the inventive concept will be described in detail with reference to the accompanying drawings. However, embodiments of the inventive concept may be modified in many different forms and should not be construed as limiting the scope of the inventive concept to the embodiments described below. Embodiments of the inventive concept are preferably interpreted as being provided to those skilled in the art to more fully describe the inventive concept. Like numbers refer to like elements all the time. Furthermore, various elements and regions in the drawings are schematically drawn. Accordingly, the inventive concept is not limited by the relative size or spacing drawn in the accompanying drawings.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는 데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명 개념의 권리 범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 반대로 제 2 구성 요소는 제 1 구성 요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the inventive concept, the first component may be referred to as the second component, and vice versa, the second component may be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로서, 본 발명 개념을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함한다" 또는 "갖는다" 등의 표현은 명세서에 기재된 특징, 개수, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 개수, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive concepts. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the expression “comprises” or “having” is intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and that one or more other features It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, operations, components, parts or combinations thereof.
달리 정의되지 않는 한, 여기에 사용되는 모든 용어들은 기술 용어와 과학 용어를 포함하여 본 발명 개념이 속하는 기술 분야에서 통상의 지식을 가진 자가 공통적으로 이해하고 있는 바와 동일한 의미를 지닌다. 또한, 통상적으로 사용되는, 사전에 정의된 바와 같은 용어들은 관련되는 기술의 맥락에서 이들이 의미하는 바와 일관되는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의하지 않는 한 과도하게 형식적인 의미로 해석되어서는 아니 될 것임은 이해될 것이다.Unless defined otherwise, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art, including technical terms and scientific terms. Also, as used in the prior art, terms as defined in advance should be construed to have a meaning consistent with what they mean in the context of the technology concerned, and in an overly formal sense unless explicitly defined herein. It will be understood that it should not be interpreted.
본 발명 개념은 은(Ag)을 주성분으로 하고, 팔라듐(Pd)과 금(Au)을 포함하는 은 합금 본딩 와이어를 개시한다. 여기서, 주성분(main component)이라 함은 전체 성분에 대한 해당 원소의 농도가 50%를 넘는 것을 말한다. 즉, 은(Ag)을 주성분으로 한다는 것은 은과 다른 원소의 총계에 대한 은의 농도가 50%를 넘는 것을 의미한다. 여기서 농도는 원자 몰수를 기준으로 한 농도를 말한다.The concept of the present invention discloses a silver alloy bonding wire containing silver (Ag) as a main component and containing palladium (Pd) and gold (Au). Here, the main component means that the concentration of the corresponding element with respect to the total component exceeds 50%. That is, having silver (Ag) as the main component means that the concentration of silver in the total amount of silver and other elements exceeds 50%. Here, the concentration refers to the concentration based on the number of moles of atoms.
상기 팔라듐(Pd)의 함량은 약 0.5 중량% 내지 약 4 중량%일 수 있다. 만일 팔라듐(Pd)의 함량이 지나치게 적으면 내산성이 나빠져서 질산이나 황산 등에 의하여 쉽게 부식되거나 단락될 수 있고, 특히 팔라듐이 함유되지 않으면 은 합금 본딩 와이어의 내산화성이 취약해질 수 있다. 반대로, 팔라듐의 함량이 과도하게 많으면 와이어 본딩 시의 와이어 말단에 형성되는 볼의 경도가 과도하게 상승하여 본딩 패드 및/또는 그 아래의 기판이 손상될 수 있다.The content of palladium (Pd) may be about 0.5% to about 4% by weight. If the content of palladium (Pd) is too small, the acid resistance may deteriorate so that it may be easily corroded or short-circuited by nitric acid or sulfuric acid. In particular, if palladium is not contained, oxidation resistance of the silver alloy bonding wire may be weak. On the contrary, when the content of palladium is excessively high, the hardness of the ball formed at the end of the wire during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
상기 금(Au)의 함량은 약 2 중량% 내지 약 8 중량%일 수 있다. 만일 금(Au)의 함량이 지나치게 적으면 본딩 와이어의 말단에 형성되는 볼의 형상이 진구(眞球)로부터 과도하게 벗어나게 되어 본딩 특성이 나빠질 수 있다. 반대로, 금의 함량이 지나치게 많으면 와이어 본딩 시의 와이어 말단에 형성되는 볼의 경도가 과도하게 상승하여 본딩 패드 및/또는 그 아래의 기판이 손상될 수 있고, 또한 범프 위에 스티치(stitch) 본딩하는 소위 SOB(stitch-on-bump) 접합성이 저하될 수 있다.The content of gold (Au) may be about 2% by weight to about 8% by weight. If the content of gold (Au) is too small, the shape of the ball formed at the end of the bonding wire is excessively deviated from the spherical ball (眞 球) may cause poor bonding properties. Conversely, if the content of gold is excessively high, the hardness of the balls formed at the wire ends during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate thereunder, and also so-called stitch bonding on the bumps. SOB (stitch-on-bump) connectivity may be degraded.
한편, 와이어 말단에 형성되는 볼의 진구성을 향상시키고 편심볼이 형성되는 현상을 방지하기 위하여 특정 분위기에서 볼 형성이 될 수 있는데, 통상적으로는 수소(H2)와 질소(N2)가 첨가된 분위기에서 종종 수행된다. 그러나, 수소는 질소보다 비쌀 뿐만 아니라 폭발의 위험이 있는 등 취급이 어렵기 때문에 수소 없이 질소만으로 동등한 효과를 얻는 것이 바람직하다. 위에서와 같이 금(Au)을 첨가한 합금은 수소 없이도 진구성을 개선할 수 있으며, 특히, 팔라듐(Pd)과 함께 첨가되는 경우 진구성을 크게 높일 수 있다.On the other hand, in order to improve the true formation of the ball formed at the end of the wire and to prevent the formation of the eccentric ball can be formed in a specific atmosphere, usually hydrogen (H 2 ) and nitrogen (N 2 ) is added Is often performed in a controlled atmosphere. However, since hydrogen is more expensive than nitrogen and difficult to handle, such as a risk of explosion, it is preferable to obtain an equivalent effect with nitrogen alone without hydrogen. As described above, the alloy to which gold (Au) is added can improve the true structure even without hydrogen, and in particular, when added with palladium (Pd), can greatly increase the true structure.
상기 본딩 와이어는 수많은 결정립(crystal grain)으로 구성될 수 있다. 상기 결정립의 크기는 전체 본딩 와이어에 걸쳐서 일정한 산포를 가질 수 있다. 나아가, 상기 결정립의 크기는 본딩 와이어의 반지름 방향의 위치에 따라 변화할 수 있다. 본 발명의 일 실시예에 따른 은 합금 본딩 와이어에 있어서, 상기 은 합금 본딩 와이어의 길이 방향에 대한 수직 단면에 대하여 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 약 0.3 내지 약 3일 수 있다. 또는, 상기 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 약 0.5 내지 약 2.5일 수 있다.The bonding wire may be composed of a number of crystal grains. The grain size may have a constant spread over the entire bonding wire. Furthermore, the size of the crystal grains may vary depending on the position of the bonding wire in the radial direction. In the silver alloy bonding wire according to an embodiment of the present invention, the ratio of the average grain size (a) of the outer portion to the average grain size (b) of the center with respect to the vertical cross section with respect to the longitudinal direction of the silver alloy bonding wire ( a / b) may be about 0.3 to about 3. Alternatively, a ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the center portion may be about 0.5 to about 2.5.
도 1은 본 발명 개념의 일 실시예에 따른 은 합금 본딩 와이어(100)를 나타낸 사시도로서, 길이 방향인 z 방향에 수직인 단면의 구조를 알 수 있도록 단면을 나타낸다. 상기 은 합금 본딩 와이어(100)는 경계면인 중간 계면(105)을 기준으로 그보다 본딩 와이어(100)의 중심(O)에 가까운 중심부(110) 및 그보다 본딩 와이어(100)의 중심(O)으로부터 먼 외측부(120)로 구성될 수 있다. 상기 중간 계면(105)은 가상적인 것일 수 있으며, 중심부(110)와 외측부(120) 사이에는 물리적인 계면이 관찰되지 않을 수 있다.1 is a perspective view showing a silver alloy bonding wire 100 according to an embodiment of the present invention, a cross-sectional view so as to know the structure of the cross section perpendicular to the z-direction in the longitudinal direction. The silver alloy bonding wire 100 is closer to the center O of the bonding wire 100 and farther from the center O of the bonding wire 100 based on the intermediate interface 105 as the interface. It may be configured as an outer portion 120. The intermediate interface 105 may be virtual, and no physical interface may be observed between the central portion 110 and the outer portion 120.
상기 중간 계면(105)의 위치는 상기 본딩 와이어(100)의 중심(O)과 상기 본딩 와이어(100)의 표면의 가운데일 수 있다. 즉, 상기 본딩 와이어(100)의 단면을 반지름 R의 원으로 생각한다면, 중간 계면(105)은 그와 동심원으로서 반지름이 R/2인 원일 수 있다.The location of the intermediate interface 105 may be the center of the center O of the bonding wire 100 and the surface of the bonding wire 100. That is, if the cross section of the bonding wire 100 is regarded as a circle of radius R, the intermediate interface 105 may be a circle having a radius R / 2 as a concentric circle.
도 2는 상기 외측부의 평균 결정립 크기(a) 및 상기 중심부의 평균 결정립 크기(b)의 측정 방법의 일 실시예를 나타낸 개략도이다.2 is a schematic view showing an embodiment of a method of measuring the average grain size (a) of the outer portion and the average grain size (b) of the central portion.
도 2에서 보는 바와 같이 상기 외측부의 평균 결정립 크기(a)는 a1으로 표시된 상기 본딩 와이어(100)의 외주 방향을 따라 측정될 수 있다. 예를 들면, 상기 외측부의 평균 결정립 크기(a)는, 예를 들면, 전자 후방산란 회절(electron backscatter diffraction, EBSD)과 같은 방법을 이용하여 측정될 수 있다. 상기 외측부의 평균 결정립 크기(a)는 EBSD 분석을 통해 얻은 결정립 이미지에서 와이어 길이 방향에 수직한 방향으로 소정 길이에 걸쳐 교차되는 결정립의 수를 세어서, 상기 소정 길이를 결정립의 수로 나눔으로써 구할 수 있다. As shown in FIG. 2, the average grain size a of the outer portion may be measured along the outer circumferential direction of the bonding wire 100, denoted by a1. For example, the average grain size a of the outer portion can be measured using a method such as, for example, electron backscatter diffraction (EBSD). The average grain size (a) of the outer portion can be obtained by counting the number of grains crossing over a predetermined length in a direction perpendicular to the wire length direction in the grain image obtained through EBSD analysis, and dividing the predetermined length by the number of grains. have.
EBSD 법에서는 각 결정립의 방위를 측정할 수 있기 때문에 결정립계를 확정할 수 있다. 본 발명에서는 인접하는 결정립의 방위 차가 15°이상의 것을 결정립계로 한다.Since the EBSD method can measure the orientation of each grain, the grain boundary can be determined. In the present invention, the grain boundary between the adjacent grains is 15 degrees or more.
또는, 선택적으로, EBSD 시스템을 이용하여 소프트웨어적으로 평균 결정립 크기(a)가 결정될 수 있다. EBSD 시스템을 이용하여 소프트웨어적으로 평균 결정립 크기(a)가 결정되는 경우, 예를 들면, 측면에 노출된 결정립의 면적을 계산한 후 그와 동일한 면적을 갖는 원의 지름을 결정립 크기로 하고, 이와 같이 결정된 결정립 크기를 평균하여 평균 결정립 크기(a)로 할 수 있다.Or, optionally, the average grain size a can be determined in software using an EBSD system. If the average grain size (a) is determined in software using an EBSD system, for example, after calculating the area of the grains exposed on the side surface, the diameter of the circle having the same area is the grain size, and The average grain size determined as described above can be averaged to obtain an average grain size (a).
또는, 선택적으로, EBSD 시스템을 이용하되 a2로 표시된 외측부 범위에 대하여 결정립 크기를 소프트웨어적으로 측정하고 그의 평균값을 구함으로써 평균 결정립 크기(a)를 얻을 수도 있다.Alternatively, the average grain size (a) may be obtained by using an EBSD system but measuring the grain size in software for the outer range indicated by a2 and calculating its average value.
또한, 상기 중심부의 평균 결정립 크기(b)는 중심부 내의 임의의 범위 또는 전체 중심부 범위에 대하여 측정된 결정립 크기의 평균일 수 있다. 중심부 내의 임의의 범위 또는 전체 중심부 범위에 대하여 결정립의 크기를 측정하기 위하여, 예를 들면, EBSD와 같은 방법을 이용할 수 있다. EBSD를 이용하여 소프트웨어적으로 평균 결정립 크기(b)를 구하는 경우 위에서 설명한 바와 같이 구할 수 있다. In addition, the average grain size b of the core may be an average of the grain sizes measured for any range or the entire center range within the core. In order to measure the size of the grains over any range within the center or over the entire center range, for example, a method such as EBSD can be used. If EBSD is used to calculate the average grain size (b) in software, it can be obtained as described above.
특히, 여기서 측정된 상기 중심부의 평균 결정립 크기(b)는 2 ㎛ 이하인 것이 바람직하다.In particular, it is preferable that the average grain size b of the said center part measured here is 2 micrometers or less.
EBSD를 이용하여 결정립의 크기와 그 평균을 구하는 방법에 대해서는 대한민국 등록특허 제1057271호 등에 상세히 기재되어 있기 때문에 여기서는 상세한 설명을 생략한다.Since the size of the grains and the method of obtaining the average of the grains using EBSD are described in detail in Korean Patent No. 1057271 and the like, the detailed description is omitted here.
이상에서 설명한 바와 같이 상기 외측부의 평균 결정립 크기(a) 및 상기 중심부의 평균 결정립 크기(b)를 얻을 수 있으며, 상기 중심부의 평균 결정립 크기(b)는 상기 외측부의 평균 결정립 크기(a)보다 클 수 있다. 다시 말해, 상기 본딩 와이어의 길이 방향에 대한 수직 단면에 대하여 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 약 1보다 작을 수 있다. 이 경우 상기 중심부의 평균 결정립 크기(b)에 대한 상기 외측부의 평균 결정립 크기(a)의 비율(a/b)은 약 0.3 내지 약 1일 수 있다.As described above, the average grain size (a) of the outer portion and the average grain size (b) of the center portion can be obtained, and the average grain size (b) of the center portion is larger than the average grain size (a) of the outer portion. Can be. In other words, the ratio (a / b) of the average grain size (a) of the outer side to the average grain size (b) of the center with respect to the vertical cross section in the longitudinal direction of the bonding wire may be less than about 1. In this case, the ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the central portion may be about 0.3 to about 1.
기판과 반도체 다이, 또는 반도체 다이와 다른 반도체 다이를 연결하는 본딩 와이어는 종종 상당한 온도 변화를 겪게 될 수 있는데, 결정립의 크기와 결정립 크기의 산포는 열적 변화에 따른 안정성과 관계가 있을 수 있다. 즉, 결정립의 크기가 작으면 결정립의 크기가 클 때에 비하여 열적 변화에 대한 불안정성이 감소할 수 있다.Bonding wires connecting the substrate and the semiconductor die, or the semiconductor die and another semiconductor die, can often experience significant temperature variations, where the size of the grains and the dispersion of the grain sizes can be related to the stability of the thermal changes. In other words, if the grain size is small, the instability of the thermal change may be reduced compared to when the grain size is large.
또한, 결정립의 크기의 분포가 비교적 균일하여 산포가 작으면 산포가 클 때에 비하여 결정립의 크기의 분포가 더 일정한 것이기 때문에 열적 변화에 대한 불안정성이 감소할 수 있다. 여기서, 상기 본딩 와이어의 길이 방향에 대한 수직 단면에 대하여 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 산포를 나타내는 하나의 지표일 수 있다.In addition, if the distribution of the grain size is relatively uniform and the dispersion is small, the distribution of the grain size is more constant than that of the large dispersion, so the instability to the thermal change may be reduced. Here, the ratio (a / b) of the average grain size (a) of the outer side to the average grain size (b) of the center with respect to the vertical cross section with respect to the longitudinal direction of the bonding wire may be one index indicating the dispersion.
상기 은 합금 본딩 와이어의 물성을 향상시키기 위하여 제 1 물성 조절 원소가 더 첨가될 수 있다. 상기 제 1 물성조절원소는 본딩 와이어 내부의 결정립이 과도하게 커지는 것을 방지할 수 있다.In order to improve physical properties of the silver alloy bonding wire, a first physical property control element may be further added. The first physical property control element can prevent the grains inside the bonding wire from becoming excessively large.
상기 제 1 물성 조절 원소는 베릴륨(Be), 칼슘(Ca), 란타넘(La), 이트륨(Y), 및 세륨(Ce)으로 구성되는 군으로부터 선택되는 1종 이상일 수 있다. 상기 제 1 물성조절원소의 함량은, 예를 들면 은 합금 본딩 와이어 전체에 대하여, 총계로 약 30 중량ppm 내지 약 100 중량ppm 포함할 수 있다.The first physical property control element may be at least one selected from the group consisting of beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), and cerium (Ce). The content of the first physical property control element may include, for example, about 30 wtppm to about 100 wtppm of the total silver alloy bonding wire.
상기 은 합금 본딩 와이어 내의 제 1 물성조절원소의 함량이 너무 적으면 결정립의 크기가 조대화되는 것을 방지하는 효과가 미미할 수 있다. 반대로, 상기 은 합금 본딩 와이어 내의 제 1 물성조절원소의 함량이 너무 많으면 본딩 와이어 말단에 형성되는 볼의 경도가 과도하게 높아질 수 있다. 볼의 경도가 과도하게 높으면 패드 또는 반도체 다이의 균열 또는 크레이터링(cratering)이 발생할 수 있고, 범프에 대한 스티치(stitch-on-bump, SOB) 접합성이 나빠질 수 있다.When the content of the first physical property control element in the silver alloy bonding wire is too small, the effect of preventing coarsening of the grain size may be insignificant. On the contrary, if the content of the first physical property control element in the silver alloy bonding wire is too large, the hardness of the ball formed at the end of the bonding wire may be excessively high. Excessively high hardness of the balls may cause cracking or cratering of the pads or semiconductor dies and poor stitch-on-bump (SOB) bonding to the bumps.
도 3a는 SOB 접합성을 보다 상세하게 설명하기 위한 측면도이고, 도 3b는 도 3a의 B 부분을 상부에서 바라본 평면도이다. 도 3a를 참조하면, 전기적으로 연결하고자 하는 퍼스트(first)쪽 본딩 패드(10)와 세컨드(second)쪽 본딩 패드(20)가 제공되고, 세컨드쪽 본딩 패드(20) 상에는 범프(30)가 제공된다. 상기 범프(30)는 볼범프일 수도 있고 스터드 범프일 수도 있는데, 여기서는 스터드 범프인 경우에 대하여 설명한다.3A is a side view for explaining SOB bonding in more detail, and FIG. 3B is a plan view of the B portion of FIG. 3A viewed from above. Referring to FIG. 3A, a first side bonding pad 10 and a second side bonding pad 20 to be electrically connected are provided, and a bump 30 is provided on the second side bonding pad 20. do. The bumps 30 may be ball bumps or stud bumps, which will be described in the case of stud bumps.
제공된 본딩 패드들(10, 20) 중 세컨드쪽 본딩 패드(20) 상에 범프(30)가 제공되는데, 이와 같은 범프(30)를 제공하는 방법은 통상의 기술자에 잘 알려져 있으므로 여기서는 상세한 설명을 생략한다. Bumps 30 are provided on the second side bonding pads 20 of the provided bonding pads 10, 20, and a method of providing such bumps 30 is well known to those skilled in the art, and thus a detailed description thereof will be omitted. do.
은 합금 본딩 와이어(100)의 선단에 볼을 형성하는 퍼스트쪽 본딩 패드(10)에 볼 본딩을 수행한 후 상기 은 합금 본딩 와이어(100)를 세컨드쪽 본딩 패드(20) 상의 범프(30) 쪽으로 인도하여 범프(30) 위에 스티치 본딩을 수행한다.After ball bonding to the first side bonding pad 10 which forms the ball at the tip of the silver alloy bonding wire 100, the silver alloy bonding wire 100 is directed toward the bump 30 on the second side bonding pad 20. It guides and performs stitch bonding on bumps 30.
도 3b를 참조하면, 스티치 본딩된 형태에 있어서 중심선 C를 중심으로 좌우의 형태와 크기가 실질적으로 대칭인 것이 바람직하다. 스티치 본딩 시에 전체 본딩 와이어 폭에 대하여 균일한 힘이 가해졌을 때, 본딩 와이어의 성질이 전체 폭에 대하여 거의 균일하면 중심선 C를 중심으로 한 스티치 접합면의 좌우의 형태와 크기가 실질적으로 대칭이 될 수 있다.Referring to FIG. 3B, it is preferable that the shape and size of the left and right are substantially symmetric about the center line C in the stitch bonded form. When a uniform force is applied to the entire bonding wire width during stitch bonding, if the properties of the bonding wire are almost uniform with respect to the entire width, the shape and size of the left and right sides of the stitch joint surface about the centerline C are substantially symmetrical. Can be.
상기 은 합금 본딩 와이어의 물성을 더욱 향상시키기 위하여 제 2 물성 조절 원소가 더 첨가될 수 있다. 상기 제 2 물성조절원소는 본딩 와이어의 변형시에 일어날 수 있는 가공경화를 억제할 수 있다. 그 결과 SOB 본딩이 가능한 우수한 효과가 달성될 수 있고, 또한 크레이터링을 개선하는 효과도 얻을 수 있다.In order to further improve the physical properties of the silver alloy bonding wire, a second physical property control element may be further added. The second physical property control element can suppress work hardening that may occur during deformation of the bonding wire. As a result, an excellent effect capable of SOB bonding can be achieved, and an effect of improving cratering can also be obtained.
상기 제 2 물성조절원소는 백금(Pt) 및 구리(Cu)로 구성되는 군으로부터 선택되는 1종 이상일 수 있다. 상기 제 2 물성조절원소의 함량은, 예를 들면 은 합금 본딩 와이어 전체에 대하여, 총계로 약 0.01 중량% 내지 약 3 중량% 포함할 수 있다.The second physical property control element may be at least one selected from the group consisting of platinum (Pt) and copper (Cu). The content of the second physical property control element may include, for example, about 0.01 wt% to about 3 wt% of the total silver alloy bonding wire.
상기 은 합금 본딩 와이어 내의 제 2 물성조절원소의 함량이 너무 적으면 본딩 와이어의 변형으로 인한 가공경화를 억제하는 효과가 미미해질 수 있다. 반대로, 상기 은 합금 본딩 와이어 내의 제 2 물성조절원소의 함량이 너무 많으면 본딩 와이어의 전기저항이 과도하게 높아지고, 합금화에 따른 경화현상 등의 부작용이 나타날 수 있다.When the content of the second physical property control element in the silver alloy bonding wire is too small, the effect of suppressing work hardening due to deformation of the bonding wire may be insignificant. On the contrary, if the content of the second physical property control element in the silver alloy bonding wire is too high, the electrical resistance of the bonding wire becomes excessively high, and side effects such as hardening due to alloying may occur.
이하에서는, 본 발명의 일 실시예에 따른 은 합금 본딩 와이어의 제조 방법을 설명한다.Hereinafter, a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention will be described.
위의 주어진 함량에 따라 바(bar)의 형태로 주조(casting)한 후 신선(drawing) 가공을 통하여 와이어의 단면을 감소시켜 나간다. 이 때, 다이 전후에서의 본딩 와이어의 단면감소율을 약 7% 내지 약 10%로 조절하는 것이 적절하다. 즉, 신선 중의 와이어가 하나의 다이를 통과할 때, 통과 후의 단면적이 통과 전의 단면적과 비교하여 약 7% 내지 약 10%만큼 감소하도록 공정을 구성하는 것이 바람직하다.The cross section of the wire is reduced by drawing after casting in the form of a bar according to the content given above. At this time, it is appropriate to adjust the cross-sectional reduction rate of the bonding wires before and after the die to about 7% to about 10%. That is, when the wire in the wire passes through one die, it is desirable to configure the process such that the cross-sectional area after passage decreases by about 7% to about 10% compared to the cross-sectional area before passage.
만일 본딩 와이어의 단면감소율이 너무 높으면 본딩 와이어 내의 결정립의 산포가 과도하게 커질 수 있다. 또한, 만일 본딩 와이어의 단면 감소율이 너무 낮으면 원하는 직경의 본딩 와이어를 얻는 데 필요한 신선 가공의 횟수가 너무 많아져서 경제적으로 불리할 수 있다.If the cross sectional reduction rate of the bonding wire is too high, the dispersion of grains in the bonding wire may be excessively large. In addition, if the cross sectional reduction rate of the bonding wire is too low, the number of drawing operations required to obtain the bonding wire of the desired diameter is too large, which may be economically disadvantageous.
선택적으로, 상기 주조 공정 이전에 원료 물질들을 정제하는 정제(purification) 공정을 더 포함할 수 있다.Optionally, the method may further include a purification process for purifying raw materials prior to the casting process.
신선 가공을 수행하는 사이에 수시로 중간 어닐링 공정을 더 포함할 수 있다. 신선 가공을 거치는 동안 본딩 와이어 내부의 결정립들의 크기가 미세화되고, 결정립들의 크기가 미세화됨에 따라 본딩 와이어의 연성과 전성이 저하될 수 있기 때문에 이를 완화하고 성분들이 보다 균일하게 분포하도록 확산시키기 위하여 중간 어닐링 공정이 수행될 수 있다. 보다 구체적으로, 중간 어닐링 공정을 수행함으로써 본딩 와이어 내부의 결정립들의 크기가 커지고 가공에 필요한 연성과 전성이 확보될 수 있다. 상기 중간 어닐링 온도는 대략 250 ℃ 내지 450 ℃의 온도에서 약 0.5 초 내지 약 30 초 동안 수행될 수 있다.The intermediate annealing process may be further included from time to time during the drawing process. During annealing, the size of the grains inside the bonding wire becomes finer, and as the size of the grains becomes finer, the ductility and malleability of the bonding wire may be degraded, so that the intermediate annealing is alleviated and diffused to distribute the components more uniformly. The process can be performed. More specifically, by performing the intermediate annealing process, the grains inside the bonding wire may be increased in size, and ductility and malleability required for processing may be secured. The intermediate annealing temperature may be performed for about 0.5 seconds to about 30 seconds at a temperature of approximately 250 ℃ to 450 ℃.
만일 상기 중간 어닐링 온도가 너무 낮으면 가공에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 중간 어닐링 온도가 너무 높으면 강도가 약해져서 신선시 단선이 발생할 수 있다.If the intermediate annealing temperature is too low, ductility and malleability necessary for processing may not be secured. On the contrary, if the intermediate annealing temperature is too high, strength may be weakened, thereby causing disconnection during drawing.
또한, 상기 중간 어닐링 시간이 너무 짧으면 가공에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 중간 어닐링 시간이 너무 길면 결정립의 크기가 과도하게 커질 수 있고 경제적으로 불리하여 바람직하지 않다.In addition, when the intermediate annealing time is too short, ductility and malleability necessary for processing may not be secured. On the contrary, when the intermediate annealing time is too long, the grain size may be excessively large and economically disadvantageous, which is not preferable.
신선 가공이 완료된 후 최종 어닐링 공정이 수행될 수 있다. 최종 어닐링 공정은 약 400 ℃ 내지 약 600 ℃의 온도에서 약 1 초 내지 약 20분 동안 수행될 수 있다.The final annealing process may be performed after the drawing is completed. The final annealing process may be carried out for about 1 second to about 20 minutes at a temperature of about 400 ° C to about 600 ° C.
만일 상기 최종 어닐링 온도가 너무 낮으면 본딩 접합시에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 최종 어닐링 온도가 너무 높으면 결정립의 크기가 과도하게 커질 수 있고, 본딩 접합시 루프(loop)의 처짐과 같은 불량이 발생할 수 있어 바람직하지 않다.If the final annealing temperature is too low, the ductility and malleability required for bonding bonding may not be secured. On the contrary, if the final annealing temperature is too high, the grain size may be excessively large, and the loop of the bonding may be excessively large. It is not preferable because a defect such as sag can occur.
또한, 상기 최종 어닐링 시간이 너무 짧으면 가공에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 최종 어닐링 시간이 너무 길면 결정립의 크기가 과도하게 커질 수 있고 경제적으로 불리하여 바람직하지 않다.In addition, if the final annealing time is too short, ductility and malleability necessary for processing may not be secured. On the contrary, if the final annealing time is too long, the grain size may be excessively large and economically disadvantageous, which is not preferable.
위의 중간 어닐링 공정과 최종 어닐링 공정은, 예를 들면, 본딩 와이어를 노(furnace)에 적절한 속도로 통과시킴으로써 수행될 수 있다. 또한, 본딩 와이어를 노에 통과시키는 속도는 어닐링 시간과 노의 치수로부터 결정될 수 있다.The intermediate annealing process and the final annealing process above can be performed, for example, by passing the bonding wire through the furnace at a suitable speed. In addition, the speed of passing the bonding wire through the furnace can be determined from the annealing time and the dimensions of the furnace.
이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐 본 발명의 범위를 한정하고자 하는 것은 아니다. 실시예 및 비교예에서 하기와 같은 방법으로 물성을 평가하였다.Hereinafter, the structure and effects of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention and are not intended to limit the scope of the present invention. In Examples and Comparative Examples, physical properties were evaluated in the following manner.
[내산성][Acid resistance]
와이어 시료를 5% 염산 및 황산에 침지하여 시간 단위로 표면의 부식 정도를 외관 검사하였다. 1시간 이내에 표면 부식이 확인되면 ×, 1시간 이상의 내성이 확인되었지만 2시간 이내에 표면 부식이 확인되면 △, 2시간 이상의 내성이 확인되었지만 3시간 이내에 표면 부식이 확인되면 ○, 3시간 경과시까지 아무런 변화가 없으면 ◎로 평가하였다.Wire samples were immersed in 5% hydrochloric acid and sulfuric acid to visually inspect the degree of corrosion of the surface in units of time. If surface corrosion is confirmed within 1 hour, × 1 hour resistance is confirmed, but if surface corrosion is confirmed within 2 hours, △, resistance is confirmed for 2 hours or more. If there was no change, it evaluated as ().
[크레이터링(cratering)][Cratering]
제조된 본딩 와이어를 이용하여 K&S Maxum Ultra 장비에서 초음파 열압착 방식으로 볼본딩/스티치본딩 방식의 접합을 하였다. N2 가스 분위기에서 아크 방전에 의해 와이어 말단에 볼을 형성하여 실리콘 기판 상의 약 0.6 ㎛ 두께 알루미늄 패드에 퍼스트(first) 접합하고, 이를 연장하여 2 ㎛ Ag 또는 Pd 도금된 220 ℃ 리드 프레임에 웨지 접합을 하였다. Bonding of the ball bonding / stitch bonding method was performed by ultrasonic thermocompression method using K & S Maxum Ultra equipment using the manufactured bonding wire. A ball is formed at the end of the wire by arc discharge in an N 2 gas atmosphere to first bond to an approximately 0.6 μm thick aluminum pad on a silicon substrate, which is then extended to a wedge bond to a 2 μm Ag or Pd plated 220 ° C. lead frame. Was done.
동일한 본딩 와이어를 이용하여 6000개의 본딩 패드에 대하여 접합을 수행하였는데, 이와 같이 접합된 본딩 와이어에 대하여 알루미늄 패드를 알칼리 용액으로 녹여 제거한 후 알루미늄 패드가 존재하던 위치의 실리콘 기판이 손상되었는지 여부를 관찰하였다. 그 결과 실리콘 기판 상에 손상이나 크랙(crack)이 전혀 없으면 ◎, 손상 또는 크랙이 있는 곳이 3 곳 이하이면 ○, 손상 또는 크랙이 4곳 내지 10곳이면 △, 손상 또는 크랙이 10곳보다 많으면 ×로 평가하였다.Bonding was performed on 6000 bonding pads using the same bonding wire, and after the aluminum pad was dissolved with an alkaline solution to remove the bonded wire, the silicon substrate at the position where the aluminum pad was present was observed to be damaged. . As a result, if there is no damage or cracks on the silicon substrate at all, ◎ if there are no damages or cracks 3 or less, △ if there are 4 or 10 damages or cracks, △, if there are more than 10 damages or cracks It evaluated by x.
[SOB (stitch-on-bump) 본딩성][SOB (stitch-on-bump) bonding property]
패드 위에 형성된 범프볼에 동일한 본딩 와이어를 이용하여 스티치 본딩을 6000회 수행한 후 그 접합성을 평가하였다. 150 ℃에서 100 개의 본딩을 수행하여 0.1% 이상의 접합부에서 박리가 발생하면 ×, 0.1% 미만의 접합부에서 박리가 발생하면 △, 접합부에서 박리가 발생하지 않으면서 와이어의 변형 형상이 비대칭적으로 변형되면 ○, 박리가 발생하지 않으면서 와이어의 변형도 대칭적으로 변형되면 ◎로 평가하였다.After the stitch bonding was performed 6,000 times using the same bonding wire to the bump ball formed on the pad, the bondability was evaluated. When 100 bonds are carried out at 150 ° C. and peeling occurs at a joint of 0.1% or more, when peeling occurs at a joint below 0.1%, △, and when the deformation shape of the wire is asymmetrically deformed without peeling at the joint, (Circle) and the deformation | transformation of a wire was also symmetrically deformed, without peeling, and evaluated as (circle).
[볼 모양 균일성][Ball shape uniformity]
20 ㎛ 지름의 본딩 와이어의 선단을 42 ㎛ 지름의 본딩 볼이 되도록 하여 패드 상에 접합한 후 가로축 방향과 세로축 방향의 길이의 비율을 측정하여 1에 가까운지 여부, 본딩 와이어가 볼의 중심에 위치하는지 여부, 가장자리가 진원(眞圓) 형태로 매끄러운지, 또는 꽃잎 모양의 굴곡이 있는지 여부를 관찰하였다.Bond the tip of the 20 μm diameter bonding wire to a 42 μm diameter bonding ball on the pad and measure the ratio of the length in the horizontal and vertical directions to determine whether the bonding wire is close to 1, and the bonding wire is located at the center of the ball. Whether the edges were smooth in the form of a round or there were petal-shaped bends.
본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.99 이상이고, 본딩 와이어가 볼의 중심에 위치하며, 가장자리가 꽃잎 모양 없이 진원으로 판정되면 ◎, 본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.96 이상 0.99 미만이고 본딩 와이어가 볼의 중심에 위치하며, 가장자리가 꽃잎 모양 없이 진원으로 판정되면 ○, 본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.9 이상으로서 가장자리가 꽃잎 모양이 없으며 위의 ◎나 ○에 해당하지 않으면 △, 그 외의 경우는 ×로 평가하였다.When the ratio of the length of the bonded ball in the transverse direction and the longitudinal direction is not less than 0.99, the bonding wire is located at the center of the ball, and the edge is determined to be round without a petal shape, the length of the bonded ball in the horizontal and vertical directions When the ratio of is 0.96 or more and less than 0.99 and the bonding wire is located at the center of the ball, and the edge is determined to be round without petal shape, the ratio of the length of the bonded ball in the horizontal axis direction and the vertical axis direction is 0.9 or more, and the edge is shaped like a petal. There was no, and if it did not correspond to ◎ or ○ above, △, otherwise, evaluated as ×.
[열충격 신뢰성]Thermal Shock Reliability
열충격 신뢰성은 시판되는 TCT (thermal cycling test) 장비를 이용하였다. 와이어 본딩 후 에폭시 몰딩 수지(EMC, epoxy molding compound)로 봉지하고, 가혹 조건(-45℃/30분 내지 +125℃/30분)으로 열충격을 반복하여 가한 후 본딩 와이어가 수축/팽창에 의해 끊어지는 와이어 수를 측정하였다. 6000개의 와이어 중 끊어지는 와이어가 전혀 없으면 ◎, 끊어지는 와이어가 1개 이상 5개 미만이면 ○, 끊어지는 와이어가 5개 이상 20개 미만이면 △, 끊어지는 와이어가 20개 이상이면 ×로 평가하였다.Thermal shock reliability was used commercially available thermal cycling test (TCT) equipment. After wire bonding, it is sealed with epoxy molding resin (EMC), and thermal shock is repeatedly applied under severe conditions (-45 ° C / 30 minutes to + 125 ° C / 30 minutes), and then the bonding wire is broken by shrinkage / expansion. The number of losing wires was measured. ◎ if there are no wires broken out of 6000 wires, ○ if there are more than 1 or less than 5 wires broken, △ if 5 or more and less than 20 wires are broken, △ .
[고습 신뢰성]High Humidity Reliability
와이어 본딩 후 에폭시 몰딩 수지로 밀봉한 패키지를 121℃, 85% 습도 하에 방치하여 접합면에서의 단락이 발생하는 시간을 측정하여 고습 신뢰성을 평가하였다. 접합면에서의 단락이 발생하는 시간이 500 시간 이상이면 ◎, 396 시간 이상 500 시간 미만이면 ○, 198 시간 이상 396 시간 미만이면 △, 198 시간 미만이면 ×로 평가하였다.After the wire bonding, the package sealed with epoxy molding resin was left under 121 degreeC and 85% humidity, the time which the short circuit generate | occur | produces in the joint surface was measured, and the high humidity reliability was evaluated. When the time which a short circuit generate | occur | produces in a joining surface is 500 hours or more, (circle), 396 hours or more and less than 500 hours, it evaluated as (circle), 198 hours or more and less than 396 hours, (triangle | delta), and less than 198 hours.
[N2 가스 하에서의 본딩성][Bonding property under N 2 gas]
수소가 포함되지 않은 N2 가스 하에서 본딩을 실시하여 1시간 동안 볼 모양 불균일에 의해 장비가 정지되는 횟수로 평가하였다. 1 시간 동안 볼 모양 불균일에 의하여 정지되는 횟수가 0이면 ◎, 1회 내지 3회이면 ○, 4회 내지 10회이면 △, 10회 이상이면 ×로 평가하였다.Bonding was carried out under N 2 gas not containing hydrogen and evaluated for the number of times the equipment was stopped by ball-shaped nonuniformity for 1 hour. When the number of times stopped by ball-shaped nonuniformity for 1 hour was 0, it was evaluated as ◎, 1 to 3 times, ○, 4 to 10 times, △, and 10 times or more.
우선 하기 표 1과 같은 조성을 갖는 잉곳을 제조한 후 해당 감면율에 따라 20 ㎛ 직경이 될 때까지 신선하고, 500 ℃에서 1초간 최종 어닐링함으로써 본딩 와이어를 제조하였다. 제조된 본딩 와이어에 대하여 평균 결정립 크기를 측정하고 위의 각 항목을 시험한 후 그 결과를 표 1과 표 2에 각각 정리하였다.First, after preparing an ingot having a composition as shown in Table 1, it was fresh until the diameter 20㎛ according to the reduction rate, and the bonding wire was prepared by final annealing for 1 second at 500 ℃. The average grain size of the prepared bonding wire was measured, and the results of the above tests were summarized in Table 1 and Table 2, respectively.
표 1
Figure PCTKR2014000038-appb-T000001
Table 1
Figure PCTKR2014000038-appb-T000001
표 2
Figure PCTKR2014000038-appb-T000002
TABLE 2
Figure PCTKR2014000038-appb-T000002
위의 표 1과 표 2에서 보는 바와 같이 팔라듐(Pd)과 금(Au)의 조성이 각각 0.5 내지 4 중량% 이내, 2 내지 8 중량% 이내에 있을 때에는 내산성, 패드 크레이터링, 볼모양 균일도 등 다수 항목에서 우수한 성질을 보이지만, 이들 성분 중 어느 한 성분이라도 결여되어 있거나 상기 범위를 벗어나면 이들 항목에 대한 평가가 나빠지는 것을 알 수 있다. 또한, 팔라듐과 금의 조성이 위의 범위 내에 있더라도 a/b의 비율이 0.3 내지 3을 벗어나면 열충격 강도나, 패드 크레이터링과 관련된 항목에 대한 평가가 나빠지는 것을 알 수 있었다.As shown in Table 1 and Table 2 above, when the composition of palladium (Pd) and gold (Au) is within 0.5 to 4% by weight and within 2 to 8% by weight, respectively, many of acid resistance, pad cratering, ball shape uniformity, etc. Although it shows excellent properties in the items, it can be seen that the evaluation of these items worsens if any of these components is missing or out of the above range. In addition, even if the composition of palladium and gold is in the above range, when the ratio of a / b is outside the range of 0.3 to 3, it was found that the evaluation of the thermal shock strength and the items related to the pad cratering worsened.
제 1 물성조절원소의 영향을 알아보기 위하여 하기 표 3과 같은 조성을 갖는 잉곳을 제조한 후 해당 감면율에 따라 20 ㎛ 직경이 될 때까지 신선하고, 500 ℃에서 1초간 최종 어닐링함으로써 본딩 와이어를 제조하였다. 제조된 본딩 와이어에 대하여 평균 결정립 크기를 측정하고 위의 각 항목을 시험한 후 그 결과를 표 3과 표 4에 각각 정리하였다.In order to determine the influence of the first physical property control element was prepared by ingot having a composition as shown in Table 3 and then drawn to 20 ㎛ diameter according to the reduction ratio, and the final wire was annealed at 500 ℃ for 1 second to prepare a bonding wire. . The average grain size of the prepared bonding wire was measured and the results of the above tests were summarized in Table 3 and Table 4, respectively.
표 3
Figure PCTKR2014000038-appb-T000003
TABLE 3
Figure PCTKR2014000038-appb-T000003
표 4
Figure PCTKR2014000038-appb-T000004
Table 4
Figure PCTKR2014000038-appb-T000004
위의 표 3 및 표 4에서 보는 바와 같이 팔라듐(Pd)과 금(Au)의 조성이 각각 0.5 내지 4 중량% 이내, 2 내지 8 중량% 이내에 있고 제 1 물성 조절 원소가 30 중량ppm 내지 100 중량ppm의 범위로 첨가되더라도, 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 0.3 내지 3의 범위 내에 존재하지 않으면 패드 크레이터링, 스티치 접합성, 열충격 강도 등의 항목에서 열등한 물성을 가짐을 알 수 있었다.As shown in Table 3 and Table 4, the composition of palladium (Pd) and gold (Au) is within 0.5 to 4% by weight, within 2 to 8% by weight, respectively, and the first physical property control element is 30 to 100 ppm by weight Even if added in the range of ppm, if the ratio (a / b) of the average grain size (a) of the outer part to the average grain size (b) of the center part is not present in the range of 0.3 to 3, pad cratering, stitch bonding, thermal shock It was found to have inferior physical properties in terms of strength and the like.
또한, 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 0.3 내지 3의 범위 내에 존재하면서 제 1 물성 조절 원소가 30 중량ppm 내지 100 중량ppm의 범위로 첨가되면 더욱 우수한 물성을 가질 수 있음을 표 1 내지 표 4의 결과로부터 확인할 수 있었다.In addition, while the ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the center portion is within the range of 0.3 to 3, the first physical property control element is 30 ppm by weight to 100 ppm by weight. It could be confirmed from the results of Tables 1 to 4 that it can have more excellent physical properties if added in the range.
다음으로, 제 2 물성조절원소의 영향을 알아보기 위하여 하기 표 5와 같은 조성을 갖는 잉곳을 제조한 후 해당 감면율에 따라 20 ㎛ 직경이 될 때까지 신선하고, 500 ℃에서 1초간 최종 어닐링함으로써 본딩 와이어를 제조하였다. 제조된 본딩 와이어에 대하여 평균 결정립 크기를 측정하고 위의 각 항목을 시험한 후 그 결과를 표 5와 표 6에 각각 정리하였다.Next, in order to determine the effect of the second physical property control element to prepare an ingot having a composition as shown in Table 5 and then to the 20 ㎛ diameter in accordance with the corresponding reduction ratio, and to the bonding wire by final annealing for 1 second at 500 ℃ Was prepared. The average grain size of the prepared bonding wire was measured and the results of the above tests were summarized in Table 5 and Table 6, respectively.
표 5
Figure PCTKR2014000038-appb-T000005
Table 5
Figure PCTKR2014000038-appb-T000005
표 6
Figure PCTKR2014000038-appb-T000006
Table 6
Figure PCTKR2014000038-appb-T000006
위의 표 5 및 표 6에서 보는 바와 같이 팔라듐(Pd)과 금(Au)의 조성이 각각 0.5 내지 4 중량% 이내, 2 내지 8 중량% 이내에 있고 제 2 물성 조절 원소가 0.01 중량% 내지 3 중량%의 범위로 첨가되더라도, 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 0.3 내지 3의 범위 내에 존재하지 않으면 패드 크레이터링, 스티치 접합성, 열충격 강도 등의 항목에서 열등한 물성을 가짐을 알 수 있었다.As shown in Table 5 and Table 6, the composition of palladium (Pd) and gold (Au) is respectively within 0.5 to 4% by weight, within 2 to 8% by weight and 0.01 to 3% by weight of the second physical property control element. Even if added in the range of%, if the ratio (a / b) of the average grain size (a) of the outer part to the average grain size (b) of the center part is not present in the range of 0.3 to 3, pad cratering, stitch bonding, thermal shock It was found to have inferior physical properties in terms of strength and the like.
또한, 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 0.3 내지 3의 범위 내에 존재하면서 제 2 물성 조절 원소가 0.01 중량% 내지 3 중량%의 범위로 첨가되면 더욱 우수한 물성을 가질 수 있음을 표 1 내지 표 4의 결과로부터 확인할 수 있었다.In addition, while the ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the center portion is within the range of 0.3 to 3, the second physical property adjusting element is 0.01 wt% to 3 wt% It could be confirmed from the results of Tables 1 to 4 that it can have more excellent physical properties if added in the range.
이상에서 살펴본 바와 같이 본 발명의 바람직한 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although described in detail with respect to preferred embodiments of the present invention as described above, those of ordinary skill in the art, without departing from the spirit and scope of the invention as defined in the appended claims Various modifications may be made to the invention. Therefore, changes in the future embodiments of the present invention will not be able to escape the technology of the present invention.
본 발명은 반도체 산업에 유용하게 이용될 수 있다.The present invention can be usefully used in the semiconductor industry.

Claims (8)

  1. 은(Ag)을 주성분으로 하는 은 합금 본딩 와이어로서,A silver alloy bonding wire containing silver (Ag) as a main component,
    팔라듐(Pd) 0.5 내지 4 중량% 및 금(Au) 2 내지 8 중량% 포함하고,0.5 to 4 wt% of palladium (Pd) and 2 to 8 wt% of gold (Au),
    상기 본딩 와이어의 길이 방향에 대한 수직 단면에 대하여 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 0.3 내지 3인 것을 특징으로 하는 은 합금 본딩 와이어.A silver alloy bonding wire, characterized in that the ratio (a / b) of the average grain size (a) of the outer portion to the average grain size (b) of the center with respect to the vertical cross section with respect to the longitudinal direction of the bonding wire is 0.3 to 3. .
  2. 제 1 항에 있어서,The method of claim 1,
    상기 중심부의 평균 결정립 크기(b)가 상기 외측부의 평균 결정립 크기(a)보다 큰 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire, characterized in that the average grain size (b) of the center portion is larger than the average grain size (a) of the outer portion.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 중심부의 평균 결정립 크기(b)가 2㎛ 이하인 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire, characterized in that the average grain size (b) of the center portion is 2㎛ or less.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 중심부의 평균 결정립 크기(b)에 대한 외측부의 평균 결정립 크기(a)의 비율(a/b)이 0.3 내지 1인 것을 특징으로 하는 은 합금 본딩 와이어.The ratio (a / b) of the average grain size (a) of the outer side to the average grain size (b) of the center portion is 0.3 to 1, characterized in that the silver alloy bonding wire.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    제 1 물성조절원소로서 베릴륨(Be), 칼슘(Ca), 란타넘(La), 이트륨(Y), 및 세륨(Ce)으로 구성되는 군으로부터 선택되는 1종 이상을 은 합금 본딩 와이어 전체에 대하여, 총계로 30 내지 100 중량ppm 포함하는 것을 특징으로 하는 은 합금 본딩 와이어.At least one member selected from the group consisting of beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), and cerium (Ce) as the first physical property control element, with respect to the entire silver alloy bonding wire Silver alloy bonding wire comprising a total of 30 to 100 ppm by weight.
  6. 제 1 항에 있어서,The method of claim 1,
    제 2 물성조절원소로서 백금(Pt) 및 구리(Cu)로 구성되는 군으로부터 선택되는 1종 이상을 은 합금 본딩 와이어 전체에 대하여, 총계로 0.01 내지 3 중량% 포함하는 것을 특징으로 하는 은 합금 본딩 와이어.Silver alloy bonding, characterized in that it comprises 0.01 to 3% by weight of the total of the silver alloy bonding wire, at least one selected from the group consisting of platinum (Pt) and copper (Cu) as the second physical property control element. wire.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 은 합금 본딩 와이어가 7% 내지 10%의 단면감소율로 신선되어 제조되는 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire is characterized in that the wire is prepared by drawing a reduction ratio of 7% to 10%.
  8. 은(Ag)을 주성분으로 하는 은 합금 본딩 와이어로서,A silver alloy bonding wire containing silver (Ag) as a main component,
    팔라듐(Pd) 0.5 내지 4 중량% 및 금(Au) 2 내지 8 중량% 포함하고,0.5 to 4 wt% of palladium (Pd) and 2 to 8 wt% of gold (Au),
    상기 은 합금 본딩 와이어가 7% 내지 10%의 단면감소율로 신선되어 제조되는 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire is characterized in that the wire is prepared by drawing a reduction ratio of 7% to 10%.
PCT/KR2014/000038 2013-01-04 2014-01-03 Silver alloy bonding wire WO2014107040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480011968.2A CN105122435A (en) 2013-01-04 2014-01-03 Silver alloy bonding wire
PH12015501521A PH12015501521A1 (en) 2013-01-04 2015-07-03 Silver alloy bonding wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0001243 2013-01-04
KR1020130001243A KR101416778B1 (en) 2013-01-04 2013-01-04 Silver alloy bonding wire

Publications (1)

Publication Number Publication Date
WO2014107040A1 true WO2014107040A1 (en) 2014-07-10

Family

ID=51062322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000038 WO2014107040A1 (en) 2013-01-04 2014-01-03 Silver alloy bonding wire

Country Status (4)

Country Link
KR (1) KR101416778B1 (en)
CN (1) CN105122435A (en)
PH (1) PH12015501521A1 (en)
WO (1) WO2014107040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708919A (en) * 2015-09-29 2018-02-16 贺利氏材料新加坡私人有限公司 Alloying silver wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195609B (en) * 2014-07-10 2021-03-23 日铁化学材料株式会社 Bonding wire for semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100023893A (en) * 2008-01-25 2010-03-04 신닛테츠 마테리알즈 가부시키가이샤 Bonding wire for semiconductor device
US20100239456A1 (en) * 2009-03-23 2010-09-23 Lee Jun-Der Composite alloy bonding wire and manufacturing method thereof
US20100239455A1 (en) * 2009-03-23 2010-09-23 Lee Jun-Der Composite alloy bonding wire and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001700B1 (en) * 2007-03-30 2010-12-15 엠케이전자 주식회사 Ag-base alloy for semiconductor package
JP5616165B2 (en) * 2010-08-24 2014-10-29 タツタ電線株式会社 Silver bonding wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100023893A (en) * 2008-01-25 2010-03-04 신닛테츠 마테리알즈 가부시키가이샤 Bonding wire for semiconductor device
US20100239456A1 (en) * 2009-03-23 2010-09-23 Lee Jun-Der Composite alloy bonding wire and manufacturing method thereof
US20100239455A1 (en) * 2009-03-23 2010-09-23 Lee Jun-Der Composite alloy bonding wire and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708919A (en) * 2015-09-29 2018-02-16 贺利氏材料新加坡私人有限公司 Alloying silver wire
CN107708919B (en) * 2015-09-29 2020-02-07 贺利氏材料新加坡私人有限公司 Alloyed silver wire

Also Published As

Publication number Publication date
PH12015501521A1 (en) 2015-09-21
KR101416778B1 (en) 2014-07-09
CN105122435A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2014129745A1 (en) Silver alloy bonding wire
US20120263624A1 (en) Ag-Au-Pd TERNARY ALLOY BONDING WIRE
US9972595B2 (en) Bonding wire for high-speed signal line
KR101137751B1 (en) A COVERED Cu WIRE FOR BALL BONDING
KR101087527B1 (en) Gold alloy wire for use as bonding wire exhibiting high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
WO2012098771A1 (en) Wire for ball bonding
WO2015037876A1 (en) Silver alloy boding wire and semiconductor device using same
WO2015034287A1 (en) Silver alloy bonding wire and method for manufacturing same
WO2015152191A1 (en) Bonding wire for use with semiconductor devices and method for manufacturing said bonding wire
JP7126321B2 (en) aluminum bonding wire
WO2014107040A1 (en) Silver alloy bonding wire
US20170256517A1 (en) Silver bonding wire and method of manufacturing the same
JP2005268771A (en) Gold bonding wire for semiconductor device and its method of connection
KR101087526B1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property, high resin flow resistance and low specific resistance
US7857189B2 (en) Gold alloy wire for bonding wire having high initial bondability, high bonding reliability, high roundness of compression ball, high straightness, and high resin flowability resistance
JPH07249649A (en) Resin coated insulation bonding wire
CN104087780B (en) A kind of semiconductor device bonded copper B alloy wire and manufacture method thereof
JP3612179B2 (en) Gold-silver alloy fine wire for semiconductor devices
JPH10326803A (en) Gold and silver alloy thin wire for semiconductor element
JP3810200B2 (en) Gold alloy wire for wire bonding
WO2015152197A1 (en) Bonding wire for use with semiconductor devices and method for manufacturing said bonding wire
JP7142761B1 (en) Bonding wire and semiconductor device
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
JP2013118259A (en) Gold-platinum-palladium alloy bonding wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14735257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14735257

Country of ref document: EP

Kind code of ref document: A1