WO2015037876A1 - Silver alloy boding wire and semiconductor device using same - Google Patents

Silver alloy boding wire and semiconductor device using same Download PDF

Info

Publication number
WO2015037876A1
WO2015037876A1 PCT/KR2014/008353 KR2014008353W WO2015037876A1 WO 2015037876 A1 WO2015037876 A1 WO 2015037876A1 KR 2014008353 W KR2014008353 W KR 2014008353W WO 2015037876 A1 WO2015037876 A1 WO 2015037876A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
bonding wire
weight
ppm
silver alloy
Prior art date
Application number
PCT/KR2014/008353
Other languages
French (fr)
Korean (ko)
Inventor
이종철
김승현
허영일
김상엽
문정탁
Original Assignee
엠케이전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠케이전자 주식회사 filed Critical 엠케이전자 주식회사
Publication of WO2015037876A1 publication Critical patent/WO2015037876A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4885Wire-like parts or pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8536Bonding interfaces of the semiconductor or solid state body
    • H01L2224/85375Bonding interfaces of the semiconductor or solid state body having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a silver alloy bonding wire and a semiconductor device using the same. More particularly, the present invention relates to a bonding wire having excellent bonding properties, processability, and high reliability.
  • bonding wires are still widely used to connect the substrate and the semiconductor device or to connect the semiconductor devices.
  • gold bonding wires have been used a lot, but they are expensive and there is a demand for bonding wires that can replace them since the price has risen recently.
  • the first technical problem to be achieved by the present invention is to provide a bonding wire having excellent bonding properties, workability and high reliability.
  • the first technical problem to be achieved by the present invention is to provide a semiconductor device using a bonding wire having excellent bonding characteristics, processability and high reliability.
  • a silver alloy bonding wire containing 3 wtppm to 10000 wtppm of iridium (Ir), cobalt (Co), or titanium (Ti) and containing silver (Ag) as a main component is provided. do.
  • the silver alloy bonding wire may further include gold (Au) and palladium (Pd).
  • the content of gold (Au) in the silver alloy bonding wire may be about 0.1 wt% to about 2 wt%, and the content of palladium (Pd) may be about 1.5 wt% to about 4 wt%. At this time, the content ratio (Au / Pd) of gold and palladium may be about 0.01 to about 1.
  • the silver alloy bonding wire may further include one or more selected from the group consisting of platinum (Pt), copper (Cu), beryllium (Be), and calcium (Ca).
  • the content of the iridium (Ir), cobalt (Co), or titanium (Ti) in the silver alloy bonding wire may be about 2,000 ppm by weight to about 10,000 ppm by weight.
  • the content of the iridium (Ir), cobalt (Co), or titanium (Ti) in the silver alloy bonding wire may be about 2,000 ppm by weight to about 3,000 ppm by weight.
  • the content of the iridium (Ir), cobalt (Co), or titanium (Ti) in the silver alloy bonding wire may be about 3 ppm by weight to about 3,000 ppm by weight.
  • a substrate A semiconductor chip mounted on the substrate and provided with a bonding pad for connecting an internal circuit to the outside; And a bonding wire electrically connecting the substrate and the bonding pad of the semiconductor chip.
  • the bonding wire may be a silver alloy bonding wire according to the present invention.
  • the use of the bonding wire of the present invention has the effect of providing a bonding wire with excellent bonding properties and processability and high reliability.
  • FIG. 1 is a block diagram showing in order a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention.
  • FIG. 2 is a conceptual side view illustrating a first bonding side and a second bonding side test method, respectively, for testing bonding characteristics of manufactured silver alloy bonding wires.
  • FIG. 2 is a conceptual side view illustrating a first bonding side and a second bonding side test method, respectively, for testing bonding characteristics of manufactured silver alloy bonding wires.
  • FIG 3 is a side cross-sectional view schematically showing a semiconductor device according to an embodiment of the present invention.
  • 6 and 7 are images capturing the state of the ingots prepared in Example 2 and Comparative Examples 5 to 9 and the state observed under the microscope.
  • FIG. 8 is an image capturing the shape of an end portion after rolling 90% of the bonding wires of Example 2, Comparative Example 13, and Comparative Examples 22 to 26.
  • FIG. 8 is an image capturing the shape of an end portion after rolling 90% of the bonding wires of Example 2, Comparative Example 13, and Comparative Examples 22 to 26.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and vice versa, the second component may be referred to as the first component.
  • One embodiment of the present invention provides a silver alloy bonding wire containing silver (Ag) as a main component and iridium (Ir).
  • the main component means that the concentration of the corresponding element with respect to the total component exceeds 50%. That is, having silver (Ag) as the main component means that the concentration of silver in the total amount of silver and other elements exceeds 50%.
  • the concentration refers to the concentration based on the number of moles of atoms.
  • the bonding wire may further include gold (Au), wherein the amount of gold may be about 0.1 wt% to about 2 wt% with respect to the entire bonding wire. If the content of gold (Au) is too small, the shape of the ball formed at the end of the bonding wire is excessively deviated from the spherical ball ( ⁇ ⁇ ) may cause poor bonding properties. Conversely, if the content of gold is excessively high, the hardness of the balls formed at the wire ends during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
  • Au gold
  • the bonding wire may further include palladium (Pd), wherein the content of palladium may be about 1.5% by weight to about 4% by weight based on the entirety of the bonding wire. If the content of palladium (Pd) is too small, the acid resistance may deteriorate so that it may be easily corroded or short-circuited by nitric acid or sulfuric acid. In particular, if palladium is not contained, oxidation resistance of the silver alloy bonding wire may be weak. On the contrary, when the content of palladium is excessively high, the hardness of the ball formed at the end of the wire during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
  • Pd palladium
  • the weight-based content ratio (Au / Pd) of gold and palladium may be about 0.01 to about 1. If the content ratio of gold (Au) to the palladium (Pd) is too low, the shape of the ball formed at the end of the bonding wire is out of the spherical ( ⁇ ⁇ ) may have a poor bonding properties. In addition, there is a problem that the surface of the bonding wire is easily oxidized and discolored. On the contrary, if the content ratio is too high, the true structure of the balls formed at the ends of the bonding wires becomes worse. In addition, there is a fear that the hardness of the ball formed at the end of the bonding wire rises excessively, thereby damaging the bonding pad and / or the substrate below.
  • the silver alloy bonding wire may further include iridium (Ir), cobalt (Co), or titanium (Ti), and the iridium (Ir), cobalt (Co), or titanium (
  • the content of Ti) may be about 3 ppm by weight to about 10,000 ppm by weight (ie about 1% by weight).
  • the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is preferably about 2000 ppm by weight to about 10,000 ppm by weight.
  • the content of iridium (Ir), cobalt (Co), or titanium (Ti) is less than about 2000 ppm by weight, bonding properties may be relatively poor.
  • the content of iridium (Ir), cobalt (Co), or titanium (Ti) exceeds about 10,000 ppm by weight, the workability may deteriorate and the bonding properties may be poor.
  • the content of iridium (Ir), cobalt (Co), or titanium (Ti) may be about 3 ppm by weight to about 3,000 ppm by weight. If the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is less than about 3 ppm by weight, the beneficial effect of the addition of these elements, such as improving the surface quality of free air ball (FAB) May not be expressed. On the contrary, when the content of iridium (Ir), cobalt (Co), or titanium (Ti) exceeds about 3,000 ppm by weight, the workability of the bonding wire may be relatively poor.
  • the content of iridium (Ir), cobalt (Co), or titanium (Ti) may be about 2,000 ppm by weight to about 3,000 ppm by weight.
  • the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is in the range of about 2,000 ppm by weight to about 3,000 ppm by weight it is possible to obtain excellent bonding properties and excellent workability.
  • the silver alloy bonding wire is platinum (Pt), copper (Cu), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi), cobalt (Co) And one or more elements selected from the group consisting of magnesium (Mg) may be further included as performance improving additives. These performance improving additives may be added to improve performance such as high temperature reliability, high humidity reliability, bonding properties, elongation standard deviation, and the like.
  • the content of the performance improving additive may be about 3 ppm by weight to about 500 ppm by weight. Alternatively, the content of the performance improving additive may be about 5 ppm by weight to about 50 ppm by weight. If the content of the performance improving additive is too low, the desired performance improvement may not be expressed. In addition, if the content of the performance improving additive is too high, the electrical resistance increases and it is economically disadvantageous.
  • the performance improving additive may be platinum (Pt).
  • the content of platinum (Pt) may be about 5 ppm by weight to about 500 ppm by weight.
  • the performance improving additive may be copper (Cu).
  • the copper (Cu) content may be about 5 ppm by weight to about 500 ppm by weight.
  • the performance improving additive may be beryllium (Be).
  • the content of beryllium (Be) may be about 3 ppm by weight to about 50 ppm by weight.
  • the performance improving additive may be calcium (Ca).
  • the content of calcium (Ca) may be about 3 ppm by weight to about 50 ppm by weight.
  • FIG. 1 is a block diagram showing in order a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention.
  • an alloy liquid of a metal raw material may be prepared by melting and casting a metal raw material including silver (Ag) and iridium (Ir), cobalt (Co), or titanium (Ti) in a melting furnace to have a desired composition. (S1). At this time, gold (Au) and palladium (Pd) may be further added as needed. It is also possible to further add performance improving additives as described above.
  • the alloy liquid of the metal raw material is cooled and solidified, and an alloy piece can be obtained by forging, rolling, or the like (S2). Subsequently, the alloy piece may be first thinned to have a diameter of about 6 mm to about 9 mm (S3).
  • the primary thin wire thinned to have a diameter of about 6 mm to about 9 mm is drawn and heat-treated (S4).
  • the drawing and heat treatment step may include a step of gradually thinning and heat-treating the primary thin wire in multiple stages.
  • the cross section of the thin wire may be reduced while passing through a multi-stage die.
  • the thin wire decreases in diameter as it sequentially passes through a number of dice.
  • the thin wire decreases in diameter as it sequentially passes through a plurality of dice arranged so that the hole size gradually decreases.
  • additional annealing may be performed after the drawing is completed to adjust elongation (S5).
  • Annealing conditions for adjusting the elongation may vary depending on the composition of the thin wire, the reduction rate, the heat treatment conditions, etc., but may be performed for about 1 second to about 20 minutes at a temperature of about 400 ° C to 600 ° C, Those skilled in the art will be able to select specific annealing conditions appropriately.
  • the annealing temperature is too low, the ductility and malleability necessary for bonding bonding may not be secured. On the contrary, if the annealing temperature is too high, the grain size may be excessively large. The same failure may occur and is undesirable.
  • the above annealing process can be performed, for example, by passing the bonding wire through the furnace at a suitable speed. Also, the rate at which the bonding wire passes through the furnace can be determined from the required annealing time and the size of the furnace.
  • Yet another embodiment of the inventive concept includes a substrate, a semiconductor chip mounted on the substrate and having a bonding pad for connecting an internal circuit to the outside, and a bonding wire electrically connecting the substrate and the bonding pad of the semiconductor chip.
  • a semiconductor device 200 is provided.
  • FIG 3 is a side cross-sectional view schematically showing a semiconductor device 200 according to an embodiment of the present invention.
  • the semiconductor device 200 includes a semiconductor chip 220 provided on a substrate 210.
  • the substrate 210 may be a general printed circuit board (PCB), a flexible printed circuit board (FPCB), a ceramic PCB, a metal core PCB, or the like, and is not particularly limited.
  • a substrate bonding pad 212 may be provided on the substrate 210 to be electrically connected to the semiconductor chip 210 mounted on the substrate 210.
  • the semiconductor chip 220 may be a semiconductor chip that performs various functions such as a memory, logic, microprocessor, analog device, digital signal processor (DSP), and system-on-chip (SoC). It may be, and is not particularly limited.
  • the semiconductor chip 220 may be disposed such that an active surface faces upward, and a bonding pad 222 may be provided on the active surface.
  • the bonding pad 222 may be made of metal such as aluminum (Al), nickel (Ni), copper (Cu), and the like, and is not particularly limited.
  • the bonding pad 222 may be electrically connected to the substrate bonding pad 212 through a bonding wire 230.
  • the bonding wire 230 may be a silver alloy bonding wire according to the embodiments of the present invention described above.
  • the bonding wire of the present invention has excellent workability, reliability, and bonding characteristics
  • the semiconductor device 200 manufactured using the bonding wire 230 also has excellent reliability.
  • the metal raw materials of the respective compositions were added, heated at about 1200 ° C. for 30 minutes in an argon (Ar) atmosphere induction furnace, and cooled by air to observe the surface of the ingot with a naked eye and a microscope. .
  • the FAB surface was evaluated as ⁇ when the surface of the formed free air ball was smooth as a whole,? When the surface was not smooth, and some protrusions were observed in some microregions, and ⁇ when the protrusion was observed over a substantial area of the surface as a whole.
  • FAB formation was assessed as the degree of deviation from the captured image, which was quantified by expressing the difference between the ratio of the short axis to the long axis of the ball and the difference as a percentage.
  • the above quantified value is less than 2%,?, 2% or more, and less than 5%, ⁇ , 5% or more and ⁇ , 8% or more, x was evaluated.
  • the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire. That is, the ball is formed on the tip of the silver alloy bonding wire 100 to perform ball bonding on the primary bonding side bonding pad 10, and then stitch bonding is performed on the secondary bonding side bonding pad 20.
  • the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire.
  • the bonding wire is located at the center of the ball, and the edge is determined to be round without a petal shape
  • the length of the bonded ball in the horizontal and vertical directions When the ratio of is 0.96 or more and less than 0.99 and the bonding wire is located at the center of the ball, and the edge is determined to be round without petal shape, the ratio of the length of the bonded ball in the horizontal axis direction and the vertical axis direction is 0.9 or more, and the edge is shaped like a petal. There was no, and if it did not correspond to ⁇ or ⁇ above, ⁇ , otherwise, evaluated as ⁇ .
  • Bumps were formed by ball bonding to one of two rows of bonding pads arranged at intervals of 120 ⁇ m, and ball bonding was performed on the opposite side, and stitch bonding was performed on the bumps while forming loops.
  • the gap was measured at the point where the gap between the loops was the narrowest, and this was determined as a value representing the gap between each loop.
  • the intervals between the loops thus determined were 111 ⁇ m to 125 ⁇ m, ⁇ , 105 ⁇ m or more and less than 111 ⁇ m, and ⁇ if they were less than 105 ⁇ m.
  • the package sealed with the epoxy molding resin was heated to the temperature of 175 degreeC, the time which the short circuit generate
  • (Circle) if a short circuit in a joining surface is 500 hours or more, (circle) and 396 hours or more and less than 500 hours, it evaluated as (circle) and 198 hours or more and less than 396 hours, it evaluated as x when it was less than 198 hours.
  • An ingot having a diameter of 2 cm and a height of 2 cm was made to contain 8000 ppm by weight of iridium (Ir) and remain silver (Ag). Since the method of manufacturing the ingot has been described in the above 'surface property improvement test', a detailed description thereof will be omitted.
  • Example 2 Each ingot was prepared in the same manner as in Example 1 except that cobalt (Co) was used instead of iridium (Ir).
  • Co cobalt
  • Ir iridium
  • Example 2 Each ingot was prepared in the same manner as in Example 1 except that nickel (Ni), copper (Cu), and platinum (Pt) were used instead of iridium (Ir).
  • FIGS. 4 and 5 Ingots prepared in Examples 1 to 2 and Comparative Examples 1 to 3 are shown in FIGS. 4 and 5. As shown in FIGS. 4 and 5, in Example 1 to which iridium (Ir) was added and Example 2 to which cobalt (Co) was added, the surface was observed to be smooth, but compared with nickel (Ni). In the case of Example 1, segregation was observed on the surface, and in the case of Comparative Examples 2 and 3 in which copper (Cu) and platinum (Pt) were added, an unsmooth surface was also observed.
  • Ir iridium
  • Co cobalt
  • An ingot of 2 cm in diameter and 2 cm in height was made to contain 3 wt% of palladium (Pd) and 5000 wt ppm of iridium (Ir) (ie, 0.5 wt%) and the balance silver (Ag).
  • the production of the ingot was the same method as in Example 1.
  • An ingot of 2 cm in diameter and 2 cm in height was made to contain 3 wt% of palladium (Pd) and remain silver (Ag).
  • the production of the ingot was the same method as in Example 1.
  • Each ingot was prepared in the same manner as in Example 3 except that nickel (Ni), copper (Cu), and platinum (Pt) were used instead of iridium (Ir), respectively.
  • FIGS. 6 and 7 show images showing images of the ingots prepared in Example 3 and Comparative Examples 4 to 7 and the images observed under the microscope. As shown in FIGS. 6 and 7, in Example 3 to which iridium (Ir) was added, the surface was smooth and the structure was dense. However, in Comparative Examples 4 to 7 in which iridium (Ir) was not added, An unsmooth surface was observed.
  • a bonding wire having a diameter of 20 ⁇ m was prepared by performing a first heat treatment and a second heat treatment together with the fresh wire.
  • the first heat treatment was performed at 400 ° C. for 10 seconds
  • the second heat treatment was performed at 500 ° C. for 1 second after the completion of drawing as the final heat treatment.
  • the formation and bonding ball shape of the free air ball FAB are improved as iridium is added.
  • the formation and bonding ball shape of the pre-air balls are improved, thereby reducing the possibility of short or short circuits in the manufacture of semiconductor devices.
  • a bonding wire having a diameter of 20 ⁇ m was prepared by performing a first heat treatment and a second heat treatment together with the fresh wire.
  • the first heat treatment was performed at 400 ° C. for 10 seconds
  • the second heat treatment was performed at 500 ° C. for 1 second after the completion of drawing as the final heat treatment.
  • Example 4 Each ingot was manufactured in the same manner as in Example 3 except that silicon (Si), germanium (Ge), aluminum (Al), magnesium (Mg), and zinc (Zn) were used instead of iridium (Ir), respectively. Using these, a bonding wire having a diameter of 20 ⁇ m was produced in the same manner as in Example 4.
  • the bonding wire which has a 20 micrometer diameter was also manufactured from the ingot of Example 3 by the same method as Example 4.
  • Example 4 Each ingot was manufactured in the same manner as in Example 3, except that 1000 ppm by weight of titanium (Ti) was used instead of 5000 ppm by weight of iridium (Ir), and 20 ⁇ m in diameter was used in the same manner as in Example 4. A bonding wire having was prepared.
  • Example 28 After rolling 90% of the bonding wires of Example 3, Example 28, Comparative Example 11, and Comparative Examples 20 to 24, the end-shaped image was captured and shown in FIG. 8. As shown in FIG. 8, in the case of Example 3 in which iridium was added and Example 28 in which titanium was added, the surface was smooth, the edges were straight, and the end shape was uniform. However, without adding these elements, palladium ( In the case of Comparative Example 11 to which Pd) -gold (Ag) was added, the edges were not straight and the edges were also uneven. In addition, even in the cases of Comparative Examples 20 to 24 in which silicon (Si), germanium (Ge), aluminum (Al), magnesium (Mg), and zinc (Zn) were added, the edges were not straight and the ends were not uniform. Can know.
  • the present invention can be usefully used in the semiconductor industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

The present invention relates to a silver alloy bonding wire and a semiconductor device using the same, and more specifically, to a silver alloy bonding wire containing silver as a main component and 3 weight ppm to 10000 weight ppm of iridium (Ir), and to a semiconductor device using the same. When the bonding wire of the present invention is used, a bonding wire having excellent bonding characteristics and processability and high reliability can be provided.

Description

은 합금 본딩 와이어 및 이를 이용한 반도체 장치Silver Alloy Bonding Wire and Semiconductor Device Using the Same
본 발명은 은 합금 본딩 와이어 및 이를 이용한 반도체 장치에 관한 것으로서, 더욱 구체적으로 본딩 특성과 가공성이 우수하고 신뢰성이 높은 본딩 와이어 및 이를 이용한 반도체 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver alloy bonding wire and a semiconductor device using the same. More particularly, the present invention relates to a bonding wire having excellent bonding properties, processability, and high reliability.
반도체 장치를 실장하기 위한 패키지에는 다양한 구조들이 존재하며, 기판과 반도체 장치를 연결하거나 반도체 장치들 사이를 연결하기 위하여 본딩 와이어가 여전히 널리 사용되고 있다. 본딩 와이어로서는 금 본딩 와이어가 많이 사용되었으나 고가일 뿐만 아니라 최근 가격이 급상승하였기 때문에 이를 대체할 수 있는 본딩 와이어에 대한 요구가 있다.Various structures exist in a package for mounting a semiconductor device, and bonding wires are still widely used to connect the substrate and the semiconductor device or to connect the semiconductor devices. As a bonding wire, gold bonding wires have been used a lot, but they are expensive and there is a demand for bonding wires that can replace them since the price has risen recently.
금(Au)의 대체재료로서 각광받았던 구리 와이어의 경우 구리 본연의 높은 경도로 인해 볼 본딩시 칩이 깨어지는 패드 크랙(pad crack) 현상이 빈번하게 일어나고 있고, 표면이 쉽게 산화되어 본딩 특성이 불량한 단점이 있다. In the case of copper wire, which was spotlighted as an alternative to Au, the pad crack phenomenon, in which the chip breaks during ball bonding, occurs frequently due to the inherent high hardness of copper. There are disadvantages.
이에 대한 대안으로서 저렴한 가격의 은(Ag)을 주성분으로 하는 본딩 와이어에 대한 연구가 활발하게 진행되고 있다. 은과 다른 금속 원소들을 합금함으로써 우수한 성질의 본딩 와이어를 개발하려는 노력이 진행되고 있으나, 아직도 개선될 여지가 많이 있다.As an alternative, research on bonding wires based on low-cost silver (Ag) has been actively conducted. Efforts have been made to develop bonding wires of good properties by alloying silver with other metal elements, but there is still much room for improvement.
<선행기술문헌><Preceding technical literature>
일본 특허공개 제2012-169374호Japanese Patent Publication No. 2012-169374
본 발명이 이루고자 하는 첫 번째 기술적 과제는 본딩 특성과 가공성이 우수하고 신뢰성이 높은 본딩 와이어를 제공하는 것이다.The first technical problem to be achieved by the present invention is to provide a bonding wire having excellent bonding properties, workability and high reliability.
본 발명이 이루고자 하는 첫 번째 기술적 과제는 본딩 특성과 가공성이 우수하고 신뢰성이 높은 본딩 와이어를 이용한 반도체 장치를 제공하는 것이다.The first technical problem to be achieved by the present invention is to provide a semiconductor device using a bonding wire having excellent bonding characteristics, processability and high reliability.
본 발명 상기 첫 번째 기술적 과제를 이루기 위하여, 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)을 3 중량ppm 내지 10000 중량ppm 함유하고 은(Ag)을 주성분으로 하는 은 합금 본딩 와이어를 제공한다. 상기 은 합금 본딩 와이어는 금(Au) 및 팔라듐(Pd)을 더 포함할 수 있다. 상기 은 합금 본딩 와이어에서 금(Au)의 함량은 약 0.1 중량% 내지 약 2 중량%일 수 있고, 상기 팔라듐(Pd)의 함량은 약 1.5 중량% 내지 약 4 중량%일 수 있다. 이 때, 금과 팔라듐의 함량비(Au/Pd)는 약 0.01 내지 약 1일 수 있다.In order to achieve the first technical problem, a silver alloy bonding wire containing 3 wtppm to 10000 wtppm of iridium (Ir), cobalt (Co), or titanium (Ti) and containing silver (Ag) as a main component is provided. do. The silver alloy bonding wire may further include gold (Au) and palladium (Pd). The content of gold (Au) in the silver alloy bonding wire may be about 0.1 wt% to about 2 wt%, and the content of palladium (Pd) may be about 1.5 wt% to about 4 wt%. At this time, the content ratio (Au / Pd) of gold and palladium may be about 0.01 to about 1.
또, 상기 은 합금 본딩 와이어는 백금(Pt), 구리(Cu), 베릴륨(Be) 및 칼슘(Ca)으로 구성되는 군으로부터 선택되는 1종 이상을 더 포함할 수 있다.In addition, the silver alloy bonding wire may further include one or more selected from the group consisting of platinum (Pt), copper (Cu), beryllium (Be), and calcium (Ca).
이 때, 상기 은 합금 본딩 와이어에서 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량은 약 2,000 중량ppm 내지 약 10,000 중량ppm일 수 있다. 특히, 상기 은 합금 본딩 와이어에서 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량은 약 2,000 중량ppm 내지 약 3,000 중량ppm일 수 있다. In this case, the content of the iridium (Ir), cobalt (Co), or titanium (Ti) in the silver alloy bonding wire may be about 2,000 ppm by weight to about 10,000 ppm by weight. In particular, the content of the iridium (Ir), cobalt (Co), or titanium (Ti) in the silver alloy bonding wire may be about 2,000 ppm by weight to about 3,000 ppm by weight.
선택적으로, 상기 은 합금 본딩 와이어에서 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량은 약 3 중량ppm 내지 약 3,000 중량ppm일 수 있다. Optionally, the content of the iridium (Ir), cobalt (Co), or titanium (Ti) in the silver alloy bonding wire may be about 3 ppm by weight to about 3,000 ppm by weight.
본 발명 상기 두 번째 기술적 과제를 이루기 위하여, 기판; 상기 기판 위에 실장되고, 내부 회로를 외부와 접속하기 위한 본딩 패드가 구비된 반도체 칩; 및 상기 기판과 상기 반도체 칩의 본딩 패드를 전기적으로 연결하는 본딩 와이어를 포함하는 반도체 장치를 제공한다. 상기 본딩 와이어는 본 발명에 따른 은 합금 본딩 와이어일 수 있다.In order to achieve the second technical problem of the present invention, a substrate; A semiconductor chip mounted on the substrate and provided with a bonding pad for connecting an internal circuit to the outside; And a bonding wire electrically connecting the substrate and the bonding pad of the semiconductor chip. The bonding wire may be a silver alloy bonding wire according to the present invention.
본 발명의 본딩 와이어를 이용하면 본딩 특성과 가공성이 우수하고 신뢰성이 높은 본딩 와이어를 제공할 수 있는 효과가 있다.The use of the bonding wire of the present invention has the effect of providing a bonding wire with excellent bonding properties and processability and high reliability.
도 1은 본 발명의 일 실시예에 따른 은 합금 본딩 와이어의 제조 방법을 순서에 따라 나타낸 블록도이다.1 is a block diagram showing in order a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention.
도 2는 제조된 은 합금 본딩 와이어의 본딩 특성을 시험하기 위한 1차 본딩 및 2차 본딩쪽 시험 방법을 각각 나타낸 개념적인 측면도이다.FIG. 2 is a conceptual side view illustrating a first bonding side and a second bonding side test method, respectively, for testing bonding characteristics of manufactured silver alloy bonding wires. FIG.
도 3은 본 발명의 실시예에 따른 반도체 장치를 모식적으로 나타낸 측단면도이다.3 is a side cross-sectional view schematically showing a semiconductor device according to an embodiment of the present invention.
도 4 및 도 5는 실시예 1 및 비교예 1∼4에서 제조된 잉곳들의 모습을 각각 캡춰하여 나타낸 이미지들이다.4 and 5 are captured images of the ingots prepared in Example 1 and Comparative Examples 1 to 4, respectively.
도 6 및 도 7은 실시예 2 및 비교예 5∼9에서 제조된 잉곳들의 모습과 이들을 현미경 관찰한 모습을 캡춰한 이미지들이다.6 and 7 are images capturing the state of the ingots prepared in Example 2 and Comparative Examples 5 to 9 and the state observed under the microscope.
도 8은 실시예 2, 비교예 13, 및 비교예 22 내지 26의 본딩 와이어에 대하여 90% 압연한 후 단부의 모습을 캡춰한 이미지들이다.FIG. 8 is an image capturing the shape of an end portion after rolling 90% of the bonding wires of Example 2, Comparative Example 13, and Comparative Examples 22 to 26. FIG.
이하, 첨부도면을 참조하여 본 발명 개념의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명 개념의 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명 개념의 범위가 아래에서 상술하는 실시예들로 인해 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명 개념의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명 개념을 보다 완전하게 설명하기 위해서 제공되어지는 것으로 해석되는 것이 바람직하다. 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명 개념은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되어지지 않는다.Hereinafter, exemplary embodiments of the inventive concept will be described in detail with reference to the accompanying drawings. However, embodiments of the inventive concept may be modified in many different forms and should not be construed as limiting the scope of the inventive concept to the embodiments described below. Embodiments of the inventive concept are preferably interpreted as being provided to those skilled in the art to more fully describe the inventive concept. Like numbers refer to like elements all the time. Furthermore, various elements and regions in the drawings are schematically drawn. Accordingly, the inventive concept is not limited by the relative size or spacing drawn in the accompanying drawings.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는 데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명 개념의 권리 범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 반대로 제 2 구성 요소는 제 1 구성 요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the inventive concept, the first component may be referred to as the second component, and vice versa, the second component may be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로서, 본 발명 개념을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함한다" 또는 "갖는다" 등의 표현은 명세서에 기재된 특징, 개수, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 개수, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the inventive concepts. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the expression “comprises” or “having” is intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and that one or more other features It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, operations, components, parts or combinations thereof.
달리 정의되지 않는 한, 여기에 사용되는 모든 용어들은 기술 용어와 과학 용어를 포함하여 본 발명 개념이 속하는 기술 분야에서 통상의 지식을 가진 자가 공통적으로 이해하고 있는 바와 동일한 의미를 지닌다. 또한, 통상적으로 사용되는, 사전에 정의된 바와 같은 용어들은 관련되는 기술의 맥락에서 이들이 의미하는 바와 일관되는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의하지 않는 한 과도하게 형식적인 의미로 해석되어서는 아니 될 것임은 이해될 것이다.Unless defined otherwise, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art, including technical terms and scientific terms. Also, as used in the prior art, terms as defined in advance should be construed to have a meaning consistent with what they mean in the context of the technology concerned, and in an overly formal sense unless explicitly defined herein. It will be understood that it should not be interpreted.
본 발명의 일 실시예는 은(Ag)을 주성분으로 하고 이리듐(Ir)을 포함하는 은 합금 본딩 와이어를 제공한다. 여기서, 주성분(main component)이라 함은 전체 성분에 대한 해당 원소의 농도가 50%를 넘는 것을 말한다. 즉, 은(Ag)을 주성분으로 한다는 것은 은과 다른 원소의 총계에 대한 은의 농도가 50%를 넘는 것을 의미한다. 여기서 농도는 원자 몰수를 기준으로 한 농도를 말한다.One embodiment of the present invention provides a silver alloy bonding wire containing silver (Ag) as a main component and iridium (Ir). Here, the main component means that the concentration of the corresponding element with respect to the total component exceeds 50%. That is, having silver (Ag) as the main component means that the concentration of silver in the total amount of silver and other elements exceeds 50%. Here, the concentration refers to the concentration based on the number of moles of atoms.
본 발명의 일 실시예에 따르면 상기 본딩 와이어는 금(Au)을 더 포함할 수 있으며, 이 때, 상기 금의 함량은 상기 본딩 와이어 전체에 대하여 약 0.1 중량% 내지 약 2 중량%일 수 있다. 만일 금(Au)의 함량이 지나치게 적으면 본딩 와이어의 말단에 형성되는 볼의 형상이 진구(眞球)로부터 과도하게 벗어나게 되어 본딩 특성이 나빠질 수 있다. 반대로, 금의 함량이 지나치게 많으면 와이어 본딩 시의 와이어 말단에 형성되는 볼의 경도가 과도하게 상승하여 본딩 패드 및/또는 그 아래의 기판이 손상될 수 있다.According to an embodiment of the present invention, the bonding wire may further include gold (Au), wherein the amount of gold may be about 0.1 wt% to about 2 wt% with respect to the entire bonding wire. If the content of gold (Au) is too small, the shape of the ball formed at the end of the bonding wire is excessively deviated from the spherical ball (眞 球) may cause poor bonding properties. Conversely, if the content of gold is excessively high, the hardness of the balls formed at the wire ends during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
본 발명의 다른 실시예에 따르면 상기 본딩 와이어는 팔라듐(Pd)을 더 포함할 수 있으며, 이 때, 상기 팔라듐의 함량은 상기 본딩 와이어 전체에 대하여 약 1.5 중량% 내지 약 4 중량%일 수 있다. 만일 팔라듐(Pd)의 함량이 지나치게 적으면 내산성이 나빠져서 질산이나 황산 등에 의하여 쉽게 부식되거나 단락될 수 있고, 특히 팔라듐이 함유되지 않으면 은 합금 본딩 와이어의 내산화성이 취약해질 수 있다. 반대로, 팔라듐의 함량이 과도하게 많으면 와이어 본딩 시의 와이어 말단에 형성되는 볼의 경도가 과도하게 상승하여 본딩 패드 및/또는 그 아래의 기판이 손상될 수 있다.According to another embodiment of the present invention, the bonding wire may further include palladium (Pd), wherein the content of palladium may be about 1.5% by weight to about 4% by weight based on the entirety of the bonding wire. If the content of palladium (Pd) is too small, the acid resistance may deteriorate so that it may be easily corroded or short-circuited by nitric acid or sulfuric acid. In particular, if palladium is not contained, oxidation resistance of the silver alloy bonding wire may be weak. On the contrary, when the content of palladium is excessively high, the hardness of the ball formed at the end of the wire during wire bonding may excessively increase, thereby damaging the bonding pad and / or the substrate below.
본 발명의 실시예에 따른 본딩 와이어가 금(Au)과 팔라듐(Pd)을 동시에 포함하는 경우 금과 팔라듐의 중량기준 함량비(Au/Pd)는 약 0.01 내지 약 1일 수 있다. 상기 팔라듐(Pd)에 대한 금(Au)의 함량비가 너무 낮으면 본딩 와이어의 말단에 형성되는 볼의 형상이 진구(眞球)로부터 벗어나게 되어 본딩 특성이 나빠질 수 있다. 또한, 본딩 와이어의 표면이 쉽게 산화되고, 또한 변색되기 쉬운 문제점이 있다. 반대로, 상기 함량비가 너무 높으면 본딩와이어의 말단에 형성되는 볼의 진구성이 나빠진다. 또한, 본딩 와이어의 말단에 형성되는 볼의 경도가 과도하게 상승하여 본딩 패드 및/또는 그 아래의 기판이 손상될 우려가 있다. When the bonding wire according to the embodiment of the present invention simultaneously includes gold (Au) and palladium (Pd), the weight-based content ratio (Au / Pd) of gold and palladium may be about 0.01 to about 1. If the content ratio of gold (Au) to the palladium (Pd) is too low, the shape of the ball formed at the end of the bonding wire is out of the spherical (眞 球) may have a poor bonding properties. In addition, there is a problem that the surface of the bonding wire is easily oxidized and discolored. On the contrary, if the content ratio is too high, the true structure of the balls formed at the ends of the bonding wires becomes worse. In addition, there is a fear that the hardness of the ball formed at the end of the bonding wire rises excessively, thereby damaging the bonding pad and / or the substrate below.
본 발명의 다른 실시예에 따르면 상기 은 합금 본딩 와이어는 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)을 더 포함할 수 있으며, 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량은 약 3 중량ppm 내지 약 10,000 중량ppm(즉, 약 1 중량%)일 수 있다.According to another embodiment of the present invention, the silver alloy bonding wire may further include iridium (Ir), cobalt (Co), or titanium (Ti), and the iridium (Ir), cobalt (Co), or titanium ( The content of Ti) may be about 3 ppm by weight to about 10,000 ppm by weight (ie about 1% by weight).
상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 과도하게 적으면 프리 에어볼(free air ball, FAB)의 표면 품질 개선과 같은, 이들 원소의 첨가에 따르는 유리한 효과가 발현되지 않을 수 있다. 반대로, 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 과도하게 많으면 가공성이 나빠지고 본딩 특성이 불량해질 수 있다.When the content of iridium (Ir), cobalt (Co), or titanium (Ti) is excessively low, advantageous effects due to the addition of these elements, such as improving the surface quality of free air balls (FAB), are expressed. It may not be. On the contrary, excessively high content of iridium (Ir), cobalt (Co), or titanium (Ti) may result in poor workability and poor bonding properties.
상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량은 약 2000 중량ppm 내지 약 10,000 중량ppm인 것이 바람직하다. 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 약 2000 중량ppm 미만이면 본딩 특성이 상대적으로 불량해질 수 있다. 반대로, 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 약 10,000 중량ppm을 초과하면 가공성이 나빠지고 본딩 특성도 불량해질 수 있다.The content of the iridium (Ir), cobalt (Co), or titanium (Ti) is preferably about 2000 ppm by weight to about 10,000 ppm by weight. When the content of iridium (Ir), cobalt (Co), or titanium (Ti) is less than about 2000 ppm by weight, bonding properties may be relatively poor. On the contrary, when the content of iridium (Ir), cobalt (Co), or titanium (Ti) exceeds about 10,000 ppm by weight, the workability may deteriorate and the bonding properties may be poor.
선택적으로, 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량은 약 3 중량ppm 내지 약 3,000 중량ppm일 수 있다. 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 약 3 중량ppm 미만이면 프리 에어볼(free air ball, FAB)의 표면 품질 개선과 같은, 이들 원소의 첨가에 따르는 유리한 효과가 발현되지 않을 수 있다. 반대로, 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 약 3,000 중량ppm을 초과하면 본딩 와이어의 가공성이 상대적으로 불량해질 수 있다.Optionally, the content of iridium (Ir), cobalt (Co), or titanium (Ti) may be about 3 ppm by weight to about 3,000 ppm by weight. If the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is less than about 3 ppm by weight, the beneficial effect of the addition of these elements, such as improving the surface quality of free air ball (FAB) May not be expressed. On the contrary, when the content of iridium (Ir), cobalt (Co), or titanium (Ti) exceeds about 3,000 ppm by weight, the workability of the bonding wire may be relatively poor.
선택적으로, 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량은 약 2,000 중량ppm 내지 약 3,000 중량ppm일 수 있다. 상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 약 2,000 중량ppm 내지 약 3,000 중량ppm의 범위 내에 속하면 우수한 본딩 특성과 우수한 가공성을 얻을 수 있다.Optionally, the content of iridium (Ir), cobalt (Co), or titanium (Ti) may be about 2,000 ppm by weight to about 3,000 ppm by weight. When the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is in the range of about 2,000 ppm by weight to about 3,000 ppm by weight it is possible to obtain excellent bonding properties and excellent workability.
상기 은 합금 본딩 와이어는 백금(Pt), 구리(Cu), 베릴륨(Be), 칼슘(Ca), 란탄(La), 이트륨(Y), 세륨(Ce), 비스무트(Bi), 코발트(Co), 및 마그네슘(Mg)으로 구성되는 군으로부터 선택되는 1종 이상의 원소를 성능 개선 첨가제로서 더 포함할 수 있다. 이들 성능 개선 첨가제는 고온 신뢰성, 고습 신뢰성, 본딩 특성, 연신율(elongation) 표준편차 등과 같은 성능을 개선하기 위해 첨가될 수 있다.The silver alloy bonding wire is platinum (Pt), copper (Cu), beryllium (Be), calcium (Ca), lanthanum (La), yttrium (Y), cerium (Ce), bismuth (Bi), cobalt (Co) And one or more elements selected from the group consisting of magnesium (Mg) may be further included as performance improving additives. These performance improving additives may be added to improve performance such as high temperature reliability, high humidity reliability, bonding properties, elongation standard deviation, and the like.
상기 성능 개선 첨가제의 함량은 약 3 중량ppm 내지 약 500 중량ppm일 수 있다. 또는, 상기 성능 개선 첨가제의 함량은 약 5 중량ppm 내지 약 50 중량ppm일 수 있다. 상기 성능 개선 첨가제의 함량이 너무 낮으면 원하는 성능 개선이 발현되지 않을 수 있다. 또한, 상기 성능 개선 첨가제의 함량이 너무 높으면 전기 저항이 증가하고 경제적으로 불리하다.The content of the performance improving additive may be about 3 ppm by weight to about 500 ppm by weight. Alternatively, the content of the performance improving additive may be about 5 ppm by weight to about 50 ppm by weight. If the content of the performance improving additive is too low, the desired performance improvement may not be expressed. In addition, if the content of the performance improving additive is too high, the electrical resistance increases and it is economically disadvantageous.
특히, 본 발명의 일 실시예에 따르면 상기 성능 개선 첨가제는 백금(Pt)일 수 있다. 상기 백금(Pt)의 함량은 약 5 중량ppm 내지 약 500 중량ppm일 수 있다. In particular, according to an embodiment of the present invention, the performance improving additive may be platinum (Pt). The content of platinum (Pt) may be about 5 ppm by weight to about 500 ppm by weight.
본 발명의 다른 실시예에 따르면 상기 성능 개선 첨가제는 구리(Cu)일 수 있다. 상기 구리(Cu)의 함량은 약 5 중량ppm 내지 약 500 중량ppm일 수 있다. According to another embodiment of the present invention, the performance improving additive may be copper (Cu). The copper (Cu) content may be about 5 ppm by weight to about 500 ppm by weight.
본 발명의 다른 실시예에 따르면 상기 성능 개선 첨가제는 베릴륨(Be)일 수 있다. 상기 베릴륨(Be)의 함량은 약 3 중량ppm 내지 약 50 중량ppm일 수 있다. According to another embodiment of the present invention, the performance improving additive may be beryllium (Be). The content of beryllium (Be) may be about 3 ppm by weight to about 50 ppm by weight.
본 발명의 다른 실시예에 따르면 상기 성능 개선 첨가제는 칼슘(Ca)일 수 있다. 상기 칼슘(Ca)의 함량은 약 3 중량ppm 내지 약 50 중량ppm일 수 있다.According to another embodiment of the present invention, the performance improving additive may be calcium (Ca). The content of calcium (Ca) may be about 3 ppm by weight to about 50 ppm by weight.
특히, 은(Ag)을 주성분으로 하는 본딩 와이어를 알루미늄(Al) 패드에 접속할 때, 불순물로서 염소(Cl)가 포함될 경우 본딩부의 급격한 파괴의 원인이 될 수 있다. 즉, 하기 화학식 1 내지 화학식 3에 나타낸 바와 같이 은이 알루미늄과 만나는 곳에서 계속적으로 알루미늄 산화물(Al2O3)이 누적될 수 있으며, 누적된 알루미늄 산화물을 따라 크랙(crack)이 전파되어 급격한 파괴를 일으킬 수 있다.In particular, when connecting a bonding wire composed mainly of silver (Ag) to an aluminum (Al) pad, if chlorine (Cl) is included as an impurity, it may cause sudden destruction of the bonding portion. That is, as shown in the following Chemical Formulas 1 to 3, aluminum oxide (Al 2 O 3 ) may continuously accumulate where silver meets aluminum, and cracks propagate along the accumulated aluminum oxide to abruptly break down. Can cause.
[화학식 1][Formula 1]
3AgCl + Al → 3Ag + AlCl3 3AgCl + Al → 3Ag + AlCl 3
[화학식 2][Formula 2]
2AlCl3 + 3H2O → Al2O3 + 6HCl2AlCl 3 + 3H 2 O → Al 2 O 3 + 6HCl
[화학식 3][Formula 3]
6HCl + 6Ag → 6AgCl + 3H2 6HCl + 6Ag → 6AgCl + 3H 2
한편, 특정한 이론에 한정되는 것은 아니지만, 은(Ag)에 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)을 첨가하게 되면, 은 대신 이들 원소가 염소와 반응하여 비교적 안정한 이리듐 염화물, 코발트 염화물 또는 티타늄 염화물로 전환되기 때문에 본딩을 약화시키는 성분이 누적적으로 생성되는 것을 방지할 수 있다.On the other hand, although not limited to a specific theory, when iridium (Ir), cobalt (Co), or titanium (Ti) is added to silver (Ag), these elements react with chlorine instead of silver to relatively stable iridium chloride and cobalt. Conversion to chloride or titanium chloride prevents the accumulation of components that weaken the bond.
이하에서는 본 발명 개념의 일 실시예에 따른 은 합금 본딩 와이어의 제조 방법을 설명한다. 도 1은 본 발명의 일 실시예에 따른 은 합금 본딩 와이어의 제조 방법을 순서에 따라 나타낸 블록도이다.Hereinafter will be described a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention. 1 is a block diagram showing in order a method of manufacturing a silver alloy bonding wire according to an embodiment of the present invention.
도 1을 참조하면, 원하는 조성을 갖도록 은(Ag) 및 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)을 포함하는 금속 원료를 용해로에서 용해 주조하여 금속 원료의 합금액을 제조할 수 있다(S1). 이 때, 필요에 따라 금(Au), 및 팔라듐(Pd)을 더 첨가할 수도 있다. 또한, 위에서 설명한 바와 같은 성능 개선 첨가제를 더 첨가할 수도 있다.Referring to FIG. 1, an alloy liquid of a metal raw material may be prepared by melting and casting a metal raw material including silver (Ag) and iridium (Ir), cobalt (Co), or titanium (Ti) in a melting furnace to have a desired composition. (S1). At this time, gold (Au) and palladium (Pd) may be further added as needed. It is also possible to further add performance improving additives as described above.
그런 다음, 상기 금속 원료의 합금액을 냉각 및 응고시키고, 단조, 압연 등에 의해 합금 피스(piece)를 얻을 수 있다(S2). 이어서, 상기 합금 피스를 약 6 mm 내지 약 9 mm의 직경을 갖도록 1차 세선화할 수 있다(S3).Then, the alloy liquid of the metal raw material is cooled and solidified, and an alloy piece can be obtained by forging, rolling, or the like (S2). Subsequently, the alloy piece may be first thinned to have a diameter of about 6 mm to about 9 mm (S3).
약 6 mm 내지 약 9 mm의 직경을 갖도록 세선화된 1차 세선을 신선 및 열처리한다(S4). 상기 신선 및 열처리 단계에서는 1차 세선을 다단계에 걸쳐 점진적으로 세선화하고 열처리하는 과정을 포함할 수 있다. 상기 1차 세선을 세선화하기 위하여 다단계의 다이스를 통과시키며 세선의 단면적을 감소시킬 수 있다.The primary thin wire thinned to have a diameter of about 6 mm to about 9 mm is drawn and heat-treated (S4). The drawing and heat treatment step may include a step of gradually thinning and heat-treating the primary thin wire in multiple stages. In order to thin the primary thin wire, the cross section of the thin wire may be reduced while passing through a multi-stage die.
통상의 기술자는 상기 세선이 다수의 다이스(dice)를 순차 통과함으로써 직경이 감소하는 것을 이해할 것이다. 다시 말해, 상기 세선은 홀(hole) 크기가 점진적으로 감소하도록 배열된 다수의 다이스들을 순차 통과하면서 직경이 감소한다.Those skilled in the art will appreciate that the thin wire decreases in diameter as it sequentially passes through a number of dice. In other words, the thin wire decreases in diameter as it sequentially passes through a plurality of dice arranged so that the hole size gradually decreases.
선택적으로, 연신율(elongation)을 조절하기 위하여 신선이 완료된 이후에 추가 어닐링(annealing)이 수행될 수 있다(S5). 연신율을 조절하기 위한 어닐링 조건은 세선의 조성, 감면율, 열처리 조건 등에 의하여 달라질 수 있지만, 대략 400 ℃ 내지 600 ℃의 온도에서 약 1 초 내지 약 20 분 동안 수행될 수 있으며, 당 기술 분야의 통상의 지식을 가진 자는 구체적인 어닐링 조건을 적절히 선택할 수 있을 것이다.Optionally, additional annealing may be performed after the drawing is completed to adjust elongation (S5). Annealing conditions for adjusting the elongation may vary depending on the composition of the thin wire, the reduction rate, the heat treatment conditions, etc., but may be performed for about 1 second to about 20 minutes at a temperature of about 400 ° C to 600 ° C, Those skilled in the art will be able to select specific annealing conditions appropriately.
만일 상기 어닐링 온도가 너무 낮으면 본딩 접합시에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 어닐링 온도가 너무 높으면 결정립의 크기가 과도하게 커질 수 있고, 본딩 접합시 루프(loop)의 처짐과 같은 불량이 발생할 수 있어 바람직하지 않다.If the annealing temperature is too low, the ductility and malleability necessary for bonding bonding may not be secured. On the contrary, if the annealing temperature is too high, the grain size may be excessively large. The same failure may occur and is undesirable.
또한, 상기 어닐링 시간이 너무 짧으면 가공에 필요한 연성과 전성이 확보되지 않을 수 있고, 반대로 상기 어닐링 시간이 너무 길면 결정립의 크기가 과도하게 커질 수 있고 경제적으로 불리하여 바람직하지 않다.In addition, when the annealing time is too short, ductility and malleability necessary for processing may not be secured. On the contrary, when the annealing time is too long, the grain size may be excessively large and economically disadvantageous, which is not preferable.
위의 어닐링 공정은, 예를 들면, 본딩 와이어를 노(furnace)에 적절한 속도로 통과시킴으로써 수행될 수 있다. 또한, 본딩 와이어를 노에 통과시키는 속도는, 요구되는 어닐링 시간과 노의 크기로부터 결정될 수 있다.The above annealing process can be performed, for example, by passing the bonding wire through the furnace at a suitable speed. Also, the rate at which the bonding wire passes through the furnace can be determined from the required annealing time and the size of the furnace.
본 발명 개념의 또 다른 실시예는 기판, 상기 기판 위에 실장되고 내부 회로를 외부와 접속하기 위한 본딩 패드가 구비된 반도체 칩, 및 상기 기판과 상기 반도체 칩의 본딩 패드를 전기적으로 연결하는 본딩 와이어를 포함하는 반도체 장치(200)를 제공한다.Yet another embodiment of the inventive concept includes a substrate, a semiconductor chip mounted on the substrate and having a bonding pad for connecting an internal circuit to the outside, and a bonding wire electrically connecting the substrate and the bonding pad of the semiconductor chip. A semiconductor device 200 is provided.
도 3은 본 발명의 실시예에 따른 반도체 장치(200)를 모식적으로 나타낸 측단면도이다.3 is a side cross-sectional view schematically showing a semiconductor device 200 according to an embodiment of the present invention.
도 3을 참조하면, 상기 반도체 장치(200)는 기판(210) 위에 구비된 반도체 칩(220)을 포함한다.Referring to FIG. 3, the semiconductor device 200 includes a semiconductor chip 220 provided on a substrate 210.
상기 기판(210)은 일반적인 인쇄 회로 기판(printed circuit board, PCB), 연성 인쇄 회로 기판(flexible printed circuit board, FPCB), 세라믹 PCB, 금속 코어(metal core) PCB 등일 수 있으며 특별히 한정되지 않는다. 상기 기판(210) 위에는 상기 기판(210) 상에 실장되는 반도체 칩(210)과 전기적으로 연결될 수 있는 기판 본딩 패드(212)가 구비될 수 있다.The substrate 210 may be a general printed circuit board (PCB), a flexible printed circuit board (FPCB), a ceramic PCB, a metal core PCB, or the like, and is not particularly limited. A substrate bonding pad 212 may be provided on the substrate 210 to be electrically connected to the semiconductor chip 210 mounted on the substrate 210.
상기 반도체 칩(220)은 메모리, 로직, 마이크로 프로세서, 아날로그 소자, 디지털 시그널 프로세서(digital signal processor, DSP), 시스템-온-칩(system-on-chip, SoC) 등 다양한 기능을 수행하는 반도체 칩일 수 있으며, 특별히 한정되지 않는다.The semiconductor chip 220 may be a semiconductor chip that performs various functions such as a memory, logic, microprocessor, analog device, digital signal processor (DSP), and system-on-chip (SoC). It may be, and is not particularly limited.
상기 반도체 칩(220)은 도 3에 나타낸 바와 같이 활성면이 상부를 향하도록 배치될 수 있으며, 상기 활성면에는 본딩 패드(222)가 제공될 수 있다. 상기 본딩 패드(222)는 알루미늄(Al), 니켈(Ni), 구리(Cu) 등의 금속으로 될 수 있으며 특별히 한정되지 않는다.As illustrated in FIG. 3, the semiconductor chip 220 may be disposed such that an active surface faces upward, and a bonding pad 222 may be provided on the active surface. The bonding pad 222 may be made of metal such as aluminum (Al), nickel (Ni), copper (Cu), and the like, and is not particularly limited.
상기 본딩 패드(222)는 상기 기판 본딩 패드(212)와 본딩 와이어(230)를 통하여 전기적으로 연결될 수 있다. 상기 본딩 와이어(230)는 위에서 설명한 본 발명의 실시예들에 따른 은 합금 본딩 와이어일 수 있다.The bonding pad 222 may be electrically connected to the substrate bonding pad 212 through a bonding wire 230. The bonding wire 230 may be a silver alloy bonding wire according to the embodiments of the present invention described above.
뒤에서 살펴보는 바와 같이 본 발명의 본딩 와이어는 가공성, 신뢰성 및 본딩 특성이 우수하기 때문에 상기 본딩 와이어(230)를 이용하여 제조한 반도체 장치(200)도 우수한 신뢰성을 갖게 된다.As will be described later, since the bonding wire of the present invention has excellent workability, reliability, and bonding characteristics, the semiconductor device 200 manufactured using the bonding wire 230 also has excellent reliability.
이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐 본 발명의 범위를 한정하고자 하는 것은 아니다. 실시예 및 비교예에서 하기와 같은 방법으로 물성을 평가하였다.Hereinafter, the structure and effects of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention and are not intended to limit the scope of the present invention. In Examples and Comparative Examples, physical properties were evaluated in the following manner.
[ 표면 특성 향상 시험 ][Surface characteristics improvement test]
지름 2 cm, 높이 2cm의 몰드에 각 해당 조성의 금속 원료를 넣고 아르곤(Ar) 분위기의 유도 가열로에서 약 1200 ℃로 30분간 가열한 뒤 공기로 냉각하여 잉곳의 표면을 육안 및 현미경으로 관찰하였다.Into a mold of 2 cm in diameter and 2 cm in height, the metal raw materials of the respective compositions were added, heated at about 1200 ° C. for 30 minutes in an argon (Ar) atmosphere induction furnace, and cooled by air to observe the surface of the ingot with a naked eye and a microscope. .
[ 프리 에어볼 시험 ]Free Air Ball Test
20 ㎛ 지름의 본딩 와이어의 선단을 100% N2 가스를 쉴드 가스로 이용하여 42 ㎛ 지름의 프리 에어볼(free air ball, FAB)이 되도록 하여 이미지를 캡춰한 후 표면의 매끄러운 정도(FAB 표면) 및 진구에 가까운 정도(진구성)를 평가하였다.The smoothness of the surface after capturing the image by capturing the image to a 42 μm free air ball (FAB) using 100% N 2 gas as the shield gas at the tip of the 20 μm diameter bonding wire. And the degree close to the true bulb (true structure) was evaluated.
FAB 표면은 형성된 프리 에어볼의 표면이 전체적으로 매끈하면 ◎, 표면이 매끈하지는 않고 일부 미세 영역에 약간의 돌출이 관찰되면 △, 전체적으로 표면의 상당 영역에 걸쳐 돌출이 관찰되면 ×로 평가하였다.The FAB surface was evaluated as ◎ when the surface of the formed free air ball was smooth as a whole,? When the surface was not smooth, and some protrusions were observed in some microregions, and × when the protrusion was observed over a substantial area of the surface as a whole.
FAB 진구성은 캡춰된 이미지로부터 정원(正圓)에서 벗어나는 정도로서 평가하였는데, 정원에서 벗어나는 정도는 볼의 장축에 대한 단축의 비율과 1 사이의 차를 백분율로 나타냄으로써 정량화하였다. 정량화한 상기 값이 2% 미만인 경우 ◎, 2% 이상이고 5% 미만이면 ○, 5% 이상이고 8% 미만이면 △, 8% 이상이면 ×로 평가하였다.FAB formation was assessed as the degree of deviation from the captured image, which was quantified by expressing the difference between the ratio of the short axis to the long axis of the ball and the difference as a percentage. When the above quantified value is less than 2%,?, 2% or more, and less than 5%, ○, 5% or more and △, 8% or more, x was evaluated.
[ 단선 횟수 ][Number of disconnection]
본딩 와이어를 제조하면서 km당의 단선 횟수를 조사하여 0.02회/km 미만이면 ◎, 0.02회/km 이상이고 0.05회/km 미만이면 ○, 0.05회/km 이상이고 0.2회/km 미만이면 △, 0.2회/km 이상이면 ×로 평가하였다.While manufacturing bonding wires, the number of disconnections per km was examined to determine if ◎, less than 0.02 times / km, ◎, 0.02 times / km or more, and less than 0.05 times / km, ○, 0.05 times / km or more, △, 0.2 times It evaluated by x as / km or more.
[ BPT (bond pull test) 및 SPT (stitch pull test) ][BPT (bond pull test) and SPT (stitch pull test)]
제조된 은 합금 본딩 와이어를 이용하여 도 2에 나타낸 바와 같이 1차 본딩쪽 본딩 패드(10)와 2차 본딩 쪽 본딩 패드(20)가 본딩된다. 즉, 은 합금 본딩 와이어(100)의 선단에 볼을 형성하여 1차 본딩 쪽 본딩 패드(10)에 볼 본딩을 수행한 후 2차 본딩 쪽 본딩 패드(20) 상에 스티치 본딩을 수행한다.As shown in FIG. 2, the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire. That is, the ball is formed on the tip of the silver alloy bonding wire 100 to perform ball bonding on the primary bonding side bonding pad 10, and then stitch bonding is performed on the secondary bonding side bonding pad 20.
그런 다음 1차 본딩 쪽에 가까운 부분을 화살표 A를 따라 수직 상방으로 당겨서 1차 본딩이 떨어질 때의 로드를 평가하고(BPT), 2차 본딩 쪽에 가까운 부분을 화살표 B를 따라 수직 상방으로 당겨서 2차 본딩이 떨어질 때의 로드를 평가(SPT)하였다.Then, the part near the primary bonding side is pulled vertically upward along arrow A to evaluate the load when the primary bond falls (BPT), and the part near the secondary bonding side is pulled vertically upward along arrow B to secondary bonding. The load when it fell was evaluated (SPT).
각 실시예 및 비교예 별로 2000개의 샘플을 준비하여 1000개에 대해서는 BPT를 수행하고, 나머지 1000개에 대해서는 SPT를 수행하였다. 측정된 로드의 평균값을 구하여 하기 표 1과 같이 판정하였다.2000 samples were prepared for each Example and Comparative Example to perform BPT for 1000 samples and SPT for the remaining 1000 samples. The average value of the measured rod was determined and determined as shown in Table 1 below.
표 1
판정 BPT 로드 (g) SPT 로드 (g)
5g 이상 4g 이상
4g 이상 5g 미만 3g 이상 4g 미만
3g 이상 4g 미만 2g 이상 3g 미만
× 3g 미만 2g 미만
Table 1
Judgment BPT rod (g) SPT load (g)
More than 5g More than 4g
4 g or more but less than 5 g More than 3g less than 4g
More than 3g less than 4g 2 g or more but less than 3 g
× Less than 3g Less than 2g
[ BST (ball shear test) ][BST (ball shear test)]
제조된 은 합금 본딩 와이어를 이용하여 도 2에 나타낸 바와 같이 1차 본딩쪽 본딩 패드(10)와 2차 본딩 쪽 본딩 패드(20)가 본딩된다. As shown in FIG. 2, the primary bonding side bonding pad 10 and the secondary bonding side bonding pad 20 are bonded using the manufactured silver alloy bonding wire.
그런 다음 1차 본딩된 부분에 측방향으로 전단력을 가하여 1차 본딩이 떨어질 때의 로드를 평가하였다.Then, the shear force was applied laterally to the primary bonded portion to evaluate the load when the primary bonding fell.
각 실시예 및 비교예 별로 1000개의 샘플을 준비하여 BST를 수행하고, 측정된 로드의 평균값을 구하여 하기 표 2와 같이 판정하였다.1000 samples were prepared for each Example and Comparative Example to perform a BST, and the average value of the measured load was obtained to determine as shown in Table 2 below.
표 2
판정 BST 로드 (g)
15g 이상
12g 이상 15g 미만
10g 이상 12g 미만
× 10g 미만
TABLE 2
Judgment BST load (g)
More than 15g
12 g or more but less than 15 g
More than 10 g less than 12 g
× Less than 10g
[볼 모양 균일성][Ball shape uniformity]
20 ㎛ 지름의 본딩 와이어의 선단을 42 ㎛ 지름의 본딩 볼이 되도록 하여 패드 상에 접합한 후 가로축 방향과 세로축 방향의 길이의 비율을 측정하여 1에 가까운지 여부, 본딩 와이어가 볼의 중심에 위치하는지 여부, 가장자리가 진원(眞圓) 형태로 매끄러운지, 또는 꽃잎 모양의 굴곡이 있는지 여부를 관찰하였다.Bond the tip of the 20 μm diameter bonding wire to a 42 μm diameter bonding ball on the pad and measure the ratio of the length in the horizontal and vertical directions to determine whether the bonding wire is close to 1, and the bonding wire is located at the center of the ball. Whether the edges were smooth in the form of a round or there were petal-shaped bends.
본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.99 이상이고, 본딩 와이어가 볼의 중심에 위치하며, 가장자리가 꽃잎 모양 없이 진원으로 판정되면 ◎, 본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.96 이상 0.99 미만이고 본딩 와이어가 볼의 중심에 위치하며, 가장자리가 꽃잎 모양 없이 진원으로 판정되면 ○, 본딩된 볼의 가로축 방향과 세로축 방향의 길이의 비율이 0.9 이상으로서 가장자리가 꽃잎 모양이 없으며 위의 ◎나 ○에 해당하지 않으면 △, 그 외의 경우는 ×로 평가하였다.When the ratio of the length of the bonded ball in the transverse direction and the longitudinal direction is not less than 0.99, the bonding wire is located at the center of the ball, and the edge is determined to be round without a petal shape, the length of the bonded ball in the horizontal and vertical directions When the ratio of is 0.96 or more and less than 0.99 and the bonding wire is located at the center of the ball, and the edge is determined to be round without petal shape, the ratio of the length of the bonded ball in the horizontal axis direction and the vertical axis direction is 0.9 or more, and the edge is shaped like a petal. There was no, and if it did not correspond to ◎ or ○ above, △, otherwise, evaluated as ×.
[ 루프 특성 - 직진성 ]Loop Characteristics-Straightness
120 ㎛의 간격으로 배열된 2열의 본딩 패드들 중 한 쪽에 볼 본딩을 하여 범프를 형성하고, 다시 반대쪽 부분에 볼 본딩을 한 후 루프를 형성하면서 상기 범프 위에 스티치 본딩을 하였다.Bumps were formed by ball bonding to one of two rows of bonding pads arranged at intervals of 120 μm, and ball bonding was performed on the opposite side, and stitch bonding was performed on the bumps while forming loops.
그런 다음, 각 루프들 사이의 간격이 가장 좁은 지점에 대하여 해당 간격을 측정하였으며, 이를 각 루프들 사이의 간격을 대표하는 값으로 결정하였다. 이와 같이 결정된 각 루프들 사이의 간격이 111 ㎛ 내지 125 ㎛이면 ◎, 105 ㎛ 이상 111 ㎛ 미만이면 ○, 105 ㎛ 미만이면 △로 평가하였다.Then, the gap was measured at the point where the gap between the loops was the narrowest, and this was determined as a value representing the gap between each loop. The intervals between the loops thus determined were 111 μm to 125 μm, 이면, 105 μm or more and less than 111 μm, and Δ if they were less than 105 μm.
[ 고온 신뢰성 ]High Temperature Reliability
와이어 본딩 후 에폭시 몰딩 수지로 밀봉한 패키지를 175℃의 온도로 가열하여 접합면에서의 단락이 발생하는 시간을 측정하여 고온 신뢰성을 평가하였다. 접합면에서의 단락이 500 시간 이상이면 ◎, 396 시간 이상 500 시간 미만이면 ○, 198 시간 이상 396 시간 미만이면 △, 198 시간 미만이면 ×로 평가하였다.After the wire bonding, the package sealed with the epoxy molding resin was heated to the temperature of 175 degreeC, the time which the short circuit generate | occur | produces in the joint surface was measured, and the high temperature reliability was evaluated. (Circle) if a short circuit in a joining surface is 500 hours or more, (circle) and 396 hours or more and less than 500 hours, it evaluated as (circle) and 198 hours or more and less than 396 hours, it evaluated as x when it was less than 198 hours.
<실시예 1><Example 1>
이리듐(Ir)을 8000 중량ppm 포함하고 잔부 은(Ag)이 되도록 지름 2cm, 높이 2cm 크기의 잉곳을 만들었다. 잉곳의 제조 방법은 위의 '표면 특성 향상 시험'에서 설명하였으므로 여기서는 상세한 설명을 생략한다.An ingot having a diameter of 2 cm and a height of 2 cm was made to contain 8000 ppm by weight of iridium (Ir) and remain silver (Ag). Since the method of manufacturing the ingot has been described in the above 'surface property improvement test', a detailed description thereof will be omitted.
<실시예 2><Example 2>
이리듐(Ir) 대신 코발트(Co)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 각 잉곳들을 제조하였다.Each ingot was prepared in the same manner as in Example 1 except that cobalt (Co) was used instead of iridium (Ir).
<비교예 1∼3><Comparative Examples 1 to 3>
이리듐(Ir) 대신 니켈(Ni), 구리(Cu), 백금(Pt)을 각각 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 각 잉곳들을 제조하였다.Each ingot was prepared in the same manner as in Example 1 except that nickel (Ni), copper (Cu), and platinum (Pt) were used instead of iridium (Ir).
위의 실시예 1∼2 및 비교예 1∼3에서 제조된 잉곳들을 도 4 및 도 5에 나타내었다. 도 4 및 도 5에서 보는 바와 같이 이리듐(Ir)이 첨가된 실시예 1과 코발트(Co)가 첨가된 실시예 2의 경우는 표면이 매끄러운 것을 관찰할 수 있었지만, 니켈(Ni)을 첨가한 비교예 1의 경우 표면에 편석이 관찰되고, 구리(Cu)와 백금(Pt)이 각각 첨가된 비교예 2 및 3의 경우에도 매끄럽지 않은 표면이 관찰되었다.Ingots prepared in Examples 1 to 2 and Comparative Examples 1 to 3 are shown in FIGS. 4 and 5. As shown in FIGS. 4 and 5, in Example 1 to which iridium (Ir) was added and Example 2 to which cobalt (Co) was added, the surface was observed to be smooth, but compared with nickel (Ni). In the case of Example 1, segregation was observed on the surface, and in the case of Comparative Examples 2 and 3 in which copper (Cu) and platinum (Pt) were added, an unsmooth surface was also observed.
<실시예 3><Example 3>
팔라듐(Pd) 3 중량%, 이리듐(Ir) 5000 중량ppm(즉, 0.5 중량%) 포함하고 잔부 은(Ag)이 되도록 지름 2cm, 높이 2cm 크기의 잉곳을 만들었다. 잉곳의 제조는 실시예 1에서와 동일한 방법을 사용하였다.An ingot of 2 cm in diameter and 2 cm in height was made to contain 3 wt% of palladium (Pd) and 5000 wt ppm of iridium (Ir) (ie, 0.5 wt%) and the balance silver (Ag). The production of the ingot was the same method as in Example 1.
<비교예 4><Comparative Example 4>
팔라듐(Pd) 3 중량% 포함하고 잔부 은(Ag)이 되도록 지름 2cm, 높이 2cm 크기의 잉곳을 만들었다. 잉곳의 제조는 실시예 1에서와 동일한 방법을 사용하였다.An ingot of 2 cm in diameter and 2 cm in height was made to contain 3 wt% of palladium (Pd) and remain silver (Ag). The production of the ingot was the same method as in Example 1.
<비교예 5∼7><Comparative Examples 5-7>
이리듐(Ir) 대신 각각 니켈(Ni), 구리(Cu), 백금(Pt)을 각각 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 각 잉곳들을 제조하였다.Each ingot was prepared in the same manner as in Example 3 except that nickel (Ni), copper (Cu), and platinum (Pt) were used instead of iridium (Ir), respectively.
위의 실시예 3 및 비교예 4∼7에서 제조된 잉곳들의 모습을 나타낸 이미지와 이들을 현미경 관찰한 이미지를 도 6 및 도 7에 각각 나타내었다. 도 6 및 도 7에서 보는 바와 같이 이리듐(Ir)이 첨가된 실시예 3의 경우는 표면이 매끄럽고 조직이 치밀한 것을 관찰할 수 있었지만, 이리듐(Ir)을 첨가하지 않은 비교예 4∼7의 경우는 매끄럽지 않은 표면이 관찰되었다.6 and 7 show images showing images of the ingots prepared in Example 3 and Comparative Examples 4 to 7 and the images observed under the microscope. As shown in FIGS. 6 and 7, in Example 3 to which iridium (Ir) was added, the surface was smooth and the structure was dense. However, in Comparative Examples 4 to 7 in which iridium (Ir) was not added, An unsmooth surface was observed.
<실시예 4∼20, 비교예 8∼19><Examples 4-20, Comparative Examples 8-19>
우선 하기 표 3과 같은 조성을 갖는 잉곳을 제조한 후 신선과 함께 1차 열처리 및 2차 열처리를 수행하여 20 ㎛ 직경을 갖는 본딩와이어를 제조하였다. 1차 열처리는 400 ℃로 10초간 수행하였고, 2차 열처리는 최종 열처리로서 신선이 완료된 후에 500 ℃로 1초간 수행하였다.First, after preparing an ingot having a composition as shown in Table 3, a bonding wire having a diameter of 20 μm was prepared by performing a first heat treatment and a second heat treatment together with the fresh wire. The first heat treatment was performed at 400 ° C. for 10 seconds, and the second heat treatment was performed at 500 ° C. for 1 second after the completion of drawing as the final heat treatment.
표 3
Figure PCTKR2014008353-appb-T000001
TABLE 3
Figure PCTKR2014008353-appb-T000001
위와 같은 조성으로 제조된 본딩 와이어에 대하여 위에서 설명한 바와 같은 테스트들을 각각 수행하고 그 결과를 하기 표 4에 정리하였다.Tests as described above were performed on the bonding wires manufactured with the above composition, and the results are summarized in Table 4 below.
표 4
Figure PCTKR2014008353-appb-T000002
Table 4
Figure PCTKR2014008353-appb-T000002
위의 표 4에서 보는 바와 같이 이리듐(Ir)이 첨가된 실시예들에서는 대체로 우수한 본딩 특성을 보이고 있다. 다시 말해, 이들 실시예들에서는 우수한 BST, BPT, SPT 테스트 결과를 보이고, 또한 고온 신뢰성도 우수한 것으로 나타났다. 반면, 이리듐(Ir)이 첨가되지 않은 비교예들에서는 이들 특성이 현저히 열악한 것으로 나타났다.As shown in Table 4 above, in the embodiments in which iridium (Ir) is added, the bonding properties are generally excellent. In other words, these examples showed excellent BST, BPT, SPT test results, and also high temperature reliability. On the other hand, in the comparative examples without the addition of iridium (Ir) these properties were found to be significantly poor.
또한, 프리 에어볼(FAB)의 진구성과 본딩볼 모양에 있어서도 이리듐이 첨가됨에 따라 개선되는 것을 볼 수 있다. 본 발명이 속하는 기술분야의 통상의 기술자는 프리에어볼의 진구성과 본딩볼 모양이 개선됨으로써 반도체 장치의 제조시 쇼트나 단락의 가능성이 감소함을 이해할 것이다.In addition, it can be seen that the formation and bonding ball shape of the free air ball FAB are improved as iridium is added. Those skilled in the art will understand that the formation and bonding ball shape of the pre-air balls are improved, thereby reducing the possibility of short or short circuits in the manufacture of semiconductor devices.
또한, 이리듐 첨가에 따라 FAB의 표면도 더욱 매끈해 짐을 알 수 있다. 또한, 본 발명이 속하는 기술분야의 통상의 기술자는 FAB의 표면이 매끈해짐에 따라 본딩볼 모양이 보다 우수해 질 수 있음을 이해할 것이다.In addition, it can be seen that the surface of FAB becomes smoother with the addition of iridium. In addition, those skilled in the art will understand that the shape of the bonding ball can be better as the surface of the FAB becomes smoother.
또한, 실시예들 중에서 이리듐의 함량이 3000 중량ppm을 초과하면 단선 횟수가 증가하는 것을 관찰할 수 있었는데, 특정한 이론에 구속되는 것은 아니나 이러한 현상은 이리듐의 함량이 높아짐에 따라 가공경화율이 상승하고 가공 이후의 강도가 증가함에 따른 것으로 보인다.In addition, when the content of iridium exceeds 3000 ppm by weight in the embodiments it can be observed that the number of disconnection increases, although this is not bound by a specific theory, this phenomenon increases the work hardening rate as the content of iridium increases It seems that the strength after processing increases.
<실시예 21∼27><Examples 21-27>
우선 하기 표 5와 같은 조성을 갖는 잉곳을 제조한 후 신선과 함께 1차 열처리 및 2차 열처리를 수행하여 20 ㎛ 직경을 갖는 본딩와이어를 제조하였다. 1차 열처리는 400 ℃로 10초간 수행하였고, 2차 열처리는 최종 열처리로서 신선이 완료된 후에 500 ℃로 1초간 수행하였다.First, after preparing an ingot having a composition as shown in Table 5, a bonding wire having a diameter of 20 μm was prepared by performing a first heat treatment and a second heat treatment together with the fresh wire. The first heat treatment was performed at 400 ° C. for 10 seconds, and the second heat treatment was performed at 500 ° C. for 1 second after the completion of drawing as the final heat treatment.
표 5
Figure PCTKR2014008353-appb-T000003
Table 5
Figure PCTKR2014008353-appb-T000003
위와 같은 조성으로 제조된 본딩 와이어에 대하여 위에서 설명한 바와 같은 테스트들을 각각 수행하고 그 결과를 하기 표 6에 정리하였다.Tests as described above were performed on the bonding wires manufactured with the above composition, and the results are summarized in Table 6 below.
표 6
Figure PCTKR2014008353-appb-T000004
Table 6
Figure PCTKR2014008353-appb-T000004
위의 표 6에서 보는 바와 같이, 코발트(Co)와 티타늄(Ti)이 첨가된 실시예들에 대해서도 대체로 우수한 테스트 결과를 얻을 수 있었다. 다만, 금과 팔라듐의 중량 비율(Au/Pd)이 0.01 내지 1의 범위를 벗어나는 경우 본딩볼의 모양이 다소 떨어지는 모습을 볼 수 있었다.As shown in Table 6 above, excellent test results were generally obtained for the examples in which cobalt (Co) and titanium (Ti) were added. However, when the weight ratio (Au / Pd) of gold and palladium is outside the range of 0.01 to 1, the shape of the bonding ball was found to be somewhat reduced.
<비교예 20∼24><Comparative Examples 20-24>
이리듐(Ir) 대신 각각 실리콘(Si), 저머늄(Ge), 알루미늄(Al), 마그네슘(Mg), 아연(Zn)을 각각 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 각 잉곳들을 제조하고, 이들을 이용하여 실시예 4에서와 동일한 방법으로 20 ㎛ 직경을 갖는 본딩 와이어를 제조하였다.Each ingot was manufactured in the same manner as in Example 3 except that silicon (Si), germanium (Ge), aluminum (Al), magnesium (Mg), and zinc (Zn) were used instead of iridium (Ir), respectively. Using these, a bonding wire having a diameter of 20 μm was produced in the same manner as in Example 4.
또, 실시예 3의 잉곳으로부터도 실시예 4에서와 동일한 방법으로 20 ㎛ 직경을 갖는 본딩 와이어를 제조하였다.Moreover, the bonding wire which has a 20 micrometer diameter was also manufactured from the ingot of Example 3 by the same method as Example 4.
<실시예 28><Example 28>
이리듐(Ir) 5000 중량ppm 대신 티타늄(Ti)을 1000 중량ppm을 포함하는 것을 제외하고는 실시예 3과 동일한 방법으로 각 잉곳들을 제조하고, 이들을 이용하여 실시예 4에서와 동일한 방법으로 20 ㎛ 직경을 갖는 본딩 와이어를 제조하였다.Each ingot was manufactured in the same manner as in Example 3, except that 1000 ppm by weight of titanium (Ti) was used instead of 5000 ppm by weight of iridium (Ir), and 20 µm in diameter was used in the same manner as in Example 4. A bonding wire having was prepared.
실시예 3, 실시예 28, 비교예 11, 및 비교예 20 내지 24의 본딩 와이어에 대하여 90% 압연한 후 단부 모양의 이미지를 캡춰하여 도 8에 나타내었다. 도 8에서 보는 바와 같이 이리듐을 첨가한 실시예 3과 티타늄을 첨가한 실시예 28의 경우에는 표면이 매끈하고 가장자리 부분도 곧으며 단부 모양도 균일한 것을 볼 수 있지만 이러한 원소들을 첨가하지 않고 팔라듐(Pd)-금(Ag)이 첨가된 비교예 11의 경우에는 가장자리가 곧지 않고 단부도 불균일한 것을 볼 수 있었다. 또한, 실리콘(Si), 저머늄(Ge), 알루미늄(Al), 마그네슘(Mg), 아연(Zn)을 각각 첨가한 비교예 20 내지 24의 경우들에 있어서도 가장자리가 곧지 않고 단부도 불균일한 것을 알 수 있었다.After rolling 90% of the bonding wires of Example 3, Example 28, Comparative Example 11, and Comparative Examples 20 to 24, the end-shaped image was captured and shown in FIG. 8. As shown in FIG. 8, in the case of Example 3 in which iridium was added and Example 28 in which titanium was added, the surface was smooth, the edges were straight, and the end shape was uniform. However, without adding these elements, palladium ( In the case of Comparative Example 11 to which Pd) -gold (Ag) was added, the edges were not straight and the edges were also uneven. In addition, even in the cases of Comparative Examples 20 to 24 in which silicon (Si), germanium (Ge), aluminum (Al), magnesium (Mg), and zinc (Zn) were added, the edges were not straight and the ends were not uniform. Could know.
이를 통해서 볼 때, 실시예 3과 실시예 28의 본딩 와이어는 가공성이 우수하고 스티치 본딩 쪽에서도 우수한 본딩 특성을 보일 것임을 알 수 있다.From this, it can be seen that the bonding wires of Example 3 and Example 28 are excellent in workability and show excellent bonding characteristics in stitch bonding.
이상에서 살펴본 바와 같이 본 발명의 실시예들에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although described in detail with respect to embodiments of the present invention as described above, those of ordinary skill in the art, without departing from the spirit and scope of the invention as defined in the appended claims Various modifications may be made to the invention. Therefore, changes in the future embodiments of the present invention will not be able to escape the technology of the present invention.
본 발명은 반도체 산업에 유용하게 이용될 수 있다.The present invention can be usefully used in the semiconductor industry.

Claims (8)

  1. 은(Ag)을 주성분으로 하는 은 합금 본딩 와이어로서,A silver alloy bonding wire containing silver (Ag) as a main component,
    이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)을 3 중량ppm 내지 10000 중량ppm 함유하는 것을 특징으로 하는 은 합금 본딩 와이어.A silver alloy bonding wire containing 3 ppm by weight to 10000 ppm by weight of iridium (Ir), cobalt (Co), or titanium (Ti).
  2. 제 1 항에 있어서,The method of claim 1,
    금(Au) 및 팔라듐(Pd)을 더 포함하고,Further comprises gold (Au) and palladium (Pd),
    상기 금(Au)의 함량이 0.1 중량% 내지 2 중량%이고, 상기 팔라듐(Pd)의 함량이 1.5 중량% 내지 4 중량%인 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire, characterized in that the content of gold (Au) is 0.1% to 2% by weight, and the content of the palladium (Pd) is 1.5% to 4% by weight.
  3. 제 2 항에 있어서,The method of claim 2,
    백금(Pt), 구리(Cu), 베릴륨(Be) 및 칼슘(Ca)으로 구성되는 군으로부터 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 은 합금 본딩 와이어.A silver alloy bonding wire further comprising at least one selected from the group consisting of platinum (Pt), copper (Cu), beryllium (Be), and calcium (Ca).
  4. 제 2 항에 있어서,The method of claim 2,
    상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 2,000 중량ppm 내지 10,000 중량ppm인 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire, characterized in that the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is 2,000 ppm by weight to 10,000 ppm by weight.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 2,000 중량ppm 내지 3,000 중량ppm인 것을 특징으로 하는 은 합금 본딩 와이어.The silver alloy bonding wire, characterized in that the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is 2,000 ppm by weight to 3,000 ppm by weight.
  6. 제 2 항에 있어서,The method of claim 2,
    상기 이리듐(Ir), 코발트(Co), 또는 티타늄(Ti)의 함량이 3 중량ppm 내지 3,000 중량ppm인 것을 특징으로 하는 은 합금 본딩 와이어.Silver alloy bonding wire, characterized in that the content of the iridium (Ir), cobalt (Co), or titanium (Ti) is 3 ppm by weight to 3,000 ppm by weight.
  7. 제 2 항에 있어서,The method of claim 2,
    금과 팔라듐의 함량비(Au/Pd)가 0.01 내지 1인 것을 특징으로 하는 은 합금 본딩 와이어.Silver alloy bonding wire, characterized in that the content ratio (Au / Pd) of gold and palladium is 0.01 to 1.
  8. 기판;Board;
    상기 기판 위에 실장되고, 내부 회로를 외부와 접속하기 위한 본딩 패드가 구비된 반도체 칩; 및A semiconductor chip mounted on the substrate and provided with a bonding pad for connecting an internal circuit to the outside; And
    상기 기판과 상기 반도체 칩의 본딩 패드를 전기적으로 연결하는 본딩 와이어;Bonding wires electrically connecting the substrate and bonding pads of the semiconductor chip;
    를 포함하고, 상기 본딩 와이어는 제 1 항에 따른 은 합금 본딩 와이어인 것을 특징으로 하는 반도체 장치.Wherein the bonding wire is a silver alloy bonding wire according to claim 1.
PCT/KR2014/008353 2013-09-12 2014-09-05 Silver alloy boding wire and semiconductor device using same WO2015037876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0109971 2013-09-12
KR1020130109971A KR101582449B1 (en) 2013-09-12 2013-09-12 Ag alloy bonding wire and a semiconductor device comprising the same

Publications (1)

Publication Number Publication Date
WO2015037876A1 true WO2015037876A1 (en) 2015-03-19

Family

ID=52665923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008353 WO2015037876A1 (en) 2013-09-12 2014-09-05 Silver alloy boding wire and semiconductor device using same

Country Status (2)

Country Link
KR (1) KR101582449B1 (en)
WO (1) WO2015037876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148419A (en) * 2022-07-14 2022-10-04 四川威纳尔特种电子材料有限公司 High-conductivity antioxidant microalloyed copper alloy bonding wire and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950570B2 (en) 2014-04-21 2021-03-16 Nippon Steel Chemical & Material Co., Ltd. Bonding wire for semiconductor device
US10137534B2 (en) 2015-06-15 2018-11-27 Nippon Micrometal Corporation Bonding wire for semiconductor device
CN107004610B (en) 2015-07-23 2020-07-17 日铁新材料股份有限公司 Bonding wire for semiconductor device
US9887172B2 (en) 2015-08-12 2018-02-06 Nippon Micrometal Corporation Bonding wire for semiconductor device
KR101812943B1 (en) * 2016-10-20 2017-12-28 엠케이전자 주식회사 Bonding wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120046019A (en) * 2010-10-29 2012-05-09 스미토모 긴조쿠 고잔 가부시키가이샤 Bonding wire
JP5116101B2 (en) * 2007-06-28 2013-01-09 新日鉄住金マテリアルズ株式会社 Bonding wire for semiconductor mounting and manufacturing method thereof
KR20130083414A (en) * 2013-02-12 2013-07-22 엠케이전자 주식회사 Ag-based wire for semiconductor package and semiconductor package having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801444B1 (en) * 2006-05-30 2008-02-11 엠케이전자 주식회사 Au-Ag based alloy wire for a semiconductor package
JP4771562B1 (en) 2011-02-10 2011-09-14 田中電子工業株式会社 Ag-Au-Pd ternary alloy bonding wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116101B2 (en) * 2007-06-28 2013-01-09 新日鉄住金マテリアルズ株式会社 Bonding wire for semiconductor mounting and manufacturing method thereof
KR20120046019A (en) * 2010-10-29 2012-05-09 스미토모 긴조쿠 고잔 가부시키가이샤 Bonding wire
KR20130083414A (en) * 2013-02-12 2013-07-22 엠케이전자 주식회사 Ag-based wire for semiconductor package and semiconductor package having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148419A (en) * 2022-07-14 2022-10-04 四川威纳尔特种电子材料有限公司 High-conductivity antioxidant microalloyed copper alloy bonding wire and preparation method thereof
CN115148419B (en) * 2022-07-14 2023-03-24 四川威纳尔特种电子材料有限公司 High-conductivity antioxidant microalloyed copper alloy bonding wire and preparation method thereof

Also Published As

Publication number Publication date
KR20150030554A (en) 2015-03-20
KR101582449B1 (en) 2016-01-05

Similar Documents

Publication Publication Date Title
WO2015037876A1 (en) Silver alloy boding wire and semiconductor device using same
WO2014129745A1 (en) Silver alloy bonding wire
WO2015034287A1 (en) Silver alloy bonding wire and method for manufacturing same
KR101583865B1 (en) Alloy Bonding Wire Based on Ag-Au-Pd
US9972595B2 (en) Bonding wire for high-speed signal line
WO2018074857A1 (en) Bonding wire
KR20030086811A (en) Au-Ag alloy bonding wire for semiconductor device
KR101681616B1 (en) Wire for bonding and method of manufacturing the same
KR101087526B1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property, high resin flow resistance and low specific resistance
CN113557596A (en) Al bonding wire
WO2014107040A1 (en) Silver alloy bonding wire
US5658664A (en) Thin gold-alloy wire for semiconductor device
US20090101695A1 (en) Gold alloy wire for bonding wire having high initial bondability, high bonding reliability, high roundness of compression ball, high straightness, and high resin flowability resistance
KR100618054B1 (en) Au alloy bonding wire
TW202122597A (en) Al wiring material
JP3445616B2 (en) Gold alloy wires for semiconductor devices
WO2011142643A2 (en) Copper alloy, method for preparing same, and enhancing strength and electrical conductivity thereof
JP3729302B2 (en) Gold alloy wire for bonding
KR100618052B1 (en) Au alloy bonding wire for semiconductor device
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
JP3779817B2 (en) Gold alloy wire for semiconductor elements
WO2022168789A1 (en) Al wiring material
KR0185194B1 (en) Thin gold alloy wire and gold alloy bump
JP2706539B2 (en) Bonding wire
WO2022045134A1 (en) Aluminum wiring material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843673

Country of ref document: EP

Kind code of ref document: A1