JP5270467B2 - Cu bonding wire - Google Patents

Cu bonding wire Download PDF

Info

Publication number
JP5270467B2
JP5270467B2 JP2009145884A JP2009145884A JP5270467B2 JP 5270467 B2 JP5270467 B2 JP 5270467B2 JP 2009145884 A JP2009145884 A JP 2009145884A JP 2009145884 A JP2009145884 A JP 2009145884A JP 5270467 B2 JP5270467 B2 JP 5270467B2
Authority
JP
Japan
Prior art keywords
bonding
ball
wire
bonding wire
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009145884A
Other languages
Japanese (ja)
Other versions
JP2011003745A (en
Inventor
亮 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2009145884A priority Critical patent/JP5270467B2/en
Publication of JP2011003745A publication Critical patent/JP2011003745A/en
Application granted granted Critical
Publication of JP5270467B2 publication Critical patent/JP5270467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/85498Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/85499Material of the matrix
    • H01L2224/855Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85563Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85564Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Description

本発明は、半導体素子上の電極と外部電極とを接続するために用いるCuボンディングワイヤに関するものである。   The present invention relates to a Cu bonding wire used for connecting an electrode on a semiconductor element and an external electrode.

一般に半導体素子の電極と外部電極との接続に用いられるボンディングワイヤの直径は、15〜75μmと非常に細く、また、化学的な安定性や大気中での取り扱いやすさから、従来はAu線が用いられてきた。
しかし、ボンディングワイヤに使われるAu線は、高純度のAu線であるために、非常に高価であり、半導体素子の低廉化の要求に対しては、より低廉なCu製のボンディングワイヤの使用が望まれている。
In general, the diameter of a bonding wire used for connection between an electrode of a semiconductor element and an external electrode is as very small as 15 to 75 μm. Also, from the viewpoint of chemical stability and ease of handling in the atmosphere, Au wire has been conventionally used. Has been used.
However, since the Au wire used for the bonding wire is a high-purity Au wire, it is very expensive, and the use of a cheaper Cu bonding wire is required to meet the demand for lowering the cost of semiconductor elements. It is desired.

また、半導体素子の電極材料としてはAlまたはAl合金がよく用いられているが、AlやAl合金製の電極表面にAu製のボンディングワイヤやCu製のボンディングワイヤを接合して、高温環境による電極−ボンディングワイヤの接合信頼性を評価すると、Cu製のボンディングワイヤを用いる方がAu製のボンディングワイヤを用いる場合より、その信頼性の劣化が遅いことが知られており、このためボンディングワイヤと電極材料との接合の信頼性向上のためにもCu製のボンディングワイヤへの期待が高まっている。なお、この信頼性評価結果の理由としてAu中へのAl原子の拡散速度よりもCu中へのAl原子の拡散速度の方が極めて遅いこと、またCu原子のAl中への拡散速度もAu原子の拡散速度に比べて遅いことから推察されている。   Also, Al or Al alloy is often used as the electrode material of the semiconductor element. However, an Au bonding wire or Cu bonding wire is bonded to the surface of the Al or Al alloy electrode, and the electrode is exposed to a high temperature environment. -When evaluating the bonding reliability of the bonding wire, it is known that the deterioration of the reliability of the bonding wire made of Cu is slower than the case of using the bonding wire made of Au. In order to improve the reliability of bonding with materials, there is an increasing expectation for Cu bonding wires. The reason for this reliability evaluation result is that the diffusion rate of Al atoms into Cu is much slower than the diffusion rate of Al atoms into Au, and the diffusion rate of Cu atoms into Al is also Au atoms. This is presumed to be slower than the diffusion rate.

しかし、ボンディングワイヤとして使用される材料をAuからCuに替える場合、最大の弊害として、パッドダメージの発生率がAu製のボンディングワイヤを用いた場合よりCu製のボンディングワイヤを用いた方が高くなるという問題がある。これはCuの硬さがAuよりも高いことによるものである。   However, when the material used as the bonding wire is changed from Au to Cu, the greatest adverse effect is that the incidence of pad damage is higher when the Cu bonding wire is used than when the Au bonding wire is used. There is a problem. This is because the hardness of Cu is higher than that of Au.

この問題を回避するためには、ボールボンディング時にCu製のボンディングワイヤ先端に形成するボールの硬さを低下させることが必要である。このためには、工業的に入手しやすい純度99.99%から99.9999%のCuで、かつ酸素濃度が不活性ガス溶融法による酸素濃度分析で10ppm未満である無酸素銅(以下無酸素銅と記す)が一般的に使用されている。
特許文献1には、電解精錬を数回繰り返した後、その電解精錬により得られた高純度の電気銅を帯域融解法により精製して得られる純度99.999%以上の高純度の銅素材、即ち高純度の無酸素銅を使用して、パッドダメージの発生率を低下させる方法が提案されている。
In order to avoid this problem, it is necessary to reduce the hardness of the ball formed at the tip of the Cu bonding wire during ball bonding. For this purpose, oxygen-free copper (hereinafter referred to as oxygen-free copper) having a purity of 99.99% to 99.9999%, which is readily available industrially, and having an oxygen concentration of less than 10 ppm by oxygen concentration analysis by an inert gas melting method. (Denoted copper) is commonly used.
Patent Document 1 discloses a high-purity copper material having a purity of 99.999% or more obtained by refining electrolytic copper obtained by electrolytic refining several times and then purifying high-purity electrolytic copper by the zone melting method, That is, a method of reducing the incidence of pad damage using high-purity oxygen-free copper has been proposed.

このように、無酸素銅の採用や銅の高純度化は、形成したボールの軟化を実現し、半導体素子上のアルミニウム電極の損傷いわゆるパッドダメージの大幅な低減に寄与し、パワーICやトランジスタ向けの銅ボンディングワイヤとしての用途へ利用されてきている。
一方、近年急激に生産量が急増しているPBGA(Plastic Ball Grid Array package)、或いはQFN(Quad Flat Non−lead package)等の半導体パッケージに対するCuボンディングワイヤの適用に向けた評価が開始されてきている。
In this way, the use of oxygen-free copper and the high purity of copper realizes softening of the formed ball, contributing to the significant reduction of damage to the aluminum electrode on the semiconductor element, so-called pad damage, for power ICs and transistors. Have been used for applications as copper bonding wires.
On the other hand, evaluations for the application of Cu bonding wires to semiconductor packages such as PBGA (Plastic Ball Grid Array package) or QFN (Quad Flat Non-lead package), whose production volume has increased rapidly in recent years, have started. Yes.

ところが、これらの半導体パッケージに、高温、高圧の信頼性試験であるPCT(Pressure Cooker Test)を行ったところ、ボール接合部が腐食され電気的絶縁となる不具合が露見した。
より詳細には、ボール接合部がClによって腐食され、接合界面が劣化することが原因と見られた。すなわち、PBGAやQFNといった半導体パッケージは片側のみが樹脂封止されたものであり、リードと樹脂の隙間から水分がパッケージ内に浸入しやすいため、Clの存在によってAl(電極)が腐食すると考えられた。
However, when PCT (Pressure Cooker Test), which is a high-temperature, high-pressure reliability test, was performed on these semiconductor packages, the ball joint was corroded and an electrical insulation was revealed.
More specifically, it was considered that the ball joint was corroded by Cl and the joint interface deteriorated. In other words, semiconductor packages such as PBGA and QFN are resin-sealed only on one side, and moisture can easily enter the package from the gap between the lead and the resin, so Al (electrode) is considered to corrode due to the presence of Cl. It was.

このため、腐食してボールが剥がれた部分のAl電極面とボール裏面についてEPMA(電子プローブエックス線マイクロアナライザ)によって元素定性分析を行ったところ、いずれの試料からもClが検出された。このことから、Cuボンディングワイヤ中に存在するClが水分との反応によってCuボンディングワイヤ中から溶出することで、ボール接合部が腐食し、これが電気的絶縁を発生させることを見出し、グロー放電質量分析法によって検出される塩素量が1質量ppm以下の無酸素銅からなるCuボンディングワイヤを見出し、特許文献2に開示した。   For this reason, elemental qualitative analysis was performed by EPMA (Electron Probe X-ray Microanalyzer) on the Al electrode surface and the back surface of the ball where the ball was peeled off due to corrosion, and Cl was detected from any sample. From this, it has been found that Cl present in the Cu bonding wire is eluted from the Cu bonding wire due to the reaction with moisture, thereby corroding the ball joint and generating electrical insulation. Glow discharge mass spectrometry A Cu bonding wire made of oxygen-free copper having a chlorine content of 1 mass ppm or less detected by the method was found and disclosed in Patent Document 2.

特許文献2のCuボンディングワイヤの採用により、電気的絶縁の発生は減少できたが、近年の高密度化、高集積化に対応して、線径(直径)が25μmや20μmといった極細線を用いた場合には、必ずしも十分な効果が得られないという事態が発生してきている。   Although the occurrence of electrical insulation could be reduced by adopting the Cu bonding wire of Patent Document 2, ultrafine wires with a diameter (diameter) of 25 μm or 20 μm were used in response to recent high density and high integration. In such a case, a sufficient effect cannot always be obtained.

即ち、線径25μmのCuボンディングワイヤを用いてワイヤボンディングを行い、エポキシ樹脂で封止して得たパッケージに対しHTB試験(High Temperature Baking test:高温動作試験)を行うと、一般的に要求される動作時間である1000時間を待たずに導通不良となる新たな現象が観察されたことである。   That is, it is generally required to perform wire bonding using a Cu bonding wire having a wire diameter of 25 μm and perform an HTB test (High Temperature Baking Test) on a package obtained by sealing with an epoxy resin. This is a new phenomenon in which conduction failure occurs without waiting for 1000 hours, which is the operation time.

これは、Cuボンディングワイヤを用いたワイヤボンディングは、半導体素子側のAl電極へボールボンディングするためのボール形成を、5%水素+95%窒素のフォーミングガス雰囲気中でプラズマ放電によって行っているために、このボール形成は、ワイヤボンディングに要する時間がわずか60msecというボンディングヘッドの超高速動作、リードフレームや基板を固定するためのウインドウクランパ開閉動作、さらにリードフレームや基板が挿入されたマガジンの交換作業等で発生する空気の移動などの要因により、その導電不良が発生する。   This is because wire bonding using a Cu bonding wire is performed by plasma discharge in a forming gas atmosphere of 5% hydrogen + 95% nitrogen to form a ball for ball bonding to the Al electrode on the semiconductor element side. This ball formation is performed by an ultra-high-speed operation of the bonding head that takes only 60 msec for wire bonding, a window clamper opening / closing operation for fixing the lead frame and the substrate, and a replacement operation of the magazine in which the lead frame and the substrate are inserted. Due to factors such as the movement of the generated air, the conductivity failure occurs.

また、パワーICの組立において主流になっている対向式チューブ状ノズルでは、両ノズルの軸が一直線上で無い場合には合流後のフォーミングガス流に空気が混入しやすくなり、混入した空気により形成したボール表面が酸化し、ボールボンディングによりアルミニウム電極と形成したボールとの間に酸素が取りこまれ、HTB試験における約150℃という高温加熱によってAl電極側にCuが拡散して発生するAl−Cu合金層が、この酸素により酸化してしまうことが原因であるとされている。   Also, in the opposed tube-shaped nozzle that is the mainstream in the assembly of power ICs, if the axes of both nozzles are not in a straight line, air is likely to be mixed into the forming gas flow after merging, and formed by the mixed air The surface of the ball is oxidized, oxygen is taken in between the aluminum electrode and the formed ball by ball bonding, and Cu is diffused to the Al electrode side by high temperature heating of about 150 ° C. in the HTB test. The cause is that the alloy layer is oxidized by this oxygen.

また形成したボールが酸化したり、ボール形状がボール底部へ伸びる楕円形状を呈したりする場合には、最新のLow−k材料(SiOより非誘電率が低い材料)を使用してAl電極の下へ回路を形成した半導体素子では、パッドダメージが発生しやすいことも判明した。 Also, when the formed ball is oxidized or the ball shape exhibits an elliptical shape extending to the bottom of the ball, the latest Low-k material (a material having a non-dielectric constant lower than SiO 2 ) is used. It has also been found that pad damage is likely to occur in a semiconductor element in which a circuit is formed downward.

ところで、ボールボンディング時に形成するボールの耐酸化性を向上させるために、Pを添加する方法がある。例えば、Pが200質量ppm以上添加された3N純度のCuボンディングワイヤがある。このCuボンディングワイヤは、一部のパワーデバイス向けに用いられている。従来のアルミニウム電極下にLow−k材料を使用した配線が施されていない半導体素子に対しては、このPが添加されたCuボンディングワイヤを用いて、パッドダメージ無しにボールボンディングが可能であったが、最新のLow−k材料を使用した電極構造を有する半導体素子にボールボンディングをすると、ボンディング時に形成されるボールの硬さが高いためにLow−k材料でできた電極構造が損傷するという、いわゆるパッドダメージが発生して使用できない事態が起こっている。   Incidentally, there is a method of adding P in order to improve the oxidation resistance of a ball formed at the time of ball bonding. For example, there is a 3N purity Cu bonding wire to which P is added in an amount of 200 mass ppm or more. This Cu bonding wire is used for some power devices. For semiconductor elements that are not provided with wiring using a low-k material under a conventional aluminum electrode, ball bonding can be performed without pad damage using a Cu bonding wire to which P is added. However, when ball bonding is performed on a semiconductor element having an electrode structure using the latest Low-k material, the hardness of the ball formed at the time of bonding is high, and the electrode structure made of the Low-k material is damaged. There are so-called pad damages that cannot be used.

この問題に対しては、Pの添加量を50ppm程度添加にすれば、ボールの酸化は抑えられ、最新のLow−k材料を使用した電極構造を有する半導体素子へのボールボンディングに使用しても、パッドダメージは無く使用可能であることが確認できたが、温度125℃、気圧2.3atm、湿度100%の環境で168時間放置して行うPCT試験の結果では、ボール接合界面で腐食が発生して導通不良が発生するという問題が生じている。   To solve this problem, if the amount of P added is about 50 ppm, the oxidation of the ball can be suppressed, and even if it is used for ball bonding to a semiconductor device having an electrode structure using the latest Low-k material. Although it was confirmed that the pad can be used without any damage, the result of the PCT test conducted in an environment of a temperature of 125 ° C., an atmospheric pressure of 2.3 atm, and a humidity of 100% for 168 hours shows that corrosion occurs at the ball joint interface. As a result, there is a problem that poor conduction occurs.

さらに、半導体装置の組立においてはコストミニマムの観点から生産性を極限まで高める工夫を行っており、例えばワイヤボンディングのサイクル時間も短縮化され、その実現のためにボンディングヘッドは超高速動作し、またボール形成時の放電条件は大電流短時間放電が主流となっている。さらに最新のLow−k材料を使用した半導体素子では集積化向上のためにAl電極の下には回路が形成されており、その電極下は脆く損傷しやすくなっている。   Furthermore, in assembling semiconductor devices, we have devised to maximize productivity from the viewpoint of cost minimum. For example, the cycle time of wire bonding is shortened, and the bonding head operates at an ultra-high speed to realize this, As a discharge condition at the time of ball formation, a large current and a short time discharge are mainly used. Further, in the semiconductor element using the latest Low-k material, a circuit is formed under the Al electrode for improving integration, and the area under the electrode is brittle and easily damaged.

そして超高速動作による空気の乱流によってフォーミングガス中に空気が混入し、Cuボール表面が酸化し、Al電極とCuボールとの間に酸素が取りこまれ、HTB試験における約150℃という高温加熱によってAl電極側にCuが拡散して発生するAlとCuの合金層が、酸化して不具合に至るという問題に対しては、Cuボンディングワイヤの成分組成の調整や、製造工程中の熱処理条件などの調整による対応が提案されている。   Then, air is mixed into the forming gas due to turbulent air flow due to ultra high-speed operation, the Cu ball surface is oxidized, oxygen is taken in between the Al electrode and the Cu ball, and high temperature heating of about 150 ° C. in the HTB test. For the problem that the alloy layer of Al and Cu generated by diffusion of Cu on the Al electrode side due to oxidation causes trouble, adjustment of the component composition of the Cu bonding wire, heat treatment conditions during the manufacturing process, etc. A response by adjusting is proposed.

一方、PBGAやQFN等の片側封止パッケージにおいては、ボンディング温度が175℃以下と低かったり、ボンディング部のめっきが硬いパラジウムであったりするため、基本的に接合性が悪く、Cuボンディングワイヤの表面が少しでも酸化してしまうと、ボールボンディングに引き続いて行われるスティッチボンディングで不着となる不良が発生してボンディングマシンが停止したり、ワイヤボンディングされたとしても十分な接合強度が得られないといった問題が顕著になっている。   On the other hand, in one-side sealed packages such as PBGA and QFN, the bonding temperature is as low as 175 ° C. or lower, or the plating of the bonding part is hard palladium, so the bondability is basically poor, and the surface of the Cu bonding wire If the material oxidizes even a little, a defect that does not adhere to the stitch bonding performed after the ball bonding occurs and the bonding machine stops, or even if wire bonding is performed, sufficient bonding strength cannot be obtained. Has become prominent.

このようなことから、半導体素子側のボール接合信頼性が高く、かつ外部電極側が、接合性が悪いスティッチボンディング条件であっても、ボンディングされるめっき面あるいはPdめっき面との接合信頼性を低下させることのないCuボンディングワイヤが望まれている。
このスティッチボンディングの接合性を改善する方法としては、特許文献3および4に開示される、Cuワイヤを芯としてその表面を貴金属で被覆する方法がある。
For this reason, the ball bonding reliability on the semiconductor element side is high, and the bonding reliability with the plated surface or the Pd plated surface is reduced even under the stitch bonding conditions where the external electrode side has poor bondability. There is a demand for a Cu bonding wire that is not allowed to occur.
As a method of improving the bondability of this stitch bonding, there is a method disclosed in Patent Documents 3 and 4 in which a surface of a Cu wire is coated with a noble metal with a Cu wire as a core.

しかし、これらの方法では通常のボンディングワイヤ製造プロセスに加え、Pd被膜を形成するプロセスが最低限必要となるが、被膜形成設備の追加や被膜厚管理等の作業の追加のため、製造コストのアップが避けられない。さらに、貴金属被膜形成の場合には、Cuボンディングワイヤ表面の酸化防止効果を高めようとして被膜厚を厚くすると、形成されるボール表面近傍に貴金属の濃縮層が形成されるため、ボールの表面硬度が裸銅線に比べて高くなり、最新のLow−k材料を使用したAl電極構造ではパッドダメージが発生するという不具合が発生してしまう。   However, these methods require a process for forming a Pd film in addition to the normal bonding wire manufacturing process, but increase the manufacturing cost due to the addition of film forming equipment and additional work such as film thickness management. Is inevitable. Furthermore, in the case of noble metal film formation, if the film thickness is increased in order to increase the anti-oxidation effect on the surface of the Cu bonding wire, a concentrated layer of noble metal is formed in the vicinity of the formed ball surface. It becomes higher than the bare copper wire, and in the Al electrode structure using the latest Low-k material, there is a problem that pad damage occurs.

さらには、Cuボンディングワイヤを使用する半導体装置の組立には、従来のAu線用のワイヤボンディング装置へ、酸化防止用のガス雰囲気形成装置や、ボール形成のための放電電源装置などを追加して設置し、かつ一般的にはHを5%含むNガス、すなわちフォーミングガスを用いるために、設備投資額やランニングコストが、Auボンディングワイヤに比べて高くなってしまう。 Furthermore, for the assembly of semiconductor devices that use Cu bonding wires, a gas atmosphere forming device for preventing oxidation and a discharge power supply device for forming balls are added to the conventional wire bonding device for Au wires. Installation and use of N 2 gas containing 5% of H 2 , that is, forming gas in general, increases the capital investment and running cost compared to Au bonding wires.

また、Hは可燃性ガスであるため、十分安全性に配慮した施設を準備しなければならないといった短所があり、Nガスのみでボール形成できるCuボンディングワイヤの開発が要求されているが、Cuワイヤの表面をPdで被覆するボンディングワイヤでは、被覆厚を20nm以上とすることでNガスのみでも比較的良好な形状のボールを形成することが可能であるが、形成したボール表面に高濃度のCu−Pd合金層が形成され、この合金層の硬さが高いために、パッドダメージが発生しやすいといった問題は解決されていなかった。 In addition, since H 2 is a flammable gas, there is a disadvantage that a facility with sufficient safety considerations must be prepared, and development of a Cu bonding wire that can form a ball only with N 2 gas is required. With a bonding wire in which the surface of the Cu wire is coated with Pd, it is possible to form a ball having a relatively good shape with only N 2 gas by setting the coating thickness to 20 nm or more. Since a Cu—Pd alloy layer having a concentration is formed and the hardness of the alloy layer is high, the problem that pad damage is likely to occur has not been solved.

特開昭60−244054号公報Japanese Patent Laid-Open No. 60-244054 特開2008−153625号公報JP 2008-153625 A 特許第4158928号公報Japanese Patent No. 4158828 特許第4204359号公報Japanese Patent No. 4204359

本発明は、このような状況を鑑み、半導体装置の組立においてCuボンディングワイヤに求められる、Nガスのみの雰囲気中で球状ボールが形成でき、その形成されたボール表面硬さを、Pd被覆銅線に比べて低くすることによりパッドダメージの発生を防止し、さらにCuボンディングワイヤ表面の酸化を抑制してスティッチボンディング時のワイヤ不着の発生を防止することであり、かつ電気抵抗率はCuに匹敵する非常に導電性が高く、かつ低廉なCuボンディングワイヤを提供することを目的とする。 In view of such a situation, the present invention can form a spherical ball in an atmosphere of only N 2 gas, which is required for a Cu bonding wire in the assembly of a semiconductor device, and the formed ball surface hardness is determined as Pd-coated copper. It is to prevent the occurrence of pad damage by making it lower than the wire, and further to suppress the oxidation of the surface of the Cu bonding wire to prevent the occurrence of non-sticking at the time of stitch bonding, and the electric resistivity is comparable to Cu An object of the present invention is to provide a Cu bonding wire that is highly conductive and inexpensive.

本発明は、Clが2質量ppm以下であり、Auを1質量%以上、好ましくは2質量%以上7.5質量%以下の割合で含み残部がCuとCuの不可避不純物からなるボンディングワイヤであり、更に、Pを10質量ppm以上40質量ppm以下の割合で含むCuボンディングワイヤである。 The present invention is a bonding wire in which Cl is 2 mass ppm or less, Au is contained in an amount of 1 mass% or more, preferably 2 mass% or more and 7.5 mass% or less, and the balance is made of Cu and Cu inevitable impurities. Furthermore, it is a Cu bonding wire containing P in a proportion of 10 ppm to 40 ppm by mass.

本発明に係るCuボンディングワイヤによれば、Auを1質量%から7.5質量%含有しているために電気抵抗率は約1.9μΩcm以上約3.3μΩcm以下となり、純度99%Auボンディングワイヤの電気抵抗率以下の低抵抗値である。   According to the Cu bonding wire of the present invention, the electrical resistivity is about 1.9 μΩcm or more and about 3.3 μΩcm or less because Au is contained in an amount of 1 to 7.5% by mass, and the purity is 99% Au bonding wire. It is a low resistance value less than or equal to the electrical resistivity.

またAuを含有することによりボンディングワイヤ表面の酸化速度が著しく低下して、スティッチボンディング時の不着不良を解消でき、さらに、ボール形成時の雰囲気をNガスのみとしてもボンディングワイヤ表面や形成したボール表面の酸化が極めて少なく、真球度の高い光沢のあるボールを得ることが可能となる。 In addition, by containing Au, the oxidation rate of the bonding wire surface is remarkably reduced, so that the non-stick failure at the time of stitch bonding can be eliminated. Further, even when the atmosphere at the time of ball formation is only N 2 gas, the bonding wire surface and the formed ball It becomes possible to obtain a glossy ball having a very high sphericity with very little surface oxidation.

そして形成したボールの表面硬度は、Pd被覆銅線よりも軟らかく、パッドダメージの発生からも開放される。更に、Cl含有量を2質量ppm以下とすれば高温高湿下での信頼性が良好となり、更にPを10質量ppm以上40ppm以下とすれば形成したボール表面の酸素は完全に除去され、また高湿度においてもボンディングワイヤと水分との接触による水分中に滲出するP量は極めて少なく、Clを1質量ppm以下とした場合にはPBGAやQFNといった水分が浸入しやすい片側樹脂封止のパッケージにおいても、PとClの相乗効果によるボール接合部の腐食の問題が完全に解決するものである。   The surface hardness of the formed ball is softer than that of the Pd-coated copper wire, and is free from occurrence of pad damage. Further, if the Cl content is 2 mass ppm or less, the reliability under high temperature and high humidity is improved, and if P is 10 mass ppm or more and 40 ppm or less, oxygen on the formed ball surface is completely removed, Even in high humidity, the amount of P leached into the moisture due to contact between the bonding wire and moisture is very small, and in the case of one-side resin-sealed package such as PBGA and QFN where moisture can easily enter when Cl is 1 ppm by mass or less However, the problem of corrosion of the ball joint due to the synergistic effect of P and Cl is completely solved.

粒界酸化が認められるCuボールの例を示す走査電子顕微鏡写真である。It is a scanning electron micrograph which shows the example of Cu ball | bowl with which grain boundary oxidation is recognized. 粒界酸化が認められないCuボールの例を示す走査電子顕微鏡写真である。It is a scanning electron micrograph which shows the example of Cu ball in which grain boundary oxidation is not recognized. 底部に伸張した楕円体形状となったCuボールの例を示す走査電子顕微鏡写真である。It is a scanning electron micrograph which shows the example of the Cu ball | bowl which became the ellipsoid shape extended | stretched to the bottom part. 穴(巣)を生じたCuボールの例を示す走査電子顕微鏡写真である。It is a scanning electron micrograph which shows the example of the Cu ball | bowl which produced the hole (nest). 本発明に係るCuボンディングワイヤの評価に用いた半導体パッケージの平面図、および電気抵抗測定の説明図である。It is a top view of the semiconductor package used for evaluation of Cu bonding wire concerning the present invention, and an explanatory view of electrical resistance measurement.

本発明で用いる銅鋳造線材の組成を、Auを2質量%以上7.5質量%以下、さらにClを2ppm以下とし、さらにPを10質量ppm以上40質量ppm以下の割合で含み、残部が銅と不可避不純物からなる銅鋳造線材としている。この理由は、以下の通りである。   The composition of the copper cast wire used in the present invention is such that Au is 2 mass% to 7.5 mass%, Cl is 2 ppm or less, P is further contained in a ratio of 10 mass ppm to 40 mass ppm, and the balance is copper. It is a copper cast wire consisting of inevitable impurities. The reason for this is as follows.

(1)Au含有量
Cu線は酸化しやすいため、短期間で使い切るように巻長さを500mと短く設定したり、吸湿防止のためプラスチック袋で封止したりして出荷しているが、使用途中で装置を止めたり開封後に未使用のまま放置すると表面が酸化し、大気中で行われるスティッチボンディングでの接合性が悪化する。
そこで、Auを1質量%以上含有すればCu線表面の酸化速度が低下し、スティッチボンディング接合性の悪化が回避できる。また、Auを2質量%以上含有すれば100%Nガス雰囲気におけるボール形成においても、溶融ボール直上のボンディングワイヤ表面の酸化膜形成が抑制されるため、溶融Cuボールのボンディングワイヤ表面の濡れ性が安定し、真円度の高いボールが形成される。
(1) Au content Since Cu wire is easy to oxidize, it is shipped with the winding length set as short as 500m so that it can be used up in a short period of time, or sealed with a plastic bag to prevent moisture absorption. If the device is stopped during use or left unopened after being opened, the surface will oxidize and the bondability in stitch bonding performed in the air will deteriorate.
Therefore, if Au is contained in an amount of 1% by mass or more, the oxidation rate of the surface of the Cu wire is reduced, and deterioration of stitch bonding bondability can be avoided. Further, when Au is contained in an amount of 2% by mass or more, even when forming a ball in a 100% N 2 gas atmosphere, formation of an oxide film on the surface of the bonding wire immediately above the molten ball is suppressed. Is stable and a ball with high roundness is formed.

一方、Auが2質量%未満ではボール頭頂部に尖りが発生する場合があり、ボールボンディング時のパッドダメージの発生原因となり、また酸化がわずかに認められるようになるため、Nガスのみでボール形成する場合には、2質量%以上とすることが望ましい。一方7.5質量%を超えると電気抵抗率が、純度99%Auボンディングワイヤの値約3.3μΩcmを超えるため、Cuボンディングワイヤの利点であるAuボンディングワイヤより優れて低い電気抵抗率が発揮でききない。
さらに、Auを添加する代わりにPtを添加する方法もあるが、ボールの表面硬度(Hv)が70を越えるために、パッドダメージを回避できないこと、電気抵抗率がAuを添加した場合よりも高くなることからAuを添加する方が好ましい。
On the other hand, Au is sometimes is pointed to the ball parietal is less than 2 wt% occurs, will cause the pad damage during ball bonding, also because so oxidation were slightly observed, the ball only with N 2 gas When forming, it is desirable to set it as 2 mass% or more. On the other hand, if it exceeds 7.5% by mass, the electrical resistivity exceeds the value of about 99% Au bonding wire with a purity of 99%. Therefore, the electrical resistivity is superior to Au bonding wire, which is an advantage of Cu bonding wire. I can't.
Furthermore, there is a method of adding Pt instead of adding Au, but since the surface hardness (Hv) of the ball exceeds 70, pad damage cannot be avoided, and the electrical resistivity is higher than when Au is added. Therefore, it is preferable to add Au.

(2)Cl含有量
Cl量を2質量ppm以下に抑える理由は、ワイヤボンディングした後のCuボールとAlとの接合界面に染み出してくるClの量を抑え、同接合界面におけるClによる腐食を抑制するためである。Clが染み出すと接合界面の雰囲気が酸性側となり、Alの腐食の進行を促進するため、Clの量としては少なければ少ないほど良いが、2ppm以下とすることで目的は達成される。
(2) Cl content The reason for suppressing the Cl content to 2 mass ppm or less is to suppress the amount of Cl that oozes out to the bonding interface between the Cu ball and Al after wire bonding, and to prevent corrosion by Cl at the bonding interface. It is for suppressing. When Cl exudes, the atmosphere at the bonding interface becomes acidic and promotes the progress of corrosion of Al. Therefore, the smaller the amount of Cl, the better. However, the purpose is achieved by setting it to 2 ppm or less.

(3)P含有量
Pは、ボンディングワイヤ表面に酸素が吸着しているか、あるいは、ボンディングワイヤ内にわずかな酸素が残留している場合のCuボールの表面酸化を防止するために添加される。P含有量が10質量ppmよりも少ないと、ボール形成雰囲気に酸素が混入した場合にCuボールの表面酸化が防止できなくなる。また、P含有量が高いと高湿度下でボンディングワイヤからPが滲出し、接合界面の雰囲気が酸性側にシフトするので好ましくない。
また、本発明では、PBGAやQFNといった水分が浸入しやすい片側樹脂封止のパッケージにおいても、Cl含有量を1ppm以下と少なくすることにより、PとClの相乗効果によるボール接合部の腐食問題が解消される。
(3) P content P is added to prevent surface oxidation of the Cu ball when oxygen is adsorbed on the bonding wire surface or when a slight amount of oxygen remains in the bonding wire. If the P content is less than 10 mass ppm, the surface oxidation of the Cu balls cannot be prevented when oxygen is mixed in the ball forming atmosphere. Also, if the P content is high, P is oozed out of the bonding wire under high humidity, and the atmosphere at the bonding interface is shifted to the acidic side, which is not preferable.
In addition, in the present invention, even in one-side resin-encapsulated packages such as PBGA and QFN that easily enter moisture, the Cl content is reduced to 1 ppm or less, thereby causing a corrosion problem of the ball joint due to the synergistic effect of P and Cl. It will be resolved.

以下、本発明に係るCuボンディングワイヤについて説明する。
表1に、本発明のCuボンディングワイヤを含む、評価用ボンディングワイヤの成分組成を示す。このボンディングワイヤに含まれるAu量、Cl量およびP量は、直径25μmのワイヤ試料をアルミニウム製キャップに挿入して20tプレスを用いて平板状にしたものを測定試料とし、測定前に装置内で約1時間の予備放電を行い、試料表面を数ミクロン程度除去した後、その除去面をグロー放電質量分析法にて測定して求めた。
Hereinafter, the Cu bonding wire according to the present invention will be described.
Table 1 shows the component composition of the bonding wire for evaluation including the Cu bonding wire of the present invention. The amount of Au, Cl, and P contained in this bonding wire were determined by inserting a 25 μm diameter wire sample into an aluminum cap and flattening it using a 20-t press, and measuring it in the apparatus before measurement. Preliminary discharge was performed for about 1 hour, the surface of the sample was removed about several microns, and the removed surface was measured by glow discharge mass spectrometry.

表1に示す評価用ボンディングワイヤの試料No.1〜14の製造方法を下記に示す。
まず、試料No.1〜12は、真空溶解連続鋳造炉において純度99.99%以上の高純度カーボンルツボ内にCu純度99.995%以上の高純度電解銅を入れ、溶解チャンバー内を真空度1×10−4Pa以下に保持して高周波溶解を行い、溶湯温度1150℃以上、保持時間10分以上で十分に脱ガスした後、所定の含有量になるように秤量したAu、またはAuおよびPを、ルツボ内に投入して溶解して撹拌し、不活性ガスで溶解チャンバー内を大気圧に戻し、連続鋳造によって直径8mmに鋳造し無酸素銅鋳造線材とした。
Sample No. of the bonding wire for evaluation shown in Table 1 The production methods 1 to 14 are shown below.
First, sample no. In No. 1-12, high-purity electrolytic copper with a Cu purity of 99.995% or higher is placed in a high-purity carbon crucible with a purity of 99.99% or higher in a vacuum melting continuous casting furnace, and the degree of vacuum in the melting chamber is 1 × 10 −4. High-frequency melting is performed by holding at Pa or lower, and after sufficiently degassing at a molten metal temperature of 1150 ° C. or higher and a holding time of 10 minutes or longer, Au or Au and P weighed so as to have a predetermined content are put in the crucible. The melted chamber was returned to atmospheric pressure with an inert gas and cast into a diameter of 8 mm by continuous casting to obtain an oxygen-free copper cast wire.

次に、この無酸素銅鋳造線材を、伸線ダイスを用いて直径1mmまで縮径し、途中酸洗浄を行う場合と行わない場合に分け、引き続き直径25μmまで縮径し、5%H+95%Nのフォーミングガス雰囲気中で伸び率が11%となる温度で焼鈍して、試料No.1〜12のCuボンディングワイヤを作製した。
なお、洗浄については、試料No.5は、直径1mmでの塩酸洗浄を行ったのちに約60℃のお湯で十分に洗浄し、試料No.8と試料No.11は、直径1mmでの塩酸洗浄を行ったのちに水道水で十分に洗浄した。
Next, this oxygen-free copper cast wire is reduced to a diameter of 1 mm using a wire drawing die, and is divided into a case where acid cleaning is not performed and a case where it is not performed. Subsequently, the diameter is reduced to 25 μm and 5% H 2 +95. Annealing is performed at a temperature at which the elongation becomes 11% in a forming gas atmosphere of% N 2 . 1 to 12 Cu bonding wires were produced.
For cleaning, sample no. No. 5 was washed with hydrochloric acid at a temperature of about 60 ° C. after washing with hydrochloric acid at a diameter of 1 mm. 8 and sample no. No. 11 was washed thoroughly with tap water after hydrochloric acid washing with a diameter of 1 mm.

試料No.13は、Cu純度99.995%以上の高純度電解銅のみを溶解鋳造した後、直径1mmにてアルカリ脱脂、水洗、電解脱脂、水洗、酸活性、水洗、Pdストライクめっき、水洗、Pdめっき、水洗、湯洗の順に連続的に行ってPd薄膜を形成し、その後直径25μmまで縮径した後に、5%H+95%Nのフォーミングガス雰囲気中で伸び率が11%となる温度で焼鈍したPd被覆Cu銅ボンディングワイヤである。なお、Pdめっき厚は、ワイヤを直径25μmまで縮径した際に80nm厚となるように調整した。 Sample No. No. 13, after melting and casting only high-purity electrolytic copper with a Cu purity of 99.995% or more, at a diameter of 1 mm, alkaline degreasing, water washing, electrolytic degreasing, water washing, acid activity, water washing, Pd strike plating, water washing, Pd plating, A Pd thin film is formed by sequentially performing washing with water and then with hot water, and after that, after reducing the diameter to 25 μm, annealing is performed at a temperature at which the elongation becomes 11% in a forming gas atmosphere of 5% H 2 + 95% N 2. Pd-coated Cu copper bonding wire. The Pd plating thickness was adjusted to 80 nm when the wire was reduced to a diameter of 25 μm.

さらに試料No.14は、試料No.1〜12と同様に、真空溶解連続鋳造炉を用いて純度99.99%以上の高純度カーボンルツボ内にCu純度99.995%以上の高純度電解銅を入れ、溶解チャンバー内を真空度1×10−4Pa以下に保持して高周波溶解を行い、溶湯温度1150℃以上、保持時間10分以上で十分に脱ガスした後、所定の含有量になるように秤量したPを、不活性ガスで溶解チャンバー内を大気圧に戻し、連続鋳造によって直径8mmに鋳造した無酸素銅鋳造線材を、伸線ダイスを用いて直径1mmまで縮径し、途中酸洗浄を行わず、引き続き直径25μmまで縮径し、5%H+95%Nのフォーミングガス雰囲気中で伸び率が11%となる温度で焼鈍して、Cuボンディングワイヤを作製した。 Furthermore, sample no. 14 is Sample No. As in 1 to 12, using a vacuum melting continuous casting furnace, high purity electrolytic copper with a Cu purity of 99.995% or higher is placed in a high purity carbon crucible with a purity of 99.99% or higher, and the melting chamber has a degree of vacuum of 1 After high-frequency melting while maintaining at 10-4 Pa or less, and sufficiently degassing at a molten metal temperature of 1150 ° C or higher and a holding time of 10 minutes or longer, P weighed to have a predetermined content is an inert gas. The oxygen-free copper cast wire that was cast to a diameter of 8 mm by continuous casting was reduced to a diameter of 1 mm using a wire drawing die, and was not subjected to acid cleaning in the middle, and subsequently reduced to a diameter of 25 μm. A Cu bonding wire was manufactured by annealing at a temperature of 11% elongation in a forming gas atmosphere of 5% H 2 + 95% N 2 .

表1に示す試料を用いて特性評価をおこなった。図1から図4は、その評価時の試料の代表例を示す走査電子顕微鏡写真である。   Characteristics were evaluated using the samples shown in Table 1. 1 to 4 are scanning electron micrographs showing representative examples of samples at the time of evaluation.

[ボンディングワイヤ特性]
A:ボール形成時の酸化膜の有無
固定電気トーチと放電用ガスノズルを持つ新川製ワイヤボンダUTC−1000を用いて、ボールを酸化しやすくするために通常のCuワイヤボンディングに用いられる5%H+95%Nガスではなく、100%Nガスを雰囲気ガスに用いて直径75μmのボールを50個作製し、顕微鏡観察で図1のような粒界酸化の有無を調査し、酸化が認められる場合を不良と判定し、図2のように粒界での酸化が見られない場合を正常であると判定して、その不良個数を求めた。
[Bonding wire characteristics]
A: Presence / absence of oxide film during ball formation 5% H 2 +95 used for normal Cu wire bonding to make the ball easy to oxidize using Shinkawa wire bonder UTC-1000 with fixed electric torch and discharge gas nozzle. % instead of N 2 gas, if the ball diameter 75μm with 100% N 2 gas in the atmosphere gas produced 50, to investigate the presence or absence of intergranular oxidation as shown in FIG. 1 by microscopic observation, it is observed oxidation 2 was determined to be defective, and the case where no oxidation at the grain boundary was observed as shown in FIG. 2 was determined to be normal, and the number of defects was determined.

B:ボール形成時のボール外形
図3のように底部に伸張した楕円体形状となったボールや、図4のように「巣」が入り穴が開いたボールが50個中1個でも発生した場合を不良とし、発生しないものを正常であると判定して、その不良個数を求めた。
B: Ball outer shape at the time of ball formation An ellipsoidal ball extended to the bottom as shown in FIG. 3 or a ball with a “nest” as shown in FIG. The case was determined to be defective, and those that did not occur were determined to be normal, and the number of defects was determined.

C:表面硬度
形成したCuボールの表面硬度を、ビッカース硬さにより求めた。荷重は0.5gfで行った。
C: Surface hardness The surface hardness of the formed Cu ball was determined by Vickers hardness. The load was 0.5 gf.

D:電気抵抗率
図5に示すように、厚み0.8μmのAl電極4と、そのAl電極4とシリコン層との間に50nm厚のTi層と50nmの酸化シリコン層とを有する半導体素子3のAl電極4とAgめっき付きリード5とを試料1〜13のCuボンディングワイヤを用いて、超音波熱圧着ボールボンディングおよびスティッチボンディングを行った後に、直径25.0μmの線を用いてホイートストーンブリッジ回路により電気抵抗を測定して電気抵抗率を算出した。
D: Electric resistivity As shown in FIG. 5, a semiconductor element 3 having an Al electrode 4 having a thickness of 0.8 μm, and a Ti layer having a thickness of 50 nm and a silicon oxide layer having a thickness of 50 nm between the Al electrode 4 and the silicon layer. The Al electrode 4 and the Ag plated lead 5 were subjected to ultrasonic thermocompression ball bonding and stitch bonding using the Cu bonding wires of Samples 1 to 13, and then Wheatstone using a wire having a diameter of 25.0 μm. The electrical resistance was calculated by measuring the electrical resistance using a bridge circuit.

[ボンディング性]
E:ボールボンディング時のパッドダメージ
図5に示す、厚み0.8μmのAl電極4と、そのAl電極4とシリコン層との間に50nm厚のTi層と50nmの酸化シリコン層とを有する半導体素子3のAl電極4とAgめっき付きリード5とを、試料1〜13のCuボンディングワイヤを用いて、超音波熱圧着ボールボンディングおよびスティッチボンディングを行った後に、水酸化カリウム溶液でCuボールごとAlを洗い流してAl電極下のパッドダメージを観察し、ひび割れ、欠け等の損傷が100個中1個でも発生した場合を不良と判定し、発生しないものを正常とし、その不良個数を求めた。比較例として、純度99.99%のCu表面にPdを80nm厚で被覆したPd被覆Cu線も用いた。なお、ボール形成はNガスのみで行った。
[Bondability]
E: Pad damage during ball bonding A semiconductor element having an Al electrode 4 having a thickness of 0.8 μm and a Ti layer having a thickness of 50 nm and a silicon oxide layer having a thickness of 50 nm between the Al electrode 4 and the silicon layer shown in FIG. 3 and the lead 5 with Ag plating were subjected to ultrasonic thermocompression ball bonding and stitch bonding using the Cu bonding wires of Samples 1 to 13, and then Al together with the Cu balls with a potassium hydroxide solution. After washing, the pad damage under the Al electrode was observed, and even when damage such as cracking or chipping occurred in 1 out of 100, it was judged as defective. As a comparative example, a Pd-coated Cu wire in which a 99.99% pure Cu surface was coated with Pd at a thickness of 80 nm was also used. Ball formation was performed only with N 2 gas.

F:スティッチボンディングの接合性
スプールに巻かれたボンディングワイヤを2週間クリーンルーム内の大気中で常温に放置した後に、2個ずつ連結されたAl電極を持つ前述の半導体素子上のAl電極と、リード先端にAgめっきされた銅合金製のリードフレームのリード先端とをボール、スティッチボンディングし、1200箇所中のスティッチボンディング不着の割合を不着率(%)として求めた。
F: Bondability of stitch bonding After the bonding wire wound on the spool is left at room temperature in the air in a clean room for two weeks, the Al electrode on the above semiconductor element having two Al electrodes connected to each other and leads The lead tip of a lead frame made of a copper alloy plated with Ag at the tip was ball and stitch bonded, and the ratio of stitch bonding non-sticking in 1200 locations was determined as a non-sticking rate (%).

G:プレッシャークッカーテスト(PCT)
隣接するAl電極がAl配線で連結しているEの「ボールボンディング時のパッドダメージ」測定と同構造の半導体素子を用いて、Al電極側をボールボンディングし、銅合金製リードフレームのリード先端のAgメッキ電極をスティッチボンディングし、ワイヤ、Al電極、ワイヤ、Agメッキ、ワイヤ、Al電極、と続くいわゆるデイジーチェーンを形成し、これをBrやSbを含有しないいわゆるグリーンエポキシコンパウンドでモールドして半導体装置とし、この半導体装置を温度125℃、気圧2.3atm、湿度100%の環境で168時間放置するいわゆるプレッシャークッカーテスト(PCT)を行った後、通電テストにて50組の中で電気抵抗が高温放置前の20%以上になった組が1組でも発生した場合を不良と判断し、1組も発生しない場合を正常とし、その不良個数を求めた。
以上、特性AからGの評価結果を表2に示す。
G: Pressure cooker test (PCT)
Adjacent Al electrodes are connected by Al wiring. Using a semiconductor element with the same structure as the "Pad damage during ball bonding" measurement of E, ball bonding is performed on the Al electrode side, and the lead tip of the copper alloy lead frame is The Ag plating electrode is stitch-bonded to form a so-called daisy chain that continues with a wire, an Al electrode, a wire, an Ag plating, a wire, and an Al electrode, and is molded with a so-called green epoxy compound that does not contain Br or Sb. After conducting a so-called pressure cooker test (PCT) in which the semiconductor device is left in an environment of a temperature of 125 ° C., an atmospheric pressure of 2.3 atm, and a humidity of 100% for 168 hours, the electrical resistance has a high electrical resistance among 50 sets in an energization test. If even one pair that has become 20% or more before being left is generated, A set also as normal if not generated was determined the defective number.
Table 2 shows the evaluation results of characteristics A to G.

表2から明らかなように、本発明の成分組成を有するCuボンディングワイヤの実施例1〜6(試料No.3〜8)は、不活性ガスである100%Nガス中において、各実施例の50個の試料が全て光沢を持った真球形状であり、半導体素子上の50個全てのアルミニウム電極下でパッドダメージは観察されず、PCT試験では50組全てが電気抵抗の上昇は20%未満であり、電気抵抗率は実施例1(試料No.3)において2.08μΩcm、実施例5(試料No.7)でも3.25μΩcmと、Auより低い電気抵抗率を示していた。 As is apparent from Table 2, Examples 1 to 6 (Sample Nos. 3 to 8) of Cu bonding wires having the component composition of the present invention are each in the 100% N 2 gas which is an inert gas. All of the 50 samples have a glossy spherical shape, no pad damage was observed under all 50 aluminum electrodes on the semiconductor element, and in the 50% PCT test, the increase in electrical resistance was 20%. The electrical resistivity was 2.08 μΩcm in Example 1 (Sample No. 3) and 3.25 μΩcm in Example 5 (Sample No. 7), indicating a lower electrical resistivity than Au.

一方、Cl及びPの含有量共に本発明の範囲内であるが、Au含有量が1質量%(試料No.1)、1.6質量%(試料No.2)と少ない比較例1および2では、ボンディング性は良好であったが、ボール形成時に、ボール表面は酸化し、また真球状の形状も得られなかった。   On the other hand, both the contents of Cl and P are within the scope of the present invention, but the Au contents are as small as 1% by mass (sample No. 1) and 1.6% by mass (sample No. 2). The bonding property was good, but the ball surface was oxidized at the time of ball formation, and a true spherical shape was not obtained.

Auの含有量が0.5質量%と少ない比較例3(試料No.9)では、Au含有の効果が見られず、ボールの表面やワイヤ表面が酸化し、また形状も楕円形に変形した。パッドダメージは観察されなかったものの、クリーンルーム内で2週間放置したあとのワイヤボンディングにおけるスティッチ接合性は悪化した。PCTでの導通不良は見られなかった。   In Comparative Example 3 (Sample No. 9) having a small Au content of 0.5% by mass, the effect of containing Au was not observed, the surface of the ball and the wire surface were oxidized, and the shape was also deformed into an elliptical shape. . Although no pad damage was observed, the stitch bondability in wire bonding after leaving in a clean room for 2 weeks deteriorated. There was no conduction failure in PCT.

Pは10質量ppmであるが、Auの含有量が0.5質量%と少ない比較例4(試料No.10)では、Pの効果によりボールの外観には異常は認められなかったものの、Auの含有量が少ないために、そのボール形状に、楕円形のものが見られた。また、パッドダメージは観察されなかったものの、クリーンルーム内で2週間放置したあとのワイヤボンディングにおけるスティッチ接合性は悪化した。PCTでの導通不良は見られなかった。   Although P is 10 mass ppm, in Comparative Example 4 (sample No. 10) with a small Au content of 0.5 mass%, no abnormality was observed in the appearance of the ball due to the effect of P. Because of the low content of, an elliptical ball shape was observed. Although no pad damage was observed, the stitch bondability in wire bonding after leaving for 2 weeks in a clean room deteriorated. There was no conduction failure in PCT.

Pを過剰に含み、Clの含有量も多い比較例5(試料No.11)では、ボールの外観には異常は認められなかったものの、ボールボンディングによるパッドダメージが観察され、クリーンルーム内で2週間放置したあとのワイヤボンディングにおけるスティッチ接合性が悪化した。PCTでの導通不良が多数発生していた。   In Comparative Example 5 (Sample No. 11) containing an excessive amount of P and containing a large amount of Cl, no abnormality was observed in the appearance of the ball, but pad damage due to ball bonding was observed, and 2 weeks in a clean room. Stitch bondability in wire bonding after standing was deteriorated. Many conduction failures occurred in PCT.

Auを9質量%と過剰に含む比較例6(試料No.12)では、ボールの外観には異常は認められなかったものの、ボールボンディングではひび割れや欠けといったパッドダメージが観察された。また電気抵抗率が3.57μΩcmと、純度99%の金ワイヤよりも高くなったしまった。   In Comparative Example 6 (Sample No. 12) containing 9 mass% of Au excessively, no abnormality was observed in the appearance of the ball, but pad damage such as cracking and chipping was observed in the ball bonding. Moreover, the electrical resistivity was 3.57 μΩcm, which was higher than that of a 99% pure gold wire.

Pd被覆され、含有するClは1.2質量ppmで本発明内であるが、Auを含まない比較例7(試料No.13)は、初期ボールの外観には異常は認められなかったものの、ボールボンディングではひび割れや欠けといったパッドダメージが観察された。またPCTでは導通不良を示すワイヤが発生した。   Although Pd-coated and contained Cl is 1.2 mass ppm within the scope of the present invention, Comparative Example 7 (sample No. 13) containing no Au showed no abnormality in the appearance of the initial ball. In ball bonding, pad damage such as cracking and chipping was observed. Moreover, the wire which shows a conduction defect generate | occur | produced in PCT.

Auを含まず、Pのみを30質量ppm含む比較例8(試料No.14)は、ボールの表面が酸化し、形状も楕円形に変形していた。パッドダメージは観察されなかったが、クリーンルーム内で2週間放置したあとのワイヤボンディングにおけるスティッチ接合性は悪化し、PCTにおいては導通不良を示すワイヤが発生した。   In Comparative Example 8 (sample No. 14) containing only 30 mass ppm of P without containing Au, the surface of the ball was oxidized and the shape was deformed into an elliptical shape. No pad damage was observed, but the stitch bondability in wire bonding after leaving in a clean room for 2 weeks deteriorated, and a wire showing poor conduction was generated in PCT.

さらに、試料No.1、2及び9の試料は、100%Nガス、即ち不活性ガス中では良好なボンディングワイヤ特性を示さなかった(比較例1、2及び3参照)が、従来のボンディング条件の還元性雰囲気である5%H+95%NガスよりもHが少ない2%H+98%Nのフォーミングガス中でボール形成したところ、ボール表面の酸化もワイヤ表面の酸化も見られず、ボールは光沢を有する真球であった。この2%H+98%Nのフォーミングガスを用いて前述同様の評価を行った結果を表3に示す。 Furthermore, sample no. Samples 1, 2 and 9 did not show good bonding wire properties in 100% N 2 gas, ie inert gas (see Comparative Examples 1, 2 and 3), but in a reducing atmosphere under conventional bonding conditions When the ball was formed in a forming gas of 2% H 2 + 98% N 2 , which had less H 2 than 5% H 2 + 95% N 2 gas, neither ball surface oxidation nor wire surface oxidation was observed. Was a glossy sphere. Table 3 shows the results of the same evaluation as described above using this 2% H 2 + 98% N 2 forming gas.

試料No.1を用いた実施例7、および試料No.2を用いた実施例8共に、ボールボンディングによるパッドダメージは観察されず、クリーンルーム内で2週間放置してもスティッチ接合性は良好で、PCTでも導通不良は見られなかった。しかし、試料No.9を用いた比較例9では、ボールの表面が酸化し、形状も楕円形に変形して、スティッチ接合性も悪化した。PCTにおける導通不良は測定されなかった。   Sample No. No. 1 using Sample No. 1 and Sample No. In Example 8 using No. 2, no pad damage due to ball bonding was observed, the stitch bondability was good even when left in a clean room for 2 weeks, and no poor conduction was seen even in PCT. However, sample no. In Comparative Example 9 using 9, the surface of the ball was oxidized, the shape was deformed into an ellipse, and the stitch bondability was also deteriorated. No conduction failure in PCT was measured.

1 銅ボンディングワイヤ
2 ボール
3 半導体素子
4 アルミニウム電極
5 銀めっき付きリード
6 エポキシ封止樹脂
7 抵抗測定器
DESCRIPTION OF SYMBOLS 1 Copper bonding wire 2 Ball 3 Semiconductor element 4 Aluminum electrode 5 Lead with silver plating 6 Epoxy sealing resin 7 Resistance measuring instrument

Claims (3)

ボールボンディング用Cuボンディングワイヤであって、スティッチボンディング接合性の悪化回避及びボールの真円度を高めるために、2.2質量%以上7.5質量%以下のAuを含み、Clの含有量が2質量ppm以下である、残部Cuと不可避不純物からなり、不活性雰囲気中でのワイヤボンディングに用いられることを特徴とするCuボンディングワイヤ。 A Cu bonding wire for ball bonding, in order that Ru enhanced roundness deterioration avoidance and ball stitch bonding bondability comprises 2.2 wt% or more 7.5 mass% of Au, containing Cl the amount is less than 2 mass ppm, Ri Do the balance Cu and inevitable impurities, Cu bonding wire, characterized in that the al used for wire bonding in an inert atmosphere. ボールボンディング用Cuボンディングワイヤであって、スティッチボンディング接合性の悪化回避及びボールの真円度を高めるために、2.2質量%以上7.5質量%以下のAuを含み、Clの含有量が2質量ppm以下であり、10質量ppm以上40質量ppm以下のPを含み、残部Cuと不可避不純物からなり、不活性雰囲気中でのワイヤボンディングに用いられることを特徴とするCuボンディングワイヤ。 A Cu bonding wire for ball bonding, in order that Ru enhanced roundness deterioration avoidance and ball stitch bonding bondability comprises 2.2 wt% or more 7.5 mass% of Au, containing Cl the amount is not more than 2 mass ppm, include the following P least 10 mass ppm 40 mass ppm, Ri Do the balance Cu and inevitable impurities, Cu bonding, characterized in using et al is that the wire bonding in an inert atmosphere Wire. 求項1又は2に記載のCuボンディングワイヤを用い、不活性雰囲気中でワイヤボンディングされることを特徴とする半導体装置。 Using Cu bonding wire according to Motomeko 1 or 2, wherein a is wire-bonded in an inert atmosphere.
JP2009145884A 2009-06-18 2009-06-18 Cu bonding wire Active JP5270467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145884A JP5270467B2 (en) 2009-06-18 2009-06-18 Cu bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145884A JP5270467B2 (en) 2009-06-18 2009-06-18 Cu bonding wire

Publications (2)

Publication Number Publication Date
JP2011003745A JP2011003745A (en) 2011-01-06
JP5270467B2 true JP5270467B2 (en) 2013-08-21

Family

ID=43561461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145884A Active JP5270467B2 (en) 2009-06-18 2009-06-18 Cu bonding wire

Country Status (1)

Country Link
JP (1) JP5270467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813778A (en) * 2014-03-14 2016-07-27 三菱综合材料株式会社 Copper Ingot, Copper Wire Rod, and Method For Producing Copper Ingot

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205315B (en) * 2012-03-23 2017-05-17 住友电木株式会社 Semiconductor device
JP6002437B2 (en) * 2012-05-17 2016-10-05 新日本無線株式会社 Semiconductor device and manufacturing method thereof
JP6810222B2 (en) * 2014-07-11 2021-01-06 ローム株式会社 Electronic device
KR102344790B1 (en) * 2014-08-29 2021-12-30 닛데쓰마이크로메탈가부시키가이샤 CYLINDRICAL FORMED BODY FOR Cu PILLARS FOR SEMICONDUCTOR CONNECTION
JP6422768B2 (en) * 2014-12-24 2018-11-14 タツタ電線株式会社 Manufacturing method of copper bonding wire
US10790259B2 (en) 2017-08-09 2020-09-29 Nippon Steel Chemical & Material Co., Ltd. Cu alloy bonding wire for semiconductor device
JPWO2023276943A1 (en) * 2021-06-30 2023-01-05
CN117390898B (en) * 2023-12-12 2024-03-12 嘉一达智能科技有限公司 Medical cable reliability prediction method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120693A (en) * 1984-07-06 1986-01-29 Toshiba Corp Bonding wire
JPH01187832A (en) * 1988-01-22 1989-07-27 Hitachi Ltd Semiconductor device and semiconductor chip
JP2501303B2 (en) * 1994-04-11 1996-05-29 株式会社東芝 Semiconductor device
JP5152897B2 (en) * 2006-11-21 2013-02-27 タツタ電線株式会社 Copper bonding wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813778A (en) * 2014-03-14 2016-07-27 三菱综合材料株式会社 Copper Ingot, Copper Wire Rod, and Method For Producing Copper Ingot
CN105813778B (en) * 2014-03-14 2019-09-13 三菱综合材料株式会社 The manufacturing method of casting in bronze block, copper wires and casting in bronze block

Also Published As

Publication number Publication date
JP2011003745A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5270467B2 (en) Cu bonding wire
TWI427719B (en) The joint structure of the joining wire and its forming method
EP2950335B1 (en) Semiconductor device bonding wire
US10840208B2 (en) Bonding wire for semiconductor device
WO2012043727A1 (en) Structure for joining multilayer copper bonding wire
JP5616165B2 (en) Silver bonding wire
JP7168779B2 (en) Palladium-coated copper bonding wire, method for producing palladium-coated copper bonding wire, semiconductor device using the same, and method for producing the same
WO2011013527A1 (en) Bonding wire for semiconductor
JP5343069B2 (en) Bonding wire bonding structure
JP2011146754A5 (en)
TW201336599A (en) Composite wire of silver-palladium alloy coated with metal thin film and method thereof
JP2006190763A (en) Bonding wire for semiconductor device
WO2013018238A1 (en) Ball bonding wire
TW201336598A (en) Composite wire of silver -gold- palladium alloy coated with metal thin film and method thereof
JP2010245390A (en) Bonding wire
KR20150032900A (en) Bonding wire
JP5109881B2 (en) Copper bonding wire
WO2019193771A1 (en) Precious metal coated silver wire for ball bonding and method for manufacturing said precious metal coated silver wire for ball bonding, and semiconductor device using precious metal coated silver wire for ball bonding and method for manufacturing said semiconductor device
JP2010040944A (en) Copper insulation bonding wire, and manufacturing method thereof
JP5591987B2 (en) Bonding wires for semiconductor devices
JP2010272884A (en) Bonding wire for semiconductor device
TWI731234B (en) Noble metal-coated silver wire for ball bonding and manufacturing method thereof, and semiconductor device using precious metal-coated silver wire for ball bonding and manufacturing method thereof
JP5465874B2 (en) Copper bonding wire manufacturing method and copper bonding wire using the manufacturing method
JP7383798B2 (en) Gold-coated bonding wire and its manufacturing method, semiconductor wire bonding structure, and semiconductor device
JP5293728B2 (en) Bonding wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250