JP5616165B2 - Silver bonding wire - Google Patents

Silver bonding wire Download PDF

Info

Publication number
JP5616165B2
JP5616165B2 JP2010187534A JP2010187534A JP5616165B2 JP 5616165 B2 JP5616165 B2 JP 5616165B2 JP 2010187534 A JP2010187534 A JP 2010187534A JP 2010187534 A JP2010187534 A JP 2010187534A JP 5616165 B2 JP5616165 B2 JP 5616165B2
Authority
JP
Japan
Prior art keywords
wire
ball
ppm
bonding
bonding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010187534A
Other languages
Japanese (ja)
Other versions
JP2012049198A (en
Inventor
亮 富樫
亮 富樫
俊幸 山方
俊幸 山方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2010187534A priority Critical patent/JP5616165B2/en
Publication of JP2012049198A publication Critical patent/JP2012049198A/en
Application granted granted Critical
Publication of JP5616165B2 publication Critical patent/JP5616165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

本発明は、半導体素子上の電極と外部電極とを接続するために用いる銀(Ag)ボンディングワイヤまたは半導体素子上に設けられたスタッドバンプとリードとの結線に用いる銀バンプワイヤに関するものである。   The present invention relates to a silver (Ag) bonding wire used for connecting an electrode on a semiconductor element and an external electrode or a silver bump wire used for connecting a stud bump and a lead provided on a semiconductor element.

一般に半導体素子上の電極と外部電極との結線に用いられるボンディングワイヤの直径は15〜75μmと非常に細いため、導電性が良く、加工性に優れた金属であることが必要である。また、化学的な安定性や大気中での取り扱いやすさから、従来は材料としては金(Au)が用いられていた。
しかし、Auボンディングワイヤは重量の99%から99.99%がAuであるため非常に高価であることから、材料として安価な材料に替えたいという産業界からの強い要請があった。
In general, since the diameter of a bonding wire used for connecting an electrode on a semiconductor element and an external electrode is as very small as 15 to 75 μm, it is necessary to be a metal having good conductivity and excellent workability. Conventionally, gold (Au) has been used as a material because of its chemical stability and ease of handling in the atmosphere.
However, since the Au bonding wire is very expensive because 99% to 99.99% of the weight is Au, there has been a strong demand from the industry to replace the material with an inexpensive material.

こうした要請に応えるべく近年銅(Cu)ボンディングワイヤが開発され、太線が必要なパワー系ICやトランジスタなどのディスクリートパッケージで使用されている。しかしながらCuは酸化しやすい金属であるため、Cuボンディングワイヤは長期間の保管によって表面が酸化しないように窒素ガス封止した密閉袋で包装したり、使用中にワイヤ表面が酸化して接合性が悪化したりしないように、酸化が始まる前に使い切るべく1巻当たりの巻長さを500m程度に短く設定したり、作業性や接合性がAuワイヤに比べて劣るなどの問題がある。そうした問題点の改善を目的に銅芯線表面を異種金属で被覆した金属被覆Cuワイヤが提案されてきた。
例えば、銅芯線の表面に直接あるいは中間層を介してパラジウム(Pd)又はパラジウム合金を被覆したり、銅芯線の表面に金を被覆したり、あるいは銅芯線の表面に白金を被覆したボンディングワイヤが知られている。
In response to these demands, copper (Cu) bonding wires have recently been developed and used in discrete packages such as power ICs and transistors that require thick wires. However, since Cu is a metal that easily oxidizes, Cu bonding wires are packaged in a sealed bag sealed with nitrogen gas so that the surface does not oxidize due to long-term storage, or the wire surface is oxidized during use to provide good bonding properties. In order not to deteriorate, there is a problem that the winding length per winding is set as short as about 500 m to be used up before oxidation starts, and workability and bonding properties are inferior to those of Au wires. For the purpose of improving such problems, a metal-coated Cu wire in which the surface of a copper core wire is coated with a different metal has been proposed.
For example, a bonding wire in which the surface of a copper core wire is coated with palladium (Pd) or a palladium alloy directly or through an intermediate layer, the surface of the copper core wire is coated with gold, or the surface of the copper core wire is coated with platinum. Are known.

Pdで表面を被覆した金属被覆Cuワイヤは、長期保管や巻長さの長尺化については被覆のないベアCuの問題を解決したが、一方で酸化を防ぐべく被覆したPdが溶融ボール形成時Cuボール表面へ高濃度で溶解し、凝固後は表面近傍にPdの高濃度の合金層を形成するため、表面硬度がベアCuの場合よりも高くなり、接合性が悪化するという問題が発生した。   The metal-coated Cu wire whose surface is coated with Pd has solved the problem of uncovered bare Cu for long-term storage and lengthening of the winding length, while Pd coated to prevent oxidation is used when molten balls are formed. Since it melts at a high concentration on the surface of the Cu ball and forms an alloy layer with a high concentration of Pd in the vicinity of the surface after solidification, the surface hardness becomes higher than that of bare Cu, resulting in a problem that the bondability deteriorates. .

さらに、ボールボンディング時のボールの塑性変形において、いわゆる固溶硬化によって加工硬化による硬度上昇がベアCuのボールに比べて著しく、ボールの被着体であるアルミパッドの構造がLow−k材(炭素や珪素を主成分とする二酸化珪素(SiO)よりも低誘電率の絶縁膜)の多層膜構造となっている場合には、ボールボンディング中にLow−k材が破壊される、いわゆるパッドダメージという問題も発生した。 Further, in plastic deformation of the ball during ball bonding, the hardness increase due to work hardening due to so-called solid solution hardening is significant compared to the bare Cu ball, and the structure of the aluminum pad that is the adherend of the ball is a low-k material (carbon In the case of a multilayer film structure of silicon dioxide (SiO 2 ) whose main component is silicon and silicon dioxide (SiO 2 ), the so-called pad damage in which the low-k material is destroyed during ball bonding. The problem also occurred.

このため、本発明者らは、かかる弊害を是正するために鋭意検討を重ねた結果、こうしたパッドの損傷が発生する理由は、純度99.99%Cuのボール表面硬度が59Hvと純度99.99%Auの41Hvよりも硬い上に、ボール表面に固溶する原子はその半径がCuの135pmよりも大きい140pmのPdであるため、Cu格子を圧縮応力で歪ませるため、ボールボンディングを高温で行ってもそれが塑性変形時の転位の移動障壁になるためではないかと考えた。   For this reason, as a result of intensive investigations to remedy such adverse effects, the present inventors have found that the reason why such pad damage occurs is that the ball surface hardness of purity 99.99% Cu is 59 Hv and purity is 99.99. In addition to being harder than 41Hv of% Au, the atoms that dissolve in the ball surface are 140 pm Pd whose radius is larger than 135 pm of Cu, so that the Cu lattice is distorted by compressive stress. However, I thought that it might be a dislocation movement barrier during plastic deformation.

Auと同等以上の電気伝導性を有し、Cuよりも硬度が低い元素としてはいくつかあるが、耐酸化性を考慮すると銀(Ag)があげられる。電気比抵抗値についてはAuの2.2μΩcmに対し、純度99.99%Agは1.6μΩcmであり、Cuの1.7μΩcmと同等に電気伝導性は高く、ボール表面硬度についてはAuの41Hvに対し、Agは44Hvであり、Cuの59Hvよりも低い。   There are several elements that have an electrical conductivity equal to or higher than that of Au and have a hardness lower than that of Cu, but silver (Ag) can be cited in view of oxidation resistance. The electrical resistivity is 2.2 μΩcm for Au, while the purity is 99.99% Ag is 1.6 μΩcm, the electrical conductivity is as high as 1.7 μΩcm for Cu, and the ball surface hardness is 41 Hv for Au. On the other hand, Ag is 44 Hv, which is lower than 59 Hv of Cu.

一方、Agをボンディングワイヤとして使用するアイデアは1975年頃からあったが(例えば、特許文献1参照。)、空気中に長期間放置されると硫化して表面が変色し、ボンディング時の接合性が不安定になるという理由から、表面の変色を抑制する目的でAuを被覆する方法が提案され、例えば、Ag芯線の表面に重量比で2.5〜35%のAuを被覆した直径20〜80μmのボンディングワイヤ(例えば、特許文献2参照。)や、99.9%以上の純銀にAuを0.03〜10w/o添加したAg−Au合金芯線の表面に、99.99%以上の純金を被覆したボンディングワイヤが提案されている(例えば、特許文献3参照。)。さらにAg芯線の表面を白金属の金属で被覆する方法も発案されている(例えば、特許文献4参照。)。   On the other hand, the idea of using Ag as a bonding wire has been around since 1975 (see, for example, Patent Document 1), but when left in the air for a long time, it sulfides and discolors the surface, and the bonding property during bonding is improved. Because of the instability, a method of coating Au with the purpose of suppressing surface discoloration has been proposed. For example, the surface of an Ag core wire is coated with 2.5 to 35% by weight of Au in a diameter of 20 to 80 μm. 99.99% or more of pure gold on the surface of a bonding wire (for example, see Patent Document 2) or an Ag-Au alloy core wire in which 0.03 to 10 w / o of Au is added to 99.9% or more of pure silver. A coated bonding wire has been proposed (see, for example, Patent Document 3). Furthermore, a method of coating the surface of the Ag core wire with a white metal has been proposed (for example, see Patent Document 4).

ボンディングワイヤの先端に溶融ボールを形成する方法としては、大きく水素トーチを使う方法と電気トーチを使う方法に分けられるが、現在ではボールサイズを正確にコントロールするために、電流と時間を調整して溶融エネルギーを自由に設定できる電気トーチが主流となっている。また、ボールのサイズは近年の半導体の高集積化によって直径は50μm以下の非常に小さいボールが必要になっており、一般的には高電流値での短時間放電が主流となっている。   The method of forming a molten ball at the tip of a bonding wire can be broadly divided into a method using a hydrogen torch and a method using an electric torch. Currently, in order to accurately control the ball size, the current and time are adjusted. Electric torches that can freely set the melting energy have become mainstream. In addition, with the recent high integration of semiconductors, the size of the ball requires a very small ball having a diameter of 50 μm or less.

こうした条件下でワイヤ表面をAuやPtで被覆した金属被覆Agワイヤの先端にボールを形成しようとすると、Agワイヤよりも表面の被覆金属の融点の方が高いため、Pd被覆Cu線の場合と同様にAgのボール表面近傍にAuやPtが濃縮して固溶し、その後のボールボンディング時にボールの加工硬化が大きくなり、Low−k材でのパッドダメージが回避できないと言う問題が発生した。パッドダメージの発生は硫化を防ぐための被覆金属の厚さが厚ければ厚いほど高くなると言うトレードオフの関係も見られた。ボール表面硬度がパッドダメージを発生させやすくなる60Hvを超えるためである。   Under these conditions, when a ball is formed on the tip of a metal-coated Ag wire whose surface is coated with Au or Pt, the melting point of the surface-coated metal is higher than that of the Ag wire. Similarly, Au and Pt are concentrated and dissolved in the vicinity of the Ag ball surface, and the ball is hardened and hardened during the subsequent ball bonding, and pad damage with the low-k material cannot be avoided. There was also a trade-off relationship that the occurrence of pad damage increased with increasing coating metal thickness to prevent sulfidation. This is because the ball surface hardness exceeds 60 Hv at which pad damage is likely to occur.

ボンディングワイヤの低価格化対策として、貴金属を高濃度に添加したAg合金ワイヤが提案されている(例えば、特許文献5参照。)。例えば、AgにAuを40質量%添加すると、大気中でも真球状のボールを形成することは可能であったが、電気比抵抗値が7.7μΩcmとなって、市場が要求する純度99%のAuワイヤの3.1μΩcmを大きく超えてしまうことや、ボールボンディング時の加工硬化が大きく、あいかわらずLow−k材でのパッドダメージが回避できないと言う問題を解消できなかった。   As a measure for reducing the price of bonding wires, an Ag alloy wire to which a precious metal is added at a high concentration has been proposed (see, for example, Patent Document 5). For example, when 40% by mass of Au was added to Ag, it was possible to form a spherical ball in the atmosphere, but the electrical resistivity value was 7.7 μΩcm, and the purity required by the market was 99% Au. The problem that the wire greatly exceeds 3.1 μΩcm and the work hardening at the time of ball bonding is large, and the pad damage with the low-k material cannot be avoided.

実開昭52−33264号公報Japanese Utility Model Publication No. 52-33264 特開昭51−85669号公報JP 51-85669 A 特開平1−110741号公報Japanese Patent Laid-Open No. 1-110741 特開昭56−26459号公報JP 56-26459 A 特開平11−288962号公報JP-A-11-288896

大気中のボール形成時には貴金属を多量に含有させなければ真球状ボールは得られないものの、5%水素95%窒素の混合雰囲気中であれば純Agであっても真球となる。ただし、水素ガスを使用するためにはワイヤボンダーの改造のみならず、水素を使用する部屋の安全面での対策や、水素ガスを保管する為の対策などの設備投資が必要となる。
一方、使用するガスが窒素のみとなれば、多くの半導体組立工場では既に窒素ガスを使用しているため、必要な投資はワイヤボンダーへのガスノズルの設置のみに抑えることが可能となる。窒素ガスのみで真球状の酸化の無い軟らかいボールが形成でき、電気比抵抗値が3.1μΩcm以下のワイヤであって、その表面に絶縁被膜を形成することができれば、前述の問題はすべて解決されることとなる。
When a ball is formed in the atmosphere, a true spherical ball cannot be obtained unless a large amount of noble metal is contained. However, even if pure Ag is used in a mixed atmosphere of 5% hydrogen and 95% nitrogen, it becomes a true sphere. However, in order to use hydrogen gas, it is necessary not only to modify the wire bonder, but also to make capital investments such as measures for safety in rooms where hydrogen is used and measures for storing hydrogen gas.
On the other hand, if the only gas used is nitrogen, since many semiconductor assembly plants already use nitrogen gas, the necessary investment can be limited to the installation of the gas nozzle on the wire bonder. All the above problems can be solved if a soft ball with no spherical oxidation can be formed only with nitrogen gas, and a wire having an electrical resistivity of 3.1 μΩcm or less and an insulating film can be formed on the surface thereof. The Rukoto.

また、純度99.99%以上のAg線の先端を大気中のプラズマ放電によってボール形成しようとすると、高温となったAg線表面が黒く変色し(以後黒色化と呼ぶ)、ボールが鏃(やじり)状となり、パッドダメージが発生しやすくなる。
これを防止する為、窒素ガス中でのボール形成が試されたが、大気中と同様にワイヤ表面で黒色化が起り、大気中に比べてボールの丸みは増すが、ボール底部の尖りは解消されなかった。
一方、5%水素95%窒素の混合ガス中では、ワイヤ表面では黒色化は起らず、真球状の光沢を有するボールが形成された。
In addition, when an attempt is made to form a ball at the tip of an Ag wire having a purity of 99.99% or more by plasma discharge in the atmosphere, the surface of the Ag wire that has become hot changes to black (hereinafter referred to as blackening), and the ball becomes wrinkled ) And pad damage is likely to occur.
In order to prevent this, ball formation in nitrogen gas was tried, but blacking occurred on the wire surface as in the air, and the ball roundness increased compared to the air, but the sharpness at the bottom of the ball was eliminated. Was not.
On the other hand, in a mixed gas of 5% hydrogen and 95% nitrogen, no blackening occurred on the wire surface, and a ball having a true spherical gloss was formed.

そこで本発明が解決しようとする課題は、電気伝導性の高いAgの電気比抵抗をさほど低下させることなく、またAgの表面を化学的に安定化させ、窒素ガス中でワイヤ表面が黒色化せず、ボール底部に尖りの無い真球状のボールを形成でき、かつ時間の経過と共に軟化して伸び易くなる時効軟化の起らない、Agボンディングワイヤを提供することにある。   Therefore, the problem to be solved by the present invention is that the electrical resistivity of Ag having high electrical conductivity is not lowered so much, the surface of Ag is chemically stabilized, and the wire surface is blackened in nitrogen gas. It is another object of the present invention to provide an Ag bonding wire that can form a true spherical ball with no sharp point at the bottom of the ball and that does not soften with time and does not age soften easily.

上記課題を解決するために、本発明に係るAgボンディングワイヤの一つは、(金)Auを10000質量ppm以上55000質量ppm以下、ビスマス(Bi)を1質量ppm以上100質量ppm以下含有し、残部が不可避不純物を含む銀(Ag)からなるボンディングワイヤとした。
もう一つの本発明に係るAgボンディングワイヤは、(金)Auを10000質量ppm以上55000質量ppm以下、ビスマス(Bi)を1質量ppm以上100質量ppm以下含有し、さらにパラジウム(Pd)を20000質量ppm以下含有し、残部が不可避不純物を含む銀(Ag)からなるボンディングワイヤとした。
本発明においては、前記ボンディングワイヤがバンプワイヤであっても良い。
In order to solve the above problems, one of the Ag bonding wires according to the present invention contains (gold) Au in a range of 10,000 ppm to 55000 ppm and bismuth (Bi) in a range of 1 ppm to 100 ppm. The remainder was a bonding wire made of silver (Ag) containing inevitable impurities.
Another Ag bonding wire according to the present invention contains (gold) Au in a range from 10,000 to 55000 ppm by mass, bismuth (Bi) in a range from 1 to 100 ppm by mass, and further contains 20000 ppm of palladium (Pd). It was set as the bonding wire which consists of silver (Ag) which contains below ppm and the remainder contains an unavoidable impurity.
In the present invention, the bonding wire may be a bump wire.

本発明に係るAgボンディングワイヤによれば、Agに10000〜55000質量ppmのAuを添加したので、ボール形成時の加熱によってワイヤ表面が黒化せず、かつ電気比抵抗値を現在広く使用されている純度99%のAuワイヤ並の3.1μΩcm以下で、かつボール硬度を純度99.99%のCuワイヤよりも軟らかくでき、ボールボンディング時のパッドダメージをなくすことができる。
また、Biを1〜100質量ppm添加したので時効軟化せず、室温保管中の機械的特性が変化するのを防止できる。さらに、Pdを20000質量ppm以下添加することで、AgワイヤとAlパッドの接合部が高湿度の状況に放置されても急速に劣化することがない。
According to the Ag bonding wire according to the present invention, 10,000 to 55000 ppm by mass of Au is added to Ag. Therefore, the wire surface is not blackened by heating at the time of ball formation, and the electrical resistivity value is currently widely used. Further, it is 3.1 μΩcm or less, comparable to that of a 99% pure Au wire, and the ball hardness can be made softer than that of a 99.99% pure Cu wire, thereby eliminating pad damage during ball bonding.
Moreover, since Bi is added in an amount of 1 to 100 ppm by mass, aging softening is not caused, and changes in mechanical characteristics during storage at room temperature can be prevented. Furthermore, by adding Pd to 20000 mass ppm or less, even if the joint between the Ag wire and the Al pad is left in a high humidity condition, it does not rapidly deteriorate.

本発明に係る銀ボンディングワイヤの評価に用いた、半導体パッケージの正面図と電気抵抗測定の説明図である。It is the front view of a semiconductor package used for evaluation of the silver bonding wire which concerns on this invention, and explanatory drawing of an electrical resistance measurement.

本発明に係るAgボンディングワイヤのAgは、純度99.99質量%以上のものを用いる。電気比抵抗を低く維持するためである。
Agに10000〜55000質量ppmのAuを添加するのは、ボール形成時の加熱によってワイヤ表面が黒化せず、かつ電気比抵抗値を現在広く使用されている純度99%のAuワイヤの3.1μΩcm以下とし、かつボール硬度を純度99.99%のCuワイヤよりも軟らかくするためである。
Auの添加量が10000質量ppmを下回ると、ワイヤ表面の黒化を防止できず、55000質量ppmを上回ると、電気比抵抗が高くなる。
したがって、Auの添加量は10000質量ppm以上55000質量ppm以下とする。
Ag of the Ag bonding wire according to the present invention has a purity of 99.99% by mass or more. This is to keep the electrical resistivity low.
The addition of 10000 to 55000 mass ppm of Au to Ag does not cause the surface of the wire to become black due to heating during ball formation, and the electrical resistivity value of 99% purity Au wire currently widely used. This is because the hardness is set to 1 μΩcm or less and the ball hardness is softer than that of a 99.99% pure Cu wire.
If the added amount of Au is less than 10000 mass ppm, blackening of the wire surface cannot be prevented, and if it exceeds 55000 mass ppm, the electrical specific resistance increases.
Therefore, the addition amount of Au shall be 10,000 mass ppm or more and 55000 mass ppm or less.

Biを1〜100質量ppm添加するのは、10000〜55000質量ppmのAuを含むAgは時効軟化を示す為、室温保管中の機械的特性が変化するのを防止する為である。添加量が1質量ppmを下回ると特性の変化を抑えられず、100質量ppmを超えるとボール表面にBiが析出し、ボールの硬度が高くなってボールボンディング時のパッドダメージが発生する。したがって、Biの添加量は1質量ppm以上100質量ppm以下とする。   Bi is added in an amount of 1 to 100 ppm by mass because Ag containing 10000 to 55000 ppm by mass of Au exhibits aging softening and thus prevents changes in mechanical properties during storage at room temperature. If the amount added is less than 1 ppm by mass, the change in characteristics cannot be suppressed. If the amount added exceeds 100 ppm by mass, Bi precipitates on the ball surface, increasing the hardness of the ball and causing pad damage during ball bonding. Therefore, the addition amount of Bi is set to 1 mass ppm or more and 100 mass ppm or less.

AgワイヤとAlパッドの接合部では、AlがAg中に熱拡散し接合面に空孔が発生して接合強度が低下すると共に、電気比抵抗値が高まる。しかし、Pdを20000質量ppm以下添加することでAlのAg中への拡散を防止できる。20000質量ppmを超えて添加するとボールの硬度が高くなってボールボンディング時のパッドダメージが発生する。したがって、Pdの添加量は20000質量ppm以下とする。   In the joint portion between the Ag wire and the Al pad, Al is thermally diffused in the Ag, and voids are generated in the joint surface to reduce the joint strength and increase the electrical resistivity. However, the diffusion of Al into Ag can be prevented by adding Pd to 20000 mass ppm or less. If it is added in excess of 20000 mass ppm, the hardness of the ball increases and pad damage occurs during ball bonding. Therefore, the amount of Pd added is 20000 mass ppm or less.

以下、本発明に係るAgボンディングワイヤについて実施例と比較例を挙げて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples for an Ag bonding wire according to the present invention.

(実施例及び比較例)
表1は本発明のAgボンディングワイヤの実施例と比較例のAgボンディングワイヤにおける各種添加元素と添加量を示す。
(Examples and Comparative Examples)
Table 1 shows various additive elements and addition amounts in the examples of the Ag bonding wires of the present invention and the Ag bonding wires of the comparative examples.

Figure 0005616165
Figure 0005616165

本発明の実施例を示す試料番号1から試料番号12は、真空溶解連続鋳造炉において、純度99.999%以上のカーボン製ルツボ内に、原料として純度99.99質量%以上のAgを入れ、真空度1×10−4Pa以下で高周波溶解し、溶湯温度1100℃以上、保持時間10分以上で十分に脱ガスした後、予めAu及びBiやPdを表1に示す所定の組成になるように配合してルツボ内に投入して溶解した後、不活性ガスを注入して大気圧に戻し、連続鋳造によって8mmφに鋳造した。
次いで、伸線加工して直径16μmまで縮径し、伸び率が6%となるように大気雰囲気で焼鈍したAgボンディングワイヤとした。
なお、本実施例では直径が16μmで、伸び率が6%のボンディングワイヤを評価したが、ボンディングワイヤの直径が30μm程度まで、あるいは伸び率が10%程度までのものであっても本発明の効果に影響はない。
Sample No. 1 to Sample No. 12 showing Examples of the present invention were, in a vacuum melting continuous casting furnace, put Ag having a purity of 99.99% by mass or more as a raw material in a carbon crucible having a purity of 99.999% or more, After high-frequency melting at a vacuum degree of 1 × 10 −4 Pa or less and sufficient degassing at a molten metal temperature of 1100 ° C. or more and a holding time of 10 minutes or more, Au, Bi, and Pd are preliminarily given the predetermined composition shown in Table 1. Then, the mixture was poured into a crucible and dissolved, and then an inert gas was injected to return to atmospheric pressure, and cast to 8 mmφ by continuous casting.
Next, the wire was subjected to wire drawing, the diameter was reduced to 16 μm, and an Ag bonding wire annealed in an air atmosphere so that the elongation rate was 6% was obtained.
In this example, a bonding wire having a diameter of 16 μm and an elongation rate of 6% was evaluated. However, even if the bonding wire diameter is up to about 30 μm or the elongation rate is up to about 10%, The effect is not affected.

比較例である試料番号13から試料番号19は、それぞれ表1に示す組成とし、組成以外の製造条件は実施例と同じ条件で製作した。
ボンディングワイヤの評価は、図1に示す半導体パッケージを使用して行った。図1に示す半導体パッケージ10では封止エポキシ樹脂6の中央に、周囲にアルミニウム電極4を有するシリコンチップ3が配置されており、封止エポキシ樹脂6内には各6個の銀メッキを施したリード5が設けられている。各アルミニウム電極4とリード5の間は、銀ボンディングワイヤ1で結ばれている。アルミニウム電極4上に銀ボンディングワイヤ1を接続するに当たり、アルミニウム電極4上には銀ボンディングワイヤのボール2が形成されている。
Sample No. 13 to Sample No. 19 as comparative examples had the compositions shown in Table 1, and the production conditions other than the composition were produced under the same conditions as in the examples.
The bonding wire was evaluated using the semiconductor package shown in FIG. In the semiconductor package 10 shown in FIG. 1, a silicon chip 3 having an aluminum electrode 4 is disposed in the center of the sealing epoxy resin 6, and six silver platings are applied to the sealing epoxy resin 6. A lead 5 is provided. Each aluminum electrode 4 and lead 5 are connected by a silver bonding wire 1. In connecting the silver bonding wire 1 on the aluminum electrode 4, a silver bonding wire ball 2 is formed on the aluminum electrode 4.

各試料の評価は、銀ボンディングワイヤ先端に窒素ガスを吹き付けながらボール形成できる新川製UTC−1000を使いボンディングを行い評価した。放電条件は窒素ガス流量を0.6リットル/分とし、直径50μmのボールが得られるように放電電流を調整した。   Each sample was evaluated by bonding using a Shinkawa UTC-1000 that can form a ball while blowing nitrogen gas to the tip of the silver bonding wire. The discharge conditions were such that the flow rate of nitrogen gas was 0.6 liter / min and the discharge current was adjusted so that a ball having a diameter of 50 μm was obtained.

ボール形成時の熱影響の黒色化については、ナック製ハイスピードカメラfx−K5で放電の様子を撮影し、黒色化の有無を再生画像で目視判断した。
ボール2の形状については顕微鏡にて球形か鏃形か、さらにボール2の底部への尖りの発生有無を観察し、判断した。
ボール硬度は、ボンディング直後にボール2の形状が球形となったものについて、アカシ製MVK−H3を使用してビッカース硬度を測定した。50Hv以下が良品である。
Regarding the blackening of the heat effect at the time of ball formation, the state of discharge was photographed with a high-speed camera fx-K5 made by Nack, and the presence or absence of blackening was visually judged on the reproduced image.
The shape of the ball 2 was judged by observing with a microscope whether it was spherical or bowl-shaped, and whether or not the bottom of the ball 2 was sharpened.
Regarding the ball hardness, Vickers hardness was measured using MVK-H3 manufactured by Akashi for the ball 2 having a spherical shape immediately after bonding. 50Hv or less is a good product.

電気比抵抗値は、長さ300.0mmのワイヤの電気抵抗と実線径から算出する簡易法を用い、測定器はADVANTEST社製 DEGITAL MALTIMETERを用いた。電気比抵抗値は3.0μΩcm以下が良品である。   The electrical specific resistance value used a simple method of calculating from the electrical resistance and solid wire diameter of a wire having a length of 300.0 mm, and the measuring instrument used was DEGITAL MALTIMETER made by ADVANTEST. An electrical specific resistance value of 3.0 μΩcm or less is a good product.

時効軟化の有無は、伸線された直径230μmのワイヤの伸び率を、TOYO BALDWIN製のUTM−4−100を用いて、伸線後とその2週間後に測定して、伸び率の変化が5%以上ある場合は時効軟化が有と判断した。   The presence or absence of aging softening was measured by measuring the elongation of a drawn wire having a diameter of 230 μm using a UTM-4-100 made by TOYO BALDWIN, and after 2 weeks, the change in elongation was 5 % Or more, it was judged that there was aging softening.

接合信頼性は、接合界面のシア強度を、Dage社製の Dage−SERIES−5000PXYを用い測定した。評価試料は、高温保持する前を「初期」とし、ヤマト社製のオーブンDKM600を用い175℃で240時間高温保持後を「放置」として比較した。
単位面積当たりシア強度が7.00kg/mm以上を良(○印)、10.0kg/mm以上を優(◎印)と判断した。
For the bonding reliability, the shear strength at the bonding interface was measured using Dage-SERIES-5000PXY manufactured by Dage. The evaluation samples were compared as “initial” before being held at a high temperature, and “left” after being held at 175 ° C. for 240 hours using an oven DKM600 manufactured by Yamato.
Per unit area shear strength 7.00kg / mm 2 or more good (○ mark), was determined 10.0 kg / mm 2 or more and excellent (◎ mark).

信頼性は、上記高温保持後の電気抵抗値を図1に示した測定回路を用いて、HIOKI社製のDIGITAL HITESTERを用い測定した。8.5Ω以下を良(○印)、7.0Ω以下を優(◎印)と判断した。
なお、パッドダメージ、初期硬度、比抵抗、時候軟化の特性が、上記基準を満たさないものについては、接合(信頼)性および信頼性の評価は行わず、その場合、これらの評価欄に「−」を示した。
これらの結果を表2に示す。
The reliability was measured using the DIGITAL HITESTER manufactured by HIOKI using the measurement circuit shown in FIG. A value of 8.5Ω or less was judged good (◯), and a value of 7.0Ω or less was judged good (◎).
In addition, in the case where the characteristics of pad damage, initial hardness, specific resistance, and weather softening do not satisfy the above criteria, the evaluation of bonding (reliability) and reliability is not performed. "showed that.
These results are shown in Table 2.

Figure 0005616165
Figure 0005616165

実施例である試料番号1〜12は表2に記載の全ての特性において良好な結果を示している。
比較例である試料番号13は、Biを添加しなかったため、時効軟化が生じた。
試料番号18および19でも同様にBiを添加していないが、試料番号18ではCaを5質量ppm、試料番号19ではPtを9000質量ppm添加している。その結果は、試料番号13と同様に時効軟化を生じた。
試料番号14は、Biが特定範囲を越えて添加されたので、ボールの硬度が高くなってパッドダメージが発生し、それ以降の評価が出来なかった。
試料番号15はAuの添加量が5000質量ppmしかなく、ワイヤ表面が黒色化したほか、ボール先端が鏃状となった。
試料番号16はAuの添加量が75000質量ppmと過剰であり、比抵抗値が3.2μΩcmと高くなった。
試料番号17は、Pdの添加量が30000質量ppmと過剰であり、初期硬度が55Hvと高くなった上、比抵抗値も3.7μΩcmと高くなった。
Sample Nos. 1 to 12 as examples show good results in all the characteristics described in Table 2.
In Sample No. 13, which is a comparative example, aging softening occurred because Bi was not added.
Similarly, Bi is not added in Sample Nos. 18 and 19, but in Sample No. 18, Ca is added by 5 ppm by mass, and in Sample No. 19, Pt is added by 9000 ppm by mass. As a result, aging softening occurred as in sample No. 13.
In Sample No. 14, since Bi was added beyond a specific range, the hardness of the ball was increased and pad damage was generated, and subsequent evaluations were not possible.
Sample No. 15 had an addition amount of Au of only 5000 ppm by mass, the wire surface was blackened, and the ball tip became bowl-shaped.
Sample No. 16 had an excess of 75,000 mass ppm of Au, and the specific resistance value was as high as 3.2 μΩcm.
In Sample No. 17, the amount of Pd added was excessive at 30000 mass ppm, the initial hardness was increased to 55 Hv, and the specific resistance value was increased to 3.7 μΩcm.

上記実施例および比較例の説明は、半導体素子上の電極と外部電極とを接続するために用いるボンディングワイヤについて行ったが、半導体素子上に設けられたスタッドバンプとリードとの結線に用いるバンプワイヤにおいても同様に優れた効果を発揮し、半導体産業に多大の貢献をもたらすものと期待される。   The above-described examples and comparative examples have been described with respect to the bonding wire used for connecting the electrode on the semiconductor element and the external electrode. However, in the bump wire used for connecting the stud bump and the lead provided on the semiconductor element. Is expected to exert excellent effects as well and make a great contribution to the semiconductor industry.

1: 銀ボンディングワイヤ
2: ボール
3: シリコンチップ
4: アルミニウム電極
5: リード
6: 封止エポキシ樹脂
7: 抵抗測定器
10: 半導体パッケージ
1: Silver bonding wire 2: Ball 3: Silicon chip 4: Aluminum electrode 5: Lead 6: Sealing epoxy resin 7: Resistance measuring instrument 10: Semiconductor package

Claims (3)

Auを10000質量ppm以上55000質量ppm以下、Biを1質量ppm以上100質量ppm以下含有し、残部がAg及び不可避不純物からなることを特徴とする銀ボンディングワイヤ。   A silver bonding wire characterized by containing Au in a range from 10,000 ppm to 55000 ppm, Bi in a range from 1 ppm to 100 ppm, and the balance consisting of Ag and inevitable impurities. Auを10000質量ppm以上55000質量ppm以下、Biを1質量ppm以上100質量ppm以下含有し、さらにPdを20000質量ppm以下含有し、残部がAg及び不可避不純物からなることを特徴とする銀ボンディングワイヤ。   A silver bonding wire characterized by containing Au in a range from 10000 mass ppm to 55000 mass ppm, Bi in a content from 1 mass ppm to 100 mass ppm, further containing Pd in an amount of 20000 mass ppm, and the balance comprising Ag and inevitable impurities. . 前記ボンディングワイヤがバンプワイヤであることを特徴とする請求項1または2に記載の銀ボンディングワイヤ。
The silver bonding wire according to claim 1, wherein the bonding wire is a bump wire.
JP2010187534A 2010-08-24 2010-08-24 Silver bonding wire Active JP5616165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187534A JP5616165B2 (en) 2010-08-24 2010-08-24 Silver bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187534A JP5616165B2 (en) 2010-08-24 2010-08-24 Silver bonding wire

Publications (2)

Publication Number Publication Date
JP2012049198A JP2012049198A (en) 2012-03-08
JP5616165B2 true JP5616165B2 (en) 2014-10-29

Family

ID=45903770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187534A Active JP5616165B2 (en) 2010-08-24 2010-08-24 Silver bonding wire

Country Status (1)

Country Link
JP (1) JP5616165B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940403B2 (en) * 2012-01-02 2015-01-27 Wire Technology Co., Ltd. Alloy wire and methods for manufacturing the same
JP5970870B2 (en) 2012-03-06 2016-08-17 スズキ株式会社 Electric parts mounting structure for hybrid vehicle
JP5165810B1 (en) * 2012-09-12 2013-03-21 田中電子工業株式会社 Silver gold palladium alloy bump wire
TWI395313B (en) * 2012-11-07 2013-05-01 Wire technology co ltd Stud bump structure and method for forming the same
KR101416778B1 (en) * 2013-01-04 2014-07-09 엠케이전자 주식회사 Silver alloy bonding wire
TWI536396B (en) * 2013-02-07 2016-06-01 Silver alloy soldered wire for semiconductor packages
KR101513493B1 (en) * 2013-02-19 2015-04-20 엠케이전자 주식회사 Silver alloy bonding wire
JP5529992B1 (en) * 2013-03-14 2014-06-25 タツタ電線株式会社 Bonding wire
JP5420783B1 (en) 2013-04-05 2014-02-19 田中電子工業株式会社 Bonding wire for high-speed signal lines
JP5399581B1 (en) * 2013-05-14 2014-01-29 田中電子工業株式会社 High speed signal bonding wire
WO2014203777A1 (en) 2013-06-20 2014-12-24 住友ベークライト株式会社 Semiconductor device
CN105393343A (en) * 2014-01-31 2016-03-09 大自达电线株式会社 Wire bonding and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110741A (en) * 1987-07-10 1989-04-27 Kobe Steel Ltd Composite bonding wire
JP2000239814A (en) * 1999-02-19 2000-09-05 Suzuki Takeshi Manufacture of silver
JP2007142271A (en) * 2005-11-21 2007-06-07 Tanaka Electronics Ind Co Ltd Bump material and bonding structure

Also Published As

Publication number Publication date
JP2012049198A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5616165B2 (en) Silver bonding wire
US11996382B2 (en) Palladium-coated copper bonding wire, manufacturing method of palladium-coated copper bonding wire, semiconductor device using the same, and manufacturing method thereof
US12087724B2 (en) Palladium-coated copper bonding wire and method for manufacturing same
JP5270467B2 (en) Cu bonding wire
WO2012169067A1 (en) High-strength, high-elongation-percentage gold alloy bonding wire
JP6710141B2 (en) Copper alloy wire for ball bonding
JP2014055327A (en) Silver gold palladium-based alloy bump wire
WO2014137288A1 (en) Palladium coated copper wire for bonding applications
JPH01110741A (en) Composite bonding wire
JP2010040944A (en) Copper insulation bonding wire, and manufacturing method thereof
JPH0555580B2 (en)
JP6714150B2 (en) Bonding wire and semiconductor device
TWI643274B (en) Copper alloy thin wire for ball bonding
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP6898705B2 (en) Copper alloy thin wire for ball bonding
JPH0464121B2 (en)
CN110718526A (en) Rare earth copper alloy bonding wire for superfine linear pitch electronic packaging and preparation method thereof
KR100618054B1 (en) Au alloy bonding wire
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
WO2016104121A1 (en) Copper bonding wire
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JPH02250934A (en) Au alloy extra fine wire for bonding semiconductor device
JP2023087638A (en) Bonding wire and semiconductor device
JPH1145902A (en) Bonding wire
JPS63247325A (en) Fine copper wire and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5616165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250