JP2010272884A - Bonding wire for semiconductor device - Google Patents

Bonding wire for semiconductor device Download PDF

Info

Publication number
JP2010272884A
JP2010272884A JP2010174551A JP2010174551A JP2010272884A JP 2010272884 A JP2010272884 A JP 2010272884A JP 2010174551 A JP2010174551 A JP 2010174551A JP 2010174551 A JP2010174551 A JP 2010174551A JP 2010272884 A JP2010272884 A JP 2010272884A
Authority
JP
Japan
Prior art keywords
wire
copper
skin layer
gold
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010174551A
Other languages
Japanese (ja)
Other versions
JP5393614B2 (en
Inventor
Tomohiro Uno
智裕 宇野
Yukihiro Yamamoto
幸弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Materials Co Ltd filed Critical Nippon Steel Materials Co Ltd
Priority to JP2010174551A priority Critical patent/JP5393614B2/en
Publication of JP2010272884A publication Critical patent/JP2010272884A/en
Application granted granted Critical
Publication of JP5393614B2 publication Critical patent/JP5393614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45655Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45673Rhodium (Rh) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48863Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48864Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85469Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding wire which improves forming property and bondability of a ball part, has excellent loop controllability, as well, increases the bonding strength of wedge connection, secures industrial productivity, and mainly includes copper less expensive than a gold wire. <P>SOLUTION: The bonding wire for the semiconductor device includes a core material whose main component is copper and a cover layer of the conductive metal of a composition different from the core material on the core material. The main component of the cover layer is one or more kinds selected from among gold, palladium, platinum, rhodium, silver or nickel, a region having the concentration gradient of at least one of the main component metals and copper in a wire-diameter direction is present inside the cover layer, and the forefront area of an alloy containing at least two kinds of gold, palladium, platinum, rhodium, silver or nickel in the uniform concentration of 0.1 mol% or higher is present on the surface side of the cover layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体素子上の電極と回路配線基板(リードフレーム、基板、テープ)の配線とを接続するために利用される半導体装置用ボンディングワイヤに関するものである。   The present invention relates to a bonding wire for a semiconductor device used for connecting an electrode on a semiconductor element and a wiring of a circuit wiring board (lead frame, substrate, tape).

現在、半導体素子上の電極と外部端子との間を接合するボンディングワイヤとして、線径20〜50μm程度の細線(ボンディングワイヤ)が主として使用されている。ボンディングワイヤの接合には超音波併用熱圧着方式が一般的であり、汎用ボンディング装置、ワイヤをその内部に通して接続に用いるキャピラリ冶具等が用いられる。ワイヤ先端をアーク入熱で加熱溶融し、表面張力によりボールを形成させた後に、150〜300℃の範囲内で加熱した半導体素子の電極上にこのボール部を圧着接合せしめ、その後で、直接ワイヤを外部リード側に超音波圧着により接合させる。   Currently, fine wires (bonding wires) having a wire diameter of about 20 to 50 μm are mainly used as bonding wires for bonding between electrodes on semiconductor elements and external terminals. Bonding wires are generally joined by ultrasonic thermocompression bonding, and a general-purpose bonding apparatus, a capillary jig used for connecting the wires through the inside, or the like is used. After the wire tip is heated and melted by arc heat input and a ball is formed by surface tension, this ball portion is pressure bonded to the electrode of the semiconductor element heated within the range of 150 to 300 ° C. Are joined to the external lead side by ultrasonic pressure bonding.

近年、半導体実装の構造・材料・接続技術等は急速に多様化しており、例えば、実装構造では、現行のリードフレームを使用したQFP(Quad Flat Packaging)に加え、基板、ポリイミドテープ等を使用するBGA(Ball Grid Array)、CSP(Chip Scale Packaging)等の新しい形態が実用化され、ループ性、接合性、量産使用性等をより向上したボンディングワイヤが求められている。そうしたワイヤの接続技術でも、現在主流のボール/ウェッジ接合の他に、狭ピッチ化に適したウェッジ/ウェッジ接合では、2ヶ所の部位で直接ワイヤを接合するため、細線の接合性の向上が求められる。   In recent years, the structure, materials, connection technology, etc. of semiconductor mounting have been diversified rapidly. For example, in the mounting structure, in addition to QFP (Quad Flat Packaging) using the current lead frame, a substrate, polyimide tape, etc. are used. New forms such as BGA (Ball Grid Array) and CSP (Chip Scale Packaging) have been put into practical use, and there is a demand for bonding wires with improved loop characteristics, bondability, mass production usability, and the like. In such wire connection technology, in addition to the current mainstream ball / wedge joints, wedge / wedge joints suitable for narrow pitches join the wires directly at two locations, so it is necessary to improve the jointability of fine wires. It is done.

ボンディングワイヤの接合相手となる材質も多様化しており、シリコン基板上の配線、電極材料では、従来のAl合金に加えて、より微細配線に好適なCuが実用化されている。また、リードフレーム上にはAgメッキ、Pdメッキ等が施されており、また、樹脂基板、テープ等の上には、Cu配線が施され、その上に金等の貴金属元素及びその合金の膜が施されている場合が多い。こうした種々の接合相手に応じて、ワイヤの接合性、接合部信頼性を向上することが求められる。   The materials to which bonding wires are bonded are diversified, and in addition to conventional Al alloys, Cu suitable for finer wiring has been put to practical use as wiring and electrode materials on silicon substrates. Also, Ag plating, Pd plating, etc. are applied on the lead frame, and Cu wiring is applied on the resin substrate, tape, etc., and a film of a noble metal element such as gold and its alloy is formed thereon. Is often applied. It is required to improve the bondability of the wire and the reliability of the joint according to these various joining partners.

ボンディングワイヤの素材は、これまで高純度4N系(純度>99.99mass%)の金が主に用いられている。しかし、金は高価であるため、材料費が安価である他種金属のボンディングワイヤが所望されている。   As a material for the bonding wire, gold of high purity 4N (purity> 99.99 mass%) has been mainly used so far. However, since gold is expensive, a bonding wire of another kind of metal having a low material cost is desired.

ワイヤボンディング技術からの要求では、ボール形成時に真球性の良好なボールを形成し、そのボール部と電極との接合部で十分な接合強度を得ることが重要である。また、接合温度の低温化、ワイヤの細線化等に対応するためにも、回路配線基板上の配線部にワイヤをウェッジ接続した部位での接合強度、引張り強度等も必要である。   In the demand from the wire bonding technology, it is important to form a ball having good sphericity when forming the ball and obtain a sufficient bonding strength at the bonding portion between the ball portion and the electrode. Further, in order to cope with a decrease in the bonding temperature, thinning of the wire, etc., it is necessary to have a bonding strength, a tensile strength, and the like at a portion where the wire is wedge-connected to the wiring portion on the circuit wiring board.

高粘性の熱硬化エポキシ樹脂が高速注入される樹脂封止工程では、ワイヤが変形して隣接ワイヤと接触することが問題となり、しかも、狭ピッチ化、長ワイヤ化、細線化も進む中で、樹脂封止時のワイヤ変形を少しでも抑えることが求められている。ワイヤ強度の増加により、こうした変形をある程度コントロールすることはできるものの、ループ制御が困難となったり、接合時の強度が低下する等の問題が解決されなくては実用化は難しい。   In the resin sealing process in which high-viscosity thermosetting epoxy resin is injected at high speed, the wire deforms and comes into contact with the adjacent wire, and further, while narrow pitch, long wire, and thinning are progressing, It is required to suppress even a little wire deformation during resin sealing. Although the deformation can be controlled to some extent by increasing the wire strength, it is difficult to put it to practical use unless problems such as loop control becomes difficult and the strength at the time of bonding decreases.

こうした要求を満足するワイヤ特性として、ボンディング工程におけるループ制御が容易であり、しかも、電極部、リード部への接合性も向上しており、ボンディング以降の樹脂封止工程における過剰なワイヤ変形を抑制すること等の、総合的な特性を満足することが望まれている。   As a wire characteristic that satisfies these requirements, loop control in the bonding process is easy, and bondability to the electrode and lead parts has also been improved, suppressing excessive wire deformation in the resin sealing process after bonding. It is desirable to satisfy comprehensive characteristics such as

材料費が安価で、電気伝導性に優れ、ボール接合、ウェッジ接合等も高めるために、銅を素材とするボンディングワイヤが開発され、特許文献1等が開示されている。しかし、銅のボンディングワイヤでは、ワイヤ表面の酸化により接合強度が低下することや、樹脂封止されたときのワイヤ表面の腐食等が起こり易いことが問題となる。これが銅のボンディングワイヤの実用化が進まない原因ともなっている。   In order to increase material costs at low cost, excellent electrical conductivity, ball bonding, wedge bonding, and the like, a bonding wire using copper as a raw material has been developed, and Patent Document 1 is disclosed. However, copper bonding wires have problems in that the bonding strength is reduced due to the oxidation of the wire surface, and that the wire surface is easily corroded when sealed with a resin. This is also the reason why the practical application of copper bonding wires has not progressed.

そこで、銅ボンディングワイヤの表面酸化を防ぐ方法として、特許文献2には、金、銀、白金、パラジウム、ニッケル、コバルト、クロム、チタン等の貴金属や耐食性金属で銅を被覆したワイヤが提案されている。また、ボール形成性、メッキ液の劣化防止等の点から、特許文献3には、銅を主成分とする芯材、該芯材上に形成された銅以外の金属からなる異種金属層、及び該異種金属層の上に形成され、銅よりも高融点の耐酸化性金属からなる被覆層の構造をしたワイヤが提案されている。   Therefore, as a method for preventing the surface oxidation of the copper bonding wire, Patent Document 2 proposes a wire in which copper is coated with a noble metal such as gold, silver, platinum, palladium, nickel, cobalt, chromium, titanium, or a corrosion-resistant metal. Yes. Further, from the viewpoints of ball formability, prevention of deterioration of the plating solution, and the like, Patent Document 3 describes a core material mainly composed of copper, a dissimilar metal layer made of a metal other than copper formed on the core material, and There has been proposed a wire formed on the dissimilar metal layer and having a covering layer structure made of an oxidation-resistant metal having a melting point higher than that of copper.

特開昭56−21254号公報JP-A-56-21254 特開昭62−97360号公報JP-A-62-97360 特開2004−64033号公報JP 2004-64033 A

銅ボンディングワイヤの実用上の問題として、ワイヤ表面が酸化し易いこと、接合強度が低下すること等が起こり易いことが挙げられる。また、高純度銅ボンディングワイヤでは、ワイヤ強度が不十分なことから樹脂封止時のワイヤ変形が大きいこと、ネック部のプル強度が低いこと、低ループ化が困難であること、等の問題により、応用できる半導体製品が少ないことも問題である。そこで、銅ボンディングワイヤの表面酸化を防ぐ手段として、ワイヤ表面に貴金属や耐酸化性の金属を被覆することが可能である。   As practical problems of the copper bonding wire, it can be mentioned that the surface of the wire is likely to be oxidized and the bonding strength is likely to be lowered. In addition, due to insufficient wire strength, high-purity copper bonding wires have problems such as large wire deformation during resin sealing, low pull strength at the neck, and difficulty in lowering the loop. It is also a problem that there are few semiconductor products that can be applied. Therefore, as a means for preventing the surface oxidation of the copper bonding wire, it is possible to coat the wire surface with a noble metal or an oxidation resistant metal.

半導体実装の高密度化、小型化、薄型化等のニーズを考慮して、本発明者らが評価したところ、銅ボンディングワイヤの表面を銅と異なる金属で覆った構造の従来の複層銅ワイヤ(以下、従来複層銅ワイヤと記す)では、後述するような実用上の問題が多く残されていることが判明した。   The present inventors evaluated in consideration of needs such as high density, miniaturization, and thinning of semiconductor packaging, and the conventional multilayer copper wire having a structure in which the surface of the copper bonding wire is covered with a metal different from copper. In the following (hereinafter referred to as conventional multilayer copper wire), it has been found that many practical problems as described later remain.

従来複層銅ワイヤの先端にボールを形成した場合、真球からずれた扁平ボールが形成されたり、ボール内部に溶融されないワイヤが残ることが問題となる。こうした正常でないボール部を電極上に接合すると、接合強度の低下、チップ損傷等の問題を起こす原因となる。また、低ループ化等の厳しいループ制御に伴い、ネック部に損傷が発生し易く、プル強度が低下する場合もある。   Conventionally, when a ball is formed at the tip of a multilayer copper wire, there is a problem that a flat ball deviated from a true sphere is formed, or an unmelted wire remains in the ball. If such an abnormal ball portion is bonded onto the electrode, it may cause problems such as a decrease in bonding strength and chip damage. Further, along with severe loop control such as lowering the loop, damage to the neck portion is likely to occur, and the pull strength may decrease.

従来複層銅ワイヤで複雑なループ制御等を実施すると、被覆層と銅との界面で剥離すること等で、ループ形状が不安定になったり、狭ピッチ接続では隣接ワイヤが電気的ショートを起こすことが懸念される。   When complex loop control is performed with conventional multilayer copper wires, the loop shape becomes unstable due to peeling at the interface between the coating layer and copper, etc., and adjacent wires cause electrical shorts in narrow pitch connections There is concern.

従来複層銅ワイヤを回路基板等の電極にウェッジ接続する際に、被覆層と芯材との界面の剥離や、ワイヤと電極の接合部から被覆層が排出されて銅が直接接合すること等により、接合強度が不安定となったり、低下すること等が懸念される。   Conventionally, when a multilayer copper wire is wedge-connected to an electrode such as a circuit board, the interface between the coating layer and the core material is peeled off, the coating layer is discharged from the wire-electrode joint, and the copper is directly joined Therefore, there is a concern that the bonding strength becomes unstable or decreases.

前述した従来複層銅ワイヤの問題の改善する因子として、被覆層の厚さを制御することが考えられる。しかし、被覆層を厚くすると、ウェッジ接続等の改善は期待されるが、メッキや蒸着等で厚い被覆層を形成することで、生産性の低下、材料費の上昇等の工業生産面で問題が生じる。また、被覆層を厚くすると、溶融されたボール部内で銅以外の元素の濃度が上昇することで、ボール部が硬化してしまい、ボール接合時にチップ損傷を与えることが問題となる。   As a factor for improving the problems of the conventional multilayer copper wire described above, it is conceivable to control the thickness of the coating layer. However, thickening the coating layer is expected to improve wedge connection, etc., but forming a thick coating layer by plating or vapor deposition has problems in industrial production, such as a decrease in productivity and an increase in material costs. Arise. Further, when the coating layer is thickened, the concentration of elements other than copper is increased in the melted ball portion, so that the ball portion is cured, and there is a problem that chip damage is caused at the time of ball bonding.

その反対に、従来複層銅ワイヤの被覆層を薄くするだけでは、被覆層と芯材との界面での剥離が発生したり、酸化防止やウェッジ接続の改善等が難しくなる問題が生じる。   On the other hand, if the coating layer of the conventional multilayer copper wire is only made thin, peeling at the interface between the coating layer and the core material occurs, and it becomes difficult to prevent oxidation and improve wedge connection.

本発明では、上述するような従来技術の問題を解決して、ボール部の形成性、接合性を改善し、ループ制御性も良好であり、ウェッジ接続の接合強度を高め、工業生産性にも確保し、金ワイヤよりも安価な銅を主体とするボンディングワイヤを提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, improves the ball section formability and bondability, has good loop controllability, increases the wedge connection joint strength, and improves industrial productivity. An object of the present invention is to provide a bonding wire mainly composed of copper, which is less expensive than a gold wire.

上記課題を解決するための本発明は、下記の構成を要旨とする。
(1) 銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる2種以上であり、前記表皮層内にワイヤ径方向に主成分金属又は銅の一方又は双方の濃度勾配を有する部位が存在することを特徴とする半導体装置用ボンディングワイヤ。
(2) 銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる2種以上であり、前記表皮層内にワイヤ径方向に主成分金属又は銅の一方又は双方の濃度勾配を有する部位が存在すると共に、表皮層の主成分の少なくとも1種がワイヤ径方向に増加と減少の両方を有することを特徴とする半導体装置用ボンディングワイヤ。
(3)前記表皮層の表面側に、さらに金、パラジウム、白金、ロジウム、銀又はニッケルの単一金属領域を有する(1)又は(2)に記載の半導体装置用ボンディングワイヤ。
(4)前記表皮層の内部に、金、パラジウム、白金、ロジウム、銀又はニッケルの単一金属領域を有する(1)又は(2)に記載の半導体装置用ボンディングワイヤ。
(5)銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の表面側に、銅の単一又は30mol%以上銅を含有する合金からなる最表領域を有し、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる1種以上であり、前記表皮層内にワイヤ径方向に主成分金属の少なくとも1種と銅がワイヤ径方向に増加と減少の両方の濃度勾配を有する領域が存在することを特徴とする半導体装置用ボンディングワイヤ。
(6)銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる1種以上であり、前記表皮層内にワイヤ径方向に主成分金属の少なくとも1種と銅の濃度勾配を有する領域が存在し、前記表皮層の表面側に、金、パラジウム、白金、ロジウム、銀又はニッケルの2種以上を0.1mol%以上の均一濃度で含有する合金の最表領域が存在することを特徴とする半導体装置用ボンディングワイヤ。
(7) 前記表皮層内に、金属間化合物を含有する(1)〜(6)のいずれかに記載の半導体装置用ボンディングワイヤ。
(8) 前記銅を主成分とする芯材が、Ca、Sr、Be、Al又は希土類元素から選ばれる1種以上を総計で1〜300質量ppm含有する(1)〜(7)のいずれかに記載の半導体装置用ボンディングワイヤ。
(9) 前記銅を主成分とする芯材が、銀、スズ又は金の1種以上を総計で0.1〜10質量%含有する(1)〜(8)のいずれかに記載の半導体装置用ボンディングワイヤ。
The gist of the present invention for solving the above problems is as follows.
(1) A bonding wire having a core material mainly composed of copper and a conductive metal skin layer having a composition different from that of the core material on the core material, the main component of the skin layer being gold, palladium 2 or more selected from platinum, rhodium, silver or nickel, and a portion having a concentration gradient of one or both of the main component metal and copper in the wire radial direction exists in the skin layer Bonding wire for equipment.
(2) A bonding wire having a core material mainly composed of copper and a conductive metal skin layer having a composition different from that of the core material on the core material, the main component of the skin layer being gold, palladium 2 or more selected from platinum, rhodium, silver or nickel, and a portion having a concentration gradient of one or both of the main component metal and copper in the wire radial direction is present in the skin layer. A bonding wire for a semiconductor device, wherein at least one of the components has both an increase and a decrease in the wire radial direction.
(3) The bonding wire for a semiconductor device according to (1) or (2), further having a single metal region of gold, palladium, platinum, rhodium, silver or nickel on the surface side of the skin layer.
(4) The bonding wire for a semiconductor device according to (1) or (2), which has a single metal region of gold, palladium, platinum, rhodium, silver or nickel inside the skin layer.
(5) A bonding wire having a core material mainly composed of copper and a conductive metal skin layer having a composition different from that of the core material on the core material. The outermost layer is made of an alloy containing one or more than 30 mol% copper, and the main component of the skin layer is at least one selected from gold, palladium, platinum, rhodium, silver or nickel, and the skin layer A bonding wire for a semiconductor device, characterized in that there is a region having at least one kind of main component metal in the wire radial direction and a concentration gradient in which both copper increases and decreases in the wire radial direction.
(6) A bonding wire having a core material mainly composed of copper and a conductive metal skin layer having a composition different from that of the core material on the core material, the main component of the skin layer being gold, palladium One or more selected from platinum, rhodium, silver or nickel, and a region having a concentration gradient of at least one main component metal and copper in the wire radial direction exists in the skin layer, and the surface of the skin layer A bonding wire for a semiconductor device, characterized in that an outermost region of an alloy containing two or more of gold, palladium, platinum, rhodium, silver or nickel at a uniform concentration of 0.1 mol% or more exists on the side.
(7) The bonding wire for a semiconductor device according to any one of (1) to (6), wherein the skin layer contains an intermetallic compound.
(8) Any one of (1) to (7), wherein the core containing copper as a main component contains 1 to 300 mass ppm in total of at least one selected from Ca, Sr, Be, Al, or a rare earth element A bonding wire for a semiconductor device as described in 1.
(9) The semiconductor device according to any one of (1) to (8), wherein the core material containing copper as a main component contains 0.1 to 10% by mass in total of one or more of silver, tin, and gold. Bonding wire.

本発明の半導体装置用ボンディングワイヤにより、材料費が安価で、ボール接合性、ワイヤ接合性等に優れ、ループ形成性も良好である、狭ピッチ用細線化、パワー系IC用途の太径化にも適応する銅系ボンディングワイヤを提供することが可能になる。   The bonding wire for a semiconductor device of the present invention is low in material cost, excellent in ball bondability, wire bondability, etc., and in good loop formation, for narrow pitch thinning, and for thickening power IC applications. It becomes possible to provide a copper-based bonding wire that is also adaptable.

本発明のボンディングワイヤは、銅を主成分とする芯材と、芯材と異なる組成の導電性金属の表皮層で構成されている。但し、銅の芯材と表皮層との単純な2層構造では、ボール形成、接合性、ループ制御等が十分でなく、単層の銅ワイヤよりも特性劣化が生じる場合がある。そこで、単層の銅ワイヤよりも特性を総合的に改善するため、本発明の該表皮層では、銅及び該導電性金属の一方又は双方の濃度勾配域を有する。   The bonding wire of the present invention is composed of a core material mainly composed of copper and a conductive metal skin layer having a composition different from that of the core material. However, the simple two-layer structure of the copper core material and the skin layer does not have sufficient ball formation, bondability, loop control, and the like, and may cause characteristic deterioration as compared with a single-layer copper wire. Therefore, in order to improve the characteristics comprehensively over the single-layer copper wire, the skin layer of the present invention has a concentration gradient region of one or both of copper and the conductive metal.

さらに、銅の濃度勾配だけでは、ボンディングワイヤ工程の生産性が現行主流の金ボンディングワイヤよりも低下する場合がある。そこで、金ボンディングワイヤと同等以上に生産性を向上させる表皮層の構成として、銅以外に2種類以上の導電性金属の主成分が濃度勾配を有する表皮層、その主成分の単一金属領域が表面又は内部に形成された表皮層、主成分の一定濃度の合金域を最表領域に有する表皮層等を特徴とすることが有効であることを見出した。さらに、芯材に特定の元素を有する銅合金にする手法も有効である。   Further, the productivity of the bonding wire process may be lower than the current mainstream gold bonding wire only with the copper concentration gradient. Therefore, as a structure of the skin layer that improves productivity to the same level or more as that of the gold bonding wire, a skin layer in which the main component of two or more kinds of conductive metals other than copper has a concentration gradient, and a single metal region of the main component includes It has been found that it is effective to characterize a skin layer formed on the surface or inside, a skin layer having an alloy region of a constant concentration of the main component in the outermost surface region, and the like. Furthermore, a technique of using a copper alloy having a specific element in the core material is also effective.

表皮層と芯材との境界は、表皮層を構成する導電性金属の検出濃度が5mol%以上の領域とする。この根拠は、本発明の表皮層の構造から特性の改善効果が期待できる領域であること、特性発現に導電性金属の濃度が連続的に変化する場合が多く、それを評価するための通常の定量分析の精度等を、総合的に判断して、導電性金属の濃度が5mol%以上の領域とした。好ましくは、10mol%以上の領域であれば、定量分析の精度が上がり、測定がより簡便となる。   The boundary between the skin layer and the core material is an area where the detected concentration of the conductive metal constituting the skin layer is 5 mol% or more. This is based on the fact that the effect of improving the characteristics can be expected from the structure of the skin layer of the present invention, and the conductive metal concentration often changes continuously for the expression of characteristics. The accuracy of quantitative analysis and the like were comprehensively determined, and the region where the concentration of the conductive metal was 5 mol% or more was determined. Preferably, in the region of 10 mol% or more, the accuracy of quantitative analysis is improved, and the measurement becomes simpler.

濃度勾配を構成元素で分類すると、芯部を構成する銅元素の有無により2種類に区別される。即ち、芯部を構成する銅元素と導電性金属元素とからなる濃度勾配(以下、A型濃度勾配と称す)と、芯部を構成する銅元素を含まないで導電性金属元素だけからなる濃度勾配(以下、B型濃度勾配と称す)に分けられる。   When the concentration gradient is classified by constituent elements, there are two types according to the presence or absence of copper elements constituting the core. That is, a concentration gradient composed of a copper element and a conductive metal element constituting the core (hereinafter referred to as A-type concentration gradient), and a concentration composed only of the conductive metal element without including the copper element constituting the core It is divided into gradients (hereinafter referred to as B-type concentration gradients).

濃度勾配の定義は、深さ方向への濃度変化の程度が1μm当り5mol%以上であることが望ましい。この変化を超えると、前述した濃度勾配を持つ表皮層としての改善効果が期待できること、定量分析の精度上も再現良い結果が得られる等の理由による。但し、ワイヤ中の元素濃度が局所的に上下している場合、不均一に分布している場合等とは区別する。好ましくは、1μm当り10mol%以上であれば製造が容易である。さらに好ましくは、1μm当り20mol%以上であれば、表皮層と芯材の異なる特性を損なうことなく、相互に利用する高い効果が期待できる。   As for the definition of the concentration gradient, it is desirable that the degree of concentration change in the depth direction is 5 mol% or more per 1 μm. If this change is exceeded, the improvement effect as the skin layer having the above-described concentration gradient can be expected, and the result of good reproducibility can be obtained in terms of the accuracy of quantitative analysis. However, the case where the element concentration in the wire locally fluctuates is distinguished from the case where it is unevenly distributed. Preferably, if it is 10 mol% or more per 1 μm, the production is easy. More preferably, if it is 20 mol% or more per 1 μm, a high effect of mutual use can be expected without impairing the different properties of the skin layer and the core material.

生産性及び品質安定性等の面から、表皮層内の濃度勾配は連続的に変化していることが好適である。即ち、濃度勾配の傾きの程度は、表皮層内で必ずしも一定である必要はなく、連続的に変化していて構わない。例えば、被覆層と芯材との界面又は最表面近傍等での濃度変化の傾きが被覆層の内部と異なっていたり、指数関数的に濃度変化している場合でも良好な特性が得られる。   From the standpoints of productivity and quality stability, it is preferable that the concentration gradient in the epidermis layer changes continuously. That is, the degree of the gradient of the concentration gradient is not necessarily constant in the epidermis layer, and may change continuously. For example, good characteristics can be obtained even when the gradient of concentration change at the interface between the coating layer and the core material or near the outermost surface is different from the inside of the coating layer or when the concentration changes exponentially.

濃度勾配域は、原子の拡散により形成された領域であることが望ましい。これは拡散で形成された層であれば、局所的な剥離、クラック等の不良の可能性が低いこと、連続的な濃度変化の形成等が容易であること等の利点が多いためである。   The concentration gradient region is preferably a region formed by atomic diffusion. This is because a layer formed by diffusion has many advantages such as low possibility of defects such as local peeling and cracks, and easy formation of a continuous concentration change.

表皮層を合金の組成、濃度分布等で適正化する技術を具体的に説明する。   A technique for optimizing the skin layer with the alloy composition, concentration distribution, and the like will be specifically described.

銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層で構成され、該表皮層は、金、パラジウム、白金、ロジウム、銀、ニッケルの2種以上の金属を含有し、さらに該表皮層の内部に主成分金属又は銅の一方又は双方の濃度勾配を有する部位が存在するボンディングワイヤが望ましい。   It is composed of a core material mainly composed of copper, and a conductive metal skin layer having a composition different from that of the core material on the core material, and the skin layer is made of gold, palladium, platinum, rhodium, silver, or nickel. A bonding wire containing a metal of more than seeds and having a concentration gradient of one or both of the main component metal and copper inside the skin layer is desirable.

これは、表皮層に銅以外の2種以上の導電性金属元素を有し、且つ、芯部の銅元素を含むA型濃度勾配と、芯部の銅元素を含まないで導電性金属元素だけからなるB型濃度勾配を有することにより、表皮層の元素分布がほぼ均質である合金化よりも、電気抵抗の増加等を抑えつつ、ボール形成性、ワイヤ強度、ループ制御、接合強度等を改善することができる。濃度勾配の効果について、表皮層と芯部の境界近傍のA型濃度勾配は、ワイヤの曲折部からなるループ形成の安定性を向上し、表皮層の内部に形成されるB型濃度勾配は、ボール形成性、ワイヤ強度の向上等に有効である。   This is because the skin layer has two or more types of conductive metal elements other than copper, and an A-type concentration gradient containing copper element in the core, and only the conductive metal element does not contain copper element in the core. B-type concentration gradient consisting of the following improvements in ball formability, wire strength, loop control, joint strength, etc., while suppressing an increase in electrical resistance, etc., compared to alloying where the element distribution in the skin layer is almost homogeneous can do. Regarding the effect of the concentration gradient, the A-type concentration gradient in the vicinity of the boundary between the skin layer and the core portion improves the stability of loop formation composed of the bent portion of the wire, and the B-type concentration gradient formed inside the skin layer is It is effective for improving ball formability and wire strength.

表皮層の主要元素が金、パラジウム、白金、ロジウム、銀、ニッケルの1種だけの場合に、従来の表皮層無しの銅ワイヤよりはループ形状、樹脂流れ制御などは改善しているものの、現行の金ワイヤと比較すると、適正なボンディング条件が異なったり、量産レベルでボール形状、ループ形状、接合強度等を総合的に向上することが困難である。表皮層が、金、パラジウム、白金、ロジウム、銀、ニッケルの2種以上の金属で構成することで、要求特性を総合的に改善し、汎用の金ボンディングワイヤと同等の特性を有することを見出した。さらに、表皮層/芯材の界面近傍に、拡散等により銅元素の濃度勾配を有することで、ループ形成時の強制的な曲げによっても、表皮層の剥離を抑え、安定したループ形状を得ることができる。   When the main element of the skin layer is only one of gold, palladium, platinum, rhodium, silver and nickel, the loop shape and resin flow control are improved compared to the conventional copper wire without the skin layer, but the current Compared with the gold wire, it is difficult to improve the ball bonding shape, the loop shape, the bonding strength and the like at a mass production level because the proper bonding conditions are different. It is found that the skin layer is composed of two or more metals of gold, palladium, platinum, rhodium, silver and nickel, so that the required characteristics are comprehensively improved and have the same characteristics as general-purpose gold bonding wires. It was. Furthermore, by having a copper element concentration gradient near the skin layer / core interface by diffusion, etc., it is possible to suppress peeling of the skin layer and obtain a stable loop shape even by forced bending during loop formation. Can do.

表皮層を構成する元素の組み合わせについて、金−パラジウム、金−白金、金−ロジウム、金−銀、金−ニッケルの系ではウェッジ接合性の改善が顕著であり、パラジウム−白金、パラジウム−ニッケル、パラジウム−ロジウム等ではボール形状の真球性が非常に良好であることを確認した。これら機能向上するための表皮層の平均合金比率について、金−パラジウム、金−白金、金−ロジウム、金−銀、金−ニッケル系では、金の構成比を50〜90%とすることで、ウェッジ接合性を従来の銅ワイヤよりも改善する高い効果が得られる。また、パラジウム−白金、パラジウム−ニッケル系では、パラジウムの構成比を40〜90%とすることで、アーク放電が安定化して、ボール形状の真球性や寸法バラツキ等を向上する効果が高められる。ループ形状の制御等を考慮して、上記例示した元素の組合せでも可能である。   Regarding the combination of elements constituting the skin layer, the improvement in wedge bondability is remarkable in the system of gold-palladium, gold-platinum, gold-rhodium, gold-silver, gold-nickel, palladium-platinum, palladium-nickel, It was confirmed that palladium-rhodium or the like has a very good ball-like sphericity. Regarding the average alloy ratio of the skin layer for improving these functions, in the gold-palladium, gold-platinum, gold-rhodium, gold-silver, and gold-nickel systems, the composition ratio of gold is 50 to 90%. The high effect which improves wedge bondability compared with the conventional copper wire is acquired. In the case of palladium-platinum and palladium-nickel, the arc discharge is stabilized and the effect of improving ball-shaped sphericity and dimensional variation is enhanced by setting the palladium composition ratio to 40 to 90%. . Considering the control of the loop shape and the like, a combination of the above-exemplified elements is also possible.

表皮層が3種以上の元素により構成されることで、上記の特性改善をより高めることも可能であり、金−パラジウム−白金、金−パラジウム−銀、金−白金−ニッケル等を例示できる。   When the skin layer is composed of three or more elements, it is possible to further improve the above characteristics, and examples thereof include gold-palladium-platinum, gold-palladium-silver, and gold-platinum-nickel.

濃度勾配域の厚さの総計は、表皮層の厚さの10%〜100%であることが望ましく、これは、10%以上の厚さであれば、平均的な合金化の場合に比べて機能向上する効果が得られるためである。また、好ましくは20%〜80%であれば、電気特性を改善する効果を高めることができる。濃度勾配の程度は、深さ方向への濃度変化が1μm当り2mol%以上であれば、ボンディング工程の生産性を高める効果を確保することができる。   The total thickness of the concentration gradient region is preferably 10% to 100% of the thickness of the skin layer, which is 10% or more compared to the case of average alloying. This is because the effect of improving the function is obtained. Moreover, if it is preferably 20% to 80%, the effect of improving electrical characteristics can be enhanced. If the concentration change in the depth direction is 2 mol% or more per 1 μm, the effect of increasing the productivity of the bonding process can be secured.

また、表皮層は、金、パラジウム、白金、ロジウム、銀、ニッケルの2種以上の主要金属(以下、表皮主要金属と称す)を含有し、表皮層内にワイヤ径方向に主成分金属又は銅の一方又は双方の濃度勾配を有する部位が存在すると共に、少なくとも1種以上の表皮主要金属の濃度勾配が、深さ方向に増加と減少の両方が存在することが望ましい。ここで、表面から深さ方向に濃度が減少する場合を負の濃度勾配、濃度が増加する場合を正の濃度勾配とする。比較として、表皮層と芯材との境界のみに濃度勾配が存在するような、表皮主要金属が負の濃度勾配のみを有している場合には、ループ形状、ウェッジ接合性等をさらに安定化させることが困難である。そこで、同一元素の正と負の濃度勾配が同時に存在することで、表皮層と芯材との密着性が改善され、ループ高さのばらつき低減等のループ形状の安定化、さらにウェッジ接合での変形形状の安定化、接合部のめくれ不良の低減等を改善できる。これは、不均一な外力や衝撃等がワイヤに加わっても、正と負の濃度勾配が相互に干渉して、変形の安定化を促進するためと考えられる。   The skin layer contains two or more main metals (hereinafter referred to as skin main metals) of gold, palladium, platinum, rhodium, silver and nickel, and the main metal or copper in the wire radial direction in the skin layer. It is desirable that there is a site having one or both of the concentration gradients, and that there is both an increase and a decrease in the concentration gradient of at least one epidermal main metal in the depth direction. Here, a case where the concentration decreases in the depth direction from the surface is a negative concentration gradient, and a case where the concentration increases is a positive concentration gradient. For comparison, when the main skin metal has only a negative concentration gradient, such as a concentration gradient exists only at the boundary between the skin layer and the core material, the loop shape and wedge bondability are further stabilized. It is difficult to do. Therefore, the presence of positive and negative concentration gradients of the same element at the same time improves the adhesion between the skin layer and the core material, stabilizes the loop shape, such as reducing the variation in loop height, and further provides wedge bonding. It is possible to improve the stabilization of the deformed shape and the reduction of the turning failure of the joint. This is presumably because positive and negative concentration gradients interfere with each other to promote the stabilization of deformation even when non-uniform external force or impact is applied to the wire.

同一元素の正負の濃度勾配の一例として、表皮層の主成分が金、パラジウムで、表面側に金が多い場合に、パラジウム元素の濃度勾配を比較すると、表皮層内の金とパラジウムで構成されるB型濃度勾配の部位には、パラジウムは正の濃度勾配が存在し、表皮層と芯部の境界近傍にパラジウムと芯部の銅で構成されるA型濃度勾配の部位には、パラジウムは負の濃度勾配を存在させたボンディングワイヤを作製できる。   As an example of the positive and negative concentration gradient of the same element, when the main component of the skin layer is gold and palladium, and there is a lot of gold on the surface side, the concentration gradient of palladium element is composed of gold and palladium in the skin layer. There is a positive concentration gradient of palladium in the region of the B type concentration gradient, and palladium in the region of the A type concentration gradient composed of palladium and copper in the core near the boundary between the skin layer and the core. A bonding wire having a negative concentration gradient can be produced.

表皮層が合金だけから構成される場合には、高周波IC用途では電気抵抗の増加等が懸念される。そこで、単一金属領域を形成すると、電気特性等を改善できることを見出した。ここでの単一金属領域とは、主要な元素は1種類であり、それ以外の金属系元素の濃度の総計が0.01mol%未満である。単一金属領域と合金層の両者共に、極表面でのC、S、Na等の表面汚染、O、N、H等の元素等は考慮しない。単一金属領域の部位について、最表面と表皮層内部とに区別され、それぞれについて後述する。   When the skin layer is composed of only an alloy, there is a concern about an increase in electrical resistance in high frequency IC applications. Thus, it has been found that the electrical characteristics and the like can be improved by forming a single metal region. Here, the single metal region has one main element, and the total concentration of other metal elements is less than 0.01 mol%. In both the single metal region and the alloy layer, surface contamination such as C, S, and Na on the extreme surface, and elements such as O, N, and H are not considered. About the site | part of a single metal area | region, it distinguishes into the outermost surface and the inside of an outer skin layer, and each mentions later.

銅を主成分とする芯材と、該芯材の上に形成された表皮層で構成され、該表皮層は金、パラジウム、白金、ロジウム、銀、ニッケルの2種以上の表皮主要金属を含有し、さらに該表皮層の内部に表皮主要金属と銅の濃度勾配を有する部位が存在し、最外表面に表皮主要金属の1種からなる単一金属領域を有するボンディングワイヤであることが望ましい。これは、ワイヤの最表面に、金、パラジウム、白金、ロジウム、銀、ニッケルの1種からなる単一金属領域を有することで、電気特性を向上し、さらにボール部の均一組織を促進することで、圧着ボール形状が安定化する効果が得られるためである。   It is composed of a core material mainly composed of copper and a skin layer formed on the core material, and the skin layer contains two or more kinds of skin main metals such as gold, palladium, platinum, rhodium, silver and nickel. Further, it is desirable that the bonding wire has a portion having a concentration gradient between the main skin metal and copper inside the outer skin layer, and has a single metal region made of one kind of main skin metal on the outermost surface. This has a single metal region consisting of one of gold, palladium, platinum, rhodium, silver, and nickel on the outermost surface of the wire, thereby improving electrical characteristics and further promoting a uniform structure of the ball part. This is because the effect of stabilizing the press-bonded ball shape is obtained.

銅を主成分とする芯材と、該芯材の上に形成された表皮層で構成され、該表皮層は金、パラジウム、白金、ロジウム、銀、ニッケルの2種以上の表皮主要金属を含有し、さらに該表皮層の内部に表皮主要金属の1種からなる単一金属領域と、表皮主要金属と銅の濃度勾配を有する部位を有するボンディングワイヤであることが望ましい。これは、単一金属領域を表皮層内部に形成させることで、電気特性の向上に加えて、ボール近傍のネック部における熱影響組織を制御することにより、プル強度の増加や、低ループ化にも対応可能となること等が利点である。ここで、ネック部が熱影響を受けるとき、内部の単一金属領域が拡散の供給源として作用し、単一金属領域の両側に拡散層を形成してプル強度を増加させ、また、再結晶の抑制による低ループ化が可能になると考えられる。   It is composed of a core material mainly composed of copper and a skin layer formed on the core material, and the skin layer contains two or more kinds of skin main metals such as gold, palladium, platinum, rhodium, silver and nickel. Further, it is desirable that the bonding wire has a single metal region made of one kind of epidermal main metal and a portion having a concentration gradient of the epidermal main metal and copper inside the epidermis layer. This is because a single metal region is formed inside the skin layer, and in addition to improving electrical characteristics, controlling the heat-affected tissue in the neck near the ball increases pull strength and lowers the loop. It is an advantage that it can respond. Here, when the neck is affected by heat, the internal single metal region acts as a source of diffusion, forming a diffusion layer on both sides of the single metal region to increase the pull strength, and recrystallization It is considered that the loop can be reduced by suppressing the noise.

最表面を表皮主要金属の合金とすることで、表面の合金部が高剛性に寄与して、長スパン化でのワイヤ垂れの防止、直線性の改善、ワイヤ表面の削れの低減等に有効である。また、単一金属領域を、最表面と表皮層内部の両方に形成させることで、電気特性、ウェッジ接合性、プル強度の増加等が可能である。   By making the outermost surface alloy of the main skin metal, the surface alloy part contributes to high rigidity, which is effective in preventing wire sag in long span, improving linearity, reducing wire surface scraping, etc. is there. Further, by forming a single metal region both on the outermost surface and inside the skin layer, it is possible to increase electrical characteristics, wedge bondability, pull strength, and the like.

単一金属領域を含むワイヤについて、前述したパラジウム−金の系を例に、表皮層の内部構成を具体的に説明する。ワイヤ表面からワイヤ中心方向に、金の単一金属領域/(パラジウムと金の濃度勾配層)/(金、パラジウム、銅の濃度勾配層)/(パラジウム、銅の濃度勾配層)で代表される3元素が混在する濃度勾配層を有する第1構成、(パラジウムと金の合金)/金/(金と銅の濃度勾配領域)/芯材のように中間に単一の金属領域を有する第2構成、金の単一金属領域/(パラジウムと金の濃度勾配層)/パラジウム単一金属領域/(パラジウムと銅の濃度勾配層)で代表される中間に単一金属領域を有する第3構成、等が挙げられる。   With respect to the wire including a single metal region, the internal structure of the skin layer will be specifically described using the above-described palladium-gold system as an example. From the surface of the wire to the center of the wire, represented by a single metal region of gold / (concentration gradient layer of palladium and gold) / (concentration gradient layer of gold, palladium, copper) / (concentration gradient layer of palladium, copper) A first configuration having a concentration gradient layer in which three elements are mixed, a second configuration having a single metal region in the middle, such as (palladium and gold alloy) / gold / (gold and copper concentration gradient region) / core material. A third configuration having a single metal region in the middle represented by the configuration, gold single metal region / (palladium and gold concentration gradient layer) / palladium single metal region / (palladium and copper concentration gradient layer); Etc.

第1、3構成では、最表面に金等の単一金属領域が接合界面の拡散を助長することで、ウェッジ接合部の接合強度が高く、低温接続における生産性の向上等に有利である。加えて、第1構成では、3元系等より多数の濃度勾配層を有効に利用することで、ワイヤ強度の増加、又は樹脂流れの低減も期待される。第2構成では、表面の合金部により、長スパン化でのワイヤ垂れの防止、直線性の改善等に有利である。第3構成では、パラジウム、金共に単一の金属領域を有することで、濃度勾配領域を薄くすれば、電気特性の改善効果がより高められる。   In the first and third configurations, the single metal region such as gold on the outermost surface promotes the diffusion of the bonding interface, so that the bonding strength of the wedge bonding portion is high, which is advantageous in improving the productivity in the low temperature connection. In addition, in the first configuration, an increase in wire strength or a reduction in resin flow is expected by effectively using a larger number of concentration gradient layers than a ternary system or the like. In the second configuration, the alloy portion on the surface is advantageous in preventing wire drooping in a long span, improving linearity, and the like. In the third configuration, since both the palladium and gold have a single metal region, if the concentration gradient region is thinned, the effect of improving electrical characteristics can be further enhanced.

濃度勾配に着目すると、更なる特性改善として、第1、3構成共に、表皮主要金属であるパラジウムは、正と負の濃度勾配を有していることから、前述したように、これがループ形状の安定化を促進している。また、第2、3構成では、表皮主要金属の正と負の濃度勾配の中間に、単一金属領域を有する構造となる。このような、正の濃度勾配/単一金属領域/負の濃度勾配の3層構造とすることで、ループ形成の折曲げやウェッジ接合の過剰塑性変形等の不均一外力に対する、ワイヤ変形の安定化にはより有効である。   Paying attention to the concentration gradient, as a further characteristic improvement, palladium, which is the main metal of the skin in both the first and third configurations, has a positive and negative concentration gradient. Promotes stabilization. In the second and third configurations, a single metal region is provided between the positive and negative concentration gradients of the skin main metal. By adopting such a three-layer structure of positive concentration gradient / single metal region / negative concentration gradient, wire deformation is stable against non-uniform external forces such as bending of loop formation and excessive plastic deformation of wedge joints. It is more effective for conversion.

例示の組み合わせで、パラジウムと金を入れ替えた構造でも機能を向上できる。表皮層の単一金属の純度は、金、パラジウム、白金、ロジウム、銀、ニッケルの1種が99.9mol%以上である場合であり、その他の不純物が0.1mol%未満に抑えられていることが望ましい。   With the illustrated combination, the function can be improved even with a structure in which palladium and gold are replaced. The purity of the single metal in the skin layer is the case where one of gold, palladium, platinum, rhodium, silver and nickel is 99.9 mol% or more, and other impurities are suppressed to less than 0.1 mol%. It is desirable.

銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層と、さらに最表領域を有するボンディングワイヤであって、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる1種以上であり、前記表皮層内にワイヤ径方向に主成分金属の少なくとも1種と銅の濃度勾配を有する部位が存在し、前記最表領域が、金、パラジウム、白金、ロジウム、銀又はニッケルの2種以上を0.1mol%以上の均一濃度で含有する合金が存在するボンディングワイヤであることが望ましい。ここで、主成分金属の2種以上を0.1mol%以上の均一濃度で含有する合金が表面に存在することで、表面の剛性を高め、樹脂封止時のワイヤ流れを抑制する効果が一層高まること、また、表面の濃度勾配を制御する必要がないため、製造上の管理が容易となること等が利点である。ここで、合金の濃度が0.1mol%未満では、特性改善の効果が少ない。   A core material mainly composed of copper, a conductive metal skin layer having a composition different from that of the core material on the core material, and a bonding wire having an outermost surface region, wherein the main component of the skin layer is: One or more selected from gold, palladium, platinum, rhodium, silver or nickel, and there is a portion having a concentration gradient of at least one main component metal and copper in the wire radial direction in the skin layer. The surface region is desirably a bonding wire in which an alloy containing two or more of gold, palladium, platinum, rhodium, silver or nickel at a uniform concentration of 0.1 mol% or more exists. Here, the presence of an alloy containing two or more of the main component metals at a uniform concentration of 0.1 mol% or more on the surface further increases the rigidity of the surface and further suppresses the wire flow during resin sealing. There are advantages such as an increase, and since it is not necessary to control the concentration gradient on the surface, manufacturing management becomes easy. Here, when the concentration of the alloy is less than 0.1 mol%, the effect of improving the characteristics is small.

金、パラジウム、白金、ロジウム、銀、ニッケル、銅の2種以上の元素の表面における濃度が0.1mol%以上である理由として、高強度化による樹脂封止時のワイヤ流れの抑制等に有利であることに基づく。   The reason why the concentration on the surface of two or more elements of gold, palladium, platinum, rhodium, silver, nickel, and copper is 0.1 mol% or more is advantageous in suppressing wire flow at the time of resin sealing by increasing strength. Based on being.

表皮層の内部構成について、ワイヤ表面からワイヤ中心方向への変化を、白金/金の系で例示すると、(白金と金の濃度勾配領域)/金/(金と銅の濃度勾配領域)/芯材のように中間に単一の金属領域を有する第4構成、(白金と金の濃度勾配領域)/(白金、金、銅の3元素を含む濃度勾配領域)/(金、銅の濃度勾配領域)から成る第5構成等が挙げられる。第4構成では、前述の第2構成で表面が濃度勾配領域となっている場合に相当し、表面改質によるボール接合、ループ制御時のワイヤ表面の傷の低減等の改善効果も得られる。第5構成では、3元素を含む濃度勾配を有効活用することで強度の大幅改善も達成可能となる。これら例示の組み合わせで、白金と金を入れ替えた構造でも機能を向上できる。上記例で、金元素の濃度分布をみると、正と負の濃度勾配を有しており、特性の安定化を促進し、これら濃度勾配の長さ、変化量等を制御することで、ループ特性、ウェッジ接合性等を向上することも可能である。   Regarding the internal structure of the skin layer, the change from the wire surface to the wire center direction is exemplified by the platinum / gold system: (platinum and gold concentration gradient region) / gold / (gold and copper concentration gradient region) / core Fourth configuration having a single metal region in the middle like a material, (concentration gradient region of platinum and gold) / (concentration gradient region containing three elements of platinum, gold, and copper) / (concentration gradient of gold and copper) 5th structure which consists of an area | region) etc. are mentioned. The fourth configuration corresponds to the case where the surface is a concentration gradient region in the above-described second configuration, and improvement effects such as ball bonding by surface modification and reduction of scratches on the wire surface during loop control are also obtained. In the fifth configuration, a significant improvement in strength can be achieved by effectively utilizing a concentration gradient containing three elements. With these exemplary combinations, the function can be improved even with a structure in which platinum and gold are replaced. In the above example, the concentration distribution of the gold element has positive and negative concentration gradients, promotes stabilization of the characteristics, and controls the length, amount of change, etc. of these concentration gradients. It is also possible to improve characteristics, wedge bondability, and the like.

該表皮層の構成が、金、パラジウム、白金、ロジウム、銀、ニッケルの1種以上の表皮主要金属を含有し、さらに最外表面に、芯材を構成する銅とは分離され、メッキなどにより表面に形成させた銅元素からなる単一金属領域又は銅元素を30mol%以上含有する合金層を有し、該表皮層の内部に表皮主要金属及び銅の濃度勾配を有し、表皮主要金属の濃度勾配が深さ方向に増加と減少の両方が存在するボンディングワイヤも有効である。以下、最表面近傍の銅元素を”銅out”で表記し、芯材を構成する銅元素を”銅in”で区別して表記する。 The structure of the skin layer contains one or more kinds of skin main metals of gold, palladium, platinum, rhodium, silver and nickel, and is separated from the copper constituting the core material on the outermost surface by plating or the like. It has a single metal region formed of copper element formed on the surface or an alloy layer containing 30 mol% or more of copper element, and has a skin main metal and copper concentration gradient inside the skin layer, Bonding wires in which concentration gradients both increase and decrease in the depth direction are also effective. Hereinafter, the copper element in the vicinity of the outermost surface is represented by “copper out ”, and the copper element constituting the core material is represented by “copper in ”.

表皮層の具体的な構造について、銅/金の成分系で例示して説明する。最外表面に銅outの単一金属領域が露出する場合、表面から深さ方向への表皮層の構成は、銅outの単一金属領域/(銅outと金の濃度勾配層1)/金の単一金属領域/(銅inと金の濃度勾配層2)で示される。銅元素に着目すると、外側の(銅outと金の濃度勾配層1)と、内部の(銅inと金の濃度勾配層2)とは、金単一層を介して分離されていることが特長で、銅元素の深さ方向の濃度勾配を比較すると、(銅outと金の濃度勾配層1)では銅は負の濃度勾配、(銅inと金の濃度勾配層2)では銅は正の濃度勾配で相反する。また、金元素も正と負の濃度勾配が混在する。こうした銅と金との2元素でそれぞれ正と負の濃度勾配で合計4種の濃度勾配が同時に含まれることにより、ウェッジ接合性の改善、ワイヤの強度、曲げ剛性の改善等により高い効果が得られる。この4種の濃度勾配を有することで、前述した、金元素と芯材の銅元素とだけで構成される単純な構造の表皮層よりも優れた長所を発現することも可能となる。また、金の単一金属領域が消失する場合でも同様の改善効果が得られる。 A specific structure of the skin layer will be described with reference to a copper / gold component system. When a single metal region of copper out is exposed on the outermost surface, the structure of the skin layer from the surface to the depth direction is as follows: copper out single metal region / (copper out and gold concentration gradient layer 1) / gold Single metal region / (concentration gradient layer 2 of copper in and gold). Focusing on the copper element, the outer (copper out and gold concentration gradient layer 1) and the inner (copper in and gold concentration gradient layer 2) are separated through a single gold layer. When the concentration gradient of copper element in the depth direction is compared, copper is negative concentration gradient in (copper out and gold concentration gradient layer 1), and copper is positive in (copper in and gold concentration gradient layer 2). Conflicts with concentration gradient. Gold elements also have a mixture of positive and negative concentration gradients. These two elements, copper and gold, contain a total of four concentration gradients, with positive and negative concentration gradients, respectively, so that it is highly effective to improve wedge bondability, wire strength, bending rigidity, etc. It is done. By having these four types of concentration gradients, it is possible to express advantages that are superior to the above-described skin layer having a simple structure composed only of the gold element and the copper element of the core material. The same improvement effect can be obtained even when the gold single metal region disappears.

その他、(銅outと金の濃度勾配層1)/金の単一金属領域/(銅inと金の濃度勾配層2)で例示される、銅outと、パラジウム、白金、ニッケルの1種以上の元素との濃度勾配層を持つ合金層が最外表面に露出する場合でも、金メッキとの接合性の改善等を付与することができる。これらのワイヤ構造の製造法の一例として、まずは銅out/金/銅in芯材の初期構造を作り、その後の拡散熱処理等により、銅元素の正と負の濃度勾配を形成することが可能である。 In addition, (copper out and gold concentration gradient layer 1) / gold single metal region / (copper in and gold concentration gradient layer 2), one or more of copper out , palladium, platinum, and nickel Even when an alloy layer having a concentration gradient layer with the above element is exposed on the outermost surface, improvement in bondability with gold plating and the like can be imparted. As an example of the manufacturing method of these wire structures, it is possible to first create an initial structure of copper out / gold / copper in core material, and then form a positive and negative concentration gradient of copper element by diffusion heat treatment, etc. is there.

前述した表皮層の構造について、2種の元素からなる構造について説明したが、さらに元素数が増えて、より多数の濃度勾配層を有する構造であれば、新型実装における複雑なループ形状、微細接続等への適用性をさらに高めることもできる。   Regarding the structure of the skin layer described above, a structure composed of two types of elements has been described. However, if the number of elements is increased and the structure has a larger number of concentration gradient layers, the complex loop shape and fine connection in the new type mounting will be described. It is possible to further improve the applicability to the above.

第三の手法は、芯材の銅合金の組成を適正化する技術であり、具体的には、銅を主成分とし、しかも、銀、スズ、金の一種以上を総計で0.1〜30質量%含有する芯材と、該芯材の上に形成された表皮層で構成され、該表皮層は金、パラジウム、白金の少なくとも1種以上の金属を主成分とし、しかも該表皮層の内部に銅の濃度勾配を有するボンディングワイヤであることが望ましい。芯材に銀、スズ、金を含有する銅合金とすることで、単一の銅だけの場合と比較して、ボール部の異形等を抑制することができ、接合されたボール部の真円性の向上、接合強度の増加等を達成することができる。ここで、添加量が0.1質量%以上であれば、上記のボール接合性の改善を量産レベルで安定して実現することができ、30質量%超であれば、ボール部の硬化により接合直下のチップに損傷を与えることが問題となるためである。   The third technique is a technique for optimizing the composition of the copper alloy of the core material. Specifically, copper is the main component, and at least one of silver, tin, and gold is 0.1 to 30 in total. A core material containing mass% and a skin layer formed on the core material, wherein the skin layer is mainly composed of at least one metal selected from gold, palladium and platinum, and the inside of the skin layer. It is desirable that the bonding wire has a copper concentration gradient. By using a copper alloy containing silver, tin, and gold as the core material, it is possible to suppress deformation of the ball part, etc., compared to the case of only a single copper, and the perfect circle of the joined ball part It is possible to achieve improvement in properties and increase in bonding strength. Here, if the addition amount is 0.1% by mass or more, the above-described improvement in ball bondability can be stably achieved at the mass production level, and if it exceeds 30% by mass, the ball part is bonded by curing. This is because damaging the chips directly underneath is a problem.

表皮層の厚さは、0.05μm以上であることが望ましい。これは、0.05μm以上であれば、ワイヤ全体に均一に形成でき、表面の凹凸も少なく、表皮層の剥離等の問題もないため、酸化抑制、接合性等の十分な効果が得られる等の理由による。また、線径の70%以下であれば、工業的な量産性も高く、品質管理等も十分対応できる。厚さの下限について、好ましくは0.1μm以上であれば、高温に曝されたときの酸化抑制の効果が高まり、より好ましくは0.2μm以上であれば、比較的簡便に分析できるため品質保証等が容易となる等の利点が多い。一方の上限では、好ましくは線径の50%以内であれば内部に濃度変化層を均一に形成することが容易であり、より好ましくは線径の30%以内であれば電気抵抗の増加を低く抑えられる等の利点がある。   The thickness of the skin layer is desirably 0.05 μm or more. If it is 0.05 μm or more, it can be uniformly formed on the entire wire, there are few surface irregularities, and there is no problem such as peeling of the skin layer, so that sufficient effects such as oxidation inhibition and bondability are obtained. Because of the reason. Moreover, if it is 70% or less of a wire diameter, industrial mass productivity is also high and quality control etc. can fully respond | correspond. As for the lower limit of the thickness, preferably 0.1 μm or more, the effect of suppressing oxidation when exposed to high temperature is enhanced, and more preferably 0.2 μm or more, quality can be assured because it can be analyzed relatively easily. There are many advantages such as being easy. At one upper limit, it is easy to form a concentration-change layer uniformly within 50% of the wire diameter, and more preferably within 30% of the wire diameter, the increase in electrical resistance is reduced. There are advantages such as being suppressed.

表皮層の濃度分析について、ワイヤの表面からスパッタ等により深さ方向に掘り下げていきながら分析する手法、あるいはワイヤ断面でのライン分析又は点分析等が有効である。前者は、表皮層が薄い場合に有効であるが、厚くなると測定時間がかかり過ぎる。後者の断面での分析は、表皮層が厚い場合に有効であり、また、断面全体での濃度分布や、数カ所での再現性の確認等が比較的容易であることが利点であるが、表皮層が薄い場合には精度が低下する。ワイヤを斜め研磨して、拡散層の厚さを拡大させて測定することも可能である。断面ではライン分析が比較的簡便であるが、分析の精度を向上したいときには、ライン分析の分析間隔を狭くするとか、界面近傍の観察したい領域に絞っての点分析を行うことも有効である。これらの濃度分析に用いる解析装置では、EPMA、EDX、オージェ分光分析法、透過型電子顕微鏡(TEM)等を利用することができる。また、平均的な組成の調査等には、表面部から段階的に酸等に溶解していき、その溶液中に含まれる濃度から溶解部位の組成を求めること等も可能である。   Concentration analysis of the skin layer is effective by analyzing the surface of the wire while digging in the depth direction by sputtering or the like, or by line analysis or point analysis at the wire cross section. The former is effective when the skin layer is thin, but if it is thick, it takes too much measurement time. The latter analysis is effective when the epidermis layer is thick, and it is advantageous that the concentration distribution over the entire cross-section and reproducibility confirmation at several locations are relatively easy. If the layer is thin, the accuracy decreases. It is also possible to measure by increasing the thickness of the diffusion layer by obliquely polishing the wire. Line analysis is relatively simple in the cross section, but it is also effective to narrow the analysis interval of line analysis or to perform point analysis focusing on the region to be observed near the interface when improving the accuracy of analysis. EPMA, EDX, Auger spectroscopic analysis, a transmission electron microscope (TEM), etc. can be utilized in the analysis apparatus used for these concentration analyses. Further, for the investigation of the average composition, etc., it is possible to dissolve in acid or the like stepwise from the surface portion, and obtain the composition of the dissolution site from the concentration contained in the solution.

表皮層の中に濃度勾配に加えて、銅と導電性金属を主体とする金属間化合物相が含まれることも有効である。即ち、銅を主体とする芯材と導電性金属の表皮層で構成され、表皮層の内部には、銅の濃度勾配を有した部位と、銅と導電性金属を有する金属間化合物とが1層以上含まれるボンディングワイヤでは優れた特性が得られる。金属間化合物相が表皮層内に含まれることで、ワイヤの強度、弾性率等の機械的特性が増加し、ループの直線性の向上、封止時のワイヤ流れの抑制等に有効である。金属間化合物相は、銅と導電性金属が主体であり、それらの総計濃度が80mol%以上であることが望ましいが、芯材、表皮層に含有される合金化元素を一部含有しても構わない。例えば、導電性金属が金、パラジウム、白金等の場合に形成される金属間化合物相は、CuAu3、CuAu、Cu3Au、Cu3Pd、CuPd、Cu3Pt、CuPt、CuPt3、CuPt7等が候補であり、これらの金属間化合物相が、表皮層又は表皮層/芯材の界面に形成されることで、特性改善に有効である。これらの金属間化合物相の厚さは、0.001μmから表皮層の厚さの半分までが好ましい。 It is also effective that the skin layer contains an intermetallic compound phase mainly composed of copper and a conductive metal in addition to the concentration gradient. That is, it is composed of a core material mainly composed of copper and a skin layer of a conductive metal. Inside the skin layer, a portion having a concentration gradient of copper and an intermetallic compound having copper and a conductive metal are 1 Excellent properties can be obtained with bonding wires containing more than one layer. By including the intermetallic compound phase in the skin layer, the mechanical properties such as the strength and elastic modulus of the wire are increased, which is effective in improving the linearity of the loop and suppressing the flow of the wire during sealing. The intermetallic compound phase is mainly composed of copper and conductive metal, and it is desirable that the total concentration thereof is 80 mol% or more. However, even if the alloying element contained in the core material and the skin layer is partially contained I do not care. For example, when the conductive metal is gold, palladium, platinum or the like, the intermetallic compound phase formed is CuAu 3 , CuAu, Cu 3 Au, Cu 3 Pd, CuPd, Cu 3 Pt, CuPt, CuPt 3 , CuPt 7. Etc. are candidates, and these intermetallic compound phases are formed in the skin layer or the skin layer / core material interface, and are effective in improving the characteristics. The thickness of these intermetallic compound phases is preferably from 0.001 μm to half the thickness of the skin layer.

表皮層を形成する表皮主要金属が、金、パラジウム、白金、銀、銅の場合に、さらに、Ca、Sr、Be、Al、希土類元素の少なくとも1種以上を総計で1〜300質量ppm含有することで、表皮層の強度、組織、塑性変形抵抗を調整することができるため、ウェッジ接合時にワイヤと電極材(Ag、Au、Pd等)との変形を制御する効果を促進できる。前述した表皮主要金属が濃度勾配を有している場合に、これらの元素の添加効果は高い効果を得ることが判明した。さらに、Ca、Sr、Be、Al、希土類元素が濃度勾配を有することで、より一層高い効果を得ることができる。   When the skin main metal forming the skin layer is gold, palladium, platinum, silver, or copper, it further contains 1 to 300 ppm by mass in total of at least one of Ca, Sr, Be, Al, and rare earth elements. Thus, the strength, structure, and plastic deformation resistance of the skin layer can be adjusted, so that the effect of controlling the deformation of the wire and the electrode material (Ag, Au, Pd, etc.) at the time of wedge bonding can be promoted. It has been found that when the above-mentioned skin main metal has a concentration gradient, the effect of adding these elements is highly effective. Furthermore, since Ca, Sr, Be, Al, and rare earth elements have a concentration gradient, a higher effect can be obtained.

銅を主成分とする芯材が、Ca、Sr、Be、Al、希土類元素の少なくとも1種以上を総計で1〜300質量ppm含有することで、ワイヤの組織、塑性変形抵抗を調整することにより、ウェッジ接合時にワイヤと電極材(Ag、Au、Pd等)との変形を制御する効果を促進できる。しかも、前述した表皮主要金属が濃度勾配を有している場合に、これらの元素の添加効果は高い効果を得ることが判明した。ここで、含有量が1質量ppm以上で上記効果が現れ、300質量ppm未満であれば、ボール形成時の酸化等への悪影響を抑えられる。さらに、Ca、Sr、Be、Al、希土類元素が濃度勾配を有することで、より一層高い効果を得ることができる。   By adjusting the structure of the wire and the plastic deformation resistance, the core material mainly composed of copper contains at least one of Ca, Sr, Be, Al, and rare earth elements in a total amount of 1 to 300 ppm by mass. The effect of controlling the deformation of the wire and the electrode material (Ag, Au, Pd, etc.) at the time of wedge bonding can be promoted. In addition, it has been found that when the above-mentioned skin main metal has a concentration gradient, the effect of adding these elements is high. Here, when the content is 1 mass ppm or more, the above effect appears, and when the content is less than 300 mass ppm, adverse effects on oxidation or the like during ball formation can be suppressed. Furthermore, since Ca, Sr, Be, Al, and rare earth elements have a concentration gradient, a higher effect can be obtained.

銅を主成分とする芯材が、銀、スズ又は金の1種以上を総計で0.1〜10質量%含有することで、ワイヤを高強度化し、樹脂封止時のワイヤ変形を軽減できる。しかも、前述した表皮主要金属が濃度勾配を有している場合に、これらの元素の添加効果は高い効果を得ることが判明した。ここで、含有量が0.1質量%以上で上記効果が現れ、10質量%超となるとワイヤの電気抵抗が上昇することが問題となるためである。さらに、Ca、Sr、Be、Al、希土類元素が濃度勾配を有することで、より一層高い効果を得ることができる。   The core material mainly composed of copper contains one or more of silver, tin, or gold in a total amount of 0.1 to 10% by mass, so that the strength of the wire can be increased and the wire deformation during resin sealing can be reduced. . In addition, it has been found that when the above-mentioned skin main metal has a concentration gradient, the effect of adding these elements is high. Here, the above effect appears when the content is 0.1% by mass or more, and when the content exceeds 10% by mass, the electrical resistance of the wire is increased. Furthermore, since Ca, Sr, Be, Al, and rare earth elements have a concentration gradient, a higher effect can be obtained.

本発明のワイヤを製造するにあたり、芯材と表皮層の形成する工程と、銅元素の表皮層内の濃度勾配及び最表面への露出する熱処理工程が必要となる。   In producing the wire of the present invention, a step of forming a core material and a skin layer, and a concentration gradient in the skin layer of copper element and a heat treatment step exposed to the outermost surface are required.

表皮層を銅の芯材の表面に形成する方法には、メッキ法、蒸着法、溶融法等がある。メッキ法では、電解メッキ、無電解メッキ法のどちらでも製造可能である。ストライクメッキ、フラッシュメッキと呼ばれる電解メッキでは、メッキ速度が速く、下地との密着性も良好である。無電解メッキに使用する溶液は、置換型と還元型に分類され、膜が薄い場合には置換型メッキのみでも十分であるが、厚い膜を形成する場合には置換型メッキの後に還元型メッキを段階的に施すことが有効である。無電解法は装置等が簡便であり、容易であるが、電解法よりも時間を要する。   Methods for forming the skin layer on the surface of the copper core include plating, vapor deposition, and melting. As the plating method, either electrolytic plating or electroless plating can be used. Electrolytic plating called strike plating or flash plating has a high plating speed and good adhesion to the substrate. Solutions used for electroless plating are classified into substitutional type and reduction type. If the film is thin, substitutional plating alone is sufficient, but when forming a thick film, reduction type plating is used after substitutional plating. It is effective to apply stepwise. The electroless method is simple and easy to use, but requires more time than the electrolysis method.

蒸着法では、スパッタ法、イオンプレーティング法、真空蒸着等の物理吸着と、プラズマCVD等の化学吸着を利用することができる。いずれも乾式であり、膜形成後の洗浄が不要であり、洗浄時の表面汚染等の心配がない。   In the vapor deposition method, physical adsorption such as sputtering, ion plating, and vacuum deposition, and chemical adsorption such as plasma CVD can be used. All of them are dry-type, and cleaning after film formation is unnecessary, and there is no concern about surface contamination during cleaning.

メッキ又は蒸着を施す段階について、狙いの線径で導電性金属の膜を形成する手法と、太径の芯材に膜形成してから、狙いの線径まで複数回伸線する手法とのどちらも有効である。前者の最終径での膜形成では、製造、品質管理等が簡便であり、後者の膜形成と伸線の組み合わせでは、膜と芯材との密着性を向上するのに有利である。それぞれの形成法の具体例として、狙いの線径の銅線に、電解メッキ溶液の中にワイヤを連続的に掃引しながら膜形成する手法、あるいは、電解又は無電解のメッキ浴中に太い銅線を浸漬して膜を形成した後に、ワイヤを伸線して最終径に到達する手法等が可能である。   Regarding the stage of plating or vapor deposition, either the method of forming a conductive metal film with a target wire diameter or the method of forming a film on a thick core material and then drawing multiple times to the target wire diameter Is also effective. In the former film formation with the final diameter, manufacturing, quality control and the like are simple, and the latter film formation and wire drawing are advantageous in improving the adhesion between the film and the core material. As a specific example of each forming method, a method of forming a film while continuously sweeping a wire into an electrolytic plating solution on a copper wire of a target wire diameter, or thick copper in an electrolytic or electroless plating bath For example, a method of drawing the wire to reach the final diameter after immersing the wire to form a film is possible.

表皮層が2種以上の表皮主要金属からなる複数の層を形成する場合に、複数の異なる表皮主要金属の層をメッキ法、蒸着法、溶融法等により段階的に形成することになる。その際に、異なる表皮主要金属を全て形成してから熱処理する方法、1層の表皮主要金属の形成と熱処理とを交互に施す方法等が有効である。   When the skin layer forms a plurality of layers composed of two or more kinds of skin main metals, a plurality of different skin main metal layers are formed stepwise by plating, vapor deposition, melting, or the like. In that case, a method of performing heat treatment after forming all different skin main metals, and a method of alternately performing formation of one layer of skin main metal and heat treatment are effective.

上記手法により形成された表皮層と芯材を用い、表皮層中に主成分金属又は銅の一方又は双方の濃度勾配を形成する工程として、加熱による拡散熱処理が有効である。これは、表皮層と芯材の界面で、銅と導電性金属との相互拡散を助長するための熱処理である。ワイヤを連続的に掃引しながら熱処理を行う方法が、生産性、品質安定性に優れている。しかし、単純にワイヤを加熱しただけでは、表皮層の表面及び内部での銅の分布を制御できる訳ではない。通常のワイヤ製造で用いられる加工歪取り焼鈍をそのまま適用しても、表皮層と芯材との密着性の低下によりループ制御が不安定になったり、キャピラリ内部にワイヤ削れ屑が堆積して詰まりが発生したり、また、表面に露出した銅が酸化して接合強度が低下する等の問題を完全に解決することは困難である。そこで、熱処理の温度、速度、時間等の制御が重要である。   A diffusion heat treatment by heating is effective as a step of forming a concentration gradient of one or both of the main component metal and copper in the skin layer using the skin layer and the core material formed by the above method. This is a heat treatment for promoting mutual diffusion between copper and a conductive metal at the interface between the skin layer and the core material. The method of performing heat treatment while continuously sweeping the wire is excellent in productivity and quality stability. However, simply heating the wire does not control the distribution of copper on and within the skin layer. Even if the processing strain relief annealing used in normal wire manufacturing is applied as it is, loop control becomes unstable due to a decrease in adhesion between the skin layer and the core material, or wire scraps accumulate inside the capillary and clog. It is difficult to completely solve problems such as the occurrence of oxidization and the oxidation of copper exposed on the surface to decrease the bonding strength. Therefore, it is important to control the temperature, speed, time, etc. of the heat treatment.

好ましい熱処理法として、ワイヤを連続的に掃引しながら熱処理を行い、しかも、一般的な熱処理である炉内温度を一定とするのでなく、炉内で温度傾斜をつけることで、本発明の特徴とする表皮層及び芯材を有するワイヤを量産することが容易となる。具体的な事例では、局所的に温度傾斜を導入する方法、温度を炉内で変化させる方法等がある。ワイヤの表面酸化を抑制する場合には、N2やAr等の不活性ガスを炉内に流しながら加熱することも有効である。 As a preferred heat treatment method, the heat treatment is performed while continuously sweeping the wire, and the temperature in the furnace is not constant, which is a general heat treatment. It becomes easy to mass-produce a wire having an outer skin layer and a core material. Specific examples include a method of introducing a temperature gradient locally and a method of changing the temperature in the furnace. In order to suppress the surface oxidation of the wire, it is also effective to heat while flowing an inert gas such as N 2 or Ar into the furnace.

温度傾斜の方式では、炉入口近傍での正の温度傾斜(ワイヤの掃引方向に対し温度が上昇)、安定温度領域 炉出口近傍での負の温度傾斜(ワイヤの掃引方向に対し温度が下降)等、複数の領域で温度に傾斜をつけることが効果的である。これにより、炉入口近傍で表皮層と芯材との剥離等を生じることなく密着性を向上させ、安定温度領域で銅と導電性金属との拡散を促進して所望する濃度勾配を形成し、さらに炉出口近傍で表面での銅の過剰な酸化を抑えることにより、得られたワイヤの接合性、ループ制御性等を改善することができる。こうした効果を得るには、出入口での温度勾配を1℃/mm以上設けることが望ましい。   In the temperature gradient method, positive temperature gradient near the furnace inlet (temperature rises with respect to the wire sweep direction), stable temperature range Negative temperature gradient near the furnace outlet (temperature falls with respect to the wire sweep direction) For example, it is effective to incline the temperature in a plurality of regions. This improves adhesion without causing separation of the skin layer and core material in the vicinity of the furnace inlet, promotes diffusion of copper and conductive metal in a stable temperature region, and forms a desired concentration gradient, Further, by suppressing excessive oxidation of copper on the surface in the vicinity of the furnace outlet, it is possible to improve the bondability and loop controllability of the obtained wire. In order to obtain such an effect, it is desirable to provide a temperature gradient at the entrance / exit of 1 ° C./mm or more.

温度を変化させる方法では、炉内を複数の領域に分割して、各領域で異なる温度制御を行うことで温度の分布を作ることも有効である。例えば、3ヶ所以上に炉内を分割して、独立して温度制御を行い、炉の両端を中央部よりも低温とすることで、温度傾斜の場合と同様の改善効果が得られる。また、ワイヤの表面酸化を抑制するため、炉の両端又は出口側を銅の酸化速度の遅い低温にすることで、ウェッジ接合部の接合強度の上昇が得られる。   In the method of changing the temperature, it is also effective to create a temperature distribution by dividing the furnace into a plurality of regions and performing different temperature control in each region. For example, the inside of the furnace is divided into three or more places, temperature control is performed independently, and the both ends of the furnace are set to a temperature lower than that of the central portion, whereby the same improvement effect as in the case of the temperature gradient can be obtained. Moreover, in order to suppress the surface oxidation of a wire, the joint strength of a wedge-joint part can be increased by setting both ends of the furnace or the outlet side to a low temperature at which the oxidation rate of copper is low.

こうした温度傾斜又は温度分布のある熱処理は、生産性の点では最終線径で施すことが望ましいが、一方で、熱処理の後に伸線を施すことで表面の酸化膜を除去して低温での接合性を向上したり、さらに、伸線と歪み取り焼鈍を併用することで、キャピラリ内部でのワイヤ削れを低減する効果等も得られる。   Heat treatment with such a temperature gradient or temperature distribution is preferably performed at the final wire diameter in terms of productivity, but on the other hand, the surface oxide film is removed by performing wire drawing after the heat treatment to bond at a low temperature. In addition, the effect of reducing wire scraping inside the capillary can be obtained by using wire drawing and strain relief annealing in combination.

また、溶融法では、表皮層又は芯材のいずれかを溶融させて鋳込む手法であり、1〜50mm程度の太径で表皮層と芯材を接続した後に伸線することで生産性に優れていること、メッキ、蒸着法に比べて表皮層の合金成分設計が容易であり、強度、接合性等の特性改善も容易である等の利点がある。具体的な工程では、予め作製した芯線の周囲に、溶融した導電性金属を鋳込んで表皮層を形成する方法と、予め作製した導電性金属の中空円柱を用い、その中央部に溶融した銅又は銅合金を鋳込むことで芯線を形成する方法に分けられる。好ましくは、後者の中空円柱の内部に銅の芯材を鋳込む方が、表皮層中に銅の濃度勾配等を安定形成することが容易である。ここで、予め作製した表皮層中に銅を少量含有させておけば、表皮層の表面での銅濃度の制御が容易となる。また、溶融法では、表皮層にCuを拡散させるための熱処理作業を省略することも可能であるが、表皮層内のCuの分布を調整するために熱処理を施すことで更なる特性改善も見込める。   In addition, the melting method is a technique in which either the skin layer or the core material is melted and cast, and it is excellent in productivity by drawing after connecting the skin layer and the core material with a large diameter of about 1 to 50 mm. Compared to plating and vapor deposition methods, the alloy component design of the skin layer is easy, and there are advantages such as easy improvement of properties such as strength and bondability. In a specific process, a melted conductive metal is cast around a prefabricated core wire to form a skin layer, and a prefabricated conductive metal hollow cylinder is used, and a melted copper is formed in the center portion thereof. Or it is divided into the method of forming a core wire by casting a copper alloy. Preferably, it is easier to stably form a copper concentration gradient or the like in the skin layer by casting a copper core into the latter hollow cylinder. Here, if a small amount of copper is contained in the skin layer prepared in advance, the copper concentration on the surface of the skin layer can be easily controlled. Further, in the melting method, it is possible to omit the heat treatment work for diffusing Cu in the skin layer, but further improvement in characteristics can be expected by performing the heat treatment to adjust the Cu distribution in the skin layer. .

さらに、こうした溶融金属を利用する場合、芯線と表皮層の少なくとも一方を連続鋳造で製造することも可能である。この連続鋳造法により、上記の鋳込む方法と比して、工程が簡略化され、しかも線径を細くして生産性を向上させることも可能となる。   Further, when such a molten metal is used, at least one of the core wire and the skin layer can be manufactured by continuous casting. By this continuous casting method, the process is simplified as compared with the above casting method, and the wire diameter can be reduced to improve the productivity.

金、パラジウム、白金、ロジウム、銀又はニッケルの表皮主要金属の単一金属領域を、表皮層の表面または内部に形成する方法として、異なる表皮主要金属からなる2層の単一金属領域を芯材の表面に形成し、前述した濃度勾配を形成させる拡散熱処理を利用して、表面または内部に単一金属領域が残るよう熱処理条件を適正化することが有効である。   As a method of forming a single metal region of the main skin metal of gold, palladium, platinum, rhodium, silver or nickel on the surface or inside of the skin layer, a single metal region of two layers made of different skin main metals is used as a core material. It is effective to optimize the heat treatment conditions so that a single metal region remains on the surface or inside by using the diffusion heat treatment for forming the concentration gradient described above.

また、表皮層の表面に単一金属領域を形成する別の手法として、拡散熱処理を施したあとに、単一金属領域を上述したメッキ法、蒸着法等により新たに形成することも可能である。この単一金属領域の下地との密着性を向上するため、単一金属領域の形成後にさらに熱処理を適宜行うことも有効である。   As another method for forming a single metal region on the surface of the skin layer, it is also possible to newly form a single metal region by the above-described plating method, vapor deposition method, etc. after performing diffusion heat treatment. . In order to improve the adhesion of the single metal region to the base, it is also effective to appropriately perform a heat treatment after the formation of the single metal region.

銅の単一又は30mol%以上銅を含有する合金からなる最表領域を形成する一手法として、芯材の表面に金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる1種以上からなる層を形成し、その表面にさらに銅層を形成し、それから、異なる表皮主要金属からなる2層の単一金属領域を芯材の表面に形成し、拡散熱処理を適正な条件で行うことが有効である。ここでの金、パラジウム、白金、ロジウム、銀又はニッケルの層および銅層の形成工程については、前述したメッキ法、蒸着法、溶融法等を利用する。   A layer composed of one or more selected from gold, palladium, platinum, rhodium, silver or nickel on the surface of the core material as a method for forming the outermost region made of a single copper alloy or an alloy containing copper of 30 mol% or more It is effective to form a copper layer on the surface, and then form a two-layer single metal region consisting of different main skin metals on the surface of the core material and perform diffusion heat treatment under appropriate conditions. is there. The gold, palladium, platinum, rhodium, silver or nickel layer and the copper layer are formed by using the above-described plating method, vapor deposition method, melting method or the like.

以下、実施例について説明する。   Examples will be described below.

ボンディングワイヤの原材料として、芯材に用いる銅は純度が約99.99質量%以上の高純度の素材を用い、外周部のAu、Pt、Pd、Cu、Ag、Ni、Rhの素材には純度99.9質量%以上の原料を用意した。   As the raw material of the bonding wire, the copper used for the core material is a high-purity material having a purity of about 99.99 mass% or more, and the purity of the Au, Pt, Pd, Cu, Ag, Ni, and Rh materials on the outer periphery The raw material of 99.9 mass% or more was prepared.

ある線径まで細くした銅ワイヤを芯材とし、そのワイヤ表面に異なる金属の層を形成するには電解メッキ法、無電解メッキ法、蒸着法、溶融法等を行い、濃度勾配を形成するためにも熱処理を施した。最終の線径で表皮層を形成する場合と、ある線径で表皮層を形成してから、さらに伸線加工により最終線径まで細くする方法を利用した。電解メッキ液、無電解メッキ液は、半導体用途で市販されているメッキ液を使用し、蒸着はスパッタ法を用いた。直径が約50〜200μmのワイヤを予め準備し、そのワイヤ表面に蒸着、メッキ等により被覆し、最終径の15〜25μmまで伸線して、最後に加工歪みを取り除き、伸び値が4%程度になるように熱処理を施した。必要に応じて、線径30〜100μmまでダイス伸線した後に、拡散熱処理を施してから、さらに伸線加工を施した。   To form a concentration gradient by using an electroplating method, electroless plating method, vapor deposition method, melting method, etc. to form a different metal layer on the surface of a copper wire that has been thinned to a certain wire diameter. Also heat-treated. A method was used in which the skin layer was formed with the final wire diameter, and after the skin layer was formed with a certain wire diameter, it was further thinned to the final wire diameter by wire drawing. As the electrolytic plating solution and the electroless plating solution, a plating solution commercially available for semiconductor applications was used, and the sputtering method was used for vapor deposition. Prepare a wire with a diameter of about 50 to 200 μm in advance, coat the wire surface by vapor deposition, plating, etc., draw the wire to a final diameter of 15 to 25 μm, remove the processing strain, and have an elongation value of about 4%. Heat treatment was applied so that As needed, after wire drawing to a wire diameter of 30 to 100 μm, diffusion heat treatment was performed, and then wire drawing was further performed.

溶融法を利用する場合には、予め作製した芯線の周囲に、溶融した金属を鋳込む方法と、予め作製した中空円柱の中央部に溶融した銅又は銅合金を鋳込む方法を採用した。芯線の直径は約3〜8mm、外周部の直径は約5〜10mmで行った。その後、鍛造、ロール圧延、ダイス伸線等の加工と、熱処理は行い、ワイヤを製造した。また、複数の層を形成するために、溶融法で形成した中間製品の表面に、電解メッキ法、無電解メッキ法、蒸着法等により別の層を形成する複合的な用法も行った。   When utilizing the melting method, a method of casting a molten metal around a core wire prepared in advance and a method of casting molten copper or a copper alloy in the central portion of a hollow cylinder prepared in advance were employed. The diameter of the core wire was about 3 to 8 mm, and the diameter of the outer peripheral portion was about 5 to 10 mm. Thereafter, forging, roll rolling, die drawing and the like, and heat treatment were performed to produce a wire. In addition, in order to form a plurality of layers, a composite method of forming another layer on the surface of an intermediate product formed by a melting method by an electrolytic plating method, an electroless plating method, a vapor deposition method, or the like was also performed.

本発明例のワイヤの熱処理について、ワイヤを連続的に掃引しながら加熱した。局所的に温度傾斜を導入する方式、温度を炉内で変化させる方式等を利用した。この温度差は30〜200℃の範囲とし、温度分布、ワイヤ掃引速度等を適正化して、引張伸びが4%前後になるように調整した。熱処理の雰囲気では、大気の他に、酸化を抑制する目的でN2、Ar等の不活性ガスも利用した。比較例の熱処理工程について、伸線後のCuワイヤに熱処理を施してからメッキ層を形成した場合(比較例2、4、7、8)と、熱処理を伸線後と、メッキ層の形成後で2回施した場合(比較例3、6)で、試料を準備した。 Regarding the heat treatment of the wire of the example of the present invention, the wire was heated while continuously sweeping. A method of introducing a temperature gradient locally, a method of changing the temperature in the furnace, and the like were used. This temperature difference was set in the range of 30 to 200 ° C., and the temperature distribution, the wire sweep speed, etc. were optimized and adjusted so that the tensile elongation was around 4%. In the atmosphere of the heat treatment, in addition to the air, an inert gas such as N 2 or Ar was used for the purpose of suppressing oxidation. Regarding the heat treatment process of the comparative example, when the plated layer was formed after the heat treatment was performed on the drawn Cu wire (Comparative Examples 2, 4, 7, and 8), after the heat treatment was drawn, and after the plating layer was formed The sample was prepared when applied twice in (Comparative Examples 3 and 6).

ワイヤの引張強度及び弾性率は、長さ10cmのワイヤ5本の引張試験を実施し、その平均値により求めた。   The tensile strength and elastic modulus of the wire were obtained by carrying out a tensile test of five wires having a length of 10 cm and calculating the average value.

ボンディングワイヤの接続には、市販の自動ワイヤボンダーを使用して、ボール/ウェッジ接合を行った。アーク放電によりワイヤ先端にボール(初期ボール径:35〜50μm)を作製し、それをシリコン基板上の電極膜に接合し、ワイヤ他端をリード端子上にウェッジ接合した。ボール溶融時の酸化を抑制するために、ワイヤ先端にN2ガスを吹き付けながら、放電させた。 For connection of the bonding wire, a commercially available automatic wire bonder was used to perform ball / wedge bonding. A ball (initial ball diameter: 35 to 50 μm) was produced at the tip of the wire by arc discharge, and it was joined to the electrode film on the silicon substrate, and the other end of the wire was wedge joined to the lead terminal. In order to suppress oxidation during ball melting, discharging was performed while N 2 gas was blown onto the tip of the wire.

接合相手としては、シリコン基板上の電極膜の材料である、厚さ1μmのAl合金膜(Al−1%Si−0.5%Cu膜、Al−0.5%Cu膜)を使用した。一方、ウェッジ接合の相手には、表面にAgメッキ(厚さ:1〜4μm)したリードフレーム、又はAuメッキ/Niメッキ/Cuの電極構造の樹脂基板を使用した。   As a bonding partner, an Al alloy film (Al-1% Si-0.5% Cu film, Al-0.5% Cu film) having a thickness of 1 μm, which is a material of an electrode film on a silicon substrate, was used. On the other hand, a lead frame whose surface was Ag-plated (thickness: 1 to 4 μm) or a resin substrate having an electrode structure of Au plating / Ni plating / Cu was used as a partner for wedge bonding.

ボンディング工程でのループ形状安定性について、ワイヤ長が3mmと5mmの2種類のボンディング試料を作製し、それぞれ500本のワイヤを投影機により観察し、ワイヤの直線性、ループ高さのバラツキ等を判定した。ワイヤ長が長い5mmでの条件は、より厳しい評価となる。ワイヤ長3mmで、直線性、ループ高さ等の不良が5本以上ある場合は、問題有りと判断して×印で表し、ワイヤ長3mmで不良が2〜4本で、且つ、ワイヤ長5mmで不良が5本以上の場合には、改善が必要と判断して△印で表し、ワイヤ長3mmで不良が1本以下、且つ、ワイヤ長5mmで不良が2〜4本の場合には、ループ形状は比較的良好であるため○印で示し、ワイヤ長5mmで不良が1本以下の場合にはループ形状は安定であると判断し◎印で表した。不良原因の一つに、芯線と外周部の界面の密着性が十分でないこと、断面での特性バラツキ等が想定される。   Regarding the loop shape stability in the bonding process, two types of bonding samples with a wire length of 3 mm and 5 mm were prepared, and 500 wires were observed with a projector, and the linearity of the wire, variation in loop height, etc. were observed. Judged. The condition with a long wire length of 5 mm is a stricter evaluation. If the wire length is 3 mm and there are 5 or more defects such as linearity and loop height, it is judged that there is a problem and is indicated by x, the wire length is 3 mm, 2 to 4 defects, and the wire length is 5 mm. In the case where the number of defects is 5 or more, it is determined that improvement is necessary, and is represented by a Δ mark. Since the loop shape is relatively good, it is indicated by a circle, and when the wire length is 5 mm and the number of defects is 1 or less, the loop shape is determined to be stable and is indicated by an ◎. As one of the causes of defects, the adhesion between the interface between the core wire and the outer peripheral portion is not sufficient, and the characteristic variation in the cross section is assumed.

樹脂封止時のワイヤ流れ(樹脂流れ)の測定は、ワイヤ長5mmのボンディング試料を作製し、市販のエポキシ樹脂で封止した後に、軟X線非破壊検査装置を用いて、ワイヤ流れが最大の部分の流れ量を20本測定し、その平均値をワイヤのスパン長さで除算した値(百分率)を封止時のワイヤ変形率とした。このワイヤ変形率が6%以上であれば不良と判断して×印、4%以上6%未満であれば改善が必要であるため△印、2.5%以上4%未満であれば実用上は問題ないと判断して○印、2.5%未満であればワイヤ変形の低減が良好であるため◎印で表した。   Measurement of wire flow (resin flow) at the time of resin sealing is performed using a soft X-ray non-destructive inspection device after preparing a bonding sample with a wire length of 5 mm and sealing with a commercially available epoxy resin. The amount of flow in this part was measured, and the average value divided by the span length of the wire (percentage) was taken as the wire deformation rate at the time of sealing. If this wire deformation rate is 6% or more, it is judged as defective, and if it is 4% or more and less than 6%, improvement is necessary. Is marked as o, and if it is less than 2.5%, the wire deformation is excellently reduced, and is marked as o.

初期ボール形状の観察では、接合前のボールを20本観察して、形状が真球であるか、寸法精度が良好であるか等を判定した。異常形状のボール発生が2本以上であれば不良であるため×印、異形が2本以下だが、ワイヤに対するボール位置の芯ずれが顕著である個数が5個以上である場合には△印、芯ずれが2〜4個であれば実用上の大きな問題はないと判断して○印、芯ずれが1個未満で寸法精度も良好である場合は、ボール形成は良好であるため◎印で表記した。   In the observation of the initial ball shape, 20 balls before bonding were observed to determine whether the shape was a true sphere or whether the dimensional accuracy was good. If there are two or more abnormally shaped balls, the mark is bad because it is defective, and the number of irregular shapes is two or less. If there are 2 to 4 misalignments, it is judged that there is no major problem in practical use. If the misalignment is less than 1 and the dimensional accuracy is good, the ball formation is good. Indicated.

圧着ボール部の接合形状の判定では、接合されたボールを500本観察して、形状の真円性、寸法精度等を評価した。ボール圧着径は、ワイヤ径の2〜3倍の範囲になる条件を選定した。真円からのずれが大きい異方性や楕円状等の不良ボール形状が5本以上であれば不良と判定し×印、不良ボール形状が2〜4本、又は花弁状等のボール圧着部の外周部が8本以上であれば改善が必要であるため△印、不良ボール形状が1本未満、且つ、花弁状変形が3〜7本であれば実用上は問題ないレベルと判定し○印、花弁状変形が2本以下であれば良好であるため◎印で表記した。   In determining the bonded shape of the press-bonded ball portion, 500 bonded balls were observed to evaluate the roundness of the shape, dimensional accuracy, and the like. The conditions for the ball crimp diameter to be in the range of 2 to 3 times the wire diameter were selected. If there are 5 or more defective ball shapes such as anisotropy and ellipse with a large deviation from the perfect circle, it is judged as defective, x mark, 2 to 4 defective ball shapes, or petal-shaped ball crimping part If the number of outer peripheral parts is 8 or more, improvement is necessary. Therefore, Δ mark, less than 1 defective ball shape, and 3 to 7 petal-like deformations, it is determined that there is no problem in practical use. Since it is good if the number of petal-like deformations is 2 or less, it is indicated by ◎.

ネック部の強度評価は、ループの下部に掛けたフックを上方移動させて破断強度を読み取るプル試験法で、20本の破断荷重(プル強度)を測定した。測定部位に合わせてフック位置を変えることができ、ネック部の強度を評価するには、ボール接合部の近傍でプル試験(ネックプル強度)を行い、ウェッジ接合部の強度評価では、ウェッジ接合部からワイヤスパンの1/4程度の近くでプル強度を測定した。ネックプル強度が、ワイヤ強度の60%以上であれば良好であるため◎印、40%未満であれば改善が必要であるため△印、その中間であれば○印で表記した。   For the strength evaluation of the neck portion, 20 breaking loads (pull strength) were measured by a pull test method in which the breaking strength was read by moving a hook hung on the lower portion of the loop upward. The hook position can be changed according to the measurement site, and in order to evaluate the strength of the neck part, a pull test (neck pull strength) is performed in the vicinity of the ball joint part. Pull strength was measured near about 1/4 of the wire span. If the neck pull strength is 60% or more of the wire strength, it is good because it is good. If it is less than 40%, it needs to be improved.

リード側にワイヤを接合するウェッジ接合性の判定では、低温になるほど接合が困難になることから、ステージ温度を220℃、180℃の低温で、それぞれ1000本のボンディングを行い、連続作業性、ワイヤの変形形状等を調査した。220℃で、接合部での完全剥離が2本以上生じた場合は×印、220℃での完全剥離が2本未満、且つ、ワイヤ破断近くの部分的な剥離が生じている場合には改善が必要であるため△印、220℃では不良はなく、しかも180℃での完全剥離が1本以下である場合には○印、180℃での完全剥離がなく、部分剥離も3本未満である場合には◎印で表示した。   Judgment of wedge bondability for bonding wires to the lead side makes bonding difficult at lower temperatures. Therefore, 1000 pieces of bonding are performed at a stage temperature of 220 ° C. and 180 ° C. The deformation shape, etc. were investigated. When there are two or more complete peels at the joint at 220 ° C, X mark, less than two at 220 ° C, and improvement when partial peel near the wire breakage occurs △ mark, there is no defect at 220 ° C, and when complete peeling at 180 ° C is 1 or less, ○ mark, no complete peeling at 180 ° C, and partial peeling is less than 3 In some cases, it is indicated by ◎.

ウェッジ接合部のプル強度測定では、接合界面の密着性を判定するために、ワイヤ長が3mmの試料でウェッジ接合部の近傍でプル試験を行い、20本の平均値を求めた。   In the measurement of the pull strength of the wedge joint, a pull test was performed in the vicinity of the wedge joint with a sample having a wire length of 3 mm in order to determine the adhesion at the joint interface, and the average value of 20 pieces was obtained.

表1〜4、6には、本発明に係わる銅ボンディングワイヤの評価結果を示し、表5には比較例を示している。   Tables 1 to 4 and 6 show the evaluation results of the copper bonding wires according to the present invention, and Table 5 shows comparative examples.

Figure 2010272884
Figure 2010272884

Figure 2010272884
Figure 2010272884

Figure 2010272884
Figure 2010272884

Figure 2010272884
Figure 2010272884

Figure 2010272884
Figure 2010272884

Figure 2010272884
Figure 2010272884

第1請求項に係わるボンディングワイヤは実施例1〜55であり、第2請求項に係わるボンディングワイヤは実施例1〜51であり、第3請求項に係わるボンディングワイヤは実施例1〜40、第4請求項に係わるボンディングワイヤは実施例1〜29、41〜46、第5請求項に係わるボンディングワイヤは実施例56〜69、第6請求項に係わるボンディングワイヤは実施例52〜55、第7請求項に係わるボンディングワイヤは実施例3、7、10、32、43、50、59、61、第8請求項に係わるボンディングワイヤは実施例74〜78、第9請求項に係わるボンディングワイヤは実施例70〜75に相当する。表5の比較例1〜8には、本発明の請求項に該当しないボンディングワイヤの結果を示す。   The bonding wires according to the first claim are Examples 1 to 55, the bonding wires according to the second claim are Examples 1 to 51, and the bonding wires according to the third claim are Examples 1 to 40, The bonding wires according to claim 4 are Examples 1-29, 41-46, the bonding wires according to claim 5 are Examples 56-69, the bonding wires according to claim 6 are Examples 52-55, The bonding wires according to the claims are examples 3, 7, 10, 32, 43, 50, 59, 61, the bonding wires according to the eighth claim are the examples 74 to 78, and the bonding wires according to the ninth claim are the examples. Corresponds to examples 70-75. Comparative Examples 1 to 8 in Table 5 show the results of bonding wires not corresponding to the claims of the present invention.

それぞれの請求項の代表例について、評価結果の一部を説明する。   A part of the evaluation results will be described for representative examples of each claim.

実施例1〜55のボンディングワイヤは、本発明に係わる、表皮層の内部に金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる2種以上の主成分金属を含み、前記表皮層内にワイヤ径方向に主成分金属又は銅の一方又は双方の濃度勾配を有することにより、ボール部の形成性、ワイヤ強度も十分高いことが確認された。これらの特性は、比較例1〜8の銅以外の元素の膜を単に表面に形成したCuワイヤでは十分でなく、ワイヤ径方向に濃度勾配を有する実施例1〜55では改善されていることが明確になった。   The bonding wires of Examples 1 to 55 include two or more main component metals selected from gold, palladium, platinum, rhodium, silver, or nickel in the skin layer according to the present invention, and the wire is formed in the skin layer. By having a concentration gradient of one or both of the main component metal and copper in the radial direction, it was confirmed that the ball part formability and the wire strength were sufficiently high. These characteristics are not sufficient for Cu wires in which films of elements other than copper of Comparative Examples 1 to 8 are simply formed on the surface, but are improved in Examples 1 to 55 having a concentration gradient in the wire radial direction. It became clear.

実施例1〜51のボンディングワイヤは、本発明に係わる、表皮層内に金、パラジウム、白金、ロジウム、銀、ニッケルの少なくとも1種以上が深さ方向に増加と減少の両方の濃度勾配を有することにより、ループ制御性、ウェッジ接合性が良好であることを確認した。   The bonding wires of Examples 1 to 51 have concentration gradients in which at least one of gold, palladium, platinum, rhodium, silver and nickel has both an increase and a decrease in the depth direction in the skin layer according to the present invention. As a result, it was confirmed that the loop controllability and wedge bondability were good.

実施例1〜40のボンディングワイヤは、本発明に係わる、表皮層中に金、パラジウム、白金、ロジウム、銀又はニッケルの単一金属領域を有することにより、ウェッジ接合性、圧着形状が良好であることを確認した。   The bonding wires of Examples 1 to 40 have a good wedge bondability and a crimped shape by having a single metal region of gold, palladium, platinum, rhodium, silver or nickel in the skin layer according to the present invention. It was confirmed.

実施例1〜29、41〜46のボンディングワイヤは、本発明に係わる、表皮層の内部に、金、パラジウム、白金、ロジウム、銀又はニッケルの単一金属領域を有することにより、プル強度が高く、ネック損傷が低減しており、低ループ化に十分対応できることを確認した。   The bonding wires of Examples 1 to 29 and 41 to 46 have high pull strength by having a single metal region of gold, palladium, platinum, rhodium, silver or nickel inside the skin layer according to the present invention. It was confirmed that the neck damage was reduced and it was possible to cope with the low loop.

実施例56〜69のボンディングワイヤは、本発明に係わる、銅の単一又は30mol%以上銅を含有する合金からなる最表領域と、表皮層の内部に、金、パラジウム、白金、ロジウム、銀又はニッケルの少なくとも1種と銅がワイヤ径方向に増加と減少の両方の濃度勾配を有する部位が存在することにより、ボール形成性が良好で、プル強度も高く、ウェッジ接合性も向上していることを確認した。   The bonding wires of Examples 56 to 69 are gold, palladium, platinum, rhodium, silver in the outermost surface region composed of a single copper alloy or an alloy containing copper of 30 mol% or more, and the skin layer according to the present invention. Or the presence of at least one kind of nickel and copper having concentration gradients both increasing and decreasing in the wire radial direction results in good ball formation, high pull strength, and improved wedge bondability. It was confirmed.

実施例52〜55のボンディングワイヤは、本発明に係わる、表皮層の内部に、金、パラジウム、白金、ロジウム、銀又はニッケルの主成分金属の少なくとも1種と銅の濃度勾配と、主成分金属の2種以上を0.1mol%以上で均一濃度で含有する合金層を有することにより、プル強度が高く、ネック損傷の低減、プル強度の増加等により低ループ化に対応できることを確認した。   The bonding wires of Examples 52 to 55 have a concentration gradient of at least one of gold, palladium, platinum, rhodium, silver, or nickel as a main component metal and a main component metal in the skin layer according to the present invention. It was confirmed that by having an alloy layer containing two or more of these at a uniform concentration of 0.1 mol% or more, the pull strength is high, and it is possible to cope with a low loop by reducing neck damage, increasing pull strength, and the like.

実施例3、7、10、32、43、50、59、61のボンディングワイヤは、表皮層中に金属間化合物を形成することが確認されており、ワイヤが高強度化され、使用時の直線性、樹脂流れ抑制等が向上していた。   The bonding wires of Examples 3, 7, 10, 32, 43, 50, 59, 61 were confirmed to form an intermetallic compound in the skin layer, and the wires were strengthened, and the straight line during use was confirmed. Property, resin flow suppression, etc. were improved.

実施例74〜78のボンディングワイヤは、本発明に係わる、芯部にCa、Sr、Be、Al又は希土類元素を所定量含有することにより、ウェッジ接合性が向上しており、また、実施例70〜75のボンディングワイヤは、芯部に銀、スズ又は金を所定量含有することにより、樹脂流れが改善していた。   The bonding wires of Examples 74 to 78 have improved wedge bondability by containing a predetermined amount of Ca, Sr, Be, Al, or rare earth elements in the core according to the present invention. In the bonding wires of ˜75, the resin flow was improved by containing a predetermined amount of silver, tin or gold in the core.

Claims (9)

銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる2種以上であり、前記表皮層内にワイヤ径方向に主成分金属又は銅の一方又は双方の濃度勾配を有する部位が存在することを特徴とする半導体装置用ボンディングワイヤ。   A bonding wire having a core material mainly composed of copper and a skin layer of a conductive metal having a composition different from that of the core material on the core material, the main component of the skin layer being gold, palladium, platinum, Bonding for semiconductor devices, wherein there are at least two kinds selected from rhodium, silver or nickel, and a portion having a concentration gradient of one or both of the main component metal and copper in the wire radial direction exists in the skin layer Wire. 銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる2種以上であり、前記表皮層内にワイヤ径方向に主成分金属又は銅の一方又は双方の濃度勾配を有する部位が存在すると共に、表皮層の主成分の少なくとも1種がワイヤ径方向に増加と減少の両方を有することを特徴とする半導体装置用ボンディングワイヤ。   A bonding wire having a core material mainly composed of copper and a skin layer of a conductive metal having a composition different from that of the core material on the core material, the main component of the skin layer being gold, palladium, platinum, It is at least two selected from rhodium, silver, or nickel, and there is a portion having a concentration gradient of one or both of the main component metal and copper in the wire radial direction in the skin layer, and at least the main component of the skin layer One type has both an increase and a decrease in the wire radial direction, a bonding wire for a semiconductor device. 前記表皮層の表面側に、さらに金、パラジウム、白金、ロジウム、銀又はニッケルの単一金属領域を有する請求項1又は2に記載の半導体装置用ボンディングワイヤ。   The bonding wire for a semiconductor device according to claim 1, further comprising a single metal region of gold, palladium, platinum, rhodium, silver or nickel on the surface side of the skin layer. 前記表皮層の内部に、金、パラジウム、白金、ロジウム、銀又はニッケルの単一金属領域を有する請求項1又は2に記載の半導体装置用ボンディングワイヤ。   The bonding wire for a semiconductor device according to claim 1 or 2, wherein a single metal region of gold, palladium, platinum, rhodium, silver or nickel is provided inside the skin layer. 銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の表面側に、銅の単一又は30mol%以上銅を含有する合金からなる最表領域を有し、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる1種以上であり、前記表皮層内にワイヤ径方向に主成分金属の少なくとも1種と銅がワイヤ径方向に増加と減少の両方の濃度勾配を有する領域が存在することを特徴とする半導体装置用ボンディングワイヤ。   A bonding wire having a core material mainly composed of copper and a conductive metal skin layer having a composition different from that of the core material on the core material, the surface of the skin layer having a single or 30 mol of copper % Of the outermost layer made of an alloy containing copper, and the main component of the skin layer is at least one selected from gold, palladium, platinum, rhodium, silver, or nickel, and a wire is formed in the skin layer. A bonding wire for a semiconductor device, characterized in that there is a region in which at least one kind of main component metal and copper have both concentration gradients of increase and decrease in the wire radial direction. 銅を主成分とする芯材と、該芯材の上に芯材と異なる組成の導電性金属の表皮層を有するボンディングワイヤであって、前記表皮層の主成分が、金、パラジウム、白金、ロジウム、銀又はニッケルから選ばれる1種以上であり、前記表皮層内にワイヤ径方向に主成分金属の少なくとも1種と銅の濃度勾配を有する領域が存在し、前記表皮層の表面側に、金、パラジウム、白金、ロジウム、銀又はニッケルの2種以上を0.1mol%以上の均一濃度で含有する合金の最表領域が存在することを特徴とする半導体装置用ボンディングワイヤ。   A bonding wire having a core material mainly composed of copper and a skin layer of a conductive metal having a composition different from that of the core material on the core material, the main component of the skin layer being gold, palladium, platinum, It is at least one selected from rhodium, silver or nickel, and there is a region having a concentration gradient of at least one main component metal and copper in the wire radial direction in the skin layer, on the surface side of the skin layer, A bonding wire for a semiconductor device, wherein there is an outermost region of an alloy containing two or more of gold, palladium, platinum, rhodium, silver or nickel at a uniform concentration of 0.1 mol% or more. 前記表皮層内に、金属間化合物を含有する請求項1〜6のいずれかに記載の半導体装置用ボンディングワイヤ。   The bonding wire for a semiconductor device according to claim 1, wherein the skin layer contains an intermetallic compound. 前記銅を主成分とする芯材が、Ca、Sr、Be、Al又は希土類元素から選ばれる1種以上を総計で1〜300質量ppm含有する請求項1〜7のいずれかに記載の半導体装置用ボンディングワイヤ。   The semiconductor device according to claim 1, wherein the copper-based core material contains 1 to 300 ppm by mass in total of one or more selected from Ca, Sr, Be, Al, or rare earth elements. Bonding wire. 前記銅を主成分とする芯材が、銀、スズ又は金の1種以上を総計で0.1〜10質量%含有する請求項1〜8のいずれかに記載の半導体装置用ボンディングワイヤ。   The bonding wire for a semiconductor device according to any one of claims 1 to 8, wherein the core containing copper as a main component contains at least 0.1 to 10% by mass of one or more of silver, tin, and gold.
JP2010174551A 2010-08-03 2010-08-03 Bonding wires for semiconductor devices Active JP5393614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174551A JP5393614B2 (en) 2010-08-03 2010-08-03 Bonding wires for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174551A JP5393614B2 (en) 2010-08-03 2010-08-03 Bonding wires for semiconductor devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005000638A Division JP4672373B2 (en) 2005-01-05 2005-01-05 Bonding wires for semiconductor devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013170489A Division JP5591987B2 (en) 2013-08-20 2013-08-20 Bonding wires for semiconductor devices

Publications (2)

Publication Number Publication Date
JP2010272884A true JP2010272884A (en) 2010-12-02
JP5393614B2 JP5393614B2 (en) 2014-01-22

Family

ID=43420608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174551A Active JP5393614B2 (en) 2010-08-03 2010-08-03 Bonding wires for semiconductor devices

Country Status (1)

Country Link
JP (1) JP5393614B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123597A (en) * 2005-10-28 2007-05-17 Nippon Steel Materials Co Ltd Bonding wire for semiconductor devices
JP2012156307A (en) * 2011-01-26 2012-08-16 Sumitomo Metal Mining Co Ltd Bonding wire
JP6002300B1 (en) * 2015-09-02 2016-10-05 田中電子工業株式会社 Palladium (Pd) coated copper wire for ball bonding
TWI612156B (en) * 2015-11-02 2018-01-21 田中電子工業股份有限公司 Precious metal coated copper wire for ball bonding

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160554U (en) * 1984-03-31 1985-10-25 古河電気工業株式会社 Bonding thin wire for semiconductors
JPS6379926A (en) * 1986-09-24 1988-04-09 Fujikura Ltd Bonding wire
JPH01255236A (en) * 1988-04-05 1989-10-12 Kobe Steel Ltd Composite bonding wire
JPH08236565A (en) * 1995-01-10 1996-09-13 Texas Instr Inc <Ti> Plated bonding wire and interconnection formed by using it
JPH1098061A (en) * 1996-09-24 1998-04-14 Kobe Steel Ltd Bonding wire for semiconductor element
WO2002023618A1 (en) * 2000-09-18 2002-03-21 Nippon Steel Corporation Bonding wire for semiconductor and method of manufacturing the bonding wire
WO2003036710A1 (en) * 2001-10-23 2003-05-01 Sumitomo Electric Wintec, Incorporated Bonding wire
WO2003081661A1 (en) * 2002-03-26 2003-10-02 Sumitomo Electric Wintec, Incorporated Bonding wire and integrated circuit device using the same
JP2004006740A (en) * 2002-03-26 2004-01-08 Sumitomo Electric Wintec Inc Bonding wire and integrated circuit device using the same
JP2004014884A (en) * 2002-06-07 2004-01-15 Sumitomo Electric Wintec Inc Bonding wire
JP2006190763A (en) * 2005-01-05 2006-07-20 Nippon Steel Corp Bonding wire for semiconductor device
JP4617375B2 (en) * 2007-12-03 2011-01-26 新日鉄マテリアルズ株式会社 Bonding wires for semiconductor devices

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160554U (en) * 1984-03-31 1985-10-25 古河電気工業株式会社 Bonding thin wire for semiconductors
JPS6379926A (en) * 1986-09-24 1988-04-09 Fujikura Ltd Bonding wire
JPH01255236A (en) * 1988-04-05 1989-10-12 Kobe Steel Ltd Composite bonding wire
JPH08236565A (en) * 1995-01-10 1996-09-13 Texas Instr Inc <Ti> Plated bonding wire and interconnection formed by using it
JPH1098061A (en) * 1996-09-24 1998-04-14 Kobe Steel Ltd Bonding wire for semiconductor element
WO2002023618A1 (en) * 2000-09-18 2002-03-21 Nippon Steel Corporation Bonding wire for semiconductor and method of manufacturing the bonding wire
WO2003036710A1 (en) * 2001-10-23 2003-05-01 Sumitomo Electric Wintec, Incorporated Bonding wire
WO2003081661A1 (en) * 2002-03-26 2003-10-02 Sumitomo Electric Wintec, Incorporated Bonding wire and integrated circuit device using the same
JP2004006740A (en) * 2002-03-26 2004-01-08 Sumitomo Electric Wintec Inc Bonding wire and integrated circuit device using the same
JP2004014884A (en) * 2002-06-07 2004-01-15 Sumitomo Electric Wintec Inc Bonding wire
JP2006190763A (en) * 2005-01-05 2006-07-20 Nippon Steel Corp Bonding wire for semiconductor device
JP4617375B2 (en) * 2007-12-03 2011-01-26 新日鉄マテリアルズ株式会社 Bonding wires for semiconductor devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123597A (en) * 2005-10-28 2007-05-17 Nippon Steel Materials Co Ltd Bonding wire for semiconductor devices
JP2012156307A (en) * 2011-01-26 2012-08-16 Sumitomo Metal Mining Co Ltd Bonding wire
JP6002300B1 (en) * 2015-09-02 2016-10-05 田中電子工業株式会社 Palladium (Pd) coated copper wire for ball bonding
US10195697B2 (en) 2015-09-02 2019-02-05 Tanaka Denshi Kogyo K.K. Palladium (Pd)-coated copper wire for ball bonding
TWI612156B (en) * 2015-11-02 2018-01-21 田中電子工業股份有限公司 Precious metal coated copper wire for ball bonding

Also Published As

Publication number Publication date
JP5393614B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP4672373B2 (en) Bonding wires for semiconductor devices
JP4554724B2 (en) Bonding wires for semiconductor devices
JP5616739B2 (en) Multilayer copper bonding wire bonding structure
JP6254649B2 (en) Bonding wires for semiconductor devices
TWI427719B (en) The joint structure of the joining wire and its forming method
JP5964534B1 (en) Bonding wires for semiconductor devices
US7820913B2 (en) Bonding wire for semiconductor device
JP4886899B2 (en) Bonding wire for semiconductor
JP2007012776A (en) Bonding wire for semiconductor device
JP2006216929A (en) Bonding wire for semiconductor device
JP4904252B2 (en) Bonding wires for semiconductor devices
JP4722671B2 (en) Bonding wires for semiconductor devices
JP4637256B1 (en) Bonding wire for semiconductor
KR20120035093A (en) Bonding wire for semiconductor
JP5497360B2 (en) Bonding wire for semiconductor
TWI657154B (en) Bonding wire for semiconductor device
JPWO2002023618A1 (en) Semiconductor bonding wire and method of manufacturing the same
JP5343069B2 (en) Bonding wire bonding structure
JP5985127B1 (en) Bonding wires for semiconductor devices
JP5393614B2 (en) Bonding wires for semiconductor devices
CN110998814B (en) Cu alloy bonding wire for semiconductor device
JP5591987B2 (en) Bonding wires for semiconductor devices
JP2010245574A (en) Bonding wire for semiconductor device
JPWO2018155283A1 (en) Bonding wires for semiconductor devices

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250